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Abstract

This paper considers one-sided scheduling problems, where a schedule
of service is arranged at one location, without regard to other schedules.
Typically, such scheduling problems are handled on a first-come-first-
serve basis, which is grossly inefficient. The present paper proposes
a scheduling mechanism that is a non-standard auction, in which the
allocation is ruled by evaluating combinations of bids. The proposed
mechanism implements the efficient allocation in dominant strategies
and is deficit-free. Since that mechanism is suitable for the scheduling
problems at sea-ports, loading or unloading at sea-ports is used as an
illustration.

JEL classifications: D44, D45.
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1 Introduction

In a variety of settings a given capacity has to be rationed among different
parties, and a schedule has to be arranged that determines who shall be
served when. For example:

• In courts, tort law cases pile up that await processing; should cases
that involve a higher damage claim be served first?

• In seaports vessels have to be scheduled for loading and unloading
and in airports aircraft has to be scheduled for take-off and landing.
On what principles should one assign the available slots?

• In firms composed of quasi-independent subunits, jointly used fa-
cilities must be shared. Who gets access at what time, and how can
one decentralize the efficient access rule?

First-come-first-served is probably the most frequently used scheduling
rule. Seaports employ it to allocate time slots at berth, except for those
who have secured access through long-term contracts or by building-up
their own facilities. First-come-first-serve is, however, blatantly ineffi-
cient. This suggests the search for better scheduling rules. Better rules
improve welfare and, give those institutions that employ them a compet-
itive edge.

In this paper we propose an efficient scheduling mechanism for one-sided
scheduling problems, where schedules for service at one location can be
viewed as independent of other schedules. That mechanism is a non-
standard auction that awards slots according to a rule that evaluates
combinations of bids. That rule is an adaption of the generalized Clark-
Groves-Vickrey rule to a multidimensional framework with buyers and
sellers as bidders. It achieves the first-best schedule in dominant strate-
gies, it is deficit-free, and it entails nonnegative prices that are equal to
shadow prices. It also allows for forward sales of time slots, and assures
that the slots sold in advance are voluntarily brought back to the auction.
Moreover, it allows for different service times, and arbitrary distribution
of preferences over feasible schedules.

Sea-ports seem to fit reasonably well the pattern of a one-sided schedul-
ing problem. This is why, in the following, we will always refer to the
scheduling of vessels for unloading at seaports. It should, however, be
understood that our proposal applies to a variety of other scheduling
problems.

In order to motivate that sea-port perspective, we mention that sea-ports
typically enter into some long-term contracts that allow shipping lines to
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book time slots in advance. This so called “rendezvous system” allocates
part of the port capacity. The remaining capacity is then assigned shortly
before vessels are handled or as late as when they have lined up in port.
There, the scheduling policy tends to be first-come-first-serve (see Ghosh
(2002) and Psaraftis (1998)).

There is a large literature on ports, port investment and pricing mech-
anisms. The currently used pricing rules across ports are classified as
cost based, cost recovery, congestion, strategic or commercial pricing.
A review of this literature is found in Strandenes and Marlow (2000).
Dasgupta and Ghosh (2000) demonstrate that using prices to regulate
queue performance in seaports can make a significant difference, using
data from the port of Calcutta. And Ghosh (2002) proposes to adopt a
standard English auctions to allocate the next available time slot at berth.

There is also a large literature on priority pricing, and particular schedul-
ing problems, known as the “queuing problem”. Queuing is generally de-
scribed by stochastic arrival of customers. Due to limited service capac-
ity, customers queue. They all wish to be served as quickly as possible.
Therefore, the service provider must set some rules that define priorities
of service.

In his seminal paper Marchand (1974) characterizes the optimal alloca-
tion in queuing problems, and the use of prices to implement that al-
location. He assumes commonly known waiting costs and nonstrategic
customers. Naor (1969) shows that that first-come-first-serve entails in-
efficient entry, because those who join a queue do not take into account
how that affects the waiting time of others. Cox and Smith (1961) show
that it is optimal to serve members of a queue in descending order of
waiting cost. And Balachandran (1972) allows customers to affect the
order of service by purchasing priorities.

While the earlier queuing literature assumed that customers’ are not
strategic players, because their waiting cost is common knowledge, sev-
eral recent contributions allowed for private information. Mitra (2002)
showed that the efficient queue is implementable in dominant strategies
while maintaining a balanced budget if and only if waiting costs are lin-
ear.

Despite the similarities between queueing and the present scheduling
problem, there are at least two some important differences. Queuing
assumes random arrival and impatience (everyone wants to be served
as soon as possible). These assumptions are not appropriate for the
scheduling issue, because vessel operators plan their arrival time in ad-
vance, and thus do not necessarily wish to be served at the first slot
available during a given day or week.
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The plan of the paper is as follows: Section 2 presents assumptions and
the notation. Section 3 introduces the proposed auction mechanism.
Section 4 characterizes that mechanism and presents the proofs. Section
5 explains why simpler standard auction mechanisms should not be used.
Section 6 discusses the role of a forward market in slots, as a complement
to the proposed auction mechanism. The paper closes in Section 7 with
a discussion of the limitations of the proposed mechanism.

2 Assumptions and Notation

Suppose there are n ≥ 2 vessels that need to be queued for unloading at
a given port facility, during a given time window. Each ship is denoted by
an index i ∈ N := {1,2, . . . , n}. Vessels may require a different amount
of time for unloading (in addition to other resources such as staff, equip-
ment etc.).

Based on the time required for unloading, the port authority computes all
feasible time allocations. An allocation, αr := (αr1 , . . . , αrn), is a complete
schedule; component αri states precisely at which time ship i shall be
unloaded, and this in such a way that the sum total of the allocated time
slots does not exceed the available time. The set of all feasible allocations
is denoted by A := (α1, . . . , αm

)
. Similarly, the restricted set of feasible

allocations that apply if time slot s is not available, is denoted by A−s .
Of course, feasible allocations may prescribe that some vessels are not
unloaded.

3 The Proposed Auction Rule

We propose the following auction mechanism that is an adaptation of
the Groves-Clarke-Vickrey mechanism to a multidimensional framework
with buyers and sellers as bidders. Without loss of generality, it can be
described as a direct revelation mechanism in which bidders are simply
asked to report their incremental profits from being served according to
each feasible allocation (relative to being served at some given alternative
time slot), and the auctioneer is committed to select an allocation and
associated prices for unloading, as a function of the complete profile of
messages by all n bidders.

We will say that a “bid” by bidder i is a vector π̃i that states his reported
profits for each and every feasible allocation α ∈ A:

π̃i :=
(
π̃i(α1

i ), π̃i(α
2
i ), . . . , π̃i(α

m
i )
)

(1)
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Of course, bidders may not tell the truth; therefore, a bid π̃i may deviate
from true profits, which are denoted by πi.

The combined “bid vector” of all bidders, π̃ := (π̃1, π̃2, . . . , π̃n), uniquely
determines which allocation is chosen and how the associated schedules
are priced, according to the following rules.

“Allocation rule”: For each bid vector, π̃ , the mechanism selects that
allocation, α∗(π̃), that maximizes bidders’ welfare, which is the sum of
their bids:

α∗(π̃) := arg max
α∈A

W(α, π̃) (2)

W(α, π̃) :=
∑

j∈N
π̃j(αj). (3)

Evidently, this rule selects the efficient allocation, defined as the maxi-
mizer of the sum total of true profits, if bidders bid truthfully (π̃i = πi),
for all i ∈ N .

A similar allocation rule is applied to two hypothetical circumstances:
when bidder i is excluded from participation in the mechanism, and when
bidder i is excluded, and at the same time slot s is not made available:

α∗−i(π̃−i) := arg max
α∈A

W−i(α, π̃−i) (4)

α∗−i,−s(π̃−i) := arg max
α∈A−s

W−i(α, π̃−i) (5)

W−i(α, π̃−i) :=
∑

j≠i
π̃j(αj). (6)

“Pricing rules”: Bidders are required to pay a “service price” for the slot
allocated to them, and they receive a “selling price” if they already own
a slot and supply it to the auction.

The service price to be paid by bidder i if he is awarded slot α∗i (π̃) is
equal to the negative externality that his presence inflicts upon all other
bidders:

pα∗i (π̃) := W−i
(
α∗−i(π̃−i), π̃−i

)
−W−i

(
α∗(π̃), π̃−i

)
. (7)

The selling price to be paid to bidder i for a slot s, if he already owns
it but supplies it to the auction, is equal to the positive externality that
supplying slot s would inflict upon others if he does not participate in
the auction as a buyer:

Psi = W−i
(
α∗−i(π̃−i), π̃−i

)
−W−i

(
α∗−i,−s(π̃−i), π̃−i

)
. (8)
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These rules induce a noncooperative game, which is characterized by the
following payoff functions, defined on bidders’ messages (which are their
only strategies).

The payoff function of a bidder i who does not already own some slot
(we may call him a “buyer” : b) is:

Πbi (π̃) =πi(α∗i (π̃))− pα∗i (π̃)
=πi(α∗i (π̃))+W−i

(
α∗(π̃), π̃−i

)−W−i
(
α∗−i(π̃−i), π̃−i

)
.

(9)

Similarly, the payoff function of a bidder i who already owns slot s and
made it available to the auction (we may call him “seller/buyer” : sb) is

Πsbi (π̃) =πi(α∗i (π̃))− pα∗i (π̃) + Psi
=πi(α∗i (π̃))+W−i

(
α∗(π̃), π̃−i

)−W−i
(
α∗−i,−s(π̃−i), π̃−i

)
.
(10)

Of course, if bidder i already owns slot s but does not supply it to the
auction (we may call him a “non-seller” : ns), his payoff function is only
dependent upon πi:

Πnsi (π̃) = πi(s), (11)

whereas if he sells at the auction but does not wish to buy there (we may
call him a “pure seller” : s), his payoff function is only dependent upon
π̃−i:

Πsi (π̃) = Psi = W−i
(
α∗−i(π̃−i), π̃−i

)
−W−i

(
α∗−i,−s(π̃−i), π̃−i

)
. (12)

4 Properties of the Proposed Auction

Theorem 1 1) Truthful bidding is an equilibrium in dominant strategies.
2) That equilibrium has the following properties: a) efficient (re-)scheduling;
b) all slots that were sold forward are supplied to the auction; c) nonneg-
ative prices pα∗i (π), Psi; d) the price of each slot is equal to its shadow
price.

Proof 1) Consider a pure buyer. If he tells the truth, his payoff is equal
to Πbi (π, π̃−i). Whereas, if he lies and reports π̃i ≠ πi, and if he thus
changes the allocation to αk ≠ α∗(πi, π̃−i), his payoff is reduced,

Πbi (πi, π̃−i) =πi(α∗i (πi, π̃−i))+W−i
(
α∗(πi, π̃−i), π̃−i

)

−W−i
(
α∗−i(π̃−i), π̃−i

)

≥πi(αk)+W−i
(
αk, π̃−i

)
−W−i

(
α∗−i(π̃−i), π̃−i

)
,
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because α∗(πi, π̃−i) is the maximizer of the sum

πi(α∗i (πi, π̃−i))+W−i
(
α∗(πi, π̃−i), π̃−i

)
,

and because adding the constant W−i
(
α∗−i(π̃−i), π̃−i

)
to that sum does

not change its maximizer.

The same argument applies to the seller/buyer because his payoff func-
tion differs only in the constant.

Finally, the payoff of the pure seller is independent of his message; there-
fore, he cannot gain from cheating either.

We now use this result in the proof of properties 2a)-2d):

2a) By 1), the mechanism implements the allocation α∗(π̃) = α∗(π),
which is efficient.

2b) Consider a ship-owner who had purchased a slot forward. Since

Πsbi (π)−Πsi (π) =πi(α∗i (π))− pα∗i (π)
=Πbi (π)
≥0,

the policy of selling and buying (sb) payoff dominates that of pure selling
(s).

Next, define (s,α∗−i,−s(π−i)) as that allocation that awards slot s to bidder
i and slots α∗−i,−s(π−i) to the others bidders. Since α∗(π) is maximizer
of W , and subtracting a constant does not affect that maximizer, it fol-
lows that

Πsbi (π)−Πnsi (π) =−πi(s)+πi(α∗i (π))+W−i
(
α∗(π),π−i

)

−W−i
(
α∗−i,−s(π−i),π−i

)

≥−πi(s)+πi(s)+W−i
(
α∗−i,−s(π−i),π−i

)

−W−i
(
α∗−i,−s(π−i),π−i

)

=0.

2c) Service prices p are nonnegative, because slots are private goods, and
one bidder’s participation can only reduce the capacity available to others
(see (7)). Similarly, selling prices, P , are nonnegative, because bringing a
slot back to the auction, while not participating in the auction, benefits
the other bidders (see (8)).

2d) In equilibrium, bidder i is awarded slot α∗i (π). Suppose a replica
of that slot is made available to the auction. Then welfare increases
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by the amount W−i
(
α∗−i(π−i),π−i

)
− W−i (α∗(π),π−i). By (7) this is

precisely equal to the service price pα∗i (π). Therefore, services prices can
be interpreted as shadow prices. A similar argument applies to selling
prices. �

The last property entails that ports are also given the right incentives to
invest in port capacity.

5 Why not Use a Standard Auction?

The present scheduling problem is a multi-object auction in which each
bidder demands only one object. If the objects for sale were identical,
the scheduling problem would be equivalent to a single-unit auction (see
Weber (1983)). In that case, one could employ a simple, standard auction
rule, in lieu of the more complex scheme proposed here. This raises
the question: what would go wrong if one employed a simple, standard
auction rule?

If one employed a standard auction procedure one would auction slots
sequentially and typically employ an open, ascending-price auction for-
mat. For example, one could first auction the early morning slot, then
the second late morning slot, and continue in this fashion, down to the
last, late evening slot. Like in standard auction, each slot would be allo-
cated to that bidder who values it the most; however, unlike in a standard
auction, this allocation is not efficient.

A simple example explains the problem: Suppose three vessels, called
A, B, and C , demand to be handled at a port at a given day. Vessel A
is considerably larger than B and C , in such a way, that the port can
handle either A alone or both B and C . Also let A’s willingness to pay for
immediate port handling, vA, be considerably higher than that of B and
C , vB,vC , yet smaller than the sum of the willingness to pay for serving
B and C in sequence, vBC . In that case, the standard auction procedure
allocates the port capacity to vessel A and neither serves vessel B nor C .
This is, however, not efficient, since the value generated by this allocation,
vA, is lower the value that it crowds out, vBC .

In order to reach the efficient allocation, the auctioneer must compare not
only individual bids, but also all feasible combinations of bids. Standard
auction procedures generally fail to solve scheduling problems precisely
because they compare only individual bids, and fail to compare them to
all those combinations of bids that are consistent with a feasible sched-
ule. This indicates that a solution of a scheduling problem must employ
some combinatorial bidding procedure, like the one proposed here.1
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6 Forward Sale of Slots

The mechanism assumes that there is both a spot and a forward market
in port slots. To create a functioning forward market, an active spot
market is needed. Without the spot market, forward transactions can
only occur in the form of dedicating facilities to particular users.

At present some liner operators have invested in terminals partly to as-
certain specific port slots and partly to secure access to dedicated cargo
handling gear. Liner operators that sail their vessels in scheduled oper-
ations could secure specific slots without running their own terminal, if
they had access to a viable forward market in slots. And even those who
maintain their own facilities may improve their utilization by reselling
capacity at a functioning spot market.

Even for tramp shipping there is a demand for forward transactions in
port slots. Assignments to ship a cargo load between two specific ports
is often awarded weeks before the actual loading and a laden trip may
last several weeks. A third group of potential bidders in the forward slot
auctions are the ship-owners offering contracts of affreightment (COA)
who guarantee transport of a fixed volume of cargo at specific intervals
within one or more years.

To ports auctioning of slots in a forward market is essentially a finan-
cial instrument to hedge exposure to unexpected demand fluctuations.2

However, the main benefit of offering forward transactions is that it
makes the port more attractive to ship-owners, because it admits long-
term planning, and guarantees them access at a certain time without
investing in their own terminal.

Of course, the schedules arranged in the forward market must be renego-
tiable in the spot market, as they are in the proposed mechanism, because
vessel’s arrival is subject unexpected changes. In particular, weather con-
ditions may cause delays. Rerouting of vessels during the laden trip also
occurs, for example when the cargo is re-sold while being transported.

1Ausubel and Milgrom (2002) advise to use a particular “package bidding” proce-
dures to deal with complex multi-object auction problems. Generally, package bidding
is relevant if bidders demand several objects. This is not the case in the present con-
text. Nevertheless, even though our proposed mechanism differs from that by Ausubel
and Milgrom, one may view the present proposal as an example of some sort of pack-
age bidding, where bidders bid on complete allocations, even though they are only
interested in the slot assigned to them and don’t care about the slots given to other
bidders.

2Since the mechanism gives ship-owners an option to resell, the hedging potential
for ports is limited, because the income risk of the port is not always reduced by
offering forward transactions.
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Re-sale of slots will reduce the number of unused slots and diminish
ship-owners risk from buying slots forward when they cannot be sure
that their vessels will use the specific slots acquired.

The port should only sell some of the slots in the forward market and
retain others for sale in the spot market, if the forward market is thin.
This may also be necessary in order to avoid predatory blocking of port
capacity. But the port could also achieve this by restricting the number
of slots sold to each bidder.

The proposed mechanism give ship-owners and incentive to resell a slot
in the spot auction, but a second hand market in port slots where ship-
owners sell slots among themselves should not be allowed. When a ves-
sel is sold the slots acquired for this vessel belong to the vessel or are
brought back to the auction. Alternatively the port may allow the ship-
owner selling the vessels to reassign the slots to another vessel in his
fleet.

7 Discussion

The present paper has proposed an auction mechanism that solves the
problem of scheduling in ports and other applications. This mechanism
is an adaptation of the Clark-Groves-Vickrey rule to an auction environ-
ment with multidimensional messages where participants are both buy-
ers and sellers. It implements the efficient allocation in dominant strate-
gies, is deficit free, and assures nonnegative slot prices. Thus, the mech-
anism awards the entire scarcity rent to the port which also entails the
right incentives for investment in port capacity.

The proposed mechanism is compatible with forward sales of slots. It
assures that the slots acquired in forward markets are always resold in
the spot auction. This way, rescheduling occurs whenever it is beneficial.

The proposed mechanism has two limitations. First, it assumes one-
sided scheduling problems. This excludes applications in which there
are significant interdependencies between schedules arranged at differ-
ent locations, as in the case of airports, where the rights of take-off and
landing must be coordinated across airports (see Rassenti, Smith, and
Bulfin (1982)). Second, it assumes stochastic independence of bidders’
privately known willingness to pay for slots. While this assumption is ap-
propriate for most port applications, it cannot be applied to the schedul-
ing of feeder service at hub ports, where strong complementarities exist
between slots.
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