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Abstract

In this paper we consider a reinsurance syndicate, assuming that
Pareto optimal allocations exist. Under a continuity assumption on
preferences, we show that a competitive equilibrium exists and is
unique. Our conditions allow for risks that are not bounded, and
we show that the most standard models satisfy our set of sufficient
conditions, which are thus not too restrictive. Our approach is to
transform the analysis from an infinite dimensional to a finite dimen-
sional setting.
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I Introduction

We consider the reinsurance syndicate introduced by Borch (1960-62), a
model closely related to the exchange economy studied by Arrow (1954).
Bühlmann (1984) shows that, provided that there are Pareto optimal risk
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exchanges, an equilibrium exists for bounded risks. While this result may be
of interest for practical purposes (since the accumulated wealth in the World
is obviously bounded), in modeling contexts this precludes many probabil-
ity distributions that are of interest, but which may just happen to have
unbounded supports.

Bühlmann ’s arguments are based on affine contracts, but we shall ex-
tend to arbitrary contracts in this paper. We basically swap his assumption
of bounded risks and a Lipschitz condition with a continuity requirement
on preferences. The latter we demonstrate is satisfied for the most com-
mon exchange economies studied within the ”finance contexts”. Under this
condition we demonstrate both existence and uniqueness of equilibrium.

When Parto optimal risk exchanges exist, there will be competitive equi-
libria after a redistribution of the initial endowments Xi, i ∈ I := {1, 2, · · · , I},
here a set of random variables referred to as the initial portfolio allocation
of the I members of the reinsurance syndicate (by the Second Welfare The-
orem). We provide a set of sufficient conditions for the existence of an equi-
librium for a given set of initial portfolios X = (X1, X2, · · · , XI). Since the
set of sufficient conditions for a Pareto optimal exchange to exist are very
weak indeed for the model that we consider (see e.g., DuMouchel (1968)),
our approach is not restrictive for this reason. In fact, if there are no Pareto
optimal contracts, there can not be a competitive equilibrium either, by the
First Welfare Theorem.

The existence of equilibrium in infinite dimensional models is, of course,
extensively studied in the mathematical economics literature. Bewley (1972)
is an early reference of existence in infinite-dimensional spaces, and later this
topic has been extensively studied by many authors, including Mas-Colell
(1986), Mas-Colell and Zame (1991), Araujo and Monteiro (1989), and Dana
(1993) among others. Uniqueness of equilibrium is a lesser explored subject
in infinite dimensional settings.

Our approach will be based to a large extent on ”risk theory”, which
requires us to first define what is meant by a reinsurance syndicate. This
essentially enables us to transform problems from the infinite dimensional
space of L2, to finite dimensional Euclidian space.

In Section 2 we present some of the basic properties of such a market. In
Section 3 we discuss existence of equilibrium in a reinsurance syndicate, and
give the basic existence theorem of the paper. Our exposition rely mainly
on the results of Section 2, and a fixed point theorem. Here one can also
find several examples, and we prove uniqueness of equilibrium. Section 4
compares our result to a corresponding theorem emerging from a more general
theory of an exchange economy, and Section 5 concludes.
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II The reinsurance Syndicate

Consider a one-period model of a syndicated market with two time points,
zero and one. The initial portfolio allocation of the members is denoted
by X = (X1, X2, · · · , XI), i.e., the one which realizations would result at
time one if no reinsurance exchanges took place. At time zero X is a random
vector defined on a probability space (Ω,F , P ) with a probability distribution
function F (x) = P [X1 ≤ x1, · · · , XI ≤ xI ]. After reinsurance at time zero
the random vector Y = (Y1, Y2, · · · , YI) results, the final portfolio allocation,
satisfying

∑
i∈I Yi =

∑
i∈I Xi, since nothing ”disappears” or is added in a

pure exchange of risks.
One difference between a syndicate and and the general exchange econ-

omy of Arrow (1954) is that the variables Xi signify economic gains or losses
measured in some unit of account, not consumption, which implies that neg-
ative values are allowed. When this happens to a member, this person may
be interpreted to be bankrupt.

Consider the problem of each member i of the syndicate

sup
Zi∈L2

Eui(Zi) subject to π(Zi) ≤ π(Xi), (1)

for i ∈ I; the members maximize expected utility subject to their budget
constraints.

Let us call a treaty Y feasible if it satisfies
∑I

i=1 Yi ≤
∑I

i=1 Xi := XM ,
where by XM we mean the ”market portfolio”, which is just the aggregate
of the initial portfolios of the members. Our definition of equilibrium is:

Definition 1 A competitive equilibrium is a collection (π; Y1, Y2, . . . , YI) con-
sisting of a price functional π and a feasible allocation Y = (Y1, Y2, . . . , YI)
such that for each i, Yi solves the problem (1).

An important feature of this syndicate is that there are no restrictions
on contract formation. As a consequence it can be shown that the pricing
functional π must be linear and strictly positive if and only if there does not
exist any arbitrage (e.g., Aase (2002)).

We shall restrict attention to initial portfolios Xi and sharing rules Yi, all
in L2 := L2(Ω,F , P ), that involve no arbitrage.

Since any (strictly) positive, linear functional on L2 is also continuous,
by the Riesz Representation Theorem there exists a unique random variable
ξ ∈ L2

++, the interior of the positive cone of L2, such that

π(Z) = E(Zξ) for all Z ∈ L2.
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Notice that the system is closed by assuming rational expectations. This
means that the market clearing price π implied by the members behavior
is assumed to be the same as the price functional π on which the members
decisions are based.

Formally our definition of (strong) Pareto optimality is the following

Definition 2 A feasible allocation Y = (Y1, Y2, . . . , YI) is called Pareto op-
timal if there is no feasible allocation Z = (Z1, Z2, . . . , ZI) with Eui(Zi) ≥
Eui(Yi) for all i and with Euj(Zj) > Euj(Yj) for some j.

The following characterization of Pareto optimal allocations is well known:

Proposition 1 Suppose ui are concave and increasing for all i. Then Y is
a Pareto optimal allocation if and only if there exists a nonzero vector of
member weights λ ∈ RI

+ such that Y = (Y1, Y2, . . . , YI) solves the problem

sup
(Z1,...,ZI)

I∑
i=1

λiEui(Zi) subject to
I∑

i=1

Zi ≤ XM . (2)

If the allocation Y is Pareto optimal, then the problem (2) defines a utility
function uλ(·) : R → R for this λ, such that

Euλ(XM) =
I∑

i=1

λiEui(Yi). (3)

Notice that the existence of the member weights λ is a consequence of
the Separating Hyperplane Theorem applied to Euclidian RI . As it turns
out, these member weights determine state prices via the marginal utility
u′λ(XM) of the representative member computed at the aggregate portfolio
XM . Thus, despite of the unfortunate fact that the interior of L2

+ is empty,
there is still hope to get supportability of preferred sets via the construction
in Proposition 1.

Pareto optimal allocations can be further characterized under the above
conditions, the following is known as Borch’s Theorem (see e.g., Borch (1960-
62)):

Proposition 2 A Pareto optimum Y is characterized by the existence of
non-negative member weights λ1, λ2, . . . , λI and a real function u′λ(·) : R →
R, such that

λ1u
′
1(Y1) = λ2u

′
2(Y2) = · · · = λIu

′
I(YI) := u′λ(XM) a.s. (4)
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Proposition (2) can be proven from Proposition (1) by the Kuhn-Tucker
theorem and a variational argument (see e.g., Aase (2002)).

Karl Borch’s characterization of a Pareto optimum Y = (Y1, Y2, · · · , YI)
simply says that there exist positive ”member” weithts λi such that the
marginal utilities at Y of all the members are equal modulo these constants.

Because of the smoothness assumptions of Proposition 1 which we main-
tain in this paper, both sides of the equations (4) are real, differentiable
functions (the right-hand side because of the implicit function theorem), i.e.,
Yi(·) : B → R and u′λ(·) : B → R for some subset B ⊆ R of the reals, so
taking derivatives of both sides gives

u′′i (Yi(x))Y ′
i (x) = λ−1

i u′′λ(x), x ∈ B ⊆ R.

Dividing the second equation by the first, we obtain the following non-linear
differential equation for the Pareto optimal allocation function Yi(x):

dYi(x)

dx
=

Rλ(x)

Ri(Yi(x))
, Yi(x0) = bi, x, x0 ∈ B, (5)

where Rλ(x) = −u′′λ(x)

u′λ(x)
is the absolute risk aversion function of ”the repre-

sentative member”, and Ri(Yi(x)) = −u′′i (Yi(x))

u′i(Yi(x))
is the absolute risk aversion

of member i at the Pareto optimal allocation function Yi(x), i ∈ I.
Since

∑
i∈I Y ′

i (x) = 1, we now get by summation in (5) that

ρλ(x) =
∑
i∈I

ρi(Yi(x)), x ∈ B,

or
ρλ(XM) =

∑
i∈I

ρi(Yi(XM)) a.s. (6)

as an equality between random variables. This allows us to rewrite the
differential equations (5) as follows

dYi(x)

dx
=

ρi(Yi(x))

ρλ(x)
, Yi(x0) = bi, x, x0 ∈ B. (7)

In other words, provided Pareto optimal sharing rules exist, we have the
following results, which we shall utilize later:

Proposition 3 (a) The risk tolerance of the syndicate ρλ(XM) equals the
sum of the risk tolerances of the individual members in a Pareto optimum.
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(b) The real, Pareto optimal allocation functions Yi(x) : R → R, i ∈ I
satisfy the first order, ordinary nonlinear differential equations (7).

(c) The following relationships hold

∂

∂λi

u′λ(x) =
1

λi

dYi(x)

dx
u′λ(x), x ∈ B, i ∈ I. (8)

The result in (a) was found by Borch (1985); see also Bühlmann (1980) for the
special case of exponential utility functions, and also Gerber (1978), among
others. The result in (c) is contained in Theorem 10 p. 130 in Wilson (1968).

It is well-known that if an equilibrium exists, then the first order necessary
and sufficient conditions are given by the equations (4). If this is the case,
then the Riesz representation ξ, also called the state price deflator, is given
by ξ = u′λ(XM) a.s. This is our next result:

Assume that π(Xi) > 0 for each i. It seems reasonable that each member
of the syndicate is required to bring to the market an initial portfolio of
positive value. In this case we have the following (a proof can be found in
Aase (2002)):

Theorem 1 Suppose that u′i > 0 and u′′i ≤ 0 for all i ∈ I, and assume that
a competitive equilibrium exists, where π(Xi) > 0 for each i. The equilibrium
is then characterized by the existence of positive constants αi, i ∈ I, such
that for the equilibrium allocation Y = (Y1, Y2, . . . , YI)

u′i(Yi) = αiu
′
λ(XM), a.s. for all i ∈ I, (9)

Here αi are the Lagrange multipliers associated with the problem (1), and
the relation between these and the member weights λi is seen to be αi = λ−1

i

for all i ∈ I.

III Existence and Uniqueness of Equilibrium

Will there always exist prices such that the budget constraint all hold with
equality? We will now analyze this question for the reinsurance syndicate
just descrecibed.

The problem of existence of equilibrium in an infinite dimensional set-
ting has been extensively discussed in the literature. Several difficulties are
identified, among them that the interior of the orthant L2

+ is empty, so calcu-
lus becomes rather difficult. Normally the Separating Hyperplane Theorem
guarantees that it will be possible to separate a convex set C from a point
x /∈ C, provided that the interior of C is not empty. Hence, if consumption
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sets have non-empty interior, then the continuity and convexity of preferences
will guarantee that preferred sets can be price supported.

As commented after Proposition 1, despite of this difficulty we obtain
the member weights by a separation argument, which provides us with state
prices via the representative member’s marginal utility at XM . It should
thus be possible to use this construction to show existence of equilibrium.
As it turns out, all we have to do is to make an extra smoothness assumption
on preferences. In this section we make this precise by utilizing the results
of the previous section to essentially transform the problem from an infinite
dimensional to a finite dimensional setting.

To this end we start with the initial portfolios Xi, which are supposed to
satisfy Xi ∈ L2, i ∈ I. The final portfolios Yi and the state price deflator ξ
are supposed to be in L2 and L2

++ respectively, according to this theory, the
latter because L2 is its own dual space, where the two plusses stems from the
absence of arbitrage. However, both the probability distribution of X and
the utility functions are exogenously given, and it is not clear at the outset
that any choice of these, satisfying Xi ∈ L2, will have these properties. From
the results of the previous section, it follows that |Yi| ≤ |XM | for all i, so
if XM ∈ L2, then Yi ∈ L2 for all i ∈ I. However it is far from clear that
ξ = u′λ(XM) ∈ L2, which this theory requires to be internally consistent.
That is, will there exist state prices ξ = u′λ(XM) having finite variances such
that the budget constraints are all satisfied? These are the problems we now
address.

First we notice a few facts about about the existence problem. The state
prices u′λ(XM) are determined by the member weights λ, and the budget sets
remain unchanged if we multiply all these weights by any positive constant, so
each member’s demand function Yi(XM) := Y

(λ)
i is accordingly homogeneous

of degree zero in λ. Hence we can restrict attention to member weights
belonging to the (I − 1) dimensional unit simplex

SI−1 = {λ ∈ RI
+ :

I∑
i=1

λi = 1}.

Since we consider a pure exchange economy with strictly increasing utility
functions, an equilibrium will exist if there exists some λ ∈ SI−1 such that

E(u′λ(XM)(Y
(λ)
i −Xi)) = 0, for i = 1, 2, · · · , I, (10)

where we have chosen to parameterize the optimal allocations Yi(XM) by
the member weights λ. The existence problem may be resolved if one can
identify these budget constraints with a continuous function f : SI−1 → SI−1

and then employ Brower’s fixed-point theorem.
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The idea is perhaps best illustrated by a few examples: In the first one
the utility functions are negative exponentials.

Example 1: Suppose u′i(x) = e
− x

ai , i ∈ I. It is a consequence of Proposi-
tion 2 that the Pareto optimal allocations are affine in the aggregate wealth
XM , i.e.,

Y λ
i := Yi(XM) =

ai

A
XM + bi,

where the constants ai are the risk tolerances of the members, A =
∑

i∈I ai by
the result (6), so that A the risk tolerance of the representative member or the
syndicate, and bi are zero-sum side-payments, corresponding to Yi(x0) = bi

for x0 = 0.
By imposing the normalization E(u′λ(XM)) = 1 (corresponding to a zero

risk-free interest rate), the budget constraints of the members correspond to
the equations

λi =
e

bi
ai

E{e−
XM

A }
, i ∈ I, (11)

where the zero-sum side-payments bi are given by

bi =
E{Xie

−XM/A − ai

A
XMe−XM/A}

E{e−XM/A}
, i ∈ I. (12)

Since there is a one to one connection between the member weights λi and
the side-payments bi, the latter could alternatively be used in the fixed-point
argument. �

The second example is that of constant relative risk aversion:
Example 2: Preferences represented by power utility means that ui(x) =

(x1−ai − 1)/(1− ai) for x > 0, ai 6= 1 and ui(x) = ln(cix + di) for x > 0 and
ai = 1, for positive constants ci and di, where the natural logarithm results
as a limit when ai → 1. This example only makes sense in the no-bankruptcy
case where Xi > 0 a.s. for all i.

Let us assume that the supports of the initial portfolios are (0,∞), and
Yi(x0) = bi for some x0 > 0. The parameters ai > 0 are the relative risk
aversions of the members, here given by positive constants, and we consider
the HARA-case where a1 = a2 = . . . = aI = a.

The marginal utilities of the members are given by u′i(x) = x−a, and the
Pareto optimal allocations Y λ

i are found from Proposition 2 to be

Yi(XM) =
λ

1/a
i∑

j∈I λ
1/a
j

XM , i ∈ I. (13)
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The differential equations (5) for these allocations are

dYi(x)

Yi(x)
=

dx

x
, Yi(x0) = bi i ∈ I, (14)

showing that Yi(XM) = bi

x0
XM , where bi is member i′s share of the market

portfolio when the latter takes on the value x0, where
∑

j∈I bi = x0.
Comparing the two versions of the Pareto optimal allocations, we notice

that bi

x0
=

λ
1/a
iP

j∈I λ
1/a
j

, again giving a one to one correspondence between the

constants bi of the differential equations (5) and the member weights λi. The
member weights λi are determined by the budget constraints, implying that

λi = k

(
E(XiX

−a
M )

E(X1−a
M )

)a

, i ∈ I, (15)

or, λi is determined modulo the proportionality constant k = (
∑

j∈I λ
1/a
j )a

for each i. �
For both these examples we have computed the respective equilibria,

where it is understood that the expectations appearing in the expressions
for the member weights exist. This must accordingly follow from any set of
sufficient conditions for existence of equilibrium.

The reason that the existence of the λi, or, equivalently the bi, is not
automatic, is that both the probability distribution of X and the utility
functions are given exogenously, as explained in the introduction. Although
it is clear that if XM ∈ L2, then also Yi ∈ L2, it is still not obvious that
ξ = u′λ(XM) is in L2. This has to be checked separately.

While the first order conditions for an optimal exchange of risks do not
depend on the probability distribution of the vector X of the initial endow-
ments, clearly the equilibrium allocation Y (λ) does depend on this distribu-
tion through the budget constraints, and only if this probability distribution
allows for the computation of the moments appearing in the expressions for
the member weights λi, as e.g., in (11) and (15), the relevant equilibrium will
stand a chance to exist.

These examples indicate that instead of focusing attention on the member
weights λi, we might as well consider the constants bi of the differential
equations (5), and try to associate with the budget constraints a fixed-point
for these. This observation turns out to be quite general, and is the line of
attack we choose to follow.

A natural condition to impose for the constants bi to exist, might be
that all the risks are bounded. Often this is too strong. For example if X is
multinormally distributed, and thus possesses unbounded supports, certainly
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the moments in (12) can still be computed, and are well defined. This is also
the case for many other distributions with unbounded supports.

However, even in the case with bounded supports it is not clear that
the pricing functional π is continuous. To see this, consider Example 2 with
B = (0, 1]. Here the state prices represented by the function u′λ(XM) = cX−a

M

for some constant c depending on the member weights λ and a. Suppose
that XM is uniformly distributed on (0, 1). Then all the initial portfolios
have bounded supports, but it is seen that u′λ(XM) is not a member of L2 if
a > 1/2, e.g., in the log utility case there would be no equilibrium. Empirical
research indicate that the parameter a is in the range between 1 and 20, so for
this particular example there is no equilibrium in the interesting parameter
range.1

III-A A basic fixed point argument

As observed in the previous section, instead of focusing attention on the
member weights λi (because these determine prices via u′λ(XM)), we restrict
attention to the constants bi of the differential equations (7). The optimal
allocations, now parameterized by b instead of λ, are functions of the aggre-
gate risk XM , i.e., Y

(b)
i := Yi(XM), where Yi(·) : B → R. Likewise the state

price deflator ξ also depends on b through Proposition (2), allowing us write
ξ = ub(XM) to emphasize this.

Returning to the first order, non-linear differential equations (7) for the

optimal allocations Y
(b)
i , in order to use the standard theory of differential

equations of this type, Bühlmann (1984) used the following assumption:2

(A1) The risk tolerance functions ρi(y) satisfy the Lipschitz condition
|ρi(y)− ρi(y

′)| ≤ M |y − y′| for all i.

Let us check some of the most used examples, and see if this requirement
seems plausible: For negative exponential utility, the marginal utility is given
by u′i(x) = 1

ai
e−x/ai and the risk tolerance ρi(y) = ai, so |ρi(y)− ρi(y

′)| = 0,
and the condition is trivially satisfied.

For power utility ui(x) = 1
(1−ai)

x(1−ai) with constant relative risk aversion

ai 6= 1, the risk tolerance ρi(y) = (1/ai)y and |ρi(y)− ρi(y
′)| = (1/ai)|y− y′|,

1Bühlmann’s (1984) overlooked this possibility, and confined his analysis to situations
of the type described by Example 1.

2In Bühlmann (1984), the assumption (A1) was made for the absolute risk aversions
Ri(y) instead of the risk tolerances ρi(y). In this case we do not obtain that e.g., power,
or logarithmic utility functions satisfy Bühlmann’s assumption H. It is not clear that the
differential equation (7) has a solution under H. But (A1) is what we think he meant.
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so here the condition is satisfied using M = maxi{ 1
ai
}.

When the relative risk aversion equals one, the logarithmic utility function
is appropriate, i.e., ui(x) = ln(cix + di) for positive constants ci and di. In
this case the risk tolerance ρi(y) = y + di

ci
in which case (A2) holds with

M = 1.
Our basic assumption is that Xi ∈ L2 for all i ∈ I. By Minkowski’s

inequality also XM ∈ L2, but what about the optimal portfolios Yi? Recall
from (6) that ρ(x) =

∑I
i=1 ρi(Yi(x)), implying that

|Yi(XM)− Yi(0)| ≤ |XM |, (16)

which means that and Yi ∈ L2 for all i ∈ I as well.
Bühlmann’s assumptions of finite supports of the Xi together with as-

sumption (A1) allowed him to use standard, global results of ordinary, non-
linear differential equations to guarantee that the optimal allocations are
continuous in the constants bi. In order to relax this condition, observe that
the differential equations given by (7) are indeed very ”nice”, since the non-
linear functions

Fi(yi, x) :=
ρi(yi)

ρ(x)

satisfiy |Fi(yi, x)| ≤ 1 for all i due to (6). Thus Witner’s condition of global
existence is satisfied for the differential equations (7). In this case we do
indeed have global existence and uniqueness of solutions for these equations,
over the entire region (x, yi) ∈ R2. In order for the solutions Yi(x) to be
continuous functions of the constants bi, the following is sufficient:

(A2) The functions Fi(yi, x) and d
dyi

F (yi, x) are continuous for all (x, yi).

This assumption also replaces (A1). Let us check (A2) for the standard
cases. For the negative exponential utility function we can use the domain
B of the Xi to be all of R = (−∞,∞), and Fi(yi, x) = ai

A
so the condition is

trivially satisfied.
For the power utility function the quantity ai > 0 now means the relative

risk aversion of member i, and the function F (yi, x) is given by

F (yi, x) =
1
ai

yi

ρ(x)
,

where ρ(x) is a smooth function of x, so again (A3) is satisfied and the
domain B of the Xi can be taken to be B = R++ = (0,∞).

11



For the logarithmic utility function we obtain that

F (yi, x) =
yi + di

ci

x +
∑

j
dj

cj

,

so d
dyi

F (yi, x) = (x +
∑

j
dj

cj
)−1 which is continuous for x > −

∑
j

dj

cj
Here

B = (b,∞) where b = maxi{−di/ci}.
We conclude that the assumption (A2) is not really restrictive, since it

does not rule out any of the most common examples.
A closer examination of Assumption (A2) reveals that the only additional

requirement it imposes on the preferences of the members is that the third
derivative of the utility functions must exist and be continuous.3

Let us now assume that the moments implied by the budget conditions
given in (10) exist. Sufficient for this to be the case is that E{(u′b(XM))2} <
∞. From Pareto optimality it follows that λiu

′
i(Yi) = u′b(XM), implying that

it is also sufficient that E{(u′i(Yi))
2} < ∞ for all i.

Finally notice that the state price deflator u′b(XM) is also a continuous
function of b for the same reason, since u′i(·) is a continuous function for each
i, and Y b

i is continuous in b for all i.
We are then in position to prove the following:

Theorem 2 Suppose u′i > 0, u′′i ≤ 0, u′′′ are continuous for all i, and
E{(u′b(XM))2} < ∞. Then an equilibrium exists.

Proof: Consider the mapping f : RI → RI which sends b = (b1, b2, · · · , bI)
into c = (c1, c2, · · · , cI) by the rule

E(u′b(XM)
(
Xi − (Y

(b)
i − bi)

)
= ci, for i = 1, 2, · · · , I. (17)

By (16) it follows that |Y (b)
i − bi| ≤ |XM |, so E(Yi − bi)

2 ≤ EX2
M = M < ∞,

and EY 2
i < Mi < ∞ implies that bi ∈ G for some compact rectangle G in

RI . Also
|ci| ≤ E(u′b(XM)|Xi − (Y

(b)
i − bi)|) ≤{

E(u′b(XM))2
} 1

2
{

E(X2
i ) + E(Yi − bi)

2
} 1

2
< Ki < ∞

for any b ∈ G by first applying the Schwarz inequality and then Minkowski’s
inequality. This establishes c ∈ H where H is is a rectangle like G. Let J
be the rectangle in RI containing both G and H. Denote the hyperplane∑I

i=1 bi = x0 by F . Note that the intersection F ∩ J is non-empty, compact

3This allows us to check whether the members are prudent or not.
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and convex. The mapping b → c defined by f in (17) maps F ∩ J into F ∩ J
since by Walras’ law

I∑
i=1

ci = E
(
u′b(XM)

( I∑
i=1

Xi − (
I∑

i=1

Y
(b)
i −

I∑
i=1

bi)
))

=
I∑

i=1

bi.

By our above observation that the optimal allocations Y
(b)
i and the state

price deflator u′b(XM) are all continuous functions of b, and since the linear
functional π(Z) = E(u′b(XM)Z) is continuous in L2 from our assumption that
ξ = u′b(XM) ∈ L2, the mapping f is continuous and hence has a fixed-point
by Brower’s theorem. Therefore there exist b∗i such that

E(u′b∗(XM)(Xi − (Y
(b∗)
i − b∗i )) = b∗i , for i = 1, 2, · · · , I

and consequently

E(u′b∗(XM)(Y
(b∗)
i −Xi)) = 0, for i = 1, 2, · · · , I.

This completes the proof. �

Let us consider some illustrations where Theorem 2 is conclusive, but
where the assumption of bounded risks is not satisfied.

Example 3. Returning to the situation in Example 1 where the utility
functions are negative exponential, consider the case where there exists a
feasible allocation Z, in which the components Zi are i.i.d. exponentially
distributed with parameter θ. Let X = DZ where D is an I× I-matrix with
elements di,j satisfying

∑
i di,j = 1 for all j, so that XM =

∑I
i=1 Zi := ZM .

This gives an initial allocation X of dependent portfolios, which seems
natural in a realistic model of a reinsurance market. Here it means that the
Xi portfolios are mixtures of exponential distributions with a fairly arbitrary
dependence structure.

In this case XM has a Gamma distribution with parameters I and θ.
According to Theorem 2 all we have to check for an equilibrium to exist is
that E{(u′i(Yi))

2} < ∞ for all i, or equivalently that E{(u′λ(XM))2} < ∞.
Since u′λ(XM) = Ke−XM/A for some constant K, we have to verify that the
following integral is finite:

E
(
e−

2XM
A

)
=

∫ ∞

0

e−2x/Aθe−θx (θx)(I−1)

(I − 1)!
dx.

This is indeed the case, since by the moment generating function of the
Gamma distribution it follows that

E
(
e−

2XM
A

)
=

( θ

θ + 2
A

)I

< 1
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because both the parameter θ and the risk tolerance A of the syndicate are
strictly positive.

Instead of the assumption of the exponential distributions, suppose that
the Zi are independent, each with a Pareto distribution, i.e., with probability
density function

fZi
(x) =

αic
αi
i

z1+αi
, ci ≤ z < ∞, αi, ci ∈ (0,∞).

This is known as the Pareto distribution of the first kind 4. In this case
EZi exists only if αi > 1, and varZi exists only if αi > 2, etc. The moment
generating functions ϕi(β) = EeβZi of these distributions exist for β ≤ 0,
since the random variables eβZi are then bounded. Carrying out the same
construction as above, we notice that

E
(
e−

2
A

XM
)

=
I∏

i=1

E
(
e−

2
A

Zi
)

< ∞

since each of the factors has finite expectation. Accordingly, for these distri-
butions a competitive equilibrium exists by Theorem 2.

Here the Xi are mixtures of Pareto distributions, but we should exert
some caution, since our theory is developed for risks belonging to L2. We
are outside this domain regarding the Zi if αi < 2 for some i, in which
case Xj /∈ L2 for any j. However, as long as the initial risks are in L2, an
equilibrium exists.

Finally consider the normal distribution in this example, and assume
that each Xi is N (µi, σi)-distributed and that X is jointly normal, where
cov(Xi, Xj) = ρijσiσj for i, j = 1, 2, · · · , I. By the moment generating func-
tion of the normal distribution we have that

E (u′λ(XM))
2

= E
(
e−

2
A

XM

)
= exp

(
2
( σ

A

)2 − 2
µ

A

)
< ∞ ∀ i,

where µ =
∑I

i=1 µi and σ2 =
∑I

i=1 σ2
i + 2

∑
i>j σiσjρij. Thus an equilibrium

exists.
Even if the positivity requirements are not met, still all the computations

of the equilibrium are well defined, the state price deflator ξ(XM) is an
element of L2

++, prices can readily be computed, and an equilibrium exists.
It may admittedly be unclear what negative wealth should mean in a one

period model, but aside from this there are no formal difficulties with this

4This distribution borrows its name from the Italian-born Swiss professor of economics,
Vilfredo Pareto (1848-1923).
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case as long as utility is well defined for all possible values of wealth. In the
reinsurance syndicate we usually interpret Xi = wi − Vi where wi are initial
reserves and Vi are claims against the ith reinsurer, or member. In this case
negative values of Xi have meaning, in that when this occurs, reinsurer i is
simply bankrupt, or in financial distress. �

In the above example with the Pareto distributions, if the parameters
αi satisfy 1 < αi < 2 for all i, expectations exist, but not variances. Still
u′λ(XM) = e−

2
A

XM ∈ L2
++, however L2 is not the relevant dual for L1, which

is L∞. We notice that u′λ(XM) ∈ L∞
++ as well, which means that this case

is now well defined. This is so because our development in Theorem 2 is
easily seen to be valid for L1 replacing L2, in fact any Lp-space will do, for
1 ≤ p < ∞, with dual space Lq, where 1

p
+ 1

q
= 1.

The space L∞ is well behaved from the point of view of supporting pre-
ferred sets since the positive cone has a non-empty interior, but neither does
L1 furnish all the continuous linear functionals on L∞, nor do we know that
the strictly positive functionals on L∞ are continuous.

We now turn to the case where the relative risk aversions of all the syn-
dicate members are constants, as in Example 2:

Example 4. Consider the model of Example 2, where ui(x) = (x1−ai −
1)/(1 − ai) for x > 0, ai 6= 1. We again restrict attention to the case where
a1 = a2 = . . . = aI = a.

Recall that the weights λi are determined by the budget constraints,
implying that

λi = k

(
E(XiX

−a
M )

E(X1−a
M )

)a

, i ∈ I,

or, λi is determined modulo the proportionality constant k = (
∑

j∈I λ
1/a
j )a

for each i.
Let us again consider a situation where there exists a feasible allocation Z,

where the Zi components are i.i.d. exponentially distributed with parameter
θ. Let X = DZ where D is an I × I-matrix with elements di,j satisfying∑

i di,j = 1 for all j, so that XM =
∑I

i=1 Zi := ZM .
Regarding existence of equilibrium, according to Theorem 2 it is sufficient

to check that u′λ(XM) ∈ L2. In this case XM has a Gamma distribution with
parameters I and θ, and all we have to check is if the expectation

E(X−2a
M ) =

∫ ∞

0

x−2aθe−θx (θx)I−1

(I − 1)!
dx

is finite. The possible convergence problem is seen to occur around zero, and
the standard test tells us that when (−2a + I − 1) > −1, or when I > 2a,
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this integral is finite. Thus, for example if a = 10, then equilibrium exists in
this syndicate if the number of members exceeds 20.

One may wonder if the member weights λi can be computed when I > 2a.
To check this consider the two expectations E(X1−a

M ) and E(ZiX
−a
M ). In order

to verify that these expectations exist, we have to find the joint distribution
of Zi and XM . It is given by the probability density

f(zi, x) = θ2e−θx (θ(x− zi))
I−2

(I − 2)!
, zi ≤ x < ∞, 0 ≤ zi < ∞.

So we have to check if the integral

E(ZiX
−a
M ) =

∫ ∞

0

∫ ∞

zi

zix
−aθ2e−θx (θ(x− zi))

I−2

(I − 2)!
dzidx

is finite. The possible convergence problem is again seen to occur around
zero, and the standard test requires that (1 − a + I − 2) > −1, i.e., when
I > a this integral is finite. From this it is obvious that the expectations
E(XiX

−a
M ) also converge in the same region, by linearity of expectation, since

Xi =
∑

j di,jZj.
Similarly we have to check the following expectation:

E(X1−a
M ) =

∫ ∞

0

x1−aθe−θx (θx)I−1

(I − 1)!
dx.

Near zero the possible problem again occurs, and the standard comparison
test gives convergence when (1 − a + I − 1) > −1, or when I > a − 1. To
conclude, when I > max{a, a − 1} = a, both expectations exist, showing
that the member weights exist in the parameter range (I > 2a) where state
prices are known to exist.

Notice that an equilibrium will exist with a fairly low number of partici-
pants in the interesting region for the parameter a. Consider e.g., the value
a = 1 corresponding to a logarithmic utility function, then an equilibrium ex-
ists with only two members in the syndicate. When the relative risk aversion
is two, only four members are required, and so on.

Finally consider the case of Pareto distributions for the initial portfolios
Xi directly, assuming αi > 2 for all i. The integrals

E(X−2a
i ) =

(
c2a
i (1 +

2a

αi

)

)−1

< ∞.

Since mini∈I αi > 0 there are no problems with convergence, and an equilib-
rium exists in this case regardless of the values of the relative risk aversion
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parameter a, (a > 0) or its relationship to I, since E(X−2a
M ) ≤

∑
i E(X−2a

i ).
In this latter case all the portfolios are bounded away from zero, which helps
with the existence problem for power utility, while the exponential distribu-
tion has more probability mass near zero, potentially causing problems with
existence in certain parameter ranges, as we have seen above. �

The result of this example is in line with the spirit of a competitive
equilibrium, which generally implies that the theory may work better the
more individuals that participate. Recall that classical economics sought to
explain the way markets coordinate the activities of many distinct individuals
each acting in their own self-interest.

III-B Uniqueness of Equilibrium

The question of uniqueness of equilibrium is largely unexplored in the infinite
dimensional setting. However, given our smoothness assumptions one would
expect equilibrium to be unique, provided one exists. In this section we show
that this conjecture holds.

Approaches that take preferences and endowments as primitives seem
to encounter many difficulties, in addition to the usual difficulty of doing
calculus in infinite dimensional spaces. As mentioned before the natural
domain of prices is a subset of the dual space of L2, the positive orthant
L2

+, but this set has empty interior, which is very inconvenient for doing
calculus. In general are excess demand functions typically not defined, and
are not smooth even when they are defined. Araujo (1987) argues that excess
demand functions can be smooth only if the ”commodity” space is a Hilbert
space, which is noticed to be the case in our model.

Inspired by our approach in Theorem 2, where we basically transformed
the infinite dimensional problem into a finite dimensional one represented by
the member weights λ, or equivalently, the constants b, we attempt the same
line of reasoning regarding the uniqueness question.

Going back to the first order, non-linear differential equations in (7), to
each point (x0, b1, b2, · · · , bI) there is only one solution Y = (Y1, Y2, · · · , YI)
to these equations under the assumption (A2). However, there could be
several fixed-points and thus one possible equilibrium associated with each
of them.

Arguing in terms of the member weights λ instead of the b’s, let us define
the individual demands of the I members by Z

(λ)
i = (Y

(λ)
i − Xi) and the

excess demand Z(λ) =
∑

i∈I Z
(λ)
i . Below we show that these are well defined

and smooth functions of the member weights λi, i ∈ I.
One reason we consider the member weights here instead of the constants

b, is due to Proposition 3 (c), equation (8), where is was shown that the state
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price ξ(λ) is an increasing function of the weights λi. As a consequence, by
increasing λi, member i’s demand for reinsurance will decrease, since, loosely
speaking, this can be associated with a strengthening of member i’s initial
”reserve” Xi, while all the other members’ demands will decrease. This will
be formalized below.

The excess demand is zero at the possible equilibrium points λ∗, corre-
sponding to the points b∗ of Theorem 2. If the excess demand curve as a
function of each member weight λi is downward sloping for all i at all equi-
libria where Theorem 2 holds, there can only be one equilibrium. It is enough
that Z(λ) is downward sloping in (I − 1) of the λ’s because of the normaliza-
tion of the weights. Because of the smoothness of the excess demand function
in λ, this will be a sufficient condition for uniqueness.

By investigating the marginal effect on the excess demand Zλ∗ from a
marginal increase in λ∗i , making sure that the resulting λ is still on the
simplex SI−1, we may use this procedure to check for uniqueness. As real
functions the demands Zλ

i : R → R can be expressed as Zλ
i = Y λ

i (x) − xi

where
∑

i xi = x, and thus, in the language of calculus, we must therefore
consider the quantities

Zλ∗ − α(
∑
i∈I

λi − 1),

where α is the Lagrange multiplyer associated with the constraint of remain-
ing on the simplex. Since any marginal change in one of the member weights
will necessarily bring the resulting vector of weights outside the simplex un-
less the other weights are correspondingly lowered, α > 0. Thus we compute
the following

∂Zλ∗

∂λi

− α for i = 1, 2, · · · , (I − 1)

at any equilibrium point λ∗, and check wether all these have the same sign
for all x ∈ B.

In order to compute the quantities ∂Zλ∗

∂λi
, we must find

dY λ∗
j (x)

dλi
for all

i, j ∈ I. It follows by differentiation of the first order conditions

λiu
′
i(Y

λ
i (x)) = u′λ(x) for any i

that

dY λ
i (x)

dλi

=
1

λiu′′i (Y
λ
i (x))

( ∂

∂λi

u′iλ(x)− u′i(Y
λ
i (x))

)
for i = j,

for all x ∈ B, and using equation (8), and the first order conditions, we
obtain

dY λ
i (x)

dλi

=
1

λi

ρi(Y
λ
i (x))

(
1− dY λ

i (x)

dx

)
for i = j, (18)
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for all x ∈ B. Similarly we get

dY λ
j (x)

dλi

= − 1

λi

ρj(Y
λ
j (x))

dY λ
i (x)

dx
for j 6= i, (19)

for all x ∈ B. Notice that
dY λ

i (x)

dx
∈ (0, 1) by equation (7), in other words,

an increase in the market portfolio leads to an increase in all the members
portfolios Yi, and no member assumes the entire increase because they are

all risk averse. It follows that
dZλ

i (x)

dλi
> 0 for all i and

dZλ
j (x)

dλi
< 0 for all j 6= i,

demonstrating what was explained above for the individual demands.
We are now in position to compute the required marginal changes in

excess demand within the simplex. It is

∂Zλ∗

∂λi

− α =
∑
j∈I

∂Zλ∗
j

∂λi

− α =
∂Y λ∗

i

∂λi

+
∑
j 6=i

∂Y λ∗
j

∂λi

− α =

1

λi

ρi(Y
λ∗

i (x))
(
1− dY λ∗

i (x)

dx

)
−

∑
j 6=i

1

λi

ρj(Y
λ∗

j (x))
dY λ∗

i (x)

dx
− α,

for all x ∈ B, where we have used (18) and (19). Continuing, we get

∂Zλ∗

∂λi

− α =
1

λi

(
ρi(Y

λ∗

i (x))− dY λ∗
i (x)

dx
ρλ∗(x)

)
− α

for all x ∈ B, where we have used that

ρλ∗(x) =
∑
i∈I

ρi(Yi(x)), x ∈ B,

according to Proposition 3(a). Finally using (7) we observe that

∂Zλ∗

∂λi

− α = −α < 0 for all x ∈ B and i ∈ I.

The conclusion is formulated in the following theorem:

Theorem 3 Under the assumptions of Theorem 2, the existing equilibrium
in the reinsurance syndicate is unique.

Thus our conjecture is confirmed. Notice that in the examples we have
presented we were able to find the equilibrium by direct calculation, and the
weights λi were uniquely determined (modulo multiplication by a positive
constant) from the budget constraints. Thus these equilibria are all unique.
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IV Comparison with a more general theory

Drawing on the results of a more general theory of an exchange economy, as in
e.g., in Mas-Colell and Zame (1991) and Araujo and Monteiro (1989), based
on proper preference relations (Mas-Colell (1986)), Aase (1993) formulated
the following existence theorem for equilbibium in an exchange economy in
L2

+:

Theorem 4 Assume ui(·) continuously differentiable for all i. Suppose that
XM ∈ L2

++ and there is any allocation V ≥ 0 a.s. with
∑I

i=1 Vi = XM

a.s., and such that E{(u′i(Vi))
2} < ∞ for all i, then there exists a quasi-

equilibrium.

If every member i brings something of value to the market, in that E(ξ ·
Xi) > 0 for all i, which seems like a reasonable assumption in most cases of
interest, and is in fact one of our assumptions in Theorem 1, we have that a
quasi-equilibrium is also an equilibrium, which then exists under the above
stipulated conditions.

We notice that these requirements put joint restrictions on both pref-
erences and probability distributions that are rather similar to the ones of
Theorem 2. Although we have stronger requirements on the utility functions
ui, our requirement on XM is weaker. In addition we also have demonstrated
uniqueness of equilibrium. An example may illustrate the differences between
the two theories:

Example 5. Consider the case of power utility of Example 4, where ui(x) =
(x1−ai − 1)/(1 − ai) for x > 0, ai 6= 1. In this example the exponentially
distributed Zi’s satisfy the assumptions of the allocation V in Theorem 4,
and XM ∈ L2

++ since XM has a Gamma distribution. Provided E(ξ ·Xi) > 0
for all i, an equilibrium will exist if

E(Z−2ai
i ) =

∫ ∞

0

x−2aiθie
−θixdx < ∞,

which holds true when ai < 1/2. As we demonstrated in Example 4, in
the case where where a1 = a2 = . . . = aI := a, an equilibrium exists for
I > 2a. Thus our previous result is stronger, or perhaps more relevant, since
empirical studies suggest that the interesting values of ai may be in the range
between one and 20, say.

Here it is simple to verify existence also when the parameters ai are
unequal, and provided E(ξ ·Xi) > 0 for all i, an equilibrium will exist in the
region ai < 1/2 for all i according to the above theorem.5

5The explicit computation of the state price deflator ξ is not straightforward when the
parameters are no longer equal equal across the agents. In this case sharing rules are
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In the case where all the dj,i are equal (to 1
I
), the initial portfolios all

have the same Gamma (θI, I)-distribution, in which case the allocation X
satisfy the requirements of the allocation V of Theorem 4. In this case we get
existence in the region I > 2 maxi{ai}, which is quite similar to the result of
Example 4, �

We see that the two theories give comparable results, albeit they guaran-
tee existence in slightly different regions depending upon circumstances.

V Summary

Classical economics sought to explain the way markets coordinate the activ-
ities of many distinct individuals each acting in their own self-interest. An
elegant synthesis of two hundred years of classical thought was achieved by
the general equilibrium theory. The essential message of this theory is that
when there are markets and associated prices for all goods and services in the
economy, no externalities or public goods and no informational asymmetries
or market power, then competitive markets allocate resources efficiently.

In this paper the idea of general equilibrium has been applied to a reinsur-
ance syndicate, where many of the idealized conditions of the general theory
may actually hold. The most critical assumption seems to be that of no
informational asymmetries. Reinsurers like to stress that their transactions
are carried out under conditions of ”utmost good faith” - uberrima fides.
This means that the reinsurers usually accept, without question, the direct
insurer’s estimate of the risk and settlement of claims. The mere existence
of rating agencies in this industry is an indication that there may be both
adverse selection, and also elements of moral hazard in these markets. Nev-
ertheless, the above theory may still give a good picture of what goes on in
syndicated markets.

In models of such markets properties of competitive equilibria have only
academic interest so long as it is not clear under what conditions they exist.
Uniqueness is clearly also an issue of great importance.

The advantage with the existence and uniqueness theorems of this paper
is that they rest largely on results in risk theory, or the theory of syndi-
cates, which implies that we may essentially restrict attention to the member
weights in Euclidian I-dimensional space, thus reducing the dimensionality
of the problems. In contrast Theorem 4 requires a rather demanding, infinite
dimensional equilibrium theory.

certainly not linear.
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[10] Bühlmann, H. (1980). An economic premium principle. ASTIN Bulletin
11; 52-60.

[11] Dana, R.-A. (1993). Existence and uniqueness of equilibria when pref-
erences are additively separable. Econometrica 61; 4; 953-958.

[12] DuMouchel, W. H. (1968). The Pareto optimality of an n-company rein-
surance treaty. Skandinavisk Aktuarietidsskrift 165-170.

[13] Gerber, H. U. (1978). Pareto-optimal risk exchanges and related decision
problems. ASTIN Bulletin 10; 25-33.

[14] Mas-Colell, A. (1986). ”The price Equilibrium existence problem in
topological vector lattices”. Econometrica 54, 1039-1054.

22



[15] Mas-Colell, A. and W. R. Zame (1991). ”Equilibrium Theory in Infinite
Dimensional Spaces”. In Handbook of Mathematical Economics Vol IV,
Ch 34, pp 1835-1898. (Edited by W. Hildenbrand and H. Sonnenschein.)
Elsevier Science Publishers B.V.

[16] Wilson, R. (1968). ”The Theory of Syndicates” Econometrica 36, 1,
119-132.

23




