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Abstract
Scenario generation is the construction of a discrete random vector to represent
parameters of uncertain values in a stochastic program. Most approaches to scenario
generation are distribution-driven, that is, they attempt to construct a random vec-
tor which captures well in a probabilistic sense the uncertainty. On the other hand, a
problem-driven approach may be able to exploit the structure of a problem to provide
a more concise representation of the uncertainty. In this paper we propose an analytic
approach to problem-driven scenario generation. This approach applies to stochastic
programs where a tail risk measure, such as conditional value-at-risk, is applied to
a loss function. Since tail risk measures only depend on the upper tail of a distribu-
tion, standard methods of scenario generation, which typically spread their scenarios
evenly across the support of the random vector, struggle to adequately represent tail
risk. Our scenario generation approach works by targeting the construction of sce-
narios in areas of the distribution corresponding to the tails of the loss distributions.
We provide conditions under which our approach is consistent with sampling, and as
proof-of-concept demonstrate how our approach could be applied to two classes of
problem, namely network design and portfolio selection. Numerical tests on the port-
folio selection problem demonstrate that our approach yields better and more stable
solutions compared to standard Monte Carlo sampling.

Mathematics Subject Classification 90C15 (stochastic programming)

1 Introduction

Stochastic programming is a tool for making decisions under uncertainty. Under this
modeling paradigm, uncertain parameters are modeled as a random vector, and one
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attempts to minimize (or maximize) the expectation or risk measure of some loss
function which depends on the initial decision. However, what distinguishes stochas-
tic programming from other stochastic modeling approaches is its ability to explicitly
model future decisions based on outcomes of stochastic parameters and initial deci-
sions, and the associated costs of these future decisions. The power and flexibility
of the stochastic programming approach comes at a price: stochastic programs are
usually analytically intractable, and often not susceptible to solution techniques for
deterministic programs.

Typically, a stochastic program can only be solved when it is scenario-based, that is
when the random vector for the problem has a finite discrete distribution. For example,
stochastic linear programs become large-scale linear programs when the underlying
random vector is discrete. In the stochastic programming literature, the mass points of
this random vector are referred to as scenarios, the discrete distribution as the scenario
set and the construction of this set as scenario generation. Scenario generation can
consist of discretizing a continuous probability distribution, or directly modeling the
uncertain quantities as discrete random variables. Themore scenarios in a set, themore
computational power that is required to solve the problem. The key issue of scenario
generation is therefore how to represent the uncertainty to ensure that the solution to
the problem is reliable, while keeping the number of scenarios low so that the problem
is computationally tractable.

A common approach to scenario generation is to fit a statistical model to the uncer-
tain problem parameters and then generate a random sample from this for the scenario
set. This has desirable asymptotic properties [22,33], but may require large sample
sizes to ensure the reliability of the solutions it yields. This can be mitigated somewhat
by using variance reduction techniques such as stratified sampling and importance
sampling [24]. Sampling also has the advantage that it can be used to construct con-
fidence intervals on the true solution value [25]. Another approach is to construct a
scenario set whose distance from the true distribution, with respect to some probabil-
ity metric, is small [12,19,28]. These approaches tend to yield better and much more
stable solutions to stochastic programs than does sampling.

A characteristic of these approaches to scenario generation is that they are
distribution-driven; that is, theyonly aim to approximate a distribution and are divorced
from the stochastic program for which they are producing scenarios. By exploiting the
structure of a problem, it may be possible to find a more parsimonious representation
of the uncertainty. Note that such a problem-driven approach may not yield a discrete
distribution which is close to the true distribution in a probabilistic sense; the aim is
only to find a discrete distribution which yields a high quality solution to our problem.

Stochastic programs often have the objective of minimizing the expectation of
a loss function. This is particularly appropriate when the initial decision represents
a strategic decision that is going to be used again and again, and individual large
losses do not matter in the long term. For example, in a stochastic facility location
problem (e.g. see [5]) the locations of several facilities must be chosen subject to the
unknown demands of customers in a way which minimizes fixed investment costs,
and future distribution costs. In other cases, the decision may be only used once or
a few times, and the occurrence of large losses may have serious consequences such
as bankruptcy. This is characteristic of the portfolio selection problem [26] studied
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in detail in the latter part of this paper. In this latter case, minimizing the expectation
alone is not appropriate as this does not necessarily mitigate against the possibility of
large losses. One possible remedy is to use a risk measure which penalises in some
way the likelihood and severity of potential large losses.

In this paper we are interested in stochastic programs which use tail risk measures.
A precise definition of a tail-risk measure will be given in Sect. 3 but for now, one can
think of a tail riskmeasure as a function of a randomvariablewhich only depends on the
upper tail of its distribution function. Tail risk measures are useful as they summarize
the extent of potential losses in the worst possible outcomes. Examples of tail risk
measures include the Value-at-Risk (VaR) [21] and the Conditional Value-at-Risk
(CVaR) [29], both of which are commonly used in financial contexts. Although the
methodology developed in this paper can in principle be applied to any loss function,
in this workwe aremainly interested in loss functions which arise in one and two-stage
stochastic programs.

Distribution-driven scenario generation methods are particularly problematic for
stochastic programs involving tail risk measures. This is because these methods tend
to spread their scenarios evenly across the support of distribution and so struggle to
adequately represent the tail riskwithout using a potentially prohibitively large number
of scenarios.

In this paper, we propose an analytic problem-driven approach to scenario gener-
ation applicable to stochastic programs which use tail risk measures of a form made
precise in Sect. 3. We observe that the value of a tail risk measure depends only on
scenarios confined to an area of the distribution that we call the risk region. This means
that all scenarios that are not in the risk region can be aggregated into a single point.
By concentrating scenarios in the risk region, we can calculate the value of a tail risk
measure more accurately.

Given a risk region for a problem, we propose a simple algorithm for generating
scenarios which we call aggregation sampling. This algorithm takes samples from
the random vector until a specified number of samples in the risk region have been
produced, and all other scenarios are aggregated into a single scenario. We provide
and give proofs of conditions under which this method is asymptotically consistent
with standard Monte Carlo sampling.

In general, finding a risk region is difficult as it is determined by the loss function,
problem constraints and the distribution of the uncertain parameters. Therefore, we
derive risk regions for two classes of problem as a proof-of-concept of our method-
ology. The first class of problems are those with monotonic loss functions which, as
will be shown, occur naturally in the context of network design. The second class
are portfolio selection problems. For both types of risk regions we run numerical
tests which demonstrate that our methodology yields better quality solutions and with
greater reliability than standard Monte Carlo sampling.

This paper is organized as follows: in Sect. 2 we discuss related work; in Sect. 3
we define tail risk measures and their associated risk regions; in Sect. 4 we discuss
how these risk regions can be exploited for the purposes of scenario generation; in
Sect. 5we prove that our scenario generationmethod is consistent with standardMonte
Carlo sampling; in Sects. 6 and 7we derive risk regions for the two classes of problems
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described above; in Sect. 8 we present numerical tests; finally in Sect. 9 we summarize
our results and make some concluding remarks.
Notation Throughout this paper random variables and vectors are represented by bold
(mainly Greek) letters: θ, ξ , ζ and outcomes of these are represented by the corre-
sponding non-bold letters: θ, ξ, ζ . Inequalities used with vectors and matrices always
apply component-wise. ‖·‖ represents the standard Euclidean norm.

2 Related work

There are relatively few cases of problem-driven scenario generation in the literature.
The earliest example of which we are aware is the importance sampling approach of
[8] which constructs a sampler from the loss function. Importance sampling has been
used more recently for scenario generation for problems which, like our own, concern
rare events. In [23] an importance sampling scheme is used for a multistage problem
involving the CVaR risk measure. In [4], an importance sampling approach is pro-
posed for chance-constrained stochastic programs where the permitted probabilities
of constraint violation are very small.

There is an interesting connection between problem-driven scenario generation
and distributionally robust optimization [11,38,39]. In distributionally robust opti-
mization, the distribution of the random variables in a stochastic program is itself
uncertain, and one must optimize for the worst-case distribution. Solving a distri-
butionally robust optimization problem thus involves finding, at least implicitly, the
worst-case distribution or scenario set for given objective and constraints. In this sense,
distributionally robust optimization could be considered as a problem-driven scenario
generation method. Of particular relevance for this work, the paper [9] solves a distri-
butionally robust portfolio selection problem involving the CVaR risk measure where
the distribution of asset returns has specified discrete marginals, but unknown joint
distribution.

The idea that in stochastic programs with tail risk measures some scenarios do not
contribute to the calculation of the tail-risk measure was also exploited in [17]. How-
ever, they propose a solution algorithm rather than a method of scenario generation.
Their approach is to iteratively solve the problem with a subset of scenarios, identify
the scenarios which have loss in the tail, update their scenario set appropriately and
resolve, until the true solution has been found. Theirmethod has the benefit that it is not
distribution dependent. On the other hand, their method works for only the β -CVaR
risk measure, while our approach works in principle for any tail risk measure.

3 Tail risk measures and risk regions

In this section we present the core theory to our scenario generation methodology.
Specifically, in Sect. 3.1 we formally define tail-risk measures of random variables
and in Sect. 3.2 we define risk regions and present some key results related to these.
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3.1 Tail risk of random variables

In our set-up we suppose we have some random variable representing an uncertain
loss. For our purposes, we take a risk measure to be any function of a random variable.
The following formal definition is adapted from [35].

Definition 1 (Risk measure) Let (Ω,P) be a probability space, and Θ be the set of
measurable real-valued random variables on (Ω,P). Then, a risk measure is some
function ρ : Θ → R ∪ {∞}.

For a risk measure to be useful, it should in some way penalize potential large
losses. For example, in the classical Markowitz problem [26], one aims to minimize
the variance of the return of a portfolio. By choosing a portfolio with a low variance,
we reduce the probability of larges losses as a direct consequence of Chebyshev’s
inequality (see for instance [6]). Various criteria for riskmeasures have been proposed;
in [3] a coherent risk measure is defined to be a risk measure which satisfies axioms
such as positive homogeneity and subadditivity; another perhaps desirable criterion
for risk measures is that the risk measure is consistent with respect to first and second
order stochastic dominance, see [27] for instance.

Besides not satisfying some of the above criteria, a major drawback with using
variance as a measure is that it penalizes all large deviations from the mean, that is,
it penalizes large profits as well as large losses. This motivates the idea of using risk
measures which depend only on the upper tail of the loss distribution. To formalize
this idea, we first recall the definition of quantile function.

Definition 2 (Quantile function) Suppose θ is a random variable with distribution
function Fθ . Then the generalized inverse distribution function, or quantile function
is defined as follows:

F−1
θ : (0, 1] → R ∪ {∞}

β �→ inf{x ∈ R : Fθ (x) ≥ β}.

We refer to the quantile function evaluated at β, F−1
θ (β), as the β-quantile.

The β-quantile can be interpreted as the smallest value for which the distribution
function is greater than or equal to β. The β-tail of a distribution is the restriction of
the distribution function to values equal to or above the β-quantile. In the context of
risk management, we typically have 0.9 ≤ β < 1.0. The following definition says that
a tail risk measure is a risk measure that only depends on the β-tail of a distribution.

Definition 3 (Tail risk measure) Let ρβ : Θ → R ∪ {∞} be a risk measure per
Definition 1. Then ρβ is a β-tail risk measure if ρβ(θ) depends only on the restriction
of quantile function of θ above β, in the sense that if θ and θ̃ are random variables
with F−1

θ |[β,1]=F−1
θ̃

|[β,1] then ρβ(θ) = ρβ(θ̃).

To show that ρβ is a β-tail risk measure, we must show that ρβ(θ) can be written
as a function of the quantile function above or equal to β. Two very popular tail risk
measures are the value-at-risk [21] and the conditional value-at-risk [30]:
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Example 1 (Value at risk) Let θ be a random variable, and 0 < β < 1. Then, the
β−VaR for θ is defined to be the β-quantile of θ :

β -VaR(θ) := F−1
θ (β).

Example 2 (Conditional value at risk) Let θ be a random variable, and 0 < β < 1.
The following alternative characterization of β -CVaR [2] shows directly that it is a
β-tail risk measure.

β -CVaR(θ) = 1

1 − β

∫ 1

β

F−1
θ (u) du.

Note that in the case that θ is a continuous random variable, the β -CVaR is the
conditional expectation of the random variable above its β-quantile (e.g. see [30]).

The observation that we exploit for this work is that very different random variables
will have the same β-tail risk measure as long as their β-tails are the same.

When showing that two distributions have the same β-tails, it is convenient to
use distribution functions rather than quantile functions. The following result gives
conditions which ensure that the β-tails of two distributions are the same. We will
make use of these in proofs later in this paper.

Lemma 1 Suppose that θ and θ̃ are randomvariables such that one of the two following
conditions hold:

(i) F
θ̃
(θ) = Fθ (θ) for all θ ≥ F−1

θ (β) and F
θ̃
(θ) < β for all θ < F−1

θ (β).

(ii) F
θ̃
(θ) = Fθ (θ) for all θ ≥ L for some L < F−1

θ (β).

Then, F−1
θ̃

(u) = F−1
θ (u) for all u ≥ β.

Proof We first prove that condition (i) implies that the β-tails are the same. Since
F

θ̃
(θ) = Fθ (θ) ≥ β for all θ ≥ F−1

θ (β), we must have F−1
θ̃

(β) ≤ F−1
θ (β). Also,

given F
θ̃
(θ) < β for all θ < F−1

θ (β) we must have F−1
θ̃

(β) ≥ F−1
θ (β) and so

F−1
θ̃

(β) = F−1
θ (β).

Now suppose u ≥ β. Then,

F−1
θ̃

(u) = inf{θ ∈ R : F
θ̃
(θ) ≥ u}

= inf{θ ≥ F−1
θ̃

(β) : F
θ̃
(θ) ≥ u}

= inf{θ ≥ F−1
θ (β) : Fθ (θ) ≥ u}

= inf{θ ∈ R : Fθ (θ) ≥ u}
= F−1

θ (u)

where the second and fourth lines follow from the fact that quantile functions are
non-decreasing.
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In the case condition (ii) holds,wehave for L < θ < F−1
θ (β) that F

θ̃
(θ) = Fθ (θ) <

β, and since distribution functions are non-decreasing this means that F
θ̃
(θ) < β for

all θ < F−1
θ (β). The result now follows by application of condition (i). 
�

3.2 Risk regions

In this paper we are primarily interested in problems of the following form:

minimize
x∈X

ρβ( f (x, ξ)) (1)

where X ⊆ R
k is a deterministic set of feasible decisions, ξ ∈ Ξ ⊆ R

d is a random
vector defined on a probability space (Ω,P), the set Ξ is convex, f : X × Ξ → R

is a loss function, and ρβ is a tail risk measure.
In order to solve these problems accurately, we need to be able to approximate well

the tail risk measure of our the loss function f (x, ξ ) for all feasible decisions x ∈ X .
To avoid repeated use of cumbersome notation we introduce the following short-

hand for distribution and quantile functions:

Fx (θ) := Ff (x,ξ)(θ) = P ( f (x, ξ) ≤ θ) ,

F−1
x (β) := F−1

f (x,ξ)
(β) = inf{θ ∈ R : Fx (θ) ≥ β}.

In addition, since the loss function is only defined on Ξ , we frequently take comple-
ments of sets contained inΞ . Again, to avoid repeated use of cumbersome notation, the
standard notation for complements will apply with respect to Ξ . That is, for R ⊆ Ξ

we write Rc in place of Ξ\R.
Since tail risk measures depend only on those outcomes which are in the β-tail, we

aim to identify which outcomes lead to a loss in the β-tails for a feasible decision.
This motivates the following definition.

Definition 4 (Risk region) For 0 < β < 1 the β-risk regionwith respect to the decision
x ∈ X is defined as follows:

Rx (β) = {ξ ∈ Ξ : Fx ( f (x, ξ)) ≥ β},

or equivalently

Rx (β) = {ξ ∈ Ξ : f (x, ξ) ≥ F−1
x (β)}. (2)

The risk region with respect to the feasible region X ⊂ R
k is defined to be:

RX (β) =
⋃
x∈X

Rx (β). (3)
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The complement of this region is called the non-risk region. This can also be written

RX (β)c =
⋂
x∈X

Rx (β)c. (4)

The following basic properties of the risk region follow directly from the definition.

(i) 0 < β ′ < β < 1 ⇒ RX (β) ⊆ RX (β ′); (5)

(ii) X ′ ⊂ X ⇒ RX ′(β) ⊆ RX (β) for all 0 < β < 1; (6)

(iii) If ξ �→ f (x, ξ) is upper semi-continuous then Rx (β) is closed and Rx (β)c

is open. (7)

We now state a technical property and prove that this ensures the distribution of the
random vector in a given region completely determines the value of a tail risk measure.
In essence, this condition ensures that there is enough mass in the set to ensure that
the β-quantile does not depend on the probability distribution outside of it.

Definition 5 (Aggregation condition) Suppose thatRX (β) ⊆ R ⊂ Ξ and that for all
x ∈ X ,R satisfies the following condition:

P

(
ξ ∈ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1

x (β)} ∩ R
)

> 0 ∀ θ ′ < F−1
x (β) . (8)

Then R is said to satisfy the β-aggregation condition.

The motivation for the term aggregation condition comes from Theorem 1 which
follows. This result ensures that if a set satisfies the aggregation condition then we can
transform the probability distribution of ξ so that all the mass in the complement of
this set can be aggregated into a single point without affecting the value of the tail risk
measure. This property is particularly relevant to scenario generation as if we have
such a set, then all scenarios which it does not contain can be aggregated, reducing the
size of the stochastic program. Note that the β-aggregation condition does not hold
if ξ is a discrete random vector. However, in this case, the conclusion of the theorem
holds without any extra conditions on R.

Theorem 1 Suppose thatRX (β) ⊆ R ⊂ Ξ and that ξ̃ is a random vector for which

P (ξ ∈ A) = P

(
ξ̃ ∈ A

)
for any measurable A ⊆ R. (9)

Then for any tail risk measure ρβ we have ρβ ( f (x, ξ)) = ρβ

(
f (x, ξ̃)

)
for all x ∈ X ,

if one of the following conditions hold:

(a) R satisfies the β-aggregation condition,
(b) ξ is a discrete random vector.
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Proof Fix x ∈ X . To show that ρβ ( f (x, ξ)) = ρβ

(
f (x, ξ̃)

)
we must show that the

β-quantile and the β-tail distributions of f (x, ξ) and f (x, ξ̃) are the same. Using
Lemma 1, the following two conditions are necessary and sufficient for this to occur:

Fx (θ) = Ff (x,ξ̃)
(θ) ∀ θ ≥ F−1

x (β) and Ff (x,ξ̃)
(θ) < β ∀ θ < F−1

x (β) .

In the first case suppose that θ ′ ≥ F−1
x (β). Note that as a direct consequence of (9)

we have

P (ξ ∈ B) = P

(
ξ̃ ∈ B

)
for any B ⊇ Rc. (10)

Now,

Ff (x,ξ̃)
(θ ′) = P

(
ξ̃ ∈ {ξ ∈ Ξ : f (x, ξ) ≤ θ ′}

)

= P

⎛
⎝ξ̃ ∈ Rc ∩ {ξ ∈ Ξ : f (x, ξ) ≤ θ ′}︸ ︷︷ ︸

=Rc

⎞
⎠

+ P

⎛
⎜⎝ξ̃ ∈ R ∩ {ξ ∈ Ξ : f (x, ξ) ≤ θ ′}︸ ︷︷ ︸

⊆R

⎞
⎟⎠

= P
(
ξ ∈ Rc) + P

(
ξ ∈ R ∩ {ξ ∈ Ξ : f (x, ξ) ≤ θ ′}) by (9) and (10)

= P
(
ξ ∈ {ξ ∈ Ξ : f (x, ξ) ≤ θ ′}) = Fx (θ

′) as required.

In the second case we suppose θ ′ < F−1
x (β). We show that Ff (x,ξ̃)

(θ ′) < β for
each of the two conditions (a) and (b) separately. In the case where condition (a) holds,
that is, when R satisfies the β-aggregation condition we have:

Ff (x,ξ̃)
(θ ′) = P

(
ξ̃ ∈ {ξ ∈ Ξ : f (x, ξ)≤θ ′}

)
≤P

(
ξ̃ ∈Rc ∪ {ξ ∈Ξ : f (x, ξ) ≤ θ ′}

)

= P

⎛
⎜⎝ξ̃ ∈ {ξ ∈ Ξ : f (x, ξ) < F−1

x (β)}︸ ︷︷ ︸
⊇Rc

⎞
⎟⎠

− P

⎛
⎜⎝ξ̃ ∈ R ∩ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1

x (β)}︸ ︷︷ ︸
⊆R

⎞
⎟⎠

= P
(
ξ ∈ {ξ ∈ Ξ : f (x, ξ) < F−1

x (β)})
− P

(
ξ ∈ R ∩ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1

x (β)}) by (9) and (10)

< P
(
ξ ∈ {ξ ∈ Ξ : f (x, ξ) < F−1

x (β)}) by (8)

≤ β
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as required. In the case condition (b) holds, that is when ξ is discrete, we have:

Ff (x,ξ̃)
(θ ′) ≤ P

(
f (x, ξ̃) < F−1

x (β)
)

= P

(
f (x, ξ) < F−1

x (β)
)

< β since ξ is discrete

as required. 
�
It is difficult to verify that a set R ⊇ RX (β) satisfies the β-aggregation condition

by directly checking that the condition (8) holds. The following proposition gives
conditions under which it holds immediately forRX (β ′) when β ′ < β.

Proposition 1 Suppose β ′ < β and Fx is continuous at F−1
x (β) for all x ∈ X . Then,

RX (β ′) satisfies the β-aggregation condition. That is, for all x ∈ X

P

(
ξ ∈ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1

x (β)} ∩ RX
(
β ′)) > 0 ∀ θ ′ < F−1

x (β) .

Proof Fix x ∈ X . Since Fx is continuous at F−1
x (β) we must have that F−1

x

(
β ′) <

F−1
x (β). Now, for all F−1

x

(
β ′) < θ ′ < F−1

x (β), we have {ξ ∈ Ξ : θ ′ < f (x, ξ) <

F−1
x (β)} ⊂ RX (β ′) and so

P

(
ξ ∈ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1

x (β)} ∩ RX
(
β ′))

= P

(
θ ′ < f (x, ξ) < F−1

x (β)
)

> 0.


�
For convenience, we now drop β from our notation and terminology. Thus, we

refer to the β-risk region and β-aggregation condition as simply the risk region and
aggregation condition respectively, and writeRX (β) as RX .

All sets satisfying the aggregation condition must contain the risk region, however,
the aggregation condition does not necessarily hold for the risk region itself.

We must impose extra conditions on the problem to avoid some degenerate cases
where the aggregation condition and the conclusion of Theorem 1 do not hold. The
following example demonstrates such a degenerate case.

Example 3 Let X = R
+\{0}, Ξ = [0, 1], ξ ∼ Uniform(0, 1) and f : (x, ξ) �→ xξ .

Then Rx = [β, 1] for all x ∈ X , and so RX = [β, 1]. Now, consider the random
variable φ(ξ) where φ : R → R is defined as follows:

φ(ξ) =
{

ξ if ξ ≥ β,

0 othewise.

Since φ(ξ) = ξ for all ξ ∈ RX we have P (φ(ξ) ∈ A) = P (ξ ∈ A) for all A ⊆ RX .
On the other hand, we have that F−1

f (x,φ(ξ))
(β) = 0 < β = F−1

f (x,ξ)
(β).
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The following result provides extra conditions for continuous distributions which
ensure that the aggregation condition holds for the risk region RX .

Proposition 2 Suppose that ξ is a continuous random vector whose support coincides
with Ξ , and that the following conditions hold:

(i) ξ �→ f (x, ξ) is continuous for all x ∈ X ,
(ii) For each x ∈ X there exists x ′ ∈ X such that

int (Ξ) ∩ int (Rx ∩ Rx ′) �= ∅ and int (Ξ) ∩ int (Rx ′ \Rx ) �= ∅, (11)

(iii) int (Ξ) ∩ int (RX ) is connected.

Then the risk region RX satisfies the aggregation condition.

Proof Fix x ∈ X and θ ′ < F−1
x (β). Pick x ′ ∈ X such that (11) holds. Also,

let ξ0 ∈ int (Ξ) ∩ int (Rx ′ \Rx ) and ξ1 ∈ int (Ξ) ∩ int (Rx ∩ Rx ′). Since
int (Ξ) ∩ int (RX ) is connected there exists a continuous path from ξ0 to ξ1. That
is, there exists a continuous function γ : [0, 1] → int (Ξ) ∩ int (RX ) such that
γ (0) = ξ0 and γ (1) = ξ1. Now, f (x, ξ0) < F−1

x (β) and f (x, ξ1) ≥ F−1
x (β) and

so given that t �→ f (x, γ (t)) is continuous there must exist 0 < t < 1 such that
θ ′ < f (x, γ (t)) < F−1

x (β). That is,

int (Ξ) ∩ int (RX ) ∩ {ξ ∈ Ξ : θ ′ < f (x, ξ) < F−1
x (β)} �= ∅.

This is a non-empty open set contained in the support of ξ and so has positive proba-
bility, hence the aggregation condition holds for RX . 
�

The following proposition gives a condition under which the non-risk region is
convex.

Proposition 3 Suppose that for each x ∈ X the function ξ �→ f (x, ξ) is convex. Then,
the non-risk region Rc

X is convex.

Proof For x ∈ X , if ξ �→ f (x, ξ) is convex then the set Rc
x = {ξ ∈ Ξ : f (x, ξ) <

F−1
x (β)} must be convex. The intersection of convex sets is convex, hence Rc

X =⋂
x∈X Rc

x is convex. 
�
This convexity condition is held by a large class of stochastic programs. Two-stage

stochastic linear programs have loss functions of the following general form:

Q(x, ξ) = min
y

{qT y|W y = h − T x, y ≥ 0}

where q, y ∈ R
r , h ∈ R

t , W ∈ R
t×r and T ∈ R

t×k , and ξ is the
concatenation of all the stochastic components of the problem; that is, ξT =(
qT , hT , T 1, . . . , T t ,W1, . . . ,W t

)
where T i and W i denote the i-th rows of the

matrices T andW respectively. Standard results in stochastic programming guarantee
that ξ �→ Q(x, ξ) is convex if the only random components of the problem are h and
T , that is if ξ T = (hT , T1, . . . , Tt ). See for instance [7, Chapter 3, Theorem 2].

The random vector in the following definition plays a special role in our theory.
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Definition 6 (Aggregated random vector) For some setRX ⊆ R ⊂ Ξ the aggregated
random vector is defined as follows:

ψR(ξ) :=
{

ξ if ξ ∈ R,

E
[
ξ |ξ ∈ Rc

]
otherwise.

If R satisfies the aggregation condition and E
[
ξ |ξ ∈ Rc

] ∈ Rc
X then Theorem 1

guarantees that ρβ ( f (x, ψR(ξ))) = ρβ ( f (x, ξ)) for all x ∈ X . The latter condition
holds, for example, if ξ �→ f (x, ξ) is convex for all x ∈ X , since by Proposition 3
we have that Rc

X is convex and also Rc ⊆ Rc
X . Under these conditions, as well as

preserving the value of the tail risk measure, the function ψR will also preserve the
expectation for affine loss functions.

Corollary 1 Suppose for each x ∈ X the function ξ �→ f (x, ξ) is affine and for a set
R ⊂ Ξ satisfying the aggregation condition we have that E

[
ξ |ξ ∈ Rc

] ∈ Rc. Then,

ρβ ( f (x, ψR(ξ))) = ρβ ( f (x, ξ)) and E
[
f (x, ψR (ξ))

]
= E

[
f (x, ξ)

]
for all x ∈ X .

Proof The equality of the tail-risk measures follows immediately from Theorem 1.
For the expectation function we have

E
[
ψR(ξ)

] = P (ξ ∈ R)E
[
ψR(ξ)|ξ ∈ R] + P

(
ξ ∈ Rc)

E
[
ψR(ξ)|ξ ∈ Rc]

= P (ξ ∈ R)E
[
ξ |ξ ∈ R] + P

(
ξ ∈ Rc)

E
[
ξ |ξ ∈ Rc] = E

[
ξ
]
.

Since ξ �→ f (x, ξ) is affine this means that

E
[
f (x, ψR(ξ))

] = f (x,E
[
ψR(ξ)

]
) = f (x,E

[
ξ
]
) = E

[
f (x, ξ)

]
.


�

4 Scenario generation

In the previous section, we showed that under mild conditions the value of a tail
risk measure only depends on the distribution of outcomes in the risk region. In this
section we demonstrate how this feature may be exploited for the purposes of scenario
generation.

We assume throughout this section that our scenario sets are constructed from some
underlying probabilistic model from which we can draw independent identically dis-
tributed samples. We also assume we have a set RX ⊆ R ⊂ Ξ which satisfies the
aggregation condition for the problem under consideration, and for which we can eas-
ily test membership. The set R may be an exact risk region, that is R = RX , or it
could a conservative risk region, that is R ⊃ RX . To avoid repeating cumbersome
terminology, we simply refer toR as a risk region, differentiating between the conser-
vative and exact cases only where necessary. The complement Rc will be referred to
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as the aggregation region for reasons which will become clear. Our general approach
to scenario generation is to prioritize the construction of scenarios in the risk regionR.

In Sect. 4.1 we present and analyse a scenario generation method which we call
aggregation sampling. In Sect. 4.2 we briefly discuss alternative ways of exploiting
risk regions for scenario generation.

4.1 Aggregation sampling

In aggregation sampling the user specifies a number of risk scenarios, that is, the
number of scenarios to represent the risk region. The algorithm then draws samples
from the distribution, storing those sampleswhich lie in the risk region and aggregating
those in the aggregation region into a single point. In particular, the samples in the
aggregation region are aggregated into their mean. The algorithm terminates when the
specified number of risk scenarios has been reached. This is detailed in Algorithm 1.

input :R ⊂ Ξ set satisfying aggregation condition, NR number of required risk scenarios

output: {(ξs , ps )}NR+1
s=1 scenario set

nRc ← 0, nR ← 0, ξRc = 0;
while nR < NR do

Sample new point ξ ;
if ξ ∈ R then

ξnR+1 ← ξ ; nR ← nR + 1;
else

ξRc ← 1
nRc+1

(
nRc ξRc + ξ

)
; nRc ← nRc + 1

if nRc > 0 then
ξNR+1 ← ξRc ;

else
Sample new point ξ ;
nRc ← 1; ξNR+1 ← ξ ;

foreach i in 1, . . . , NR do pi ← 1
nRc+NR pNR+1 ← nRc

nRc+NR
Algorithm 1: Aggregation sampling

Aggregation sampling can be thought of as equivalent to sampling from the aggre-
gated random vector from Definition 6 for large sample sizes. Aggregation sampling
is thus consistent with standard Monte Carlo sampling only ifR satisfies the aggrega-
tion condition and E

[
ξ |ξ ∈ Rc

] ∈ Rc. In Sect. 5, we provide conditions under which
we can prove consistency. Note that it is possible that the algorithm could terminate
without sampling any scenario in the aggregation region. This could happen in cases
where P (ξ ∈ Rc) is very small, and the number of specified risk scenarios n is rel-
atively small. In this case, to ensure that the algorithm terminates in a reasonable
amount of time and that the scenario set which the algorithm outputs always has a
consistent number of scenarios, we sample an arbitrary scenario in place of a scenario
representing the aggregated scenarios. This situation is irrelevant for the asymptotic
analysis of the algorithm.
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We now study the performance of our aggregation sampling algorithm. Let a =
P (ξ ∈ Rc) be the probability of the aggregation region, and n the desired number of
risk scenarios. Let N (n) denote the effective sample size for aggregation sampling,
that is, the number of samples drawn until the algorithm terminates.1 The aggregation
sampling algorithm can be viewed as a sequence of Bernoulli trials where a trial
is a success if the corresponding sample lies in the aggregation region, and which
terminates once we have reached n failures, that is, once we have sampled n scenarios
from the risk region. We can therefore write down the distribution of N (n):

N (n) ∼ n + NB(n, a),

whereNB(n, a) denotes a negative binomial random variable whose probability mass
function is as follows:

(
k + n − 1

k

)
(1 − a)nak, k ≥ 0.

The expected effective sample size of aggregation sampling is thus:

E [N (n)] = n + n
a

1 − a
. (12)

The expected effective sample size N (n) can be thought of as the required sample
size to construct a scenario set via Monte Carlo sampling with n scenarios in the risk
regionR. Thus, the greater the expected effective sample size, the greater the benefit
of using aggregation sampling over standard Monte Carlo sampling. From (12) we
can see that the expected effective sample size increases as the probability a of the
aggregation region increases. Therefore, when constructing a risk regionR ⊇ RX for
the purposes of scenario generation, it is important thatR is as tight an approximation
of the exact risk region RX as possible in order that a = P (ξ ∈ Rc) is as large as
possible. Also, the fact that the advantage of using aggregation sampling over standard
Monte Carlo sample improves as the probability of the risk region increases, also tells
us that this methodology will potentially work better for problems with higher values
of β and which are more constrained due to the relations (5) and (6).

4.2 Alternative approaches

Aggregation reduction In aggregation reduction one draws a fixed number of sam-
ples n from the distribution and then aggregates all those in the aggregation region. As
opposed to aggregation sampling, thismethod uses a fixed number of samples, but con-
structs a scenario set with a random number of scenarios. Let R(n) denote the number
of scenarios which are aggregated in the aggregation reduction method. Aggregation
reduction can similarly be viewed as a sequence of n Bernoulli trials, where success

1 For simplicity of exposition we discount the event that the while loop of the algorithm terminates with
nRc = 0 which occurs with probability (1 − a)n .
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and failure are defined in the same way as described above. The number of aggregated
scenarios in aggregation reduction is therefore distributed as follows:

R(n) ∼ B(n, a)

where B(n, a) denotes a binomial random variable and so we have

E [R(n)] = na. (13)

Again, the performance of this method, in terms of the expected number of aggregated
scenarios, can be seen to improve as the probability of the aggregation region increases.
Alternative sampling methods The above algorithms and analyses assume that the
samples of ξ were identically, independently distributed. However, in principle the
algorithms will work for any unbiased sequence of samples. This opens up the possi-
bility of enhancing the scenario aggregation and reduction algorithms by using them
in conjunction with variance reduction techniques such as importance sampling, or
antithetic sampling [20].2 The formulae (12) and (13) will still hold, but a will be
the probability of a sample occuring in the aggregation region rather than the actual
probability of the aggregation region itself.
Alternative representations of the aggregation regionThe above algorithms can also be
generalized in how they represent the non-risk region. Because aggregation sampling
and aggregating reduction only represent the non-risk region with a single scenario,
they do not in general preserve the overall expectation of the loss function, or any
other statistics of the loss function except for the value of a tail risk measure. These
algorithms should therefore generally only be used for problems which only involve
tail risk measures. However, if the loss function is affine (in the sense of Corollary 1),
then collapsing all points in the non-risk region to the conditional expectation preserves
the overall expectation.

If expectation or any other statistic of the cost function is used in the optimization
problem then one could represent the non-risk region region with many scenarios. For
example, instead of aggregating all scenarios in the non-risk region into a single point
we could apply a clustering algorithm to them such as k-means. The ideal allocation of
points between the risk and non-risk regions will be problem dependent and is beyond
the scope of this paper.

5 Consistency of aggregation sampling

The reason that aggregation sampling and aggregation reduction work is that, for large
sample sizes, they are equivalent to sampling from the aggregated random vector, and
if the aggregation condition holds then the aggregated random vector yields the same
optimization problem as the original random vector. We only prove consistency for
aggregation sampling and not aggregation reduction as the proofs are very similar.

2 Batch sampling methods such as stratified sampling will not work with aggregation sampling which
requires samples to be drawn sequentially.

123



J. Fairbrother et al.

Essentially, the only difference is that aggregation sampling has the additional com-
plication of terminating after a random number of samples.

We suppose in this section that we have a sequence of independently identically
distributed (i.i.d.) randomvectors ξ1, ξ2, . . .with the same distribution as ξ , andwhich
are defined on the product probability space Ω∞.

5.1 Uniform convergence of empiricalˇ-quantiles

The i.i.d. sequence of randomvectors ξ1, ξ2, . . . can be used to estimate the distribution
and quantile functions of ξ . We introduce the additional short-hand for the empirical
distribution and quantile functions:

Fn,x (θ) := 1

n

n∑
i=1

1{ξ∈Ξ : f (x,ξ)≤θ}(ξ i ) and F−1
n,x (u) := inf{θ ∈ R : Fn,x (θ) ≥ u}.

Note that these are random-valued functions on the probability spaceΩ∞. It is imme-
diate from the strong law of large numbers that for all x̄ ∈ X and θ ∈ R, we have

Fn,x̄ (θ)
w.p.1→ Fx̄ (θ) as n → ∞. In addition, if Fx̄ is strictly increasing at θ = F−1

x̄ (β),
that is for all ε > 0

Fx̄
(
F−1
x̄ (β) − ε

)
< β < Fx̄

(
F−1
x̄ (β) + ε

)
.

then we also have F−1
n,x̄ (β)

w.p.1→ F−1
x̄ (β) as n → ∞; see for instance [32, Chapter 2].

The following result extends this pointwise convergence to a convergence which is
uniform with respect to x ∈ X .

Theorem 2 Suppose the following hold:

(i) For each x ∈ X , Fx is strictly increasing and continuous at F−1
x (β),

(ii) For all x̄ ∈ X with probability 1 the mapping x �→ f (x, ξ) is continuous at x̄ ,
(iii) X ⊂ R

k is compact.

Then, with probability 1

lim
n→∞ sup

x∈X

∣∣∣F−1
n,x (β) − F−1

x (β)

∣∣∣ = 0.

The proof of this result relies on various continuity properties of the distribution
and quantile functions which are provided in “Appendix A”. Some elements of the
proof below have been adapted from [34, Theorem 7.48], a result which concerns the
uniform convergence of expectation functions.

Proof Fix ε0 > 0 and x̄ ∈ X . Since Fx̄ is right-continuous with left limits, it has
only countably many discontinuities, and so there exists 0 < ε < ε0 such that Fx̄ is
continuous at F−1

x̄ (β) ± ε. Since Fx̄ is strictly increasing at F−1
x̄ (β),

δ := min
{
β − Fx̄

(
F−1
x̄ (β) − ε

)
, Fx̄

(
F−1
x̄ (β) + ε

)
− β

}
> 0. (14)

123



Problem-driven scenario generation: an analytical approach…

By Corollary 5 in “Appendix A” the mapping x �→ Fx
(
F−1
x̄ (β) − ε

)
is continuous

at x̄ . Applying Lemma 3 in “Appendix A”, there exists a neighborhood W of x̄ such
that with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣Fn,x (F
−1
x̄ (β) − ε) − Fn,x̄ (F

−1
x̄ (β) − ε)

∣∣∣ < δ.

In addition, by the strong law of large numbers, with probability 1

lim
n→∞

∣∣∣Fn,x̄

(
F−1
x̄ (β) − ε

)
− Fx̄

(
F−1
x̄ (β) − ε

)∣∣∣ = 0. (15)

Note that for all x ∈ W ∩ X
∣∣∣Fn,x

(
F−1
x̄ (β) − ε

)
− Fx̄

(
F−1
x̄ (β) − ε

)∣∣∣
≤
∣∣∣Fn,x (F

−1
x̄ (β) − ε) − Fn,x̄ (F

−1
x̄ (β) − ε)

∣∣∣
+
∣∣∣Fn,x̄

(
F−1
x̄ (β) − ε

)
− Fx̄

(
F−1
x̄ (β) − ε

)∣∣∣ .

Thus, with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣Fn,x

(
F−1
x̄ (β) − ε

)
− Fx̄

(
F−1
x̄ (β) − ε

)∣∣∣
≤ lim sup

n→∞
sup

x∈W∩X

∣∣∣Fn,x (F
−1
x̄ (β) − ε) − Fn,x̄ (F

−1
x̄ (β) − ε)

∣∣∣
+ lim sup

n→∞

∣∣∣Fn,x̄

(
F−1
x̄ (β) − ε

)
− Fx̄

(
F−1
x̄ (β) − ε

)∣∣∣
< δ + 0 = δ. (16)

Similarly, we can choose W such that with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣Fn,x

(
F−1
x̄ (β) + ε

)
− Fx̄

(
F−1
x̄ (β) + ε

)∣∣∣ < δ. (17)

Using (14), (16) and (17) we can conclude that for all x ∈ W ∩X with probability 1

lim sup
n→∞

Fn,x

(
F−1
x̄ (β) − ε

)
< β < lim inf

n→∞ Fn,x

(
F−1
x̄ (β) + ε

)
.

Hence, we have that for all x ∈ W ∩ X , with probability 1, there exists N such that
for all n > N

F−1
x̄ (β) − ε < F−1

n,x (β) ≤ F−1
x̄ (β) + ε,

123



J. Fairbrother et al.

and so we can conclude that

lim sup
n→∞

sup
x∈W∩X

∣∣∣F−1
n,x (β) − F−1

x̄ (β)

∣∣∣ ≤ ε < ε0. (18)

Also, by Proposition 6 in “Appendix A” the function x �→ F−1
x (β) is continuous and

so the neighborhood W can also be chosen so that

sup
x∈W∩X

∣∣∣F−1
x̄ (β) − F−1

x (β)

∣∣∣ < ε0, (19)

and so combining (18) and (19) we have that with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣F−1
n,x (β) − F−1

x (β)

∣∣∣ < 2ε0.

Finally, sinceX is compact, there exists a finite number of points x1, . . . , xm ∈ X with
corresponding neighborhoods W1, . . . ,Wm covering X , such that with probability 1,
the following holds:

lim sup
n→∞

sup
x∈Wj∩X

∣∣∣F−1
n,x (β) − F−1

x (β)

∣∣∣ < 2ε0 for i = 1, . . . ,m

that is, with probability 1,

lim sup
n→∞

sup
x∈X

∣∣∣F−1
n,x (β) − F−1

x (β)

∣∣∣ < 2ε0.

Since the choice of ε0 was arbitrary the result follows. 
�
To facilitate the statement and proofs of the following results we introduce the

following index sets which keep track of the indices of the samples which are in the
risk and aggregation regions.

IR(n) = {1 ≤ j ≤ n : ξ j ∈ R},
IRc (n) = {1 ≤ j ≤ n : ξ j ∈ Rc}.

The following corollary shows that we have uniform convergence of the β-quantiles
when sampling from the aggregated random vector ψR(ξ). In order to state and prove
this result, we introduce the following additional notation for the distribution and
quantile functions for f (x, ψR(ξ)), and their empirical counterparts for the sample
ψR(ξ1), ψR(ξ2), . . .:

F̃x (θ) = P ( f (x, ψR(ξ)) ≤ θ)

F̃−1
x (u) = inf{θ ∈ R : F̃x (θ) ≥ u}
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F̃n,x (θ) = 1

n

n∑
i=1

1{ξ∈Ξ : f (x,ξ)≤θ}
(
ψR(ξ i )

)

= |IRc(n)|
n

1{ξ∈Ξ : f (x,ξ)≤θ}
(
E
[
ξ |ξ ∈ Rc])+ 1

n

∑
i∈IR(n)

1{ξ∈Ξ : f (x,ξ)≤θ}(ξ i )

F̃−1
n,x (u) = inf{θ ∈ R : F̃n,x (θ) ≥ u}

Like Fn,x and F−1
n,x , the final two functions are random-valued functions on the prob-

ability space Ω∞.

Corollary 2 Let RX ⊆ R ⊂ R
d be a set satisfying the aggregation condition, and

suppose that conditions (i)–(iii) from Theorem 2 hold and in addition:

(iv) E
[
ξ |ξ ∈ Rc

] ∈ int
(Rc

X
)
.

(v) The mapping x �→ f
(
x,E

[
ξ |ξ ∈ Rc

])
is continuous.

Then with probability 1

lim
n→∞ sup

x∈X
|F̃−1

n,x (β) − F−1
x (β)| = 0.

Proof Since R satisfies the aggregation condition, and condition (a) holds, by Theo-
rem 1, we have that F̃−1

x (β) = F−1
x (β) for all x ∈ X . Therefore, to prove this result,

we will apply Theorem 2 to f (x, ψR(ξ)) and so must show that conditions (i)–(iii)
from Theorem 2 also hold for f (x, ψR(ξ)). Condition (iii) holds immediately, and
condition (ii) holds for f (x, ψR(ξ)) since x �→ f (x, ξ) is continuouswith probability
1, and x �→ f

(
x,E

[
ξ |ξ ∈ Rc

])
is continuous.

It remains to show that F̃x is continuous and strictly increasing at F−1
x (β) for all

x ∈ X . Fix x ∈ X . Since Fx (θ) and F̃x (θ) coincide for θ ≥ F−1
x (β) and Fx is strictly

increasing at F−1
x (β), we have

F̃x
(
F−1
x (β) + ε

)
= Fx

(
F−1
x (β) + ε

)

> Fx (F
−1
x (β))

= F̃x
(
F−1
x (β)

)

and so F̃x is also strictly increasing at F−1
x (β). Finally, to show that F̃x is continuous

at F−1
x (β), it suffices to show that it is left continuous, since all distribution functions

are right continuous. For ε > 0 sufficiently small we have that f (x,E
[
ξ |ξ ∈ Rc

]
) <

F−1
x (β), and so

F̃x (F
−1
x (β)) − F̃x (F

−1
x (β) − ε)

= P

(
F−1
x (β) − ε < f (x, ψR(ξ)) ≤ F−1

x (β)
)

= P

(
ξ ∈ {ξ ∈ Ξ : F−1

x (β) − ε < f (x, ξ) ≤ F−1
x (β)} ∩ R

)
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≤ P

(
F−1
x (β) − ε < f (x, ξ) ≤ F−1

x (β)
)

= Fx (F
−1
x (β)) − Fx (F

−1
x (β) − ε).

Now, since by assumption Fx is continuous at F−1
x (β), we have that limε↓0

(
Fx (F−1

x

(β)) − Fx (F−1
x (β) − ε

) = 0, and so must also have limε↓0
(
F̃x (F−1

x (β))

−F̃x (F−1
x (β) − ε

)
= 0 as required. 
�

In the next subsection this result will be used to show that any point in the interior
of the non-risk region Rc will, with probability 1, be in the non-risk region of the
sampled scenario set as the sample size grows large.

5.2 Equivalence of aggregation sampling with sampling from aggregated random
vector

The main obstacle in showing that aggregation sampling is equivalent to sampling
from the aggregated random vector is to show that the aggregated scenario in the
non-risk region converges almost surely to the conditional expectation of the non-risk
region as the number of specified risk scenarios tends to infinity. Recall from Sect. 4
that N (n) denotes the effective sample size in aggregation sampling when we require
n risk scenarios and is distributed as n + NB(n, a) where a is the probability of the
non-risk region. The purpose of the next lemma is to show that as n → ∞ the number
of samples drawn from the non-risk region almost surely tends to infinity.

Lemma 2 Suppose M(n) ∼ NB(n, p) where 0 < p < 1. Then with probability 1 we
have that limn→∞ M(n) = ∞.

Proof First note that,

{ lim
n→∞ M(n) = ∞}c =

⋃
k∈N

(⋂
n∈N

⋃
t>n

{M(t) > k}c
)

=
⋃
k∈N

lim sup
n→∞

{M(n) ≤ k}.

Hence, to show thatP ({limn→∞ M(n) = ∞}) = 1 it is enough to show for each k ∈ N

we have that

P

(
lim sup
n→∞

{M(n) ≤ k}
)

= 0. (20)

Now, fix k ∈ N. Then for all n ∈ N we have that

P (M(n) = k) =
(
k + n − 1

k

)
(1 − p)n pk,

and in particular,

P (M(n + 1) = k) =
(
k + n

k

)
(1 − p)n+1 pk = k + n

n
(1 − p) P (M(n) = k) .
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For large enough n we have that k+n
n (1 − p) ≤ c < 1 for some constant c, hence∑∞

n=1 P (M(n) = k) < +∞ and so

∞∑
n=1

P (M(n) ≤ k) =
∞∑
n=1

k∑
j=1

P (M(n) = j) =
k∑
j=1

∞∑
n=1

P (M(n) = j) < ∞.

The result (20) now holds by the first Borel–Cantelli Lemma [6, Section 4]. 
�

The next Corollary shows that the strong law of large numbers still applies for the
conditional expectation of the non-risk region in aggregation sampling despite the
sample size being a random quantity.

Corollary 3 Suppose E
[‖ξ‖] < +∞ and P (ξ ∈ Rc) > 0. Then with probability 1

lim
n→∞

∥∥∥∥∥∥
1

N (n) − n

∑
i∈IRc (N (n))

ξ i − E
[
ξ |ξ ∈ Rc ]

∥∥∥∥∥∥ = 0.

Proof Define the following measurable subsets of Ω∞:

Ω1 =
{
ω ∈ Ω∞ : lim

n→∞(N (n)(ω) − n) = ∞
}

,

Ω2 =
{

ω ∈ Ω∞ : lim
n→∞

1

n

n∑
i=1

1Rc (ξ i (ω))ξ i (ω) = E
[
1Rc (ξ)ξ

]}
,

Ω3 =
{

ω ∈ Ω∞ : lim
n→∞

1

n

n∑
i=1

1Rc (ξ i ) = P
(
ξ ∈ Rc)

}
.

By the strong law of large numbersΩ2 andΩ3 have probability one. Since N (n)−n ∼
NB(n, a), where a = P (ξ ∈ Rc), Ω1 has probability 1 by Lemma 2. Therefore,
Ω1∩Ω2∩Ω3 has probability 1 and so it is enough to show that for anyω ∈ Ω1∩Ω2∩Ω3
we have that

1

N (n)(ω) − n

∑
i∈IRc (N (n))

ξ i (ω) → E
[
ξ |ξ ∈ Rc ] as n → ∞.

Let ω ∈ Ω1 ∩ Ω2 ∩ Ω3. Since ω ∈ Ω2 ∩ Ω3, we have that as m → ∞:

1
1
m

∑m
i=1 1Rc (ξ i (ω))

1

m

m∑
i=1

1Rc (ξ i (ω))ξ i (ω)

→ 1

P (ξ ∈ Rc)
E
[
1Rc (ξ)ξ

] = E
[
ξ |ξ ∈ Rc] .
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Now, fix ε > 0. Then there exists N1(ω) ∈ N such

m > N1(ω) �⇒
∥∥∥∥∥

1
1
m

∑m
i=1 1Rc (ξ i (ω))

1

m

m∑
i=1

1Rc
(
ξ i (ω)

)
ξ i (ω) − E

[
ξ |ξ ∈ Rc]

∥∥∥∥∥
< ε.

Since ω ∈ Ω1 there exists N2(ω) such that

n > N2(ω) �⇒ N (n)(ω) > N1(ω).

Noting that

1
1

N (n)(ω)

∑N (n)(ω)
i=1 1Rc (ξ i (ω))

1

N (n)(ω)

N (n)(ω)∑
i=1

1Rc (ξ i (ω))ξ i (ω)

= 1
N (n)(ω)−n
N (n)(ω)

1

N (n)(ω)

N (n)(ω)∑
i=1

1Rc (ξ i (ω))ξ i (ω)

= 1

N (n)(ω) − n

∑
i∈IRc (N (n))

ξ i ,

we have that

n > N2(ω) �⇒
∥∥∥∥∥∥

1

N (n)(ω) − n

∑
i∈IRc (N (n))

ξ i (ω) − E
[
ξ |ξ ∈ Rc]

∥∥∥∥∥∥ < ε

and so 1
N (n)(ω)−n

∑
i∈IRc (N (n)) ξ i (ω) → E

[
ξ |ξ ∈ Rc

]
as n → ∞. 
�

To show that aggregation sampling yields solutions consistent with the underlying
random vector ξ , we show that with probability 1, for n large enough, it is equivalent
to sampling from the aggregated random vector ψR(ξ), as defined in Definition 6. If
the region R satisfies the aggregation condition, and E

[
ξ |ξ ∈ Rc

] ∈ Rc
X , Theorem

1 tells us that ρβ ( f (x, ψR(ξ))) = ρβ ( f (x, ξ)) for all x ∈ X . Hence, if sampling is
consistent for the risk measure ρβ , then aggregation sampling is also consistent.

Noting that |IRc (N (n))| = N (n) − n, we introduce the following notation for
the empirical distribution and quantile functions for loss function with scenario set
constructed by aggregation sampling with n risk scenarios.

F̂n,x (θ) = 1

N (n)

⎛
⎝(N (n) − n)1{ξ∈Ξ : f (x,ξ)≤θ}

⎛
⎝ 1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠

+
∑

i∈IR(n)

1{ξ∈Ξ : f (x,ξ)≤θ}(ξ i )

⎞
⎠
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F̂−1
n,x (u) = inf{θ ∈ R : F̂n,x (θ) ≥ u}

Note that these latter functions will depend on the sample ξ1, . . . , ξ N (n).

Theorem 3 LetRX ⊆ R ⊂ R
d be a set satisfying the aggregation condition. Suppose

that that conditions (i)–(v) from Theorem 2 and Corollary 2 hold, and in addition that

(vi) For each x ∈ X , ξ �→ f (x, ξ) is continuous at E
[
ξ |ξ ∈ Rc

]

Then, with probability 1, for all u ≥ β

lim
n→∞ sup

x∈X
|F̂−1

n,x (u) − F̃−1
n,x (u)| = 0. (21)

Proof We actually prove a slightly stronger result, that is, with probability 1, there
exists N > 0 such that for all n > N , x ∈ X and u ≥ β we have that F̂−1

n,x (u) =
F̃−1
n,x (u). First, note that if

θ ≥ max

⎧⎨
⎩ f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠ , f

(
x,E

[
ξ |ξ ∈ Rc ])

⎫⎬
⎭

then

F̂n,x (θ) = N (n) − n

N (n)
+ 1

N (n)

∑
i∈IR(N (n))

1{ξ∈Ξ : f (x,ξ)≤θ}(ξ i )

= F̃N (n),x (θ).

So if the following holds with probability 1

lim inf
n→∞ inf

x∈X

⎛
⎝F̃−1

n,x (β) − max

⎛
⎝ f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠ ,

f
(
x,E

[
ξ |ξ ∈ Rc ]))) > 0 (22)

then, by application ofLemma1, this implies thatwith probability 1, there exists N > 0
such that for all n > N and for all u ≥ β and x ∈ X we have F̂−1

n,x (u) = F̃−1
N (n),x (u) as

required. Since E
[
ξ |ξ ∈ Rc

] ∈ Rc
X we have that f (x,E

[
ξ |ξ ∈ Rc

]
) < F−1

x (β)

for all x ∈ X , and since X is compact there exists δ > 0 such that

inf
x∈X

(
F−1
x (β) − f

(
x,E

[
ξ |ξ ∈ Rc ])) > δ. (23)
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By Corollary 3, the compactness of X and the continuity of ξ �→ f (x, ξ) at
E
[
ξ |ξ ∈ Rc

]
, we have with probability 1

lim sup
n→∞

sup
x∈X

∣∣∣∣∣∣ f
⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠ − f

(
x,E

[
ξ |ξ ∈ Rc])

∣∣∣∣∣∣ = 0. (24)

Also, by Corollary 2, with probability 1

lim sup
n→∞

sup
x∈X

∣∣∣F−1
x (β) − F̃−1

N (n),x (β)

∣∣∣ = 0. (25)

Thus, letting z(x) = F−1
x (β) − f

(
x,E

[
ξ |ξ ∈ Rc

])
, we also have with probability

1 that

lim
n→∞ sup

x∈X

∣∣∣∣∣∣

⎛
⎝F̃−1

N (n),x (β) − f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠
⎞
⎠ − z(x)

∣∣∣∣∣∣ = 0.

In particular, with probability 1 there exists N such that for n > N

sup
x∈X

∣∣∣∣∣∣

⎛
⎝F̃−1

N (n),x (β) − f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠
⎞
⎠ − z(x)

∣∣∣∣∣∣ <
δ

2
. (26)

In which case, for n > N

inf
x∈X

⎛
⎝F̃−1

N (n),x (β) − f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠
⎞
⎠

= inf
x∈X

⎛
⎝z(x) + F̃−1

N (n),x (β) − f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠ − z(x)

⎞
⎠

≥ inf
x∈X

z(x) − sup
x∈X

∣∣∣∣∣∣

⎛
⎝F̃−1

N (n),x (β) − f

⎛
⎝x,

1

N (n) − n

∑
i∈IRc (N (n))

ξ i

⎞
⎠
⎞
⎠ − z(x)

∣∣∣∣∣∣
> δ − δ

2
= δ

2
by (23) and (26).

We can similarly show that

lim sup
n→∞

inf
x∈X

(
F̃−1
N (n),x (β) − f

(
x,E

[
ξ |ξ ∈ Rc] )) > 0

holdswith probability 1. Hence (22) holdswith probability 1 and the proof is complete.

�

Note that although the continuity conditions (ii), (v) and (vi) look complicated, the
loss function f : X × Ξ → R will typically be continuous everywhere, and so these
will be satisfied automatically.
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6 A conservative risk region for monotonic loss functions

In order to use risk regions for scenario generation, we need to have a characterization
of the risk region which conveniently allows us to test membership. In general this is a
difficult as the risk region depends on the loss function, the distribution and the problem
constraints. Therefore, as a proof-of-concept, in the following two sections we derive
risk regions for two classes of problems. In this section we propose a conservative risk
region for problems which have monotonic loss functions.

Definition 7 (Monotonic loss function) A loss function f : X ×Ξ → R is monotonic
increasing if for all x ∈ X and ξ, ξ̃ ∈ Ξ such that ξ < ξ̃ we have f (x, ξ) < f (x, ξ̃ ).
Similarly, we say it is monotonic decreasing if for all x ∈ X and ξ, ξ̃ ∈ Ξ such that
ξ < ξ̃ we have f (x, ξ) > f (x, ξ̃ ).

Monotonic loss functions occur naturally in stochastic linear programming. The
following result presents a class of loss functions which arise in the context of network
design, and gives conditions under which they are monotonic.

Proposition 4 Suppose X ⊆ R
k+, Ξ ⊆ R

d+ and the loss function Q(x, ξ) is defined to
be the optimal value to the following linear program:

min
y,z

qT y + uT z (27)

such that Wy + z ≥ ξ (28)

By ≤ b (29)

T y ≤ V x (30)

N y = 0 (31)

y, z ≥ 0, (32)

where W , B, T , V ,N are matrices and q, u, b are vectors of compatible dimensions.
Then, Q(x, ξ) is monotonic increasing under the following conditions:

1. q, u > 0,
2. b ≥ 0,
3. W , B, T , V ≥ 0.

Proof Fix x ∈ X . The problem is always feasible since y = 0 and z = ξ is a feasible
solution. Since x ≥ 0 and q, u > 0 the problem (27)–(32) is bounded below by zero.
In addition, when ξ ≥ 0 with at least one component strictly greater than zero, the
optimal solution (y∗, z∗) must contain at least one strictly positive element due to
constraint (28) and the fact thatW ≥ 0, and so in this case the optimal value is strictly
positive. Because the problem is both bounded below and feasible, strong duality
applies and so Q(x, ξ) is also equal to the optimal solution to the dual problem:

max
π,ν,η,λ

ξ Tπ − xT V T ν − bT η (33)

such that WTπ − T T ν − BT η + N T λ ≤ q (34)
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π ≤ u (35)

π, ν, η ≥ 0. (36)

Let ξ̄ , ξ̃ ∈ Ξ be such that ξ̄ < ξ̃ . In the first case suppose that ξ̄ �= 0, and let (π̄ , ν̄, η̄, λ̄)

be the optimal dual variables for (33)–(36) for ξ = ξ̄ . As discussed above, this means
that Q(x, ξ̄ ) > 0, and given that xT V T ν̄ +bT η̄ ≥ 0, at least one component of π̄ will
be greater than zero in order for the objective of the dual to be strictly positive. Now,
(π̄, ν̄, η̄, λ̄) is also a feasible solution to the dual problem with ξ = ξ̃ and so

Q(x, ξ̄ ) = ξ̄ T π̄ − xT V T ν̄ − bT η̄

< ξ̃ T π̄ − xT V T ν̄ − bT η̄

≤ Q(x, ξ̃ ).

In the second case suppose that ξ̄ = 0. In this case y = 0, z = 0 is a feasible solution
to the primal problem (27)–(32) with ξ = ξ̄ and this solution has an objective value
of zero. Since the objective is bounded below by zero, this means this solution is
also optimal and so Q(x, ξ̄ ) = 0. Since ξ̃ > 0 we have that Q(x, ξ̃ ) > 0, and so
Q(x, ξ̄ ) < Q(x, ξ̃ ). Hence Q(x, ξ) is monotonic as required. 
�

This recourse function arises in stochastic network design, and the problem for-
mulation in the previous proposition was adapted from a model in the paper [31]. In
this type of problem, we have a network consisting of suppliers, processing units, and
customers, and decisions must be made relating to opening facilities and the capac-
ities of nodes and arcs. The problem which defines the recourse function Q(x, ξ)

depends on the capacity and opening decisions x of the first stage, and the demand
of the customers ξ . The aim of the problem is construct of flow of products y which
minimize transportation costs for satisfying customers demand, plus penalties for any
unsatisfied demand z.

For a problem with a monotonic loss function, the following result defines a con-
servative risk region.

Theorem 4 Suppose the loss function f : X ×Ξ → R is monotonic increasing. Then
the following set is a conservative risk region:

R1 = {ξ ∈ Ξ : P (ξ > ξ) ≤ 1 − β}. (37)

Similarly, if the loss function is monotonic decreasing then the following set is a
conservative risk region:

R2 = {ξ ∈ Ξ : P (ξ < ξ) ≤ 1 − β}. (38)

Proof Suppose f (x, ξ) is monotonic increasing and let ξ ∈ RX , then

P (ξ > ξ) ≤ P ( f (x, ξ) > f (x, ξ)) by monotonicity

123



Problem-driven scenario generation: an analytical approach…

= 1 − P ( f (x, ξ) ≤ f (x, ξ))︸ ︷︷ ︸
≥β

≤ 1 − β

and so ξ ∈ R1 as required. The set R2 can similarly be shown to be a conservative
risk region when f (x, ξ) is monotonic decreasing. 
�

7 An exact risk region for the portfolio selection problem

In this section,we characterize exactly the risk region of the portfolio selection problem
when the distribution of asset returns belongs to a certain class of distributions.

In the portfolio selection problem one aims to choose a portfolio of financial assets
with uncertain returns. For i = 1, . . . , d, let xi denote the amount to invest in asset i ,
and ξ i the random return of asset i . The loss function in this problem is the negative
total return, that is f (x, ξ) = ∑d

i=1 −xiξ i = −xT ξ , and Ξ = R
d . The set X ⊂ R

d

of feasible portfolios may encompass constraints like no short-selling (x ≥ 0), total
investment (

∑d
i=1 xi = 1) and quotas on certain stocks (x ≤ c).

The following corollary gives sufficient conditions for the risk region to satisfy the
aggregation condition, and for aggregation sampling to be consistent.

Corollary 4 Suppose that R ⊇ RX and that the following conditions hold:

1. ξ is continuous with support Rd ,
2. There exists x1, x2 ∈ X which are linearly independent,
3. 0 /∈ X ,
4. X is compact.

ThenR satisfies the aggregation condition, and aggregation sampling with respect to
R is consistent in the sense of Theorem 3.

Proof To prove thatR satisfies the aggregation condition, it is enough to show thatRX
satisfies the aggregation condition. We prove this by showing that all the conditions of
Proposition 2 hold.Note that x �→ −xT ξ is continuous so condition (i) of Proposition 2
holds immediately.

For each x ∈ X the interior of the corresponding risk region and non-risk region
are open half-spaces:

int (Rx ) = {ξ ∈ R
d : −xT ξ > F−1

x (β)} and

int
(Rc

x

) = {ξ ∈ R
d : −xT ξ < F−1

x (β)}.

Fix x̄ ∈ X . Then either x̄ is linearly independent to x1 or it is linearly independent to x2.
Assume it is linearly independent to x1. Now, int (Rx̄ ) and int

(Rx1

)
are non-parallel

half-spaces and so both int
(Rx̄ ∩ Rx1

)
and int

(Rx1\Rx̄
) = int

(Rx1

)∩ int
(Rc

x̄

)
are

non-empty, and since we also haveΞ = R
d , condition (ii) of Proposition 2 is satisfied.

Since Rx1 and Rx2 are non-parallel half-spaces, their union Rx1 ∪ Rx2 is con-
nected. Similarly, for any x ∈ X , we must have Rx being non-parallel with either
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Rx1 or Rx2 and so Rx ∪ Rx1 ∪ Rx2 must also be connected. Hence, RX =⋃
x∈X

(Rx ∪ Rx1 ∪ Rx2

)
is connected so condition (iii) of Proposition 2 is also sat-

isfied. Hence R satisfies the aggregation condition.
We show that aggregation sampling is consistent in the sense of Theorem 3 by

showing that the conditions of this theoremhold.We have already shown that condition
(i) of Theorem 3 holds. The loss function is continuous, and so condition (ii) of
Theorem 3 holds. Let ε > 0, then

Fx
(
F−1
x (β) + ε

)
− Fx

(
F−1
x (β)

)

= P

(
ξ ∈ {ξ ∈ R

d : F−1
x (β) < −xT ξ ≤ F−1

x (β) + ε}
)

.

Since x �= 0, the set defining this event has a non-empty interior, and since the support
of ξ is Rd , this probability is greater than zero. Hence, Fx is increasing at F−1

x (β).
Since ξ is continuous, we also have that Fx is continuous and so condition (iii) of
Theorem 3 holds.

By Proposition 3 Rc
X is convex, and since Rc ⊆ Rc

X and RX is open we have
E
[
ξ |ξ ∈ Rc

] ∈ int
(Rc

X
)
, and so condition (iv) of Theorem 3 holds. Finally, condi-

tion (v) of Theorem 3 holds by assumption and so aggregation sampling with the set
R is consistent in sense of Theorem 3. 
�

Elliptical distributions are a general class of distributions which include among
others the multivariate Normal and multivariate t-distributions. See [16] for a full
overview of the subject.

Definition 8 (Spherical and elliptical distributions) Let ζ be a random vector in
R
d . Then ζ is said to be spherical if its distribution is invariant under orthonormal

transformations; that is, if

ζ ∼ Uζ for all U ∈ R
d×d orthonormal.

Let ξ be a random vector in R
d . Then ξ is said to be elliptical if it can be written

ξ = Pζ + μ where P ∈ R
d×d is non-singular, μ ∈ R

d , and ζ is random vector with
spherical distribution. We will denote this ξ ∼ Elliptical(ζ , P, μ).

An important property of elliptical distributions is that for any x ∈ R
d we can

characterize exactly the distribution of xT ξ . If ξ ∼ Elliptical(ζ , P, μ) then:

− xT ξ ∼ ‖Px‖ ζ 1 − xTμ, (39)

where ζ 1 is the first component of the random vector ζ , and ‖·‖ denotes the standard
Euclidean norm. By (39) the β-quantile of the loss of a portfolio is as follows:

F−1
x (β) = ‖Px‖ F−1

ζ 1
(β) − xTμ.
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Therefore, the exact risk region for ξ ∼ Elliptical(ζ , P, μ), is as follows:

⋃
x∈X

{ξ ∈ R
d : −xT ξ ≥ ‖Px‖ F−1

ζ 1
(β) − xTμ}. (40)

This characterization is not practical for testing whether or not a point belongs to the
risk region, which is required for our scenario generation algorithms. However, a more
convenient form is available in the case where X ⊂ R

d is convex. Before stating the
result, we recall the concept of a projection onto a convex set.

Definition 9 (Projection) Let C ⊂ R
d be a closed convex set. Then for any point

ξ ∈ R
d , we define the projection of ξ onto C to be the unique point pC (ξ) ∈ C such

that infx∈C ‖x − ξ ‖ = ‖ pC (ξ) − ξ‖.
By a slight abuse of notation, for a set A ⊂ R

d and a matrix T ∈ R
d×d , we write

T (A) := {T ξ : ξ ∈ A}. Finally, recall that the conic hull of a set A ⊂ R
d , which we

denote conic (A), is the smallest convex cone containing A.

Theorem 5 Suppose ξ ∼ Elliptical(ζ , P, μ) and X ⊂ R
d is a convex set. Then the

exact non-risk region in (40) can be written as follows:

Rc
X = PT

(
{ξ̃ ∈ R

d :
∥∥∥ pK ′(ξ̃ − μ̃)

∥∥∥ < F−1
ζ 1

(β)}
)

(41)

where μ̃ = (PT )−1μ, K ′ = −PK and K = conic (X ).

Proof

Rc
X = {ξ ∈ R

d : −xT ξ < ‖Px‖ F−1
ζ 1

(β) − xTμ ∀x ∈ X }
= {ξ ∈ R

d : x̃ T ξ < ‖Px̃‖ F−1
ζ 1

(β) + x̃ Tμ ∀x̃ ∈ −X }
= {ξ ∈ R

d : x̃ T (ξ − μ) < ‖Px̃‖ F−1
ζ 1

(β) ∀x̃ ∈ −X }
= PT

(
{ξ̃ ∈ R

d :
∥∥∥ pK ′(ξ̃ − μ̃)

∥∥∥ < F−1
ζ 1

(β)}
)

by application of Corollary 6 in Appendix B 
�

8 Numerical tests

In this section,we test the performance of themethodology developed in this paper. For
the portfolio selection problem, whenX ⊆ R

d+\{0} the loss function f (x, ξ) = −xT ξ

is monotonic decreasing. We therefore use this problem throughout this section to
test both the conservative risk region presented in Sect. 6, and the exact risk region
presented in Sect. 7.
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In order to test whether a point belongs to the exact non-risk region in (41) requires
the projection of a point onto a convex cone. This can be done by solving a small linear
complementarity problem. See [36] or our follow-up paper [15] for more details. We
solve linear complementarity problems using code from the Siconos numerics library
[1]. To test whether a point ξ ∈ Ξ belongs to the conservative risk region in (38),
involves the evaluation of the probability P (ξ < ξ). Since calculating this probability
exactly involves evaluating amultidimensional integralwe approximate the probability
by taking a large sample from ξ , and using the empirical distribution function of
this sample. Repeatedly testing membership of both types of risk region is therefore
computationally intensive.Ways ofmitigating this issue are discussed in our follow-up
paper [15]. Thesemembership tests, and the aggregation sampling algorithmhave been
implemented and made available as a package for the Julia programming language
[14]. All experiments were conducted on a laptop with an Intel Core i7-720QM CPU
at 1.6 GHz.

8.1 Probability of risk regions

As discussed in Sect. 4.1, the performance of the aggregation sampling algorithm
with respect to standard Monte Carlo sampling improves as the probability of the
aggregation region increases. In this first experiment we observe the behavior of this
probability over a range of dimensions.

For this experiment, we suppose that K = conic (X ) = R
d+, and that the random

vector follows a multivariate Normal distribution N (0,Λ(ρ)), where the covariance
matrix Λ(ρ), for 0 ≤ ρ < 1, is defined as follows:

Λi j (ρ) =
{

ρ if i �= j,

1 otherwise.

In particular, we calculate the probability for the case ρ = 0, that is where the asset
returns are independently distributed, and the case ρ = 0.3, that is where the asset
returns are positively correlated. The probabilities of the non-risk regions are estimated
by sampling and testing membership for 20,000 points.

The results of this experiment are plotted in Fig. 1. In Fig. 1a, b are plotted the prob-
abilities of the conservative and exact aggregation regions. To aid the readers’ intuition
we have also plotted a reduced scenario set in two dimensions using conservative and
exact risk regions in Fig. 1c, d for ρ = 0.3 and β = 0.95.

The figures show that not only is the probability of the conservative aggregation
region smaller than that of the exact aggregation region but also it decays much more
quickly. This emphasizes the importance of using an exact risk region for aggregation
sampling if possible. Interestingly the probability of the aggregation regions for the
correlated asset returns is greater and decays more slows than that of the independent
asset returns. This tells us that, in addition to the loss function, the performance of
our methodology depends strongly on the distribution of the random vector. Although
the probability of the conservative aggregation region decays fairly rapidly, it remains
non-negligible for random vectors of a moderate dimension, around 15, for the corre-
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(a) Probability of conservative aggregation
region

(b) Probability of exact risk region

(c) Scenario set constructed by aggregation
reduction using conservative aggregation region

(d) Scenario set constructed by aggregation
reduction using exact aggregation region

Fig. 1 Probabilities of conservative and exact aggregation regions

lated asset returns. For exact aggregation regions, the probability remains high for the
correlated asset returns for up to a dimension of 40.

8.2 Performance of aggregation sampling

Wenow test the performance of the aggregation sampling algorithmusing conservative
and exact risk regions against standard Monte Carlo sampling in terms of the quality
of the solutions each method yields.

Experimental Set-up We use the following problem:

minimize
x≥0

β -CVaR(−xT ξ) (P)

subject to xTμ ≥ t

d∑
i=1

xi = 1

x ≥ 0.
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where the asset returns follow a multivariate Normal distribution N (μ,Σ). We use
two distributions: one of dimension 5 and another of dimension 10. These distributions
have beenfitted frommonthly return data for randomly selected companies in theFTSE
100 index. The problem is thus to select a portfolio which minimizes the conditional
value-at-risk of the one-month return, subject to aminimimumexpected return of t , and
no short-selling. These distributions have been made available online [13] in an HDF5
file, and can be accessed using the keys “normal/dim = 5/dist 1” and “normal/dim =
10/dist 1”. We use the target expected one-month return t = 0.005 which is feasible
for the constructed problems.

This problem has been chosen so that we can solve the problem exactly for Nor-
mally distributed returns, and so calculate the optimality gap for solutions found from
solving scenario-based approximations. The following formula is easily verified by
recalling that for continuous probability distributions, the β -CVaR is just the condi-
tional expectation of the random variable above the β-quantile (see [29] for instance):

β -CVaR(−xT ξ) = (1 − β)μT x +
√
xTΣx

∫ ∞

Φ−1(β)

z dΦ(z) (42)

where Φ denotes the distribution function of the standard Normal distribution. The
problem (P) can therefore be solved exactly using an interior point algorithm and in
our experiments we use the software package IPOPT [37] to do this.

Denote by {(ξs, ps)}ns=1 a scenario set of size n, where ξs denotes the vector of asset
returns in scenario s, and ps the corresponding probability. Then, the scenario-based
approximation to (P) using this scenario set, is the following linear program:

minimize
x,y,α

α + 1

1 − β

n∑
s=1

ps ys

subject to ys ≥ −xT ξs − α

xTμ ≥ t

d∑
i=1

xi = 1

x, y ≥ 0.

See [29] for more details on how β -CVaR is linearized for discrete random vectors
in this way. These scenario-based problems are modelled using JuMP [10] and solved
using Gurobi 7.5 [18].

We are interested in the quality and stability of the solutions that are yielded by
our scenario generation method as compared to standard Monte Carlo sampling for
a given scenario set size. To this end, in each experiment, for a range of scenario set
sizes, we construct 100 scenario sets using sampling and aggregation sampling with
conservative and exact risk regions, solve the resulting problems, and calculate the
optimality gaps for the solutions that these yield.
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Denote by z∗ the optimal solution value for problem (P), and by x̃ a solution found
by solving a scenario-based approximation. Then the optimality gap of x̃ is given by

β -CVaR(−x̃ T ξ) − z∗

where β -CVaR(−x̃ T ξ) calculated using (42).

Results In Fig. 2 are presented the results of these stability tests for two different
problems. In the first problemwe have d = 5 and β = 0.95. In the second problemwe
have d = 10 and β = 0.99. For each scenario set size and scenario generation method
we have drawn a box plot of the optimality gap of the 100 constructed scenario sets.
In the legend of each plot we have given the estimated probability of the aggregation
regions, a, and the true optimal value z∗ is included in the title. Note that Cons. Agg.
sampling and Exact Agg. Sampling are abbrieviations for, respectively, aggregation
sampling using the conservative risk region, and aggregation sampling using the exact
risk region.

In both cases, both aggregation samplingmethods outperform standardMonteCarlo
sampling for all scenario set sizes in terms of the size and variability of the calculated
optimality gaps. This is because for aggregation sampling we are effectively sam-
pling more scenarios compared with standard Monte Carlo sampling. Aggregation
sampling with exact risk regions also significantly outperforms aggregation sampling
with conservative risk regions. The improved performance can be expected given that
its probability is greater than that of the conservative risk region which gives a greater
effective sample size.

9 Conclusions

In this paper we have demonstrated that for stochastic programs which use a tail risk
measure, a significant portion of the support of the random vector in the problem may
not participate in the calculation of that tail risk measure, whatever feasible decision is
used. As a consequence, for scenario-based problems, if we concentrate our scenarios
in the region of the distribution which is important to the problem, the risk region,
we can represent the uncertainty in our problem in a more parsimonious way, thus
reducing the computational burden of solving it.

We have proposed and analyzed two specific methods of scenario generation using
risk regions: aggregation sampling and aggregation reduction. Both of these methods
were shown to be more effective, in comparison to standard Monte Carlo sampling,
as the probability of the non-risk region increases: in essence the higher this prob-
ability the more redundancy there is in the original distribution. The application of
our methodology relies on having a convenient characterization of a risk region. For
portfolio selection problems we derived the exact risk region when returns have an
elliptical distribution. However, a characterization of the exact risk region will gener-
ally not be possible. Nevertheless, it is sufficient to have a conservative risk region.
For stochastic programs with monotonic loss functions, a wide problem class which
includes some network design problems, we were able to derive such a region.
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The effectiveness of ourmethodology depends on the probability of the aggregation
region, that is the exact or conservative non-risk region used in our scenario generation
algorithms. We observed that for both the stochastic programs with monotonic loss
function and portfolio selection problems that this probability tends to zero as the
dimension of the random vector in the problem increases. However, in some circum-
stances this effect is mitigated. We observed that small positive correlations slowed
down this convergence for the portfolio selection problem.

We tested the performance of our aggregation sampling algorithm for portfolio
selection problems using both the exact non-risk region and the conservative risk
region for monotonic loss functions. This demonstrated a significant improvement
on the performance of standard Monte Carlo sampling, particularly when an exact
non-risk region was used.

The methodology has much potential. For some small to moderately-sized network
design problems this methodology could yield much better solutions. In particular the
methodology is agnostic to the presence of integer variables, and so could be used to
solve difficult mixed integer programs.

In our follow-up paper [15] we demonstrate that our methodology may be applied
to more difficult and realistic portfolio selection problems such as those involving
integer variables, and for which the asset returns are no longer elliptically distributed.
In the same paper we also discuss some of the technical issues involved in applying the
method, such as finding the conic hull of the feasible region, andmethods of projecting
points onto this. We also investigate the use of artificial constraints as a way of making
our methodology more effective.

Acknowledgements Wewould like to thank the reviewers and guest editor for their very thorough feedback
which has allowed us to much improve this paper. Thanks also to Burak Buke and David Leslie who also
gave feedback on an earlier version of the paper. Finally, we gratefully acknowledge the support of the
EPSRC funded EP/H023151/1 STOR-i Centre for Doctoral Training.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Continuity of distribution and quantile functions

Throughout we use the following set-up:X ⊂ R
k a decision space, ξ a random vector

with support Ξ ⊂ R
d defined on a probability space (Ω,B,P), and a cost function

f : X ×R
d → R. The quantity is f (x, ξ) is assumed to be measurable for all x ∈ X .

In this appendix we prove a series of technical results related to the continuity of the
distribution and quantile functions for f (x, ξ). These are required for the proofs in
Sect. 5.

The following elementary result concerns the continuity of an expectation function.

Proposition 5 Suppose for g : X × Ξ → R, and a given x̄ ∈ X the following holds:

(i) x �→ g(x, ξ) is continuous at x̄ with probability 1,
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(ii) There exists a neighborhood W of x̄ and integrable h : Ξ → R such that, for all
x ∈ W we have g(x, ξ) ≤ h(ξ) with probability 1.

Then, x �→ E
[
g(x, ξ)

]
is continuous at x̄ .

Proof Let (xk)∞k=1 be some sequence in X such that xk → x̄ as k → ∞. Without
loss of generality xk ∈ W for all k ∈ N. By assumption (i), almost surely we have
g(xk, ξ) → g(x̄, ξ) as k → ∞. Using assumption (ii) we can apply the Lebesgue
theorem of dominated convergence so that:

lim
k→∞E

[
g(xk, ξ)

] = E

[
lim
k→∞ g(xk, ξ)

]

= E
[
g(x̄, ξ)

]

and hence x �→ E
[
g(x, ξ)

]
is continuous at x̄ . 
�

The continuity of the distribution function immediately follows from the above
proposition.

Corollary 5 Suppose for a given x̄ ∈ X that x �→ f (x, ξ) is continuous with prob-
ability 1 at x̄ , and for z ∈ R the distribution function Fx̄ is continuous at z. Then,
x �→ Fx (z) is continuous at x̄ .

Proof Let g(x, ξ) = 1{ f (x,ξ)≤z} so that Fx (z) = E
[
g(x, ξ)

]
. The function g(x, ξ) is

clearly dominated by the integrable function h(ξ) = 1. It is therefore enough to show
that x �→ g(x, ξ) is almost surely continuous at x̄ as the result will then follow from
Proposition 5.

Since Fx̄ is continuous at z, we must have P ( f (x̄, ξ) = z) = 0. Almost surely,
we have that for ω ∈ Ω that x �→ f (x, ξ(ω)) is continuous at x̄ . Let’s first assume
that f (x̄, ξ(ω)) > z. In this case, there exist some neighborhood V of x̄ such that
x ∈ V ⇒ f (x, ξ(ω)) > z, which in turn implies |g(x, ξ) − g(x̄, ξ)| = 0. Hence
x �→ g(x, ξ(ω)) is continuous at x̄ . The same argument holds if f (x̄, ξ(ω)) < z.
Hence, with probability 1, x �→ g(x, ξ) is continuous at x̄ . 
�

Continuity of the quantile function follows from the continuity of the distribution
function but requires that the distribution function is strictly increasing at the required
quantile.

Proposition 6 Suppose for some x̄ ∈ X , and z = F−1
x̄ (β) that the conditions of

Corollary 5 hold, and in addition that Fx̄ is strictly increasing at F−1
x̄ (β), that is for

all ε > 0

Fx̄
(
F−1
x̄ (β) − ε

)
< β < Fx̄

(
F−1
x̄ (β) + ε

)
.

Then x �→ F−1
x (β) is continuous at x̄ .
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Proof Assume x �→ F−1
x (β) is not continuous at x̄ . This means there exists ε > 0

such that for all neighborhoods W of x̄

there exists x ′ ∈ W such that
∣∣∣F−1

x̄ (β) − F−1
x ′ (β)

∣∣∣ > ε.

Now set,

γ := min{β − Fx̄
(
F−1
x̄ (β) − ε

)
, Fx̄

(
F−1
x̄ (β) + ε

)
− β} > 0

since Fx̄ strictly increasing at F−1
x̄ (β) .

By the continuity of x �→ Fx
(
F−1
x̄ (β)

)
at x̄ there existsW a neighborhood of x̄ , such

that:

x ∈ W �⇒
∣∣∣Fx

(
F−1
x̄ (β)

)
− Fx̄

(
F−1
x̄ (β)

)∣∣∣ < γ. (43)

But for the x ′ identified above we have

F−1
x ′ (β) < F−1

x̄ (β) − ε or F−1
x ′ (β) > F−1

x̄ (β) + ε

and so given that Fx̄ is non-decreasing, and by the definition of γ we must have:

∣∣∣Fx̄
(
F−1
x̄ (β)

)
− Fx̄

(
F−1
x ′ (β)

)∣∣∣ ≥ γ

which contradicts (43). 
�
Recall, that for a sequence of i.i.d. random vectors ξ1, ξ2, . . . with the same distri-

bution as ξ , we define the sampled distribution function as follows:

Fn,x (z) := 1

n

n∑
i=1

1{ f (x,ξ i )≤z}.

The final result concerns the continuity of the sampled distribution function.

Lemma 3 Suppose for g : X ×Ξ → R, and x̄ ∈ X the conditions from Proposition 5
hold. Then for all ε > 0 there exists a neighborhood W, of x̄ , such that with probability
1

lim sup
n→∞

sup
x∈W∩X

∣∣∣∣∣
1

n

n∑
i=1

g(x, ξ i ) − 1

n

n∑
i=1

g(x̄, ξ i )

∣∣∣∣∣ < ε.

In particular, if x �→ f (x, ξ) is continuous at x̄ with probability 1 and Fx̄ is continuous
at z ∈ R then for all ε > 0 there exists a neighborhood W, of x̄ such that with
probability 1
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lim sup
n→∞

sup
x∈W∩X

∣∣Fn,x (z) − Fn,x̄ (z)
∣∣ < ε. (44)

Proof Fix x̄ ∈ X , and ε > 0. Let (γk)
∞
k=1 be any sequence of positive numbers

converging to zero and define

Vk := {x ∈ X : ‖x − x̄‖ ≤ γk},
δk(ξ) := sup

x∈Vk
|g(x, ξ) − g(x̄, ξ) | .

Note first that the quantity δk(ξ) is Lebesgue measurable (see [34, Theorem 7.37] for
instance). By assumption (i) of Proposition 5 the mapping x �→ g(x, ξ) is continuous
at x̄ with probability 1, hence δk(ξ) → 0 almost surely as k → ∞. Now, since
|g(x, ξ)| ≤ h(ξ)wemust have |δk(ξ)| ≤ 2h(ξ), therefore, by the Lebesgue dominated
convergence theorem, we have that

lim
k→∞E

[
δk(ξ)

] = E

[
lim
k→∞ δk(ξ)

]
= 0. (45)

Note also that

sup
x∈Vk

∣∣∣∣∣
1

n

n∑
i=1

g(x, ξ i ) − 1

n

n∑
i=1

g(x̄, ξ i )

∣∣∣∣∣ ≤ 1

n

n∑
i=1

sup
x∈Vk

∣∣g(x, ξ i ) − g(x̄, ξ i )
∣∣

and so

sup
x∈Vk

∣∣∣∣∣
1

n

n∑
i=1

g(x, ξ i ) − 1

n

n∑
i=1

g(x̄, ξ i )

∣∣∣∣∣ ≤ 1

n

n∑
i=1

δk(ξ i ).

Since the sequence of random vectors ξ1, ξ2, . . . is i.i.d. we have by the strong law of
large numbers that the right-hand side of (46) convergeswith probability 1 toE

[
δk(ξ)

]
as n → ∞. Hence, with probability 1

lim sup
n→∞

sup
x∈Vk

∣∣∣∣∣
1

n

n∑
i=1

g(x, ξ i ) − 1

n

n∑
i=1

g(x̄, ξ i )

∣∣∣∣∣ ≤ E
[
δk(ξ)

]
. (46)

By (45) we can pick k ∈ N such that E
[
δk(ξ)

]
< ε and so setting W = Vk we have

by (46) with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣∣∣
1

n

n∑
i=1

g(x, ξ i ) − 1

n

n∑
i=1

g(x̄, ξ i )

∣∣∣∣∣ < ε.

The result (44) follows immediately as the special case g(x, ξ) = 1{ f (x,ξ)≤z}. 
�
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B Convex cone results

The results in this appendix relate to the characterization of the non-risk region for the
portfolio selection problem with elliptically distributed returns.

The following two propositions give properties about projections onto convex cones
which are required in the proof of the main results of this appendix.

Proposition 7 Suppose K ⊂ R
d is a convex cone. Then, for all ξ ∈ R

d:

pK (ξ)T (ξ − pK (ξ)) = 0.

Proof First note that we must have pK (ξ)T ξ ≥ 0. If this is not the the case then

‖ξ − pK (ξ)‖2 = ‖ pK (ξ)‖2 − 2pK (ξ)T ξ + ‖ξ‖2 > ‖ξ‖2 = ‖ξ − 0‖2

which contradicts the definition of pK (ξ) since 0 ∈ K . Now assume that

pK (ξ)T (ξ − pK (ξ)) �= 0, and set x̃ = pK (ξ)T ξ

‖ pK (ξ)‖2 pK (ξ) ∈ K . Now,

pK (ξ)T (x̃ − ξ) = pTK ξ − pTK ξ = 0.

By assumption pTk ξ �= ‖ pK (ξ))‖2, and so x̃ �= pK (ξ), hence

‖ pK (ξ) − ξ ‖2
= ‖(pK (ξ) − x̃) + (x̃ − ξ)‖2
= ‖(pK (ξ) − x̃)‖2 − 2 (pK (ξ) − x̃)T (x̃ − ξ)︸ ︷︷ ︸

=0

+‖(x̃ − ξ)‖2 > ‖(x̃ − ξ)‖2

which, again, contradictions the definition of pK (ξ) since x̃ ∈ K . 
�
Proposition 8 Suppose K ⊂ R

d be a convex cone and x ∈ K. Then for any ξ ∈ R
d

xT ξ ≤ xT pK (ξ).

Proof The result holds trivially if ξ ∈ K so we assume ξ /∈ K . Assume there exists
x̃ ∈ K such that x̃ T ξ > x̃ T pK (ξ). For all 0 ≤ λ ≤ 1we have λx+(1−λ)pK (ξ) ∈ K .
Now,

‖(λx̃ + (1 − λ)pK (ξ)) − ξ‖2 − ‖ξ − pK (ξ)‖2
= λ2 ‖x̃ − pK (ξ)‖2 + 2λ(x̃ − pK (ξ))T (pK (ξ) − ξ)

= λ2 ‖x̃ − pK (ξ)‖2 − 2λ x̃ T (ξ − pK (ξ))︸ ︷︷ ︸
>0 by assumption

.

That is, for 0 < λ <
x̃ T (ξ−pK (ξ))
2‖ pK (ξ)−x̃‖ we have ‖λx̃ + (1 − λ)pK (ξ) − ξ‖ <

‖ξ − pK (ξ)‖ which contradicts the definition of pK (ξ). 
�
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The next two results describe the non-risk region for the portfolio selection problem
with elliptically distributed returnswhenX is a convex set. The first describes the exact
non-risk region for elliptically distributed returns in the case P = I , and the second
generalizes the result to any non-singular matrix.

Theorem 6 Suppose X ⊂ R
d is convex and μ ∈ R

d , and let A := {ξ ∈ R
d :

xT (ξ − μ) < ‖x‖ α ∀x ∈ X } and B := {ξ ∈ R
d : ‖ pK (ξ − μ)‖ < α} where

K = conic (X ). Then, A = B.
Proof (B ⊆ A)

Suppose ξ ∈ B and let x ∈ X , then x ∈ K and so

xT (ξ − μ) ≤ xT pK (ξ − μ) by Proposition 8

≤ ‖x‖ ‖ pK (ξ) − μ‖ by the Cauchy–Schwartz inequality

< ‖x‖ α since ξ ∈ B.

Hence ξ ∈ A.
(A ⊆ B)

Suppose ξ /∈ B and set x = pK (ξ − μ) ∈ K . Now,

xT (ξ − μ) = pK (ξ − μ)T (ξ − μ)

= pK (ξ − μ)T pK (ξ − μ) + pK (ξ − μ)T ((ξ − μ) − pK (ξ − μ))

= pK (ξ − μ)T pK (ξ − μ) by Proposition 7

≥ ‖x‖ α since ξ /∈ B.

Since X is convex we have x = λx̄ for some x̄ ∈ X and so we must also have
x̄ T ξ ≥ ‖x̄‖ α, hence ξ /∈ A. 
�
Corollary 6 Suppose X is convex, and P ∈ R

d×d is a non-singular matrix.
Let, A := {ξ ∈ R

d : xT (ξ − μ) < ‖Px‖ α ∀x ∈ X } and B :=
PT

(
{ξ̃ ∈ R

d :
∥∥∥ pK ′(ξ̃ − μ̃)

∥∥∥ < α}
)
where μ̃ = (PT )−1μ, K ′ = PK , and K =

conic (X ). Then, A = B.
Proof First note that K ′ = PK = P conic (X ) = conic (PX ). Now,

B = PT
(
{ξ̃ ∈ R

d :
∥∥∥ pK ′(ξ̃ − μ̃)

∥∥∥ < α}
)

= PT
(
{ξ̃ ∈ R

d : x̃ T (ξ̃ − μ̃) < ‖x̃‖ α ∀x̃ ∈ PX }
)

by Theorem 6

= {ξ ∈ R
d : x̃ T

(
(PT )−1ξ − μ̃

)
<
√
x̃ T x̃α ∀x̃ ∈ PX }

= {ξ ∈ R
d : xT PT

(
(PT )−1ξ − (PT )−1μ

)
< ‖Px‖ α ∀x ∈ X }

= {ξ ∈ R
d : xT (ξ − μ) < ‖Px‖ α ∀x ∈ K } = A


�
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