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Abstract1

When fitting spatial regression models by maximum likelihood us-2

ing spatial weights matrices to represent spatial processes, computing3

the Jacobian, ln(|I−λW|), remains a central problem. In principle, and4

for smaller data sets, the use of the eigenvalues of the spatial weights5

matrix provides a very rapid and satisfactory resolution. Analytical6

eigenvalues are available for large regular grids. For larger problems not7

on regular grids, including those induced in spatial panel and dyadic8

(network) problems, solving the eigenproblem is not feasible, and a9

number of alternatives have been proposed. This paper surveys se-10

lected alternatives, and comment on their relative usefulness, covering11

sparse Cholesky and sparse LU factorizations, and approximations such12

as Monte Carlo, Chebyshev, and using lower order moments with in-13

terpolation. The results are presented in terms of componentwise dif-14

ferences between sets of Jacobians for selected data sets. In conclusion,15

recommendations are made for a number of analytical settings.16

1 Introduction17

Spatial regression models are fitted in a wide range of disciplines, from po-18

litical and regional science to epidemiology and ecology. Testing for spatial19

autocorrelation, and the study of methods for specifying and fitting spatial20

regression models have been central topics in spatial analysis and quantitative21

geography for many decades, but have not lost their relevance and research22

interest. Perhaps the wider availability of software for fitting spatial regression23

models signals the need for a review of topics such as that of the computation24

of the Jacobian, to establish how far we have come, and to indicate areas for25

fresh research. We have chosen to restrict our attention to Gaussian spatial26
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models with a continuous response variable, although conclusions reached here1

may also be extended to the discrete response case.2

Where maximum likelihood methods are chosen for fitting spatial regres-3

sion models, problems can arise when data sets become large because it is4

necessary to compute the determinant of an n×n matrix when optimizing the5

log-likelihood function, where n is the number of observations. As Bayesian6

methods for spatial regression may also require the handling of the same ma-7

trix, they may face the same technical issues of memory management and8

algorithm choice. We have chosen here to term the problem we are considering9

the “Jacobian”, although the expression of interest is ln |I− λW|, where | · |10

here denotes the determinant of matrix ·, I is the identity matrix, λ is a spatial11

coefficient, and W is an n×n matrix of fixed spatial weights, so the problem12

perhaps ought to be termed finding the logarithm of the determinant of the13

Jacobian. In order to optimize the log-likelihood function with respect to λ,14

successive new values of this calculation are required.15

The often sparse matrix of spatial weights W represents a graph of rela-16

tionships between observations. For small numbers of observations, there are17

no difficulties in treating the spatial weights matrix as dense, and computing18

the log-determinant using the eigenvalues of W. As the determinant of I−λW19

takes values between 1 when λ = 0, and 0 when λ is at one of its boundaries20

and the matrix is singular, the logarithm of the determinant is bounded by21

0 and −∞, often being a negative number of large absolute value. Numerical22

stability may be affected by the stage in algorithms at which logarithms are23

taken. When available memory and time is insufficient, and solving the eigen-24

problem is not an option, alternatives may be chosen. These include sparse25

matrix methods such as LU and Cholesky factorization, analytical eigenvalues26

for regular grids, and approximations of a number of kinds. In this compar-27

ison, we examine eigenvalue methods (Ord, 1975; Griffith and Sone, 1995),28

sparse LU and Cholesky factorizations (Pace and Barry, 1997d), and trace-29

based (Smirnov and Anselin, 2009), Monte Carlo (Barry and Pace, 1999), and30

Chebyshev approximations (Pace and LeSage, 2004). We do not include char-31

acteristic polynomial methods (Smirnov and Anselin, 2001), or associated sin-32

gular value decomposition or eigendecomposition methods.33

Although it may seem that the computation of the Jacobian is an unimpor-34

tant technical detail in comparison with the substantive concerns of analysts,35

we feel that this review may provide helpful insight for practical research using36

spatial regression with spatial weights matrices representing spatial processes.37

Users of GeoDa and OpenGeoDa (Anselin et al., 2006) often wonder why in-38

trinsically asymmetric spatial weights, such as those generated by k-nearest39

neighbor criteria, do not work for larger data sets — the reason being that40
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the Jacobian in larger data sets is computed using a characteristic polyno-1

mial method that assumes intrinsic symmetry (Smirnov and Anselin, 2001).2

Users of spatial regression functions in the R package spdep ask why they ex-3

ceed memory limits with larger data sets — they have been using the default4

eigenvalue method of computing the Jacobian, but could have selected an al-5

ternative method. Users of maximum likelihood spatial regression functions6

in StataTM are at present restricted to data sets of a size for which the eigen-7

value approach is appropriate. In the MatlabTM Spatial Econometrics toolbox,8

the user of maximum likelihood and Bayesian spatial regression functions is9

offered the choice of the sparse LU method or Monte Carlo approximations, in10

addition to an interpolation method. Consequently, we wish to offer guidance11

on the alternatives available, some results on their relative accuracy, and notes12

in conclusion on their relative run times.13

Walde et al. (2008) report on the outcome of a broader comparison of dif-14

ferent methods and approximations for computing the Jacobian as part of a15

“contest” between maximum likelihood and generalized method of moments16

model fitting methods. We show below that their conclusions with regard to17

calculation of the Jacobian based on eigenvalues and on Cholesky factoriza-18

tion are incorrect. This points up our position that implementation is of the19

essence, and that cross-checking implementations against theoretical develop-20

ments is of value. In addition, the accuracy and stability of numerical methods21

require care both in theory and in implementation, and are reported on in de-22

tail below, in addition to execution timings where relevant. The underlying23

concerns are that methods for computing the Jacobian should be robust, ac-24

curate, clearly implementable using well-tried code, and that inferences made25

by users should not be impacted by choice of numerical methods.26

We continue by defining spatial regression models to be treated here, the27

data sets to be used for this comparison, and how we, following Higham (2002),28

understand accuracy in fixed precision computing. We move to a consideration29

of eigenvalue-based approaches to the Jacobian, including the consequences of30

asymmetry in the weights matrix, and the presence of no-neighbor observa-31

tions and unconnected subgraphs. Next, we present and analyze sparse ma-32

trix LU and Cholesky factorizations, and show their performance compared33

to eigenvalue methods, also for a large data set with a million observations,34

constituting a “useful impartial benchmark” suggested by an anonymous ref-35

eree. Finally, we examine other approximate methods, including Monte Carlo,36

Chebyshev, and trace-based methods; all of these involve some truncation,37

leading to impaired accuracy in some ranges of values of the spatial coefficient.38

The results reported here have been calculated using R (R Core Team, 2012),39

and many of the computations have been independently checked using the40
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Spatial Econometrics toolbox1 for MatlabTM, provided as source code together1

with extensive documentation, and customized MatlabTM code.2

1.1 Spatial regression models3

Assuming that the variance of the disturbance term is constant, we start from4

the standard linear regression model:5

y = Xβ+ ε, ε ∼ N(0,σ2I) (1)

where y is an (n×1) vector of observations on a dependent variable taken at6

each of n locations, X is an (n×k) matrix of exogenous variables, β is an (k×1)7

vector of parameters, ε is an (n×1) normally distributed vector of disturbances8

with zero mean, fixed variance σ2 and identity matrix I. There are a number of9

alternative forms of spatial regression models using spatial weights matrices to10

represent spatial processes; here we consider the simultaneous autoregressive11

form, because the computation of the Jacobian presents similar challenges12

for the conditional autoregressive, autoregressive response and spatial moving13

average representations. This model may be written as (Cliff and Ord, 1973;14

Ord, 1975; Ripley, 1981):15

y = Xβ+u, u = λWu+ ε, (2)

where λ is a scalar spatial error parameter, and u is a spatially autocorrelated16

disturbance vector with zero mean and variance and covariance terms specified17

by a fixed spatial weights matrix W and a coefficient λ. The disturbance vector18

u is defined as:19

u ∼ N(0,σ2(I−λW)−1(I−λW′)−1), (3)

where W′ denotes the transpose matrix of W.20

It is usual in the literature to define the neighbor relationship in terms21

of sets N(i) of neighbors of zone or site i. These are coded in the form of a22

weights matrix W, with a zero diagonal, and the off-diagonal non-zero elements23

often scaled to sum to unity in each row (termed row-standardized or row-24

normalized, and also row-stochastic, weights matrices), with typical elements:25

wi j =
ci j

n

∑
j=1

ci j

(4)

1http://www.spatial-econometrics.com/.
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where ci j = 1 if i is a neighbor of j and ci j = 0 otherwise. This implies no use of1

other information than that of neighborhood set membership. Set membership2

may be defined on the basis of shared boundaries, of centroids lying within3

distance bands, or other a priori grounds. In general, the number of neighbors4

for each observation is small compared to n, so that W is usually sparse. It5

may be reasonable, based on knowledge of the underlying spatial interaction6

processes, to specify ci j in other ways, for example trade or migration flows, or7

in other ways that introduce asymmetry. Indeed, the spatial weights defined8

here by row-standardization are asymmetric, but if ci j = c ji for all i, j pairs,9

the matrix W is similar to a symmetric matrix.10

Kelejian and Prucha (2010, pp. 55–56) discuss the parameter space of the11

autoregressive parameter λ, in particular the impacts of different choices of12

normalization schemes. They suggest that normalization by the largest eigen-13

value of the non-normalized weights, or by the minimum of the maxima of14

row and column sums of the non-normalized weights, may be preferable to15

row-standardization, and that some practices reflected in the literature may16

not hold in general. In addition, Tiefelsdorf et al. (1999) introduce a variance-17

stabilizing coding scheme, moderating some of the unfortunate side effects18

induced by the use of row-standardization, especially with regard to observa-19

tions often at the edges of study areas with few neighbors. For the purposes20

of this paper, we choose in the main to stay with row-standardization, feeling21

that these results deserve to be studied fully in separate work.22

Ord (1975) gives a maximum likelihood method for estimating the spatial23

error simultaneous autoregressive model. Unlike the time series case, the loga-24

rithm of the determinant of the (n×n) matrix (I−λW) does not tend to zero25

with increasing sample size; it constrains the parameter values to their feasible26

range between the inverses of the smallest and largest eigenvalues of W, ζmin27

and ζmax, i.e.:28

λ ∈ (1/ζmin,1/ζmax) , (5)

where ζi, i = 1, . . . ,n are the eigenvalues of W.29

Let us observe that in the case of positive autocorrelation ln(|I−λW|) →30

−∞ for λ → 1/ζmax, where ln |I−λW| denotes the determinant of the matrix31

I−λW. The log-likelihood function for the spatial error model is of the form:32

ℓ(β,λ,σ2) = −
n
2

ln(2π)−
n
2

ln(σ2)+ ln(|I−λW|) (6)

−
1

2σ2

[

(y−Xβ)′(I−λW)′(I−λW)(y−Xβ)
]

.
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As we can see, the problem is one of balancing the log-determinant term1

against the sum of squares term. When λ approaches the ends of its feasible2

range, the log-determinant term may swamp the sum of squares term (Bivand,3

1984). In this sense, the log-determinant term needs to be estimated in order4

to fit the spatial coefficient, but its value is not typically reported, being simply5

one of the terms making up the value of the log-likelihood at the optimum.6

The Jacobian problem addressed in this review is that of computing the ln(|I−7

λW|) term for values of λ proposed by the line search function. In addition,8

with moderate to large n, the calculation of the analytical variance-covariance9

matrix of the model coefficients is impeded by the need to handle dense n×n10

matrices. The variance-covariance matrix may be approximated by a numerical11

Hessian, the computation of which also involves the values of the Jacobian.12

Typically, the number of calls to the Jacobian function involved in computing13

the numerical Hessian is larger than in the line search to find λ at the optimum14

(LeSage and Pace, 2009, pp. 54–60).15

1.2 Accuracy16

Following Higham (2002, pp. 3–5), we report summaries of the component-17

wise absolute difference |xi − x̂i| between different Jacobian values for a range18

of values i of the spatial coefficient; | · | is here the absolute value of scalar ·.19

In some cases we also report summaries of componentwise relative differences:20

|xi − x̂i|/|xi|. When the spatial coefficient is zero, the Jacobian is also zero. It21

should be borne in mind that all finite-precision computation necessarily in-22

volves round-off error, although most operations are programmed in ways that23

reduce this to the minimum possible. The unit round-off for double precision24

in IEEE arithmetic is 1.11e−16 (Higham, 2002, p. 41), providing a baseline25

for deterioration in accuracy.26

It is also worth noting that the Jacobian values are part of the value of the27

log-likelihood function utilized in numerical optimization, where the tolerance28

of the line search or optimizer is typically larger than the differences between29

Jacobian computation methods. In R, the default tolerance of the line search30

function optimize2 is 1.2207e−04. This means that if the difference between31

Jacobian values is smaller than the tolerance being used, then the chosen value32

of the spatial coefficient is likely only to differ by an amount that does not affect33

the optimizer. Naturally, a different value of the spatial coefficient affects both34

the sum of squared errors term and the Jacobian, in opposite directions, so35

that a maximum componentwise absolute difference of less than the optimizer36

2This function, like the MatlabTM function fminbnd used in the Spatial Econometrics
toolbox, is an implementation of Brent (1973).
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tolerance should give effectively equivalent results.1

1.3 Data sets2

In this study, we use five irregular data sets of neighbor relationships and3

four regular sets (spatial weights). The irregular sets are: queen contiguities4

between 2,478 Polish gminy (NUTS 5 local government districts); queen con-5

tiguities between 3,489 US counties (including Alaska and Hawaii); queen con-6

tiguities between cells on a 1◦ grid for world land areas omitting Antarctica7

with 15,260 observations; queen contiguities between 32,698 US 2000 Cen-8

sus Zip Code Tabulation Areas (ZCTA, omitting Alaska and Hawaii); and9

queen contiguities between 64,878 US census tracts in 2000 (omitting Alaska10

and Hawaii). These five sets of spatial weights are row-standardized. The11

regular sets are two variants each of 50× 50 (n = 2,500) and 1,000× 1,00012

(n = 1,000,000) grids, the variants being rook and queen contiguities (binary13

spatial weights only). By definition, rook and queen contiguities produce sym-14

metric weights, because if observation i is a neighbor of j, then j must also be15

a neighbor of i. In addition, use is made of a row-standardized 1,000×1,00016

rook contiguity data set to compare with interpolated approximations to the17

Jacobian.18

Table 1: Summary graph characteristics for the five irregular data sets.

Gminy US Counties World grid US ZCTA US census tracts
Subgraphs 1 219 49 243 30
Non-empty subgraphs 1 12 42 14 13
Cyclical graphs 0 9 16 10 4
Singleton subgraphs 0 207 7 229 17
Max. neighbors 18 14 8 75 30
Largest subgraph 2478 3153 8998 32419 64692
N 2478 3489 15258 32698 64878

Table 1 shows that only the Polish gminy data set has a single connected19

graph; the other irregular data sets have multiple disjoint connected subgraphs,20

including singleton subgraphs, that is observations with no neighbors. The21

regular data sets all have single subgraphs, and with the Polish gminy data set22

constitute simple undirected graphs. For the remaining four irregular data sets,23

the subgraphs may be represented as blocks of spatial weights lying along the24

diagonal of the weights matrix without influence on each other. By definition,25

all the two-node subgraphs are cyclical, and some other subgraphs meet the26
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same condition, that is that, for every location, no pair of its neighbours are1

connected (Smirnov and Anselin, 2009, pp. 2984–2985).2
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Figure 1: Distributions of numbers of neighbors for the five irregular data sets.

Figure 1 shows the distributions of contiguous neighbors for the five irreg-3

ular data sets. It is worth observing that the examples represent distributions4

with different levels of skewness, with the world grid data set being right-5

skewed, having many spatial entities with eight neighbors; the other data sets6

are left-skewed. The bottom row of Table 1 lists the maximum number of7

neighbors by data set. The very large numbers of contiguous neighbors for8

some observations in the two latter data sets occur because of the by the way9

these observations are structured, for example central entities with radiating10

neighbors, such as Central Park in New York (the entity in the US census tract11

data set with 30 neighbors). In the ZCTA data set, all the entities with over12

26 neighbors are three-digit codes with either XX or HH suffixes, indicating13

parks, forest lands etc., or water bodies. The selection of irregular data sets is14

similar to those chosen by Smirnov and Anselin (2001).15

In addition, we have generated intrinsically asymmetric neighbors, taking16

the 6 nearest neighbors using Great Circle distances from geographical co-17

ordinates for each of the five irregular data sets, using polygon centroids to18

approximate point support observations. The spatial weights in these schemes19

are row-standardized. We use these to explore the consequences of weights20

asymmetry in computing the Jacobian.21
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2 Eigenvalue methods1

The first published versions of the eigenvalue method for finding the Jacobian2

(Ord, 1975, p. 121) present it in product form:3

ln(|I−λW|) = ln

(

n

∏
i=1

(1−λζi)

)

(7)

instead of the equivalent summation form:4

ln(|I−λW|) =
n

∑
i=1

ln(1−λζi) (8)

where ζi are the eigenvalues of W. In the product form, it may become difficult5

to compute, because the value of the determinant may underflow (become6

indistinguishable from zero before taking the logarithm) if care is not shown.7

2.1 Computing eigenvalues8

One specific problem addressed by Ord (1975, p. 125) is that of the eigen-9

values of the asymmetric row-standardized matrix W with underlying sym-10

metric neighbor relations ci j = c ji. If we calculate the row sums of weights11

by: C1 = w = [w j], where 1 is a vector of ones, we can get: W = CD, where12

D = diag(1/w j). By similarity, the eigenvalues of W are equal to those of:13

D
1
2 CD

1
2 (see also Griffith and Layne, 1999, pp. 128–130). Of course, if the14

underlying neighbor relations are not symmetric, the eigenvalues of W are not15

necessarily real; the consequences of using such asymmetric weights matrices16

are explored below. The handling of intrinsically asymmetric weights matrices17

is also discussed by LeSage and Pace (2009, pp. 88–89).18

In addition to choices with regard to the underlying neighbor relations used19

to structure covariance between observations, by no means all applications use20

row standardization of spatial weights matrices. Row standardization has the21

convenient consequence that the largest eigenvalue of W is known to be equal22

to one by design. However, the value of the smallest eigenvalue is unknown, but23

in line search for the spatial coefficient λ, the relevant interval is often taken24

as [−1,1), as positive spatial autocorrelation is assumed to be more common,25

so that inaccuracy on the lower bound is probably less important.26

Row standardization upweights neighbor relations for observations with27

few neighbors, and downweights relations for those with many neighbors.28

Tiefelsdorf et al. (1999) propose a variance-stabilising scheme instead of row29

standardization, which for underlying symmetric neighbor relations also yields30

an asymmetric spatial weights matrix that is similar to symmetric.31
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Table 2: Lower and upper interval bounds on λ: 1/ζmin,1/ζmax, 2,478 Polish
gminy queen contiguity data set, 50× 50 rook contiguity regular grid, and
50×50 queen contiguity regular grid, for binary weights (B), binary weights
scaled to sum to n (C), variance-stabilizing weights (S) — real part only, row
standardized weights (W) — real part only, and variance-stabilizing weights
(S (sym)) and row standardized weights (W (sym)) transformed to symmetry
by similarity.

B C S W S (sym) W (sym)
Gminy lower -0.2586 -1.4835 -1.8462 -1.2199 -1.8462 -1.2199
Gminy upper 0.1522 0.8733 0.9393 1.0000 0.9393 1.0000
50x50 rook lower -0.2505 -0.9819 -0.9910 -1.0000 -0.9910 -1.0000
50x50 rook upper 0.2505 0.9819 0.9910 1.0000 0.9910 1.0000
50x50 queen lower -0.2510 -1.9478 -1.9733 -1.9034 -1.9733 -1.9034
50x50 queen upper 0.1254 0.9730 0.9858 1.0000 0.9858 1.0000

Many disciplines using spatial regression methods simply use unstandard-1

ized neighbor relations matrices which may or may not be symmetric. Table2

2 shows the lower and upper bounds for λ for the same set of symmetric con-3

tiguous neighbors for 2,478 Polish gminy, and the 50×50 regular grid with4

rook and queen contiguities, under different weights representations. The un-5

derlying eigenvalues have been calculated using the R eigen function, using6

the standard LAPACK functions and with symmetry of the input matrix de-7

termined by the internal code. As can be seen, the intervals vary greatly,8

depending on choices of specification, and that the lower bound on the spatial9

coefficient λ in the row-standardized case is less than −1 for the Gminy and10

50×50 queen contiguity data sets.11

When the weights matrix may be re-ordered into subgraph blocks on the12

diagonal, and a final set of all-zero rows and columns, corresponding to no-13

neighbor observations, the numbers of eigenvalues equal to zero and one change14

from the single subgraph case.3 It should be noted that in many practical15

examples, the appearance of subgraph blocks is not expected, resulting from16

boundary corruption affecting the determination of contiguities; in such cases,17

the boundary topologies should be cleaned before proceeding. In the case of18

the row-standardized Polish gminy data set, the largest eigenvalue is 1, and19

there are two eigenvalues with an absolute value less than 1e−14. For the20

row-standardized US counties data set, with 219 subgraphs of which 207 are21

singleton, there are 12 eigenvalues with values of 1,4 that is, one eigenvalue of22

3We are grateful to the Editor for drawing our attention to this issue.
4In fact greater than 1− (1e−14).
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1 per non-singleton subgraph. If we compute the eigenvalues of the subsetted1

blocks separately and add in 207 zeros, the resulting vector is equal to the2

eigenvalues of the whole data set to a tolerance of 1e−14. There are in total3

225 zero eigenvalues, of which 207 are in the singleton subgraphs, none in the4

8 subgraphs with 2 nodes, 1 in a 7-node subgraph, 5 in a 30-node subgraph,5

none in a 76-node subgraph, and the remaining 12 in the largest 3,153-node6

subgraph. Of the 12 non-empty subgraphs, corresponding to the 12 eigenvalues7

with values of 1, 9 (of which 8 are two-node subgraphs) are cyclical, and8

correspond to 9 eigenvalues with values of -1 (Smirnov and Anselin, 2009, pp.9

2984–2985).10

Where subgraphs appear in which there are larger numbers of spatial enti-11

ties, computation of eigenvalues may be split between blocks as noted above;12

this may make it possible to compute the eigenvalues of spatial weights ma-13

trices that would otherwise be intractable. This has been done here with the14

world raster grid data set, in which the largest subgraph has 8998 entities,15

which, although large, is not too large for the eigenvalues to be computed16

on a standard 64-bit computer. A discussion of subgraph blocks is also pro-17

vided by Smirnov and Anselin (2009, pp. 2984–2985). Some practical conse-18

quences of using spatial weights with no-neighbor observations are discussed19

by Bivand and Portnov (2004), but detailed analysis of the subgraph problem20

for eigenvalues of spatial weights matrices does not yet appear to have been21

undertaken.22

One point that needs to be taken forward from this discussion is that al-23

though, for simultaneous autoregressive models, neither W nor (I−λW) are24

required to be symmetric positive definite matrices, such an assumption may25

make computing the Jacobian more feasible. There are obvious limits on n,26

because in general dense matrices have to be used to find the eigenvalues of W,27

which impact both the use of eigenvalues in computing the Jacobian and in28

setting the search interval for λ. Because the line search interval for λ can be29

manipulated, so far some attention has been given to finding the extreme eigen-30

values of sparse W for large n by Griffith (2004a) and Griffith and Luhanga31

(2011). In addition, it may be noted that the Spatial Econometrics toolbox32

uses the MatlabTM eigs function, based on ARPACK code for finding a few33

eigenvalues of large sparse matrices, here the minimum and maximum values.34

A consequence of this discussion is that implementation is of the essence,35

something that we feel is demonstrated by Walde et al. (2008)5. They un-36

dertook 3,000 Monte Carlo runs pitting different fitting methods against each37

other. In fact, all the fitting methods except one are maximum likelihood with38

5We are grateful to Janette Walde for her willingness to clarify questions arising during
our study, and for sharing code excerpts with us.
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differing methods for computing the Jacobian. The simulation scenario is for1

a regular 4,900 observation grid, a simultaneous autoregressive process with a2

λ coefficient value of 0.5, an intercept of one and a uniform random x variable3

within zero and one and a coefficient of one; the remaining error is assumed to4

be normal with zero mean and a standard deviation of one. The final fitting5

method is generalized method of moments, which we do not address here.6

By comparing methods for computing the Jacobian inside model fitting7

simulation runs, it is not possible to see how well or poorly the actual Ja-8

cobian values are computed for various values of λ, but rather how well the9

optimization technique performs in providing the Jacobian method in the func-10

tion returning the log-likelihood with the proposed λ values. This raises doubt11

as to whether the optimization technique gives all methods of computing the12

Jacobian a fair chance.13

With regard to the Ord eigenvalue method for computing the Jacobian,14

Walde et al. (2008, p. 158) conclude that it fails dramatically for the n = 4,90015

grid used in their simulation, when in principle for a fixed W, the eigenval-16

ues are also fixed, and consequently any variation in their Monte Carlo runs17

cannot be coming from this source. Their numerical results suggest that the18

line search for λ often halted at its lower bound, naturally leading to poor per-19

formance. Curiously, they do find that the characteristic polynomial method20

of Smirnov and Anselin (2001) performs excellently, but in their implementa-21

tion, this method computes the characteristic coefficients from the eigenvalues22

of a small number of dense block matrices constructed by limited divide-and23

conquer. Consequently, the difference between the outcomes for the eigenvalue24

and characteristic polynomial methods which in effect use the same eigenvalues25

to find the Jacobian is paradoxical.26

2.2 Complexity of eigenvalues27

The analyst may find that underlying symmetric spatial neighbor relationships28

are sufficient, such as polygon contiguities or some graph neighbor schemes,29

such as triangulation, which are also planar. Distance schemes are usually30

symmetric by design, but may not be planar graphs. However, should the31

analyst wish to specify the spatial relationships in an intrinsically asymmet-32

ric way, using k-nearest neighbors, some graph measure, or some distance33

measure (one-way street) relationships, model fitting methods should accom-34

modate these choices. In addition, intrinsically asymmetric weights may be35

constructed by weighting symmetric links differently by direction, as in the36

use of trade flows as a weighting variable.37

So far, relatively little attention has been given to the consequences of try-38

ing to fit spatial regression models with asymmetric spatial weights. LeSage and Pace39
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Figure 2: Plots of the real and imaginary parts of the eigenvalues of the row-
standardized 6 nearest neighbor weights for the Polish gminy and US counties
data sets.

(2009, pp. 89) analysed the determinant domain of matrix:1

Z = I−λW (9)

in the case in which matrix W is not similar to a symmetric matrix. Using2

similar arguments, we would like to analyze the value of the log-determinant of3

matrix Z. Such a matrix may have complex eigenvalues, but an advantage in4

this case is that the complex eigenvalues come in conjugate pairs (see Bernstein,5

2009, p. 263). So, the number of complex eigenvalues is even. Let us denote6

it by 2k. Further, let us use the following notation (using j as the index to7

avoid confusion with the imaginary unit): ω j = a j + ib j and ω∗
j = a j − ib j for8

values of complex eigenvalues in pairs (i is an imaginary unit) and ζ j for real9

eigenvalues of W. Then:10

ln(|Z|) = L1 +L2, (10)

where:11

L1 =
k

∑
j=1

ln[(1−λω j)(1−λω∗
j)] =

k

∑
j=1

ln[(1−λa j)
2+(λb j)

2], (11)
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and:1

L2 =
n−k

∑
j=k+1

ln(1−λζ j). (12)

exp(L1) is a real positive quantity, which together with (5) implies that |Z|2

is also a real quantity independently of the number of complex eigenvalues.3

But the number of complex eigenvalues of the W and their scale as well as the4

magnitude of λ affect the scale of values of |Z|. From the localization theorem5

of Gerschgorin (see Varga, 2009, Theorem 1.11), we know that the absolute6

values of imaginary parts of eigenvalues of Z are contained in the interval [0,λ].7

Let us observe that in the case of complex eigenvalues having small imaginary8

parts, omitting them in calculation does not have a big influence on the value9

of ln |Z|. It is worth noting that for row-standardized version of W (that is, W10

is row-stochastic) the spectral radius of W is equal to 1, which implies that:11

|ω j| ≤ 1, j = 1, . . . ,k, (13)

and12

|ζ j| ≤ 1, j = k +1, . . . ,n− k. (14)

and maxj ζ j = 1 (see Bernstein, 2009, p. 298 – Perron Frobenius Theorem).13

Figure 2 shows plots of the real and imaginary parts of the eigenvalues14

of the row-standardized weights for both the Polish and the US data sets;15

real eigenvalues (with zero imaginary part) are plotted as black points, while16

complex eigenvalues are gray. It is easy to see how the conjugate pairs of17

complex eigenvalues spread out above and below the real eigenvalues. It is18

clearly important to ensure that the Jacobian is computed using logarithms19

of complex numbers in Equation (8), otherwise terms in b j in Equation (11)20

would be omitted; the clog function was only added to the ISO C standard in21

1999, also for double-precision numbers, so earlier implementations depended22

on platform-specific functions. Fortran 77 had a complex logarithm function23

for single precision complex numbers.24

2.3 Analytical eigenvalues25

In this discussion of the use of eigenvalues in computing the Jacobian, we have26

not considered the accuracy of the method. We can approach this question for27

a small but important subset of planar tessellations, regular rectangular grids.28

Analytical eigenvalues for binary spatial weights matrices of rook contiguities29

14



are given by Ord (1975, p. 126), and discussed further by Griffith and Sone1

(1995, p. 169). The eigenvalues are:2

ζpq = 2cos

(

pπ
P+1

)

+2cos

(

qπ
Q+1

)

(15)

for p = 1;. . . ,P and q = 1, . . . ,Q for a regular grid with P and Q rows and3

columns. A development for queen contiguities on the same grid is given by4

Griffith and Sone (1995, p. 170), see also Gasim (1988):5

ζpq = 2cos

(

pπ
P+1

)

+2cos

(

qπ
Q+1

)

+4cos

(

pπ
P+1

)

×cos

(

qπ
Q+1

)

(16)

Table 3: Summaries of componentwise absolute differences between Jacobians
calculated using analytical and computed eigenvalues for the 50×50 regular
grid.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Rook 0.00e+00 8.88e-15 4.26e-14 1.09e-13 1.42e-13 8.53e-13
Queen 0.00e+00 0.00e+00 3.55e-15 1.78e-14 1.42e-14 2.27e-13

The analytical eigenvalues involve trigonometrical functions, but certainly6

fewer operations than the computed eigenvalues, here output by LAPACK rou-7

tine DSYEVR with an absolute tolerance of zero. Table 3 shows summaries8

of componentwise absolute differences between Jacobians calculated using an-9

alytical and computed eigenvalues for the 50×50 regular grid, for rook and10

queen contiguities. In the rook case, the spatial coefficient λ takes the values11

in the sequence from −0.24 to 0.24 in steps of 0.01, 49 values in all, while for12

the queen contiguities, the coefficient takes values from −0.24 to 0.12 in steps13

of 0.01, 37 values in all, reflecting the different feasible ranges of λ for these14

two schemes. Computing the eigenvalues took over two orders of magnitude15

longer than using the analytical methods for this grid size; given the eigenval-16

ues, the calculation of the Jacobians takes the same time for both methods.17

The maximum componentwise absolute differences are very small, and give us18

a baseline for subsequent methods for this regular grid, and for the much larger19

1,000×1,000 regular grid to be used below. In this large n case, calculating20

the analytical eigenvalues took under 0.2s, and each Jacobian less than 0.1s.21
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3 Sparse Matrix methods1

When spatial regression models began to be taken up in applied research,2

hardware constraints on computing eigenvalues for moderate n prompted work3

on alternative methods for computing the Jacobian. In a series of contribu-4

tions, Pace and Barry (1997b,c,d) show that sparse matrix methods can be5

used to find the log-determinant directly.6 The methods of choice are the6

Cholesky factorization of a sparse, symmetric, positive-definite matrix, and7

the LU factorization if symmetry requirements on the matrix need to be re-8

laxed. Walde et al. (2008) find, by implication, that the Jacobian values from9

Cholesky factorization and the LU factorization for the same (I− λW) ma-10

trix differ.7 This finding is incompatible with theoretical and practical results11

from numerical analysis. Naturally, for the same symmetric, positive-definite12

matrix, one would expect the log-determinants based on the Cholesky fac-13

torization and the LU factorization to be identical within machine precision14

(Higham, 2002, pp. 196).15

3.1 Sparse Cholesky and LU methods16

Rue (2001) utilizes Cholesky factorization extensively in computations on Gaus-17

sian Markov random fields, and reports no reservations concerning the choice18

of the method. The accuracy and stability of Gaussian elimination has been19

the subject of detailed study since the advent of numerical computation. As20

LU factorization is a form of Gaussian elimination, its possible weaknesses are21

well-known, and it is regarded as a highly reliable way of solving linear systems22

when the matrix to be factorized is nonsingular (Higham, 2002, pp. 160–166).23

In a recent popular review discussing the use of Cholesky factorization, Higham24

(2009) states that: “Rounding error analysis shows that Cholesky factorization25

has excellent numerical stability properties.” If the matrix to be factorized is26

symmetric positive definite, the Cholesky factorization can be obtained from27

the LU factorization, or computed directly at half the cost of the LU factor-28

ization (Higham, 2002, pp. 196–201). While it appears that we may be able29

to rely on the theoretical results of the analysis of numerical algorithms with30

regard to the accuracy and stability of Cholesky and LU methods, it is prudent31

to compare the Jacobians computed in this way with those calculated using32

eigenvalues.33

The log determinant of symmetric positive definite I− λW for Cholesky34

factorization may be expressed as:35

6The S-PLUS SpatialStats module also uses sparse matrix methods (Kaluzny et al., 1998).
7Correspondence with Janette Walde, who made code extracts available, indicates that

the Cholesky Jacobian was erroneously divided by 2, explaining the discrepancy.
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ln(|I−λW|) = 2
n

∑
i=1

ln lii (17)

where lii are the elements of the diagonal of L, given by solving (I−λW) = LL′
1

(Walde et al., 2008, p. 154). Note that the spatial weights matrix used here2

in the case of row-standardized weights is the matrix D
1
2 CD

1
2 defined above in3

Section 2.1. In the Matrix and spam implementations, the log determinant is4

extracted directly, avoiding the need to take logarithms following factorization.5

In the LU case for a nonsingular matrix, the log determinant is:6

ln(|I−λW|) =
n

∑
i=1

ln |uii| (18)

where uii are the elements of the diagonal of U from (I−λW) = LU, where U7

is an upper triangular matrix.8

Table 4: Summaries of componentwise absolute differences between Jacobians
calculated using analytical eigenvalues and sparse Cholesky and sparse LU
factorization for the 1,000×1,000 rook weights.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Matrix Cholesky 0.00e+00 9.77e-09 5.01e-08 9.53e-08 1.10e-07 5.14e-07
spam Cholesky 0.00e+00 2.91e-11 7.64e-11 8.67e-11 1.09e-10 3.78e-10
Matlab Cholesky 0.00e+00 9.78e-09 5.01e-08 9.54e-08 1.10e-07 5.14e-07
Matrix LU 0.00e+00 8.64e-12 3.00e-11 4.56e-11 6.18e-11 1.96e-10
Matlab LU 0.00e+00 6.04e-09 2.27e-08 1.03e-07 1.16e-07 5.58e-07

Sparse Cholesky and LU factorization implementations are provided in9

MatlabTM and in the Matrix package in R (Bates and Maechler, 2012), with an10

additional sparse Cholesky factorization implementation in the spam package11

in R as described by Furrer and Sain (2010) using methods due to Ng and Peyton12

(1993). It appears that MatlabTM and Matrix both use implementations due to13

Davis (2006), at least for Cholesky factorisation. Following up the helpful sug-14

gestion of an anonymous referee to carry out a “useful impartial benchmark”,15

we compare Cholesky and LU factorization Jacobians with those calculated us-16

ing analytical eigenvalues for large 1,000×1,000 regular grids. Table 4 shows17

summaries of the componentwise absolute differences between Jacobians cal-18

culated using analytical eigenvalues (Equation 15) and using five sparse matrix19

factorizations. The five are Matrix and MatlabTM Cholesky methods — which20

are effectively identical, as one would expect from their common code base —21

and spam Cholesky, in addition to Matrix and MatlabTM LU methods. The22
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maximum componentwise absolute differences are very small, and are all sev-1

eral orders of magnitude less that the default threshold for line search in opti-2

mizing the log-likelihood function. Table 5 repeats the benchmark for the large3

queen contiguity grid, reaching the same conclusion that the sparse Cholesky4

and LU factorizations available in MatlabTM and R packages typically reach the5

same function optimum as Jacobians calculated using eigenvalues (Equation6

16).7

Table 5: Summaries of componentwise absolute differences between Jacobians
calculated using analytical eigenvalues and sparse Cholesky and sparse LU
factorization for the 1,000×1,000queen weights.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Matrix Cholesky 0.00e+00 1.37e-08 3.06e-08 1.09e-07 1.64e-07 5.27e-07
spam Cholesky 0.00e+00 4.46e-11 8.46e-11 1.10e-10 1.27e-10 6.69e-10
Matlab Cholesky 0.00e+00 1.37e-08 3.07e-08 1.09e-07 1.64e-07 5.27e-07
Matrix LU 0.00e+00 2.18e-11 3.71e-11 5.99e-11 7.28e-11 3.20e-10
Matlab LU 0.00e+00 9.52e-09 2.67e-08 5.61e-08 7.78e-08 2.45e-07

Table 6: Maximum componentwise absolute differences between eigenvalue-
based Jacobians and five sparse Cholesky versions (R Matrix simplicial and su-
pernodal decompositions and decomposition chosen by a CHOLMOD-internal
heuristic, R spam using pivoting schemes MMD and RCM) and a sparse LU
factorization (R Matrix), for five symmetric spatial weights matrices.

50×50 rook 50×50 queen Polish gminy US Counties World grid
Matrix simplicial 1.65e-12 3.01e-12 1.42e-12 2.39e-12 4.84e-11
Matrix supernodal 1.76e-12 2.96e-12 1.53e-12 2.05e-12 4.71e-11
Matrix CHOLMOD 1.65e-12 3.01e-12 1.42e-12 2.39e-12 4.84e-11
spam MMD 9.09e-13 3.69e-13 9.95e-14 2.27e-13 2.05e-12
spam RCM 9.09e-13 2.34e-13 1.14e-13 2.27e-13 2.27e-12
Matrix LU 1.02e-12 3.41e-13 5.68e-14 1.14e-13 7.08e-13

For completeness, we also examined the componentwise absolute differences8

between sets of Jacobian values for λ in the range [−0.9,0.99], in steps of 0.01,9

in total 190 values for row-standardized spatial weights matrices for the Pol-10

ish gminy, the US counties and the world raster grid data sets. To this we11

added the binary rook and queen contiguity 50×50 regular grids. The imple-12

mentations of sparse Cholesky factorization in the Matrix and spam packages13

are independent of each other, with the former using approximate minimal14

18



degree (AMD) ordering, and the latter multiple minimum degree (MMD, de-1

fault) or reverse Cuthill-McKee (RCM) pivoting; choice of pivoting methods2

is discussed in Pace and Barry (1997a) and LeSage and Pace (2009, p. 87).3

The implementation in the Matrix package provides simplicial or supernodal4

decomposition, which can be specified directly. In addition, a heuristic is pro-5

vided in the CHOLMOD code used by Matrix, which chooses the preferred6

decomposition method automatically (here termed CHOLMOD).7

Table 6 confirms that the maximum componentwise absolute differences8

between the Jacobians computed using the various Cholesky and LU factor-9

izations, and those calculated using computed eigenvalues are extremely small,10

despite the differences in graph characteristics between the data sets.11

Table 7: Summaries of componentwise absolute differences between Jacobians
calculated using computed eigenvalues and LU factorization for the two smaller
asymmetric 6 nearest neighbor weights sets.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Polish gminy 0.00e+00 5.51e-14 1.56e-13 3.28e-13 3.41e-13 6.20e-12
US Counties 0.00e+00 5.78e-14 1.62e-13 3.13e-13 4.99e-13 2.96e-12

The same conclusion may be drawn from the summaries of componentwise12

absolute differences, shown in Table 7, between Jacobians based on LU factor-13

izations for the six nearest neighbor spatial weights for the Polish gminy and14

the US counties data sets, and those based on computed eigenvalues.15

In the implementation of the sparse LU method in the Spatial Economet-16

rics toolbox for MatlabTM, use is made of a pre-computed column approximate17

minimum degree permutation. The assumption is that the fill-reducing per-18

mutation will be invariant in λ, and that in successive computations of the19

Jacobian, time can be saved by permuting (I−λW) using the saved permuta-20

tion before sparse LU factorization. The savings in MatlabTM are of the order21

of 20%, with somewhat smaller savings seen in R with both row and column22

permutation.23

3.2 Updating Cholesky factorizations24

A promising innovation for reducing the computational burden of computing25

the Jacobian in spatial regression models when the spatial weights are symmet-26

ric or similar to symmetric was introduced in the Matrix package in March 200827

(Bates and Maechler, 2012), based on Davis and Hager (1999), Davis (2005)28

and described in Davis (2006, pp. 63–66). A comparable facility was intro-29

duced into the spam package in June 2008 (Furrer and Sain, 2010). Because30

19



the pattern of sparseness in the matrix for which the log-determinant is to1

be found does not change, it is possible to carry out the Cholesky factoriza-2

tion once, and then update the values respecting the fill-reducing permutation3

found when the factorization was first undertaken. This incurs a moderate4

set-up cost, but speeds up the finding of each Jacobian value for successive λ5

proposed by the optimizer.6

In Equation (17) above, the Jacobian was shown to be taken as the sum7

of logarithms of the diagonal of the Cholesky factorization. If we replace the8

LL′ factorization with LDL′, where D is a diagonal matrix, we see that we are9

really only interested in this part of the factorization, and is indeed analogous10

to the eigenvalue procedure, where only the diagonal matrix of eigenvalues is11

used.8 If we note that the Jacobian values are required for many values of λ12

but fixed W, we can re-express the log determinant, changing the sign of λ for13

convenience, as:14

ln(|I+λW|) = n ln(λ)+2ln

(

|W+
1
λ

I|
)

(19)

The updating procedure uses the Cholesky factorizations of W and −W15

computed once only, and depending on the value of λ, we either return zero16

for λ within machine precision of zero, or switch on the sign of λ. The update17

method for objects returned by the Cholesky method of the Matrix package18

utilizes the pre-computed factorization of −W, and takes as additional argu-19

ments the original spatial weights matrix −W and 1/λ for positive λ, with20

sign switches for negative λ. The determinant method used returns the loga-21

rithm of the modulus of the determinant. A non-exported function in Matrix,22

ldetL2up, vectorizes this process for a vector of values of λ.23

In the spam case, the Cholesky factorization is updated by starting with an24

initial (I−λW) = LL′ and a seed value for λ. The update is computed using25

L and the current sparse matrix (I−λW) for the value of λ proposed by the26

optimizer. Furrer and Sain (2010, p. 10) describe the approach used, which27

uses methods due to Ng and Peyton (1993).28

Table 8 shows that updating the Cholesky factorization using functions in29

Matrix and spam yields maximum componentwise absolute differences to the30

eigenvalue-based Jacobians that are very small. Those for spam using multi-31

ple minimum degree ordering are the same as those where updating was not32

used, reported in Table 6, while those for Matrix are slightly less accurate33

than their non-updating equivalents. Naturally, the use of Cholesky and up-34

dated Cholesky factorizations is limited to symmetric and similar to symmetric35

8This discussion is based with permission on email exchanges with Douglas Bates and
Martin Mächler.
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Table 8: Maximum componentwise absolute differences between eigenvalue-
based Jacobians and two updating sparse Cholesky versions (R Matrix fac-
torization chosen by a CHOLMOD-internal heuristic, and R spam using the
MMD pivoting scheme MMD), for five symmetric spatial weights matrices.

50×50 rook 50×50 queen Polish gminy US Counties World grid
Matrix CHOLMOD 2.01e-10 1.07e-10 1.21e-10 2.92e-10 3.37e-09
spam MMD 9.09e-13 3.69e-13 9.95e-14 2.27e-13 2.05e-12

spatial weights matrices, that is, those with real eigenvalues.1

4 Approximations2

In addition to the methods for computing the Jacobian presented above, many3

approximations have been proposed over the last twenty years, with trace-4

based methods going back to Martin (1993). Walde et al. (2008) try out a5

number of approximations to the Jacobian, of which the Monte Carlo and6

Chebyshev approximations are presented here, using sparse matrix operations7

from the Matrix package throughout. They also implement the characteristic8

polynomial approach due to Smirnov and Anselin (2001) and used in GeoDa9

and in OpenGeoDa.910

4.1 Interpolation11

Interestingly, Barry and Pace (1999) preface their Monte Carlo approximation12

method, covered below, by quoting extensively from Griffith and Sone (1995),13

who motivate the need for approximating the Jacobian in larger data sets. In14

a sequence of papers, Griffith and co-authors show that approximations may15

be available for some spatial configurations of observations. Griffith and Sone16

(1995) begin by describing analytical ways of calculating the eigenvalues of17

a regular square surface partitioning, following Ord (1975), with extensions.18

Further developments are based on approximating equations requiring knowl-19

edge of the largest and smallest eigenvalues of the weights matrix. In Griffith20

(2000), work is continued for regular square and hexagonal tessellations, and21

extended in Griffith (2004a) to the approximation of the principal eigenvalues22

9http://geodacenter.asu.edu/ogeoda. The code for the OpenGeoDa implementa-
tion was released in late 2011, and shows that a re-implementation in R, or even a linking
of this implementation, with its custom sparse matrix code, to R would be challenging;
http://code.google.com/p/opengeoda/source/browse/trunk/Regression/polym.h.
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of the spatial weights matrix, themselves needed to approximate the Jaco-1

bian. This is advanced by Griffith and Luhanga (2011) with further results2

on the approximation of the principal eigenvalues for adjacency matrices of3

connected, undirected planar graphs in the context of inertia, the numbers of4

positive, negative, and zero eigenvalues. Finally, Griffith (2004b) provides ap-5

proximations to terms required in the characteristic polynomial approach due6

to Smirnov and Anselin (2001).7

Here we only examine the approximation to the Jacobian given for a row-8

standardized rook contiguity spatial weights for a P×Q regular grid by Griffith9

(2004b, pp. 857–859), who provides the following relationship calibrated using10

nonlinear regression:11

q̂2 = 0.11735+0.10091

(

1

P5/4
+

1

Q5/4

)

+
0.42844

PQ

q̂4 = 0.07421+0.05730

(

1

P2/3
+

1

Q2/3

)

+
0.66001

PQ

q̂20 = 0.05521+0.52467

(

1

P7/4
+

1

(Q7/4

)

+
2.48015

PQ

ln(|I−λW|) = − ln(1+ q̂2(λ2)+ q̂4(λ4)+ q̂20(λ20))PQ (20)

Table 9: Summaries of componentwise differences between interpolated and
Cholesky factorization Jacobians for a row-standardized rook 1000×1000data
set.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Absolute 0.00e+00 1.46e+02 3.36e+02 4.26e+02 4.73e+02 3.20e+03
Relative 2.17e-04 5.50e-03 1.32e-02 2.45e-02 4.66e-02 6.20e-02

The Jacobian is interpolated by inserting the value of λ into Equation (20).12

Table 9 shows summaries of componentwise absolute and relative differences13

between interpolated and Cholesky factorization Jacobians for a large regular14

grid. The results confirm the claim in Griffith (2004b) that this approxima-15

tion performs surprisingly well, with a small maximum componentwise relative16

difference.17

4.2 Chebyshev approximations18

A second approximation is proposed by Pace and LeSage (2004), who elaborate19

a Chebyshev factorization, where:20
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ln(|I−λW|)≈
q+1

∑
j=1

c j(λ)tr(T j−1(W))−
n
2

c1(λ) (21)

where T0(W) = I, T1(W) = W, T2(W) = 2W2− I, Tk+1(W) = 2WTk(W)−1

Tk−1(W), and q represents the highest power of the approximating polyno-2

mial. The matrix traces can be set up without knowledge of the λ values3

entering into the Jacobian, and may be constructed more efficiently as shown4

by Pace and LeSage (2004, p. 188); the maximum value of q is taken here as5

5 (see also LeSage and Pace, 2009, pp. 105–108).6

The q+1 coefficients c j(λ) are given by:7

c j(λ)=

(

2
q+1

)q+1

∑
k=1

ln

[

1−λcos

(

π(k−0.5)

q+1

)]

cos

(

π( j−1)(k−0.5)

q+1

)

. (22)

No matrix operations are involved in calculating the approximations to the8

Jacobian for successive values of λ, yielding very fast look-up times.9

Table 10: Summaries of componentwise absolute differences between Jacobians
calculated using sparse Cholesky factorization and Chebyshev q = 5 Jacobians
for five symmetric data sets.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Polish gminy 0.00e+00 1.87e-04 1.33e-02 2.66e-01 1.26e-01 4.93e+00
US Counties 0.00e+00 4.57e-05 7.76e-03 4.03e-01 2.29e-01 4.30e+00
World grid 0.00e+00 2.46e-03 1.82e-01 5.02e+00 3.05e+00 7.37e+01
US ZCTA 0.00e+00 7.92e-04 2.34e-02 3.34e+00 1.28e+00 4.27e+01
US census tracts 0.00e+00 9.56e-04 8.51e-02 8.51e+00 3.62e+00 1.28e+02

Table 10 shows summaries of componentwise absolute differences between10

Jacobians calculated using sparse Cholesky factorization and Chebyshev q = 511

Jacobians. It suggests that performance using q = 5 is adequate with mod-12

erately sized data sets, but perhaps that the results for maximum absolute13

differences are unsatisfactory for larger n. Figure 3 compares the behaviour14

of the Chebyshev approximation with q = 5 and that of Monte Carlo approxi-15

mations with sparse Cholesky Jacobians at the upper tail, with large values of16

λ. The right-hand panel shows how absolute differences between Chebyshev17

and Cholesky Jacobians for the US census tracts data set grow from moderate18

values of λ, and grow well before differences mount for the mean of the 10019

simulations of Monte Carlo approximations. The differences top out at about20

128 for λ = 0.99, but are clearly a problem. We return to these results again21

in the following section with reference to the Monte Carlo approximation.22
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4.3 Monte Carlo approximations1

Barry and Pace (1999) propose the use of a Monte Carlo approximation with2

two tuning parameters, p and m (see also LeSage and Pace, 2009, pp. 96–3

105). The outcome is minus the mean of p random variates Vi, calculated4

from an n × p matrix of drawings from the Normal distribution with zero5

mean and unit variance, and m products of this matrix and the spatial weights6

matrix W. The set-up function prepares a list of these expansion products,7

storing trace estimates of powers of W in m vectors of length p; the first8

two traces may be replaced by their analytical values, as in the MatlabTM
9

Spatial Econometrics toolbox and as described by LeSage and Pace (2009, p.10

99). Zhang and Leithead (2007) suggest that the p candidate draws could be11

subject to selection to eliminate inappropriately generated seeds, but this has12

not been found necessary here. The original description due to Barry and Pace13

(1999) is followed, using p = 16 and m = 30 as in Walde et al. (2008).14

The implementation here re-uses the same vectors of random numbers for15

each λ value by calculating a list of expansion products, but pre-calculates m16

matrix operations on n× p matrices to save time. The method is as follows:17

Vi = −n
m

∑
j=1

x′iW
jxi

x′ixi

λk

j
(23)

for i = 1, . . . , p, W with real eigenvalues in [−1,1], and xi ∼ N(0,I).18

Table 11: Summaries of componentwise absolute differences between Jacobians
calculated using sparse Cholesky factorization and mean p = 16,m = 30 Monte
Carlo Jacobians for 100 simulations for five symmetric data sets.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Polish gminy 0.00e+00 2.77e-03 2.44e-02 2.55e-01 7.87e-02 1.30e+01
US Counties 0.00e+00 1.42e-02 5.78e-02 3.96e-01 1.42e-01 2.70e+01
World grid 0.00e+00 4.92e-03 1.64e-02 1.51e+00 6.12e-02 1.16e+02
US ZCTA 0.00e+00 3.35e-02 1.04e-01 1.44e+00 2.83e-01 1.00e+02
US census tracts 0.00e+00 4.52e-03 4.48e-02 4.19e+00 1.73e-01 3.12e+02

To follow up the extensive presentation of the Monte Carlo method in19

LeSage and Pace (2009), we undertook a simulation study of 100 runs per20

data set. Consequently, the results reported here are not representative of21

typical numbers of random variates p, although the number of series terms22

remains fixed at m = 50. The results here are means and standard deviations23

from the 100 simulations for each value of λ for p = 16 and p = 32, for m = 3024

traces. Figure 3 shows the problems faced when using Monte Carlo-based25
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Jacobians at the upper tail for the US census tracts data set. The Monte1

Carlo Jacobians take values that are higher than the Cholesky Jacobians, and2

the 100 simulation envelope, shown as a gray polygon, does not include the3

Cholesky Jacobians for λ ≥ 0.94 for this data set. Unfortunately, doubling the4

number of random variates to p = 32 has minimal impact on the problem. In5

the right-hand panel, we can see that as λ approaches its upper bound, the6

absolute difference increases very rapidly.7

Table 11 shows that this problem is pervasive, and in all of the five data8

sets, the largest absolute difference was found for λ = 0.99. Because λ was9

only examined for values from −0.90 to 0.99, the lower end of its range is not10

exposed to the same challenges. However, the problem only affects the extreme11

edge of the feasible range of λ. In Barry and Pace (1999, p. 42), use is made12

of the assumption that the weights matrix is symmetric or similar to symmet-13

ric, with real eigenvalues. With regard to the Monte Carlo approximation,14

LeSage and Pace (2009, p. 97) relax this requirement.15

Table 12: Summaries of componentwise absolute differences between Jacobians
calculated using sparse LU factorization and mean p = 16,m = 30 Monte Carlo
Jacobians for 100 simulations for five asymmetric data sets.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Polish gminy 0.00e+00 3.28e-03 2.78e-02 2.93e-01 9.57e-02 1.54e+01
US Counties 0.00e+00 1.14e-02 4.43e-02 4.12e-01 9.30e-02 2.91e+01
World grid 0.00e+00 4.78e-03 2.06e-02 8.52e-01 5.52e-02 6.57e+01
US ZCTA 0.00e+00 3.70e-02 1.48e-01 3.69e+00 3.27e-01 2.78e+02
US census tracts 0.00e+00 7.68e-03 7.16e-02 1.05e+01 2.31e-01 8.48e+02

Turning then to our asymmetric examples, we can examine the absolute16

differences between the Monte Carlo approximations and LU Jacobians. Table17

12 shows summaries of the componentwise absolute differences, which appear18

similar in character to their symmetric matrix counterparts.19

For completeness, we may examine the assumption made in Barry and Pace20

(1999, p. 42) that “after a suitable rescaling” of the matrix W its eigenvalues21

are in [−1,1], and λ is in (−1,1). The term“suitable rescaling” is not discussed22

by Barry and Pace, but may commonly refer to row standardization; it does not23

appear to indicate different rescaling in positive and negative ranges. Table 1324

shows that while for the large 1,000×1,000 regular grid with rook neighbors25

and binary weights, so with no rescaling, the Monte Carlo Jacobians are an26

acceptable match for the analytical eigenvalue Jacobians, this does not hold for27

the regular grid with binary queen neighbors. The Monte Carlo Jacobians move28

sharply towards negative infinity after the analytical Jacobian for negative λ29
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Table 13: Summaries of componentwise absolute differences between analytical
Jacobians and Monte Carlo Jacobians for 1000×1000data sets, with binary
weights.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Rook, p=16, m=30 0.00e+00 8.68e-01 6.47e+00 6.34e+01 3.25e+01 1.14e+03
Rook, p=30, m=50 0.00e+00 2.87e-01 6.48e-01 1.32e+01 4.84e+00 2.50e+02
Queen, p=16, m=30 0.00e+00 1.26e+00 1.64e+01 1.73e+09 2.89e+04 4.68e+10
Queen, p=30, m=50 0.00e+00 3.07e-01 1.67e+00 2.41e+14 4.05e+05 7.88e+15

moves below that calculated near the top of its range. In both of these cases1

the assumptions of the method are not met, but in the binary rook case,2

the minimum and maximum eigenvalues are ±3.9998, in the binary queen3

case they are −3.999961,7.999941, with corresponding bounds for λ of ±0.254

and −0.250,0.125. If the binary queen weights are rescaled to sum to n, this5

problem is still present, suggesting that the effective bounds on λ for the Monte6

Carlo method are (−1/max(λ),1/max(λ)).107

A further discussion is given by Pace and LeSage (2009) with reference to8

the use of a sampling approach to computing the log-determinant with log-9

pivots; they repeat here that both symmetric and asymmetric spatial weights10

may be used. In addition, a “computational method for calculating lower11

moments of the actual distribution of eigenvalues of the spatial weights matrix12

and applying those for the efficient calculation of the log-determinant” has13

recently been proposed by Smirnov and Anselin (2009, p. 2980), and it is to14

this approach that we now turn.15

4.4 Computing the lower order moments of eigenvalues16

The development of the Smirnov and Anselin (2009) procedure starts from the17

assumption that spatial weights matrix W is either symmetric or obtained by18

a similarity transformation from a row-standardized matrix with intrinsically19

symmetric neighbor relations. The interest is in using the lower order moments20

of the set of (real) eigenvalues of W:21

Ω j =
n

∑
i=1

ζ j
i (24)

10The existence of this problem was known when the approach was first proposed; if
estimates are needed for larger negative values of λ, they may be constructed by extrapolation
(Pace, personal communication).
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where Ω j is the j-th non-central moment, and ζi is the i-th eigenvalue of W11.1

Further development shows that:2

ln(|I−λW|) = −
∞

∑
j=1

1
j
λ jtrW j =

∞

∑
j=1

1
j
λ jΩ j (25)

in which we see the importance of the series of traces of powers of W (low3

order moments of the eigenvalues of W). As Smirnov and Anselin (2009, p.4

2982–2983) point out, because the 1
j λ

j terms decrease quite steeply for small5

j, the problem may be expressed in two parts (see also Martin, 1993):6

ln(|I−λW|) =
m

∑
j=1

1
j
λ jΩ j −Rm(λ) (26)

where7

Rm(λ) = lim
n→∞

n

∑
j=m+1

1
j
λ jΩ j (27)

is a correction term. Li et al. (2012) also use the two first moments of the8

eigenvalues (traces) of W in a refinement of the approximate profile-likelihood9

estimator of λ.10

4.4.1 Exact moments of eigenvalues11

There are two interesting innovations in Smirnov and Anselin (2009) which12

we consider separately. The first is that the exact low order moments of the13

eigenvalues of W may be computed using sparse matrix techniques, with:14

Ω j = trW j =
n

∑
i=1

η′
iW

jηi (28)

where ηi is a vector of canonical base, that is a vector of length n of zeros, except15

for the i-th element equal to 1. As is shown in Smirnov and Anselin (2009, pp.16

2983–2984), the storage requirements for this operation are not large, and17

it may be parallelized. Table 14 shows that Equation (28) is successful in18

computing the exact low order moments of the eigenvalues of W.19

The second innovation is concerned with the approximation of Rm(λ), in20

which the successive moments are interpolated from the four highest exact21

moments m−3, ...,m. This innovation is justified by an analysis of the asymp-22

totic properties of the moments of the eigenvalues (Smirnov and Anselin, 2009,23

11A theoretical analysis of lower order moments of such matrices is given by Griffith (2003,
42–46), with developments for chosen tessellations.
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Table 14: Summaries of componentwise absolute differences between low order
moments computed using Equation (24) and Equation (28), m = 30.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Gminy 0.00e+00 2.84e-14 6.75e-14 8.44e-14 1.15e-13 3.13e-13
Counties 9.88e-15 9.41e-14 2.42e-13 3.41e-13 5.06e-13 1.70e-12
World grid 5.27e-14 5.68e-13 1.72e-12 2.87e-12 3.52e-12 1.20e-11

pp. 2984–2985). The use of the factor of unit positive egenvalues (the num-1

ber of non-empty subgraphs) and the factor of unit negative eigenvalues (the2

number of cyclical subgraphs) permits the unit roots of W to be set apart,3

so that the remainder of the moments converges to zero, and shows that in-4

terpolation of higher-order moments will provide sufficiently accurate results5

(see equation (7) Smirnov and Anselin, 2009, p. 2985). The implementation6

reported here uses only the simplified form shown in Equation 26 (see equa-7

tion (5) Smirnov and Anselin, 2009, p. 2983), neither computing nor using8

the dominant eigenvalues of W. We indicate our usage below by terming the9

implementation simplified.10

Table 15: Summaries of componentwise absolute differences between Jacobians
calculated using eigenvalues, and the simplified Smirnov and Anselin (2009)
procedure without interpolation (A), with interpolation and truncation (B),
and with interpolation without truncation (C), row-standardized Polish gminy
and US Counties data sets converted to symmetric matrices by similarity, 190
values for λ between -0.9 and 0.99.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Gminy (A) 0.00e+00 3.55e-15 8.14e-11 1.59e-01 2.52e-05 1.19e+01
Gminy (B) 0.00e+00 3.78e-15 7.71e-11 1.44e-01 2.63e-05 1.09e+01
Gminy (C) 0.00e+00 3.78e-15 7.71e-11 1.44e-01 2.63e-05 1.09e+01
Counties (A) 0.00e+00 4.17e-14 9.54e-11 3.52e-01 2.45e-05 2.76e+01
Counties (B) 0.00e+00 4.17e-14 5.84e-11 2.94e-01 3.52e-05 2.38e+01
Counties (C) 0.00e+00 4.17e-14 5.84e-11 2.94e-01 3.52e-05 2.38e+01

Table 15 shows summaries of componentwise absolute differences between11

Smirnov and Anselin (2009) and eigenvalue Jacobians. The simplified Smirnov-12

Anselin approximations, with m = 30 traces computed using Equation (28),13

and log determinants with Equation (26), perform very well in terms of com-14

ponentwise absolute differences for most of the considered range of λ for all15

considered variants of Rm(λ), the interpolation term given in equation 27,16
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where we interpolate successive values of Ω j, j = m + 1, . . . ,n and j ≥ 0 as1

(Smirnov and Anselin, 2009, p. 2985):2

Ωm+2 j = Ωm×

(

Ωm

Ωm−2

) j

, (29)

and3

Ωm+2 j−1 = Ωm−1×

(

Ωm−1

Ωm−3

) j

. (30)

The three variants of Rm(λ) shown in Table 15 are: (A) no interpolation4

used, Rm(λ) = 0; (B) interpolation truncated when the increment in the sum-5

mation in Equation (27) falls below a small threshold; and (C) interpolation6

with the summation running to n. Using the interpolation reduces the compo-7

nentwise absolute differences shown in the table, but in these two cases, there8

is no advantage in allowing the summation of the interpolation term Rm(λ)9

to run to n. However, had the weights been of rook neighbors on a regular10

grid, truncating the summation would have led to error, as all odd moments11

are zero (Smirnov and Anselin, 2009, p. 2985), and truncation would have12

occurred prematurely.13

Table 16: Jacobian values for large λ computed using eigenvalues and traces
(m = 30 low order moments with interpolation) for row-standardized Polish
gminy and US Counties data sets converted to symmetric matrices by similar-
ity.

λ Gminy (eigen) Gminy (trace) Counties (eigen) Counties (trace)

0.90 -279.39 -279.22 -400.43 -400.12
0.91 -290.06 -289.80 -416.37 -415.90
0.92 -301.35 -300.95 -433.35 -432.63
0.93 -313.36 -312.75 -451.52 -450.41
0.94 -326.20 -325.26 -471.14 -469.40
0.95 -340.05 -338.59 -492.52 -489.78
0.96 -355.14 -352.84 -516.17 -511.77
0.97 -371.85 -368.15 -542.90 -535.66
0.98 -390.84 -384.69 -574.30 -561.80
0.99 -413.60 -402.67 -614.49 -590.70

Table 16 shows that the worrying maximum absolute differences between14

eigenvalue Jacobians and simplified Smirnov-Anselin approximation Jacobians15

with m = 30 traces seen in Table 15 appear near the upper bound of λ. The16
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same effect is found near the lower bound, but is not reported here. From about1

λ = 0.9, the eigenvalue Jacobians begin to take successively lower values than2

the simplified Smirnov-Anselin Jacobians as λ approaches its upper bound,3

indicating that the interpolation term is not offering sufficient correction for4

these values of λ. The simplified Smirnov-Anselin approximation Jacobians5

used here are computed using the exact methods for low order moments and6

interpolation described by Smirnov and Anselin (2009, pp. 2983–2985), and7

presented here as Equations (26)–(30).8

4.4.2 Approximation of low order traces9

It is of interest to explore the relationship of the exact method for computing10

the low order moments of the eigenvalues of W introduced by Smirnov and Anselin11

(2009) with approximations already present in the literature, and implemented12

in software. Barry and Pace (1999), as we have seen above in connection13

with the Monte Carlo method, wrote the following approximation of log-14

determinant:15

ln(|I−λW|)≈ V̄ , (31)

where16

V̄ = −
n
p

m

∑
j=1

p

∑
i=1

x′iW
jxi

x′ixi
·

λ j

j
, i = 1, . . . , p, xi ∼ N(0,I). (32)

In their case, the xi are p draws of normal random variates of length n. In17

the Smirnov and Anselin (2009) method, we have:18

ln(|I−λW|)≈−
m

∑
j=1

1
j
λ jΩ j, (33)

where Ω j =
n
∑

i=1
η′

iW
jηi, ηi are vectors of canonical base in Rn.19

ln(|I−λW|)≈−
m

∑
j=1

λ j

j

n

∑
i=1

η′
iW

jηi = −
m

∑
j=1

n

∑
i=1

η′
iW

jηi
λ j

j
. (34)

In (32) we can put xi = ηi. Vectors of canonical base satisfy the condition20

η′
iηi = 1. If additionally we assume p = n, we obtain equation (34). From this,21

we can see that while both procedures truncate the power series, the approaches22

they use to compute the traces differ, despite their apparent similarity. In the23

light of this result, it is of interest to see how the use of the Monte Carlo24

method for calculating the initial m traces of the power series of W compares25

with the Smirnov-Anselin algorithm 1 approach.26

31



Table 17: Summaries of componentwise relative differences for the first 30
traces between Smirnov-Anselin algorithm 1 and means of 100 simulated Monte
Carlo traces, for p=16 and p=32, for five symmetric data sets.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Polish gminy p=16 4.02e-16 2.80e-03 4.64e-03 3.78e-03 5.04e-03 5.13e-03
Polish gminy p=32 4.02e-16 2.46e-03 2.71e-03 2.57e-03 2.87e-03 3.22e-03
US Counties p=16 3.07e-15 1.16e-03 1.86e-03 3.98e-03 6.90e-03 9.56e-03
US Counties p=32 3.07e-15 1.20e-03 1.42e-03 2.16e-03 3.62e-03 4.10e-03
World grid p=16 5.40e-15 3.94e-04 5.95e-04 6.14e-04 8.23e-04 1.36e-03
World grid p=32 5.40e-15 2.92e-04 4.85e-04 4.82e-04 6.77e-04 8.37e-04
US ZCTA p=16 1.24e-14 1.13e-03 1.33e-03 1.47e-03 2.05e-03 2.27e-03
US ZCTA p=32 1.24e-14 6.21e-04 7.29e-04 7.13e-04 8.76e-04 9.83e-04
US census tracts p=16 5.15e-14 8.32e-05 1.46e-04 1.67e-04 2.37e-04 3.87e-04
US census tracts p=32 5.14e-14 1.48e-04 1.94e-04 1.76e-04 2.18e-04 2.86e-04

Table 17 reports the componentwise relative differences for the first 301

traces between Smirnov-Anselin algorithm 1 and Monte Carlo traces. The2

Monte Carlo traces reported here are means over 100 simulations for two dif-3

ferent values of p: 16 and 32. We report relative differences (see Section 1.2)4

in this case, as we are interested in the relative impact of Monte Carlo ap-5

proximations of the traces on the computation of the log determinant. As we6

see, the differences introduced by Monte Carlo approximation are tangible al-7

though not large; in the case of rook neighbor regular grids, the Monte Carlo8

trace estimates do not respect the condition that all odd moments are zero.9

Figure 4 may be read in conjunction with Figure 3 and Table 16, here10

comparing the values of the log determinant for the US census tracts data11

set for high values of λ. In the left panel, neither the interpolated simpli-12

fied Smirnov-Anselin approximation nor the mean of 100 simulations of Monte13

Carlo approximations keep up with the fall of the Jacobian towards minus in-14

finity at the upper bound of λ. Of course, the Monte Carlo approximations are15

not interpolated, and are further from the Cholesky Jacobians than the inter-16

polated simplified Smirnov-Anselin approximations. The right panel of Figure17

4 shows the absolute differences between the Cholesky Jacobians and the ap-18

proximations. The mean of 100 simulated Monte Carlo approximations and19

the non-interpolated simplified Smirnov-Anselin approximations perform sim-20

ilarly, with improvements in performance yielded by interpolation when Rm(λ)21

is used. When λ is close to its bounds, it is unavoidable that approxima-22

tion methods are subject to some loss of accuracy, although their performance23
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Figure 4: US census tracts data set — Left panel: Cholesky, interpolated
m = 30 simplified Smirnov-Anselin, and mean p = 16, m = 30 Monte Carlo
Jacobians for large values of λ, showing the envelope for 100 MC simulations;
right panel: componentwise absolute differences between Cholesky and m = 30
simplified Smirnov-Anselin, interpolated m = 30 simplified Smirnov-Anselin
and mean p = 16, m = 30 Monte Carlo Jacobians for large values of λ.

across the broad range of moderate values of λ is encouraging.1

5 Conclusions2

We have reviewed implementation details of sparse matrix and approximate3

approaches to computing the Jacobian log determinant term needed in fitting4

Gaussian spatial regression models using maximum likelihood and Bayesian5

methods. Many of the implementation details are not obvious to users, but6

do affect their ability to get work done. Our conclusions are that the use of7

eigenvalues and sparse matrix factorizations are equivalent — the Jacobian8

values for given λ are the same within acceptable absolute differences, and9

the differences do not affect the inferences drawn on the fitted models. When10

data sets are of a size for which the calculation of eigenvalues is feasible, their11

use remains the best established and most thoroughly studied (Griffith, 2000,12

2003). For queen or rook criterion regular grids (complete rectangular regions),13

analytical eigenvalues may be computed very fast for grids of arbitrary size,14
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and their use is effectively unlimited by memory or run time (Griffith and Sone,1

1995).2

In modeling situations with larger data sets for which the dense matrix3

techniques needed to calculate the eigenvalues of the spatial weights matrix4

are impractical because of memory and/or time limitations, and in which5

analytical eigenvalues are not available, Cholesky factorization may be used6

with intrinsically symmetric spatial weights, and LU factorization with intrinsi-7

cally asymmetric spatial weights. Where the weights are symmetric, Cholesky8

factorization is typically about twice as fast as LU factorization. Updating9

Cholesky factorizations seem to provide speed benefits increasing in n and10

in the sparseness of the weights, varying from three times faster than non-11

updating factorizations for the smaller irregular data sets to almost ten times12

faster for the US census tracts data set.13

Turning to approximations, we find that our simplification of Smirnov and Anselin14

(2009) provides a useful addition to Monte Carlo (Barry and Pace, 1999) and15

Chebyshev Pace and LeSage (2004) approximations, but that all of these ap-16

proaches suffer from degrading accuracy close to the upper bound of λ. The17

introduction of an interpolated term by Smirnov and Anselin (2009) mitigates18

the degradation somewhat, but not completely. This suggests that more terms19

in the power series should be taken as λ approaches its bound, increasing m,20

the number of traces used. The timings for Monte Carlo approximations are21

moderate, but as n — the number of observations, m — the number of trace22

terms, and p — the number of random variates used in Monte Carlo simula-23

tion increase, set-up run times increase. In the case of the memory-conserving24

Smirnov and Anselin (2009) method (Equation 28), careful parallel program-25

ming is required to achieve reasonable times for calculating m traces for large26

n, with Monte Carlo approximation typically being considerably faster.27

The approach used by the MatlabTM Spatial Econometrics toolbox pre-28

computes a grid of log determinant values along the line between the minimum29

and maximum feasible values of λ. When the value of the log-likelihood func-30

tion is computed, the value of the Jacobian is retrieved from this grid based31

on the value of λ proposed by the numerical optimizer or the Bayesian proce-32

dure in use (LeSage and Pace, 2009). This differs from the implementations in33

GeoDa, OpenGeoDa, StataTM, and the R package spdep, in which only set-up34

terms, such as eigenvalues, are pre-computed. The run times are then a com-35

bination of set-up time, which is typically long for eigenvalue calculation, and36

the time taken to find each log determinant, which is short when eigenvalues37

are used but long for Cholesky or LU factorization.38

Summarizing, if the data set is small, the eigenvalue method may be used39

with both symmetric and asymmetric spatial weights matrices. For larger,40
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sparse, symmetric spatial weights matrices, the analyst can choose between1

the Cholesky and updating Cholesky method, the characteristic polynomial2

approximation, the lower order moments approximation, the Chebyshev ap-3

proximation, or the Monte Carlo approximation. If the data take the form4

of a regular grid, and binary spatial weights with the rook or queen neigh-5

bor criterion are appropriate, analytical eigenvalues may be used. Finally, for6

larger, sparse, asymmetric spatial weights matrices, the choice stands between7

the LU method and the Monte Carlo approximation. Care should be taken8

when using the Monte Carlo approximation if the assumptions with regard to9

the feasible range of the spatial coefficient underlying the method described10

by Barry and Pace (1999) and LeSage and Pace (2009) are not satisfied.11
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