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FOREWORD

The point of departure for this essay was Terje Lensberg's suggestion that I should try

to generalize his (1987) characterization of completely separable utility in terms of choice.

Chapter 7 contains such a generalization. Trying to work out such a generalization, I came

across Uzawa's (1956) early article. This article sparked my interest in trying to reformulate

the basic theory of the interrelationship between preferences and choice, which is the central

theme of this essay.

I have benefited from discussing the ideas in this essay with many people. The most

important ones, which I would thank especially, are Sjur Flåm, Thorsten Hens, Aanund

Hylland, Terje Lensberg and my supervisor Lars Thorlund-Petersen.
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CHAPTER 1:NEOCLASSICAL DEMAND THEORYo

1. INTRODUCfION

The main theme of this essay is the neoclassical theory of the individual, or the theory

of rational choice as it is also called. To set this theory into into perspective, this chapter

presents some ideas underlying the neoclassical approach to demand theory. It also gives a

selective picture of the present status of demand theory and serves as an introduction to the

more technical work to follow.

Section 2 outlines the core of the neoclassical approach to demand theory as I see it. It

consists of two methodological principles, "methodological individualism" and "individual

rationality". Section 3 discusses methodological individualism. The rest of this chapter is

concerned with the neoclassical theory of the individual, the theory of rational choice in

budgetary situations. This theory is also the main theme of the following chapters. In

Section 4 we discuss rationality, in Section 5 the relationship between preferences and

choice (or action), and in Section 6 the status of rational choice theory. In the three last

sections we discuss some additional restrictions on preferences and choice: Section 7

discusses restrictions on income effects based on the law of demand, Section 8 separability,

Section 9 expected utility, and Section 10 outlines the rest of the essay.

2. mE NEOCLASSICAL RESEARCH PROGRAM

As mentioned, we characterize the neoclassical approach to the explanation of social

phenomena by the following two methodological principles:

0Thanks are due to Thorsten Hens, Aanund Hylland, Claudia Keser and Hans Larsson for
valuable comments to this chapter.
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• Methodological individualism:

Social phenomena are to be explained by individual behavior.

• The rationality principle:

Individual behavior is to be explained (intentionally) by rationality notions

given the individual's preferences (values) and perceived situational

constraints.

The first principle should not totally exclude social and cultural notions in explanations

of social phenomena, for this is generally impossible, as argued by Hodgson (1986). Thus, I

take methodological individualism to say that one should avoid to refer to social institutions

and cultural phenomena as far as possible in the explanations of social phenomena - except

of course social phenomena which have already been explained on the neoclassical

approach. The second principle is weak, and presumably without empirical content of its

own. In the neoclassical approach, this weakness is remedied (and the problem of modeling

an individual is made more tractable) by some supplementary assumptions and methodo-

logical principles. These assumptions and principles are also devices to reduce the necessary

referencing social and cultural phenomena in explaining individual actions:

Full knowledge: The individual knows all relevant aspects of his situation.

Consequentialism: Preferences are over consequences only.

Extensionality: Consequences (or objects) are extensionally given, i.e. independent of

their descriptions.

Preference uniqueness: The individual has unique preferences.

Preference exogenity: Preferences 'are exogenous.

Preference invåriance: Preferences are separable over time and situationally in

dependent.
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We restrict attention to demand theory. Demand theory purports to explain behavior in

parametric situations, i.e. in situations with no strategic interaction between individuals. In

that case, it is convenient to identify acts (behavior) with their consequences. Usually, as

we will do here, one restricts attention further to price-generated budgets, i.e. situations

where the alternatives of an individual are constrained by some prices (and an income) in a

finite-dimensional, closed, convex, and downward bounded space of goods.'

A main task of demand theory is to explain market (or aggregate) demand, i.e. to build

a theory with non-trivial restrictions on market demand. Preferably, these restrictions should

(together with standard technology assumptions) suffice to justify standard applications of

general equilibrium theory, especially comparative statics. Hence one would like to verify

uniqueness and some kind of stability (for example of the tåtonnement process) of equi-

librium. It is also of interest to generate downward sloping aggregate demand curves or

some generalization of this like the law of demand.

Demand theory is also important both for normative problems and the interpretation and

explanation of individual action. I do, however, take the neoclassical research program to be

mainly concerned with the above mentioned descriptive problem.2

One can deviate from any of the supplementary principles if one has a clear idea of

some (simple) additional structure. Their function is thus a simplifying one without such

ideas.

Full knowledge abstracts from the fallibility of beliefs upon which humans act. It is

easily weakened. Instead of knowing the outcomes of actions, for example, it suffices for

the theory that one knows the probability distribution of outcomes over different known

states.t

1Note that convexity of the space of goods implies perfectly divisible goods.
2Criteria for evaluating theories with a normative interpretation are also rather different from
the criteria for theories with a descriptive interpretation. This is briefly discussed in Section 6.
3As far as I can see, the theory presupposes full knowledge (or common certain beliefs) about
~ objects. In the above example, one presupposes full knowledge about the state space
and the probability distribution.
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Consequentialism abstracts from our concern about the actions themselves and their

history+ For example, preferences are not allowed to depend on a reference level.

Experiments by Tversky and Kahnemann (1991), however, indicate such a dependence.

Tversky and Kahnemann also outline a theory with reference dependence.

Extensionality implies that individual behavior depends only on the available alter-

natives, and not on the way these are conceived. Thus it excludes framing effects as

discussed in Tversky and Kahnemann (1981). As they make clear, extentionality is a strong

assumption, at least in situations involving risk.

Individuals usually do not have unique preferences. For example, an individual's moral

preferences are usually different from his e&oistic ones. It depends on the situation which

preferences influence action. More generally, an individual in a social role activates

preferences (values) relevant to that role.> This is of little importance for the analysis of

traditional commodity demand. It gains importance, however, when one extends the scope

of economic analysis.

The assumption of exogenous preferences means that one does not analyze the process

of value formation.s This is a main shortcoming of neoclassical economics as a compre-

hensive social theory."

Individual actions are usually observable only one at a time, but the theory presupposes

simultaneous choices. Therefore to get empirical content in the theory, one need to specify

how preferences develop over time. The simplest alternative is to assume separability over

time and say that their intraperiod parts are time invariant (i.e. stationary), possibly with a

constant rate of time preference.

4In some cases, concern about actions can be incorporated into the theory by extending the
choice space. Then, however, the choice space soon looses its simple structure.
5In some situations one might ascribe individual unique preferences and model their "role-
induced part" as situational constraints. This, however, often misrepresents the thinking of
individuals, see Sen (1973).
6Values could be formed for example through agumentation. In contast to the situation
concerning values, one has an interesting (Bayesian) theory of the evolution of beliefs.
7Some work, however, has been done on the influence of advertisement on preferences and
behavior.
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3. METIfODOLOGICAL INDIVIDUALISM

This section discusses the principle of methodological individualism. This·principle is

closely related to the aggregation problem The question is to what extent it is possible to

get nontrivial restrictions on market (or aggregate) demand functions from restrictions on

the individual demand functions generated by a theory of rational individuals. In a sense,

this is the crucial step. The reason is that if one can build a nontrivial theory of market

demand on the given individual constructs, then objections at the individual level, saying

that the theory abstracts too much from reality, do not matter much. This is the case at least

until one gets a viable alternative to the neoclassical approach. If something is funda-

mentally wrong at the individuallevel, the situation might, however, be different.

Many economists seem to believe that the aggregation step is unproblematic or at least

possible. So far, however, this step has only been verified under extremely restrictive

assumptions. The classical result is that of Antonielli (1886). He showed that if individual

preferences are identical and homothetic (i.e. demand is linear in income), then there is a

representative consumers with the same preferences. Conversely, he showed that if there is

always a representative consumer, then the individuals have identical and homothetic

demand functions. Thus one needs some restrictions on the income distribution (or more

fundamentally the distribution of endowments) to establish a representative consumer under

more plausible preference assumptions. The first such result was by Eisenberg (1961). He

showed that with a price lndependent? relative income distribution and homothetic

preferences, there is a representative homothetic consumer. Next, Shafer (1977) showed that

with a price independent income distribution and demand functions satisfying the law of

demand (i.e. a negative correlation between changes in prices and quantities demanded - for

fixed income), there is a representative consumer satisfying the law of demand. Thus the

8An economy admits a representative conswner if we can construct an individual generating
the aggregate excess demand function of the economy. The existence of a representative
consumer clearly depends on the more specific requirements of individuals in the theory.
9The typical case is wherf the individuals' endowments are on a ray through Oand there are nei
profit.
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aggregation problem is mainly rooted in the influence of prices on the relative income

distribution via the resources and profits of the individuals)O

These results give conditions under which properties of individual demand are inherited

by aggregate demand. Generally, properties of aggregate demand might be different from

those of individual demand. An analogy might clarify this: In thermodynamics one has a

smooth and stable theory at the macro level involving concepts like temperature, volume

and pressure. The movement of the micro units, the particles, however, are stochastic and

unpredictable individually. One result giving more structure on aggregate demand than on

individual demand is that by Hildenbrand (1983). He showed that the law of demand holds

for aggregate excess demand in a large economy, without assuming it to hold for indi-

viduals. This is, however, only true under a somewhat implausible assumption on the

income distribution,

Furthermore, Samuelson (1956) showed that a representative consumer exists if income

is optimally distributed according to some welfare function.

In the negative direction, there are several negative results of increasing strength,

originating in Sonnenschein (1973). These results show that only the most trivial properties

of market (excess) demand follow from methodological individualism. These are the

following: First, market excess demand is homogeneous of degree zero in prices, i.e. only

relative prices matter. Secondly, it satisfies Walras law, saying that the value of market

excess demand is O. Finally, a certain behavior at the boundary of the choice space is

implied.'! This is so even under very restrictive conditions both on preferences and the

distribution of endowments if the number of goods is not larger than the number of indivi-

duals.12 A strong negative result is given by Kirman and Koch (1987). They show that any

excess demand function with the above properties can be generated from a pure exchange

economy with as many individuals as there are goods - even if the individuals have identical

lOff individuals satisfy the law of demand, this result justifies class models where all
individuals in each class hold endowments of one and the same good, e.g. labour and capital.
llNamely that if the prices of some goods goes to zero, then aggregate demand gets
unbounded. This followsborn monotone preferences.
120therwise a weakened version of the Slutsky condition holds, see Diewert (1977).
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preferences and collinear endowments.U A result by Hildenbrand (1989a) points in the same

direction. It shows that under very mild preference assumptions, if individual endowments

vary, the revealed preference axiom for mean demand holds only on a space of measure

zero.

These described negative results seem devastating for the neoclassical research

program. They are, however, far from conclusive. As for the result by Hildenbrand (1989a),

the conclusion is weak. The revealed preference axiom might for example still hold on

appropriate subspaces.

A positive result is by Hens (1990). Instead of investigating properties of equilibria in

simultaneous contingent commodities, he looks at equilibria with incomplete markets and

sequential trade in reopening spot markets. Then risk averse individuals trade in futures

markets to avoid spot market risk. In his model, the result of the future markets trade in

previous periods is that spot market endowments get collinear. This then ensures uniqueness

and stability of (spot market) equilibria. The result is wrong if markets are organized as

contingent contracts as in the Arrow-Debreu model.

The empirical evidence seems to support a more optimistic view of the aggregation

problem. Lewbel (1991) shows that a representative consumer model represents aggregate

demand reasonably well - especially if one drops the individuals in the tails of the income

distribution. The representative consumer corresponds to a cost function with two price

indices. Lewbel shows that by allowing one more price index in the cost function, one gets

a very good fit. How is this to be reconciled with the negative results presented above?

First, there is presumably little price variability in the data. Secondly, by taking the income

distribution to be price independent, he sidesteps what is presumably the most important

theoretical problem connected to the aggregation problem. This is indicated by the law of

demand aggregation result mentioned above. For predictive purposes, assuming that price

variability and income price dependence remains small, these objections do not matter

much. But we must consider them if we want to explain or understand aggregate demand.

13Endowments are colliåear if they lie on a ray through O, i.e. spans a one dimensional
subspace.
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So the neoclassical research program, at least when modified in this direction, is still

open. So Kirman's (1989) metaphor of the status of the neoclassical research program: "The

Emperor has no clothes" does not seem fitting. On the other hand, it looks as if the

popularity of methodological individualism stems more from the lack of viable alternatives

than its own progress. The reductionist attitude of methodological individualism surelyalso

has its appeals. Up to now, much of the use of a representative consumer in economics is

not much better founded than explanations by the Hegelian "Weltgeist", though we believe

it to make more sense.l+ More generally, criticism that explanations in social sciences do not

satisfy methodological individualism is unjustified as long as neoclassical economists does

not get forward on the aggregation problem.

The rest of this chapter is mainly concerned with the neoclassical theory of the

individual, also called the theory of rational choice.

4. RATIONALITY

The theory of rational choice explains individual behavior intentionally. Thus individual

actions are explained by its values and perceived situational constraints. Causal laws only

determine the consequences of actions. Intentional explanations are attractive as they treat

individuals as the subjects of history. Hence they fit our way of seeing ourselves - at least in

our better moments.

Assume well-defined goals in the form of preferences over a space of goods, and situa-

tional constraints in the form of budgets. Then the approach is, as mentioned, to explain

individual behavior by assuming rationality. There are, however, many (and usually non-

exclusive) ways of explaining rationality. We will say that a preference or choice

14Forexample, much of the so called "microfoundations of macroeconomics," consisting essen-
tially in using representative consumers for large aggregates, without aggregation results,
have no better microeconomic foundation than traditional "ad hoc" macroeconomics. This
does not mean that these' representative consumer models are uninteresting, on the contrary,
such models are often quite interesting.
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property is rational if it follows directly from the meaning of the basic terms of the theory.I>

The above criterion is vague, but has some clear consequences, as it justifies preference

asymmetry (i.e. that one bundle cannot be better than another if the second is at least as

good as the first), reflexivity (i.e. that a bundle is at least as good as itself), and transitivity

(i.e. that if one bundle is preferred to another and this again is at least as good as a third,

then the first is also preferred to the third).16 These notions are direct consequences of the

meaning of the terms "better" and "at least as good as". These rationality criteria also justify

the maximal element (definition of rational) choice. This says that a bundle is a rational

choice at a budget if it belongs to the budget and all preferred bundles are outside the

budget). The idea is simply that one would not choose an alternative if one knew that one

had a better one available.I?

Often, completeness (i.e. that of any two bundles, either the first is preferred to the

second or the second is at least as good as the first) is also seen as a rationality property of

preferences. Under the above conceptions of rationality, this is unwarranted.lf Is complete-

ness necessary for a theory of choice? No, one can verify existence of individual choice and

general equilibrium without it, but at some cost. If not a rationality property, completeness

is often seen as a simplifying assumption in the theory of rational choice. This is not always

the case, however. Indeed in Chapters 2 to 5 we show that insisting on completeness

complicates the task of characterizing preferences in terms of choice. We do this by

essentially characterizing the properties of the revealed preference relations - which are

generally incomplete. With this change of perspective, a full characterization is fairly

straightforward, as should not be very surprising. The approach necessitates some care in

1SAnother,more in the spirit of Rawls' (1970) reflective equilibrium, is to say that goals or
behaviour is rational if they would not change upon more information of certain kinds. A
further strengthening of this is that goals or behavior should not change even if they where
made publicly known. This is more in the spirit of Kant's (1785) Categorical Imperative. It is
mentioned as a reminder that the neoclassical conception does not exhaust rationality. See
also Føllesdal (1982a,b). .
16Indeed, transitivity is slightly stronger than this, see the definition in Chapter 2.
Trivially, if a bundle is better than another, then it is also at least as good.
17It is not necessary to assume selfish preferences, though this simplifies the treatment of
general equilibrium.
18This is clear under the-first interpretation if one thinks for example of the Paretian partial
orders.
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choosing concepts, however, as concepts which are equivalent with completeness are often

different without completeness.

With the above assumptions, the theory might, however, still be vacuous in many situa-

tions, as there need not exist any rational choices. To avoid this, one makes some additional

assumptions, i.e. that preferences are continuous, convex, and locally nonsatiated.

Continuity can be seen as a regularity assumption, as it is not possible to test for it on a

finite data set. Convexity (saying that any convex combination of a set of points is at least

as good as one of these points) is in contrast a strong assumption. Thinking of aquavit and

antabus, preferences are not always convex. It cannot be falsified in a finite data set based

on observations, however. Convexity is not needed for a non-vacuous theory of the con-

sumer with transitive preferences. But it is needed for the existence of a general equilibrium

with a finite number of individuals, and is therefore usually assumed. The final assumption

is local nonsatiation, saying that arbitrary close to any given bundle, there is a preferred

one. This also seems unproblematic. Below I shall strengthen local nonsatiation to mono-

tonicity, saying that a bundle is preferred to another if one has more of every good. This is

to avoid negative prices. It can be replaced by a similar assumption on the technology.

Under these additional assumptions, choice is non-vacuous, at least at budgets with positive

prices.

Full knowledge (or certain belief) is, however, needed for some kind of objects - e.g.

the state space and a joint probability distribution. Without it, the maximal element defi-

nition of rational choice is generally empty. Then one has to be satisfied with a weaker

concept of rationality. One such is Simon's (1972) notion of satisficing, saying that the

individual sets some aspiration level, and ends search when this is obtained.'? Another is the

finite automat explication, introducing bounded rationality through a finite memory, as in

Rubinstein (1986).20

19Thistheory is partial as it does not explain how the aspiration level is set or changed. This is
similar to the tratment of preferences in the neoclassical theory. Preferences, however, seem
more stable than aspiration levels, and hence easier to access.
20Asindicated, bounded rationality is of lesser interest for normative purposes. For descriptive
purposes, this is not so, as it is mainly an empirical question which theories are to be
preferred. Then also more evolutionary oriented theories like the one by Heiner (1983) are of
interest.
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Rationality is not needed for well-behaved aggregate demand. As shown by Becker

(1962), aggregate demand behaves nicely in a large economy when the individuals "choose"

randomly from a common distribution over a common budget constraint. Indeed, then even

the law of demand holds for the aggregate. This follows from the law of large numbers.

Above, rationality was discussed in connection with the explanation of action. As

argued by Føllesdal (1982a,b), however, at a more fundamental level rationality is a pre-

requisite for understanding other people. The reason is that rationality is presupposed in

interpreting or understanding behavior and identifying actions.s! This builds on a distinction

between behavior and actions. While behavior can be described without reference to inten-

tions or goals, actions cannot. Thus to say that an individual performs a certain action,

implies saying something about his goals. The claim is also that actions are important in

human relationship. This (more hermeneutic) view of economics is also advocated by

Andreassen (1989). It is at cross with the narrow behaviorism of some economists, like the

early Samuelson (i.e. Samuelson (1938)).

Rationality as a prerequisite for identifying actions is an idea underlying many humanis-

tic approaches to psychotherapy, like Greenwald's (1974) "decision therapy," Ellis' (1973)

"rational emotive therapy," and Perls, Hefferline, and Goodman's (1951) "gestalt therapy."

These humanistic approaches assume that individuals' actions, however bizarre, are rational.

The assumption of unity of the individual are, however, often dispensed with. The point is

that the rationality assumption is used to get the patient's underlying values and beliefs into

daylight. Then the patient can work consciously with these values and beliefs, and the

different parts of the individual can be reconciled with each other.

I-

21This idea goes back at least to HusserI (1913).
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5. PREFERENCES AND æOICE

There are two simple ways of looking at the interrelationship between preferences and

choice. The classical one is the preference point of view. Here, as above, one takes

preferences as given and relatively unproblematic, and one asks: What are the choice conse-

quences of given preference assumptions? This is the first basic question. The choice point

of view has a narrower conception of evidence. It assumes that the only evidence one can

get about preferences comes from individual choices.22 Here a natural question to ask is

whether a pattern of behavior (choice correspondence) can be seen as generated by pre-

ferences of certain kinds. Or in other words, to ask which kinds of preferences, if any, are

consistent with a certain pattern of behavior. This is the second basic question. This point of

view originates in Samuelson (1938), who under strong operationalist influence set out to

eliminate theoretical concepts like preferences from demand theory.

In reality, the relationship between preferences and choice regarding evidence is more

complex than expressed in either point of view. On the one hand, it does make sense to ask

people about their preferences. On the other hand this is not unproblematic. The basic

questions do, however, make sense independently of these two points of view.

A complete characterization gives both necessary and sufficient conditions. Thus a

complete characterization answers both basic questions, since the necessary conditions for

one basic question are sufficient ones for the other. Hence a complete characterization

shows the contents of the preference and the choice formulations of the theory to be essen-

tially the same. Most of the characterization results in the literature are not complete in this

sense, however.

Historically, one started with a utility function and derived demand properties from it.

This culminated in the work of Johnson (1913) and Slutsky (1915) who introduced the

Slutsky equation, relating the demand andthe compensated demand function. The derivative

of the latter is the Slutsky matrix. Johnson and Slutsky answered the first basic question by

showing that the Slutsky matrix was symmetric and negative semidefinite.

22Usually, one restricts attention further to price-generated budgets.
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As it was hard to derive additional nontrivial properties of choice from the standard

preference assumptions, one started to ask whether these properties were all one could get.

This led to the integration approach to deal with the second basic question, summarized in

Hurwicz (1971). The integration approach starts with the Slutsky conditions for a given

demand function. The compensated demand given by the Slutsky equation is integrated with

respect to prices. This yields an income compensation (or expenditure) function, with some

prices and an income as parameters (initial conditions). Looked upon as a function of these

parameters, the income compensation function can be shown to be an indirect utility fun-

ction of the desired kind. From this one obtains the direct utility function by duality. The

integration approach, however, requires some extra differentiability assumptions (or at least

Lipschitz continuity), which do not follow from the standard preference assumptions.

Another approach to the second basic

question, is the revealed preference approach.

This approach originates in the work by

Samuelson (1938). He introduced the single-

valued axiom of revealed preference to purge

theoretical constructs like preferences from

demand theory.23 This axiom says that if a

bundle is chosen where another is accessible,

then the latter cannot be chosen where the first
Figure 1

is accessible. Thus the single-valued axiom

excludes situations like the one in Figure 1.24 Samuelson also showed that the axiom implies

23For aggregate excess demand, this was essentially already formulated by Wald (1936) as a
basis for his proof of the existence of general equilibrium.

24This motivation is misconceived, but fruitful. The axiom of revealed preference is stated
solely in the language of choice. Thus it might seem to make preferences superfluous. The
axiom of revealed preference is, however, only plausible if one thinks of choice as generated
by some underlying preferences. Additionally, the characterization results which grew out of
Samuelson's work has shbwn that the content of the preference and the choice based theories
are the same.
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negative semidefiniteness of the Slutsky matrix.25 The next important step within the

revealed preference approach was taken by Houtakker (1950), building on Little (1949) and

Samuelson (1948). He formulated the (single-valued) transitive axiom of revealed

preference (often called the strong axiom). This extends the (single-valued) axiom in a

transitive manner. Houtakker proved that under some assumptions, the transitive axiom

guarantees the existence of a standard utility function generating the given choice. He

thereby gave the first rough characterization of the above kind. The argument was later on

completed by Uzawa (1959), Hurwicz and Uzawa (1971), and Stigum (1973).26

A simplified (sometimes called set-theoretic) version of the revealed preference

approach answers the second basic question by showing that the preferences naturally

generated by a choice have the appropriate properties. This approach originates in Uzawa

(1956), which itself is based on some lectures by Houtakker in Tokyo. Uzawas article, how-

ever, has been virtually unknown, or at least not well understood, so this approach is usually

attributed to Richter (1966,1971). Chapter 2 works out the ideas of Uzawa (1956) in more

detaiL We claim that with some minor modifications, Uzawas original approach is the most

appropriate way to analyze the characterization problem.

Both approaches have problems in establishing full continuity of the generated

preferences without additional assumptions. Within the revealed preference approach, the

strongest result so far without extra assumptions is by Hurwicz and Richter (1971) giving

only upper semicontinuous preferences. This is due to the insistence on complete

preferences. Weakening this not especially plausible requirement, one can establish a

characterization of the desired kind rather straightforwardly, as shown in Chapter 3.

In the result of Chapter 3, the generated preferences are not unique. For descriptive

25A converse result also holds. Indeed as shown by Kihlstrom, Mas-Colell and Sonnenschein
(1976) for a differentiable choice function, the axiom is intermediate between negative
definiteness and negative semidefiniteness of the Slutsky matrix (a simpler proof of this is in
Hildenbrand and Jerison (1988». The symmetry of the Slutsky matrix similarly corresponds
to going from the axiom to the transitive axiom of revealed preference. . _- - ~
26Thedistinction between the axiom and the strong axiom is mainly of interest when attention
is restricted to the price-generated budgets. Allowing all three-element sets as 'budgets', these
axioms are equivalent, as shown by Arrow (1957).



-15-

purposes there is indeed no need for such uniqueness.t? This (ordinal) uniqueness question

was, however, answered by Mas-Colell (1978a,b) and shown to be related to an income

Lipschitz condition on choice. Such conditions have had a central place in most work on the

second basic question.

In the thirties, the question of the status of transitivity (or as stated then, Slutsky

symmetry) was much discussed. More recently, after Sonnenschein's (1971) discovery that

transitivity of preferences is unnecessary for the existence of choice, and Mas-Colell's

(1974) discovery that the same is true for the existence of general equilibrium, interest in

demand theory without transitivity has reappeared. A central point in the discussion has

been the Kihlstrom, Mas-Colell, Sonnenschein, and Shafer (1976) conjecture. This says that

the choice consequences of the standard preferences assumptions except transitivityare

identical to the standard ones when the (single-valued) transitive axiom is replaced by the

(single-valued) axiom of revealed preference. Kim and Richter (1986) provided a counter-

example to this conjecture. In Chapter 3, we show that the counterexample stems from an

artificial restriction in the definition of choice continuity. Thus, with a more natural

definition of continuity, the conjecture is true.

As transitivity is a rationality property, why should one be interested in a theory without

it? As with other rationality notions, it might be invalid empirically - i.e. the actual behavior

of human beings need not be rational in this sense. Having less empirical content, a theory

without transitivity obviously stands better up to empirical tests. The loss of empirical

content is, however, undesirable. For descriptive purposes, one might instead consider

adding the law of demand to the theory without transitivity, since the law of demand is a

strong and usually empirically valid property fitting nicely into a theory without transitivity.

Another important development is Afriat's (1967a,1967b,1973,1976) finitary approach.. .
It is a natural development of the choice point of view. Afriat's starting point is that one

only has a finite number of observations .of choices in different price-generated situations,

Le. that one knows only a finite part of the whole demand correspondence. This simplifies

f
27As a basis for a normative interpersonal theory, however, preferences should ideally have
strong cardinal uniqueness properties, and be interpersonally comparable.
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considerably answering the second basic question,. by making continuity considerations

essentially trivial. It throws less light on the first basic question, however. The basic result

of Afriat (1967a) says that if a finite (as a set) demand correspondence satisfies the

transitive (or strong) axiom of revealed preference, then there exists a concave, continuous,

and monotone utility function that generates (an extension of) the demand correspondence.28

This might seem surprising at first, since it says that neither continuity, nor concavity has

any empirical content in this context. Continuity, however, is trivial by the assumed

finiteness. Neither can violations of quasiconcavity be detected, since upper level sets

cannot be discriminated from their convex hulls in this context.s? Thus, the only surprising

result is that full concavity is also without empirical content in this context.

Whereas concavity puts no additional restrictions on a finite demand correspondence, it

does for an infinite demand correspondence. Chapter 6 will give a full characterization of

the demand correspondences which can be represented by concave utility functions. This

builds on the characterization of the subdifferential of a convex function in Rockafellar

(1970), and the standard first-order conditions. The general idea in Chapter 6 is contained in

Afriat's work, but the extension from finite choices is new. In contrast, Kannai (1977) have

given three different characterizations of preferences which admits concave utility

representations, but these are more complicated than ours in terms of choice.

The finitary approach is essentially the revealed preference approach restricted to finite

choices. Of course, the finiteness restriction makes new results and types of arguments

available. These are of independent interest.

In both the finitary and the revealed preference approach one can easily introduce and

characterize more specific structure like homotheticity and separability. In the finitary

approach this is done by Afriat (1967b,1977,1981) in a series of articles. Varian (1983) and

. Afriat (1987) overview these results.

Empirical work in' demand theory usually assumes specific parametric functional forms..

With these functional forms, however, it is difficult to test for functional structure, like

28Indeed a slightly weaker form of the transitive axiom is sufficient.
29Withmore general budget sets ~or if ~ are allowed, one might violate quasiconcavity.
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separability, see Blackorby, Primont, and Russell (1978), Chapter 8.3. But the nonpara-

metric revealed preference conditions we introduce are easily testable. It thus seems

appropriate to first test for structure nonparametrically. Then as a second step one can

choose parametric forms, according to the results of the structural tests. A problem with

these nonparametric tests has been that they are does not say if the conditions are

approximately satisfied. In Chapter 4 and 5 I show how ane also can easily get approximate

nonparametric measures of the satisfaction of some of the interesting preference restrictions.t?

These measures are nonstochastic, .however. Stochastic nonparametric tests have been

developed by Varian (1985) and Epstein and Yatchew (1985).

6. TIlE STATUS OF TIlE NEOCLASSICAL THEORY OF TIlE INDIVIDUAL

Does rational choice theory stand up to the available evidence? It is easy to construct

social situations where each of the assumptions in Section 2 are systematically violated.

Cognitive psychologists like Tversky (1969) and Tversky and Kahnemann (1981) have

given empirical evidence of this. This was to be expected. An analogy from mathematics is

that standard arithmetics does not always give the best predictions of the results of our

calculations. In fact, even systematic violations do not matter much for a theory of rational

behavior, as long as they are unreflected. If, however, individuals persist in their habits after

having understood the theory and its implications, then such a normative theory is in

trouble.U

For a descriptive theory of individual behavior the evidence is less comforting.s- As the

main goal of the neoclassical research program was a descriptive theory of market behavior

30The problem remains, that these results concerns individual demand, while aile usually is
more interested in aggregate demand.

31Such is the status of the expected utility hypothesis, as discussed below in Section 9.!,..Itis also
not clear weather the referenc.e dependence investigated in Tversky and Kahnemaiul(-1991) is
irrational. If it is not, this dependence is also interesting normatively.

32Schick (1987) proposes to save rationality by loosening the extensionality assumption. Then,
however, the theory ends up as essentially without empirical content.
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based on rational choice theory, this might look devastating to this research program. This is,

not the case, however. The point is simple. -It is the theory of market demand as a whole

which should be tested empirically. Thus, as mentioned, if one can build a nontrivial theory

of market demand on the given individual constructs, objections on the individual level do

not matter much before one gets an alternative to the neoclassical approach.

Indeed, individual behavior might not be sufficiently regular to be suitable for expla-

nation. One might instead base a theory of market behavior on the behavior of larger groups

of individuals with the same relevant observable characteristics. The law of large numbers

makes regularity more plausible for such aggregates than for the individuals. This is the

basis for an alternative research pro.gramproposed by Hildenbrand (1989b).

The theory of rational choice outlined is essentially static, but individual choices usually

take place sequentially over time. This leads to problems of periodization and assigning the

appropriate period budget to the individual.

The general theory of rational choice in price-generated situations does not excel in

empirical content. Therefore ane looks for additional structure at be imposed, depending on

the particular context in question. In the next three sections, different such structures are

shortly discussed. The first section treats a hierarchy of restrictions on income effects, based

on the law of demand, going from homotheticity to the standard general theory. The second

treats separability notions, being presumably the most commonly imposed type of restriction

in demand theory. Finally, the expected utility hypothesis is discussed.P

7. THE LAW OF DEMAND

The law of demand says that there is a negative correlation between price and quantity

changes for fixed income. Thus it generalizes a downward sloping demand curve for fixed

income. Downward sloping demand curves was taken as intuitivelyevident by Walras and

Edgeworth. In a sense, the law of demand is a property one always wanted to prøve in~

33In Chapter 5, it is also shown how these types of restrictions interact.
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demand theory. Though usually assumed in applied work, it was not much discussed

theoretically until Shafer (1977) and Hildenbrand (1983). The reason was presumably that it

did not hold in standard theory as sketched above.v' One also had difficulties in finding

preference restrictions corresponding to the law of demand in the standard theory. The latter

problem was solved by Kannai (1989). His characterization is fairly complex. Chapter 4

below, however, gives an essentially trivial characterization of the law of demand in a

theory without transitivity.

The law of demand is slightly stronger than negative definiteness of the derivative of

demand - as the axiom of revealed preference is slightly stronger than negative definiteness

on the appropriate tangent plane. The latter is again equivalent to negative semidefiniteness

of the derivative of compensated demand, i.e. the Slutsky matrix.

A property related to the law of demand in the same way as the transitive (strong)

axiom relates to the axiom of revealed preference is called cyclical monotonicity. Cyclical

monotonicity corresponds to existence of a concave utility function of which demand is

simply the derivative. In that case, (Marshallian) consumer surplus is a concave utility

function. Cyclical monotonicity is equivalent to homotheticity and the transitive axiom. It is

easily characterized in terms of (transitive) preferences.J>

One can extend the law of demand (and cyclical monotonicity) to a hierarchy going

from homotheticity to the axiom (transitive axiom) of revealed preference, as is done in

Chapter 4. All these concepts are easily testable on finite data sets.36 Also the parameters of

these hierarchies give rise to natural measures of the perversity of income effects allowed

by a choice, or in other words, measures of the degree of homotheticity and the degree of

satisfaction of the law of demand.

34The classical counterexample to the law of demand. is the Giffen paradox.

35This was shown by Shafer (1977) who also introduced these notions. By tue. stated
equivalence, these results coincide with well-known ones.

36Provided of course thlft individual demand is made testable by the additional hypotheses
discussed earlier.
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8. SEPARABfi.,ITY

Separability is presumably the most important type of additional restrictions in demand

(and production) theory. Indeed even when setting up an applied demand system, one

usually more or less explicitly assumes both that demand in the period studied is

independent both of demand in earlier and later periods, as well as from the demand for

goods not captured by the model in the period studied. This follows directly from a

definition of separable choice first formulated by Lau (1969) and Pollak (1970): A demand

function (choice) is (weakly) decentralizable with respect to a subgroup of goods if the

subgroup demand only depends on. the subgroup budget. Decentralization ensures that the

subgroup revealed preference relations are well-defined relations. A slightly stronger

assumption is that they constitute preferences, i.e. are asymmetric. I call this the subgroup

axiom as it is a subgroup variant of the axiom of revealed preference. Chapter 5 below

shows that the subgroup axiom characterizes preference separability. As the. standard

revealed preference axiom, the subgroup axiom is easily testable on finite data sets. A non-

parametric type of testing for separability is better than the use of flexible functional forms.

Blackorby, Primont, and Russell (1978, Chapter 8.2) have shown that the use of flexible

functional forms provide problems when one wants to test for general separability.

The basic concept of separable preferences was introduced by Stigum (1967) and

Gorman (1968))7 It says that a group of goods is separable from the rest if the preferences

between the goods in the group is independent of the amount of goods held outside the

group. This was later slightly generalized by Bliss (1975).

An interesting result is presented by Gorman (1968). He shows that separability is

inherited under intersections, unions, differences, and symmetric differences of subgroups of

goods.

37The basic notion of separability goes further back to Sono (1945) and Leontief (1947a,b).
Assuming differentiability, they showed that separable utility corresponds to an independence
property of the marginal rate of substitution.
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When all subgroups in a partition are separable from their complement (in the partition)

we have complete separability (with respect to the partition). It gives the existence of an

additive utility representation, (shown by Debreu (1959b)). The above result by Gorman

reduces the task of checking for additive utility representations considerably.

Lensberg (1987) gives a full characterization of complete separability (with one

dimensional factor spaces) in terms of demand functions. His characterization incorporates a

solution to the integrability problem. In Chapter 7, Lensberg's characterization is generalized

to choice correspondences. The argument is also simplified. Furthermore it is shown that

additionally assuming concave utility corresponds to supposing that all goods are normal.

A stronger notion of separability is homothetic separability, which in addition to

separability requires that the subgroup choice is homothetic. In contrast to the standard

notion of separability, this notion is self-dual, i.e. preserved when the roles of goods and

(income normalized) prices are interchanged. It is shown by Blackorby, Primont, and

Russell (1978, Chapter 5) that homothetic separability in a partition is necessary and

sufficient for additive price aggregation, saying that there are well-behaved price and

quantity indexes for the groups involved.

Chapter 5 below introduces a notion of separability of choice which is simply a

subgroup version of the revealed preference axiom. This is simpler both intuitivelyand

computationally than previous nonparametric measures of separability, like the ones in

Varian (1983). Based on the I-axiom, a testable hierarchy going from separability to

homothetic separability is introduced. This hierarchy gives a nonparametric measure of

homothetic separability, given separability. When separability does not hold, this hierarchy

is of no use. Then subgroup versions of the measures in Jerison and Jerison (1989) are

presumably the way to go.



-22-

9. æOICE UNDER RISK AND EXPECTED UTILITY

A risky situation is one where one does not know which state of affairs will obtain at

the time of choosing how to act.38 The standard theory of choice under risk views indi-

viduals as acting to maximize expected utility, where the expected utility of an act is the

sum of the utility of its consequences in each state,39weighted by the probabilities of each

state. This idea goes back to Bernoulli, who proposed it in 1738 as a resolution to the so

called "St Petersburg paradox". The plausibility of the expected utility idea is hard to

ascertain directly. Hence it is interesting to characterize the expected utility hypothesis in

more accessible terms.

The expected utility hypothesis has been characterized in two different ways. The most

common one is in terms of preferences over probability distribution over consequences. The

first such characterization was done by von Neumann and Morgenstern (1947). The second

approach was initiated by Ramsey (1926) and developed by Savage (1954). Here, expected

utility is characterized in terms of preferences over acts, thus knowledge by the individual

of the probability distribution is not presupposed. Instead, conditions are given under which

(subjective) probabilities can be extracted from the preferences over acts. When these

conditions are satisfied, one can look upon an individual .as. if it has a utility function over

consequences and a probability distribution over states, with the expected utility property.

This is the more interesting approach, and is much more in the spirit of standard general

equilibrium framework of Debreu (1959). Savage's characterization does, however, deviate

from this framework by presupposing a convex (and hence infinite) set of states. The first

such characterization of expected utility in a finite state framework was by Stigum (1972).

Lensberg (1985) characterized an expected utility function with a strictly concave state

utility function in terms of demand functions associating acts to certain lotteries.40Chapter 7

38Weassume that the lacking knowledge is stochastic, Le. not caused by other rational agents,
and that the probability distribution is known.
39Acts are usually identified with functions from states to consequences.
4oTo avoid the integrability problem which one faces when going from choice to utility he
assumed only one basic good.
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simplifies (and slightly generalizes) Lensberg's argument by using a slightly different class

of lotteries. It shows that an expected utility function is characterized by separability and

diagonal invariance, saying that sure outcomes are always chosen at the same relative odds.

With a finite set of states, the state utility function is no longer cardinal, in contrast to

Savages case with a convex set of states. Also, the probabilities are generally no longer

unique, see Fishburn and Odlyzko (1989, Lemma 1).

Diagonal invariance is generalized by Hens (1989), who proceeded to give a characteri-

zation of expected utility in terms of preferences (a la Savage) with many goods, and with-

out my concavity assumption. In addition to the generalized diagonal invariance, and

separability (i.e. the sure things principle) the characterization involves state independence,

which is trivial in the case with only one good. The resulting characterization is simpler

than the one by Stigum (1972), mentioned above.

So much for characterizations of expected utility in terms of preferences or choice,

which outlines more clearly the implications of the expected utility hypothesis. How does

the hypothesis stand up to empirical tests? As discussed in Machina (1989b), the answer is

rather negative. Many alternatives to the expected utility hypothesis have therefore been

proposed. Machina outlines some of these and shows that especially the so called regret

theory accords fairly well with the available evidence.

What about expected utility as a hypothesis about rationality? Diagonal invariance does

not look very much like a rationality property: Why should one always choose sure

outcomes at the same odds, independent of the size of the sure outcome? Separability looks

more plausible when it comes to choice under risk. But Machina's (1989a) parental

inheritance example shows that also separability is counter intuitive in certain situations.

Hence it can hardly be seen as a rationality property under the choice under risk

interpretation either - at least not without 'narrowing down the interpretation.



-24-

10. AN OUTI..JNE OF THE REST OF TIllS ESSAY

Chapter 2 deals with the basic relationship between preferences and choice without

requiring any special structure of the choice and budget spaces. A quite general characteri-

zation is possible in this case. The following three chapters build on Chapter 2, but restrict

attention to the classical case where the choice space is the nonnegative orthant of consumer

space and budget sets are price-generated.

Chapter 3 gives a full characterization except that completeness is slightly weakened.

We also characterize similar preferences without transitivity.

Chapter 4 introduces two hierarchies. One goes from homotheticity via the law of

demand to the axiom of revealed preference. The other one goes from homotheticity to the

transitive axiom of revealed preference. These two hierarchies are easily characterized in

terms of preferences without and with transitivity respectively.

Chapter 5 introduces a subgroup version of the axiom of revealed preference and a

hierarchy based on it going from separability to homothetic separability. This hierarchy is

also are characterized in terms of preferences.

In Chapter 6 we characterize the demand correspondences stemming from concave

utility functions. We also give a simple proof of the existence of least concave utility

functions generating a given choice.

In Chapter 7 we characterize the demand correspondences generated by additively

separable utility functions. It also extends the characterization to the cases when the

component utility functions are concave and of the expected utility kind, respectively.

Finally, in Chapter 8 we characterize the demand correspondences generated by leximin

preferences.
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May 1986
Revised, May 1990

CHAPTER 2: THE BASIC THEORYo

1. INTRODUCI10N

Uzawa (1956)1 gives the first "modem" (i.e. non-analytic or set-theoretic) treatment of the

problem of characterizing corresponding classes of preferences, '.}J, and (rational) choices

(demand correspondences), <t. For such a characterization one needs to show, first that the

rational choices of any preferences in ~ belongs to (!, and secondly, that any choice in Q: is the

rational choice of some preferences in ~. Such a characterization answers the following two

questions: First, given some preference structure and assuming rationality, what structure of

behavior follows? Secondly, given some structure of behavior, what preference structure (if

any) can be attributed to an individual, presupposing again that he is rational? These are

central questions in the theory of individual demand.

Despite some obscurities in Uzawas paper, I claim that his approach, slightly modified, is

the most direct and suitable for this problem. This seems to have escaped notice by later

writers. This paper justifies the claim by extending and clarifying Uzawas approach.

The approach gives a unified treatment of the preference counterparts of three revealed

preference axioms: Arrow's (1957) basic axiom, the weakly transitive axiom, and the transitive

axiom. The two latter are variants of the rationality condition in Uzawa (1956) and the

congruence axiom in Richter (1966). The main resultis that on the domain of the choice, these

revealed preference axioms characterize classes of preferences which are (partially) recove-

rable from their rational choice correspondences in natural ways. The basic axiom result is

new, the weakly transitive axiom result is essentially the main result in Uzawa (1956), and the

transitive one corresponds to the central part of Richter (1971), Theorem 8.

°Thanks are due to Aanund Hylland, Terje Lensberg, and Lars Thorlund-Petersen for valuable
comments to this chapter.

I
1Though his ideas are largely based on Houtakker's lectures at Tokio University in 1955, see
Houtakker (1965).
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Arrow's basic axiom has some nice properties not shared by Richter's (1971) V-axiom.

First, the maximal and the best element definitions of rational choice are equivalent in any

theory where the basic axiom holds. This is a result in the theory in contrast to Kim and

Richter's (1986, Section 6) .Iillllil-result,based on the V-axiom. Secondly it has a nice extension

property, as any preferences extending the preferences corresponding to the basic axiom,

generates the same choice.? Thirdly, it is equivalent to what I call partial recoverability of

choice. Fourthly, it is self-dual. And finally, it is, under weak conditions, equivalent to a useful

notion (also from Arrow (1957», called inclusion invariance.

The transitive and the weakly transitive axioms are equivalent if choice is weakly single-

sectioned. This notion corresponds to indifference curves with no adjacent kinks and flats.

Thus, given this condition, nothing is gained by adding transitive indifference. This strengthens

the main result in Kim (1987), who shows a similar result for single-valued choice.

I also argue that the revealed preference axioms are not rationality properties of choice.

The main differences from the standard approach by Richter (1966,1971) are: First,

preferences are not required to be complete. Secondly, both a strong and a weak preference

relation are taken as basic concepts. Thirdly, a generalized notion of transitive closure is used

instead of the traditional one. Fourthly, rationalizability concepts are replaced by slightly

stronger notions of (partial) recoverable choice. Finally, the maximal element definition of

rational choice is used instead of the best element one. Of these modifications, only the fourth

is fully realized in Uzawa's article. The first change allows the naturally generated (revealed)

preferences to be preferences, which they are not generally if completeness is required. The

second makes the framework more appropriate for studying incomplete preferences. Thereby a

strengthened notion of preference asymmetry is intuitivelyevident. The revealed preference

axioms then simply express the required asymmetry of the appropriate generated (revealed).
preferences. The third change allows us to get the desired transitivity properties of the

generated (revealed) preferences. The last modification ensures that the revealed preference

axioms are equivalent to partial recoverability of choice (from naturally generated preferences,

2Appendix 1 discusses (ahd simplifies) a similar result due to Clark (1988) using the best element
definition of rational choice.
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Lemma 2), and to full recoverability on the domain of choice The latter result was derived by

Clark (1985, Theorem 3) in the weak and weakly transitive axiom cases. I found it, and the

nice underlying Lemma 2, however, independently by analyzing Uzawa's article - which

contains the "only if" part of Lemma 2 in the weakly transitive case treated there.

So far our main argument for the incomplete preference framework is that it is the natural

one for the revealed preference assumptions. In the next chapter it is furthermore shown that

the framework also gives simple and natural characterizations of demand theory.

The rest of the paper is organized as follows: Section 2 introduces some material on rela-

tions up to a natural weakened preference concept. Section 3 introduces the basic concepts of

revealed preference theory: The natural maps between preferences and choice, the revealed

preference axioms, and the partial recoverability notions. With the aid of these concepts the

main results are proven quite simply. Section 4 gives a short treatment of indirect preferences

and duality, and the conclusion discusses briefly the relevance of the results.

There are three appendices. The first shortly discusses Richter's (1971) V-axiom, based on

the best element definition of rational choice and the extension property in this case. The

second introduces the notion of inclusion invariance (from Arrow (1957)), and shows it to be

equivalent to the basic axiom under weak conditions. It also gives conditions under which the

V-axiom implies the basic axiom. The third treats completeness.
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2. RELATIONS

Relations (correspondences) are identified with their graphs. Hence binary relations are

sets of ordered pairs. Let Z and '1 be nonempty sets, called the goods and budget space,

respectively, with typical elements x and p. Given a relation B!;;;lX1>, the inverse of B,

B-1 = {(p,x) I (x,p) E B}. Also B(P) = {x] (x,p) E B} is the upper section or value of B at p,

B-1(x) = {p I (x,p) E B} is the lower section or inverse value of B at x, DB = {p IB(P) * Ø} is

the (effective) domain of B, and DB-I is the inverse domain or range of B.

A relation B is a budget correspondence over lX'P if B c lX'P, 1> = DB, and l = DB-I; and

a relation c is a choice (correspondence relative to B) if c !;;;B. In what follows, B is a fixed

budget correspondence over lX'P and c a choice. Lower case p's should be thought of as

situational parameters, and B(P) as the subset of l from which it is possible to choose in

situation p, read: the budget (at) p.3 Similarly, x E c(p) is read: x is a choice at p. A choice c

is single-valued if for all p and x,x' E c(P), X = x'.

Let P,Q, and R be relations on l (i.e. P,Q,R c fl = lXl). The composition of P and R,

PaR, is defined by x' E PoR(x) if there is x" E R(x) such that x' E P(x"). The following slight

generalization of the transitive closure of a relation is essential: The P-closure of R (with

respect to o), PR, is defined inductively by R !;;;PR and if Q !;;;PR, then PoQ,QoP c PR. Hence

PR is the smallest relation extending R and closed under composition with P. This follows as it

is easy to show by induction, first that the P-closure is P-closed (i.e.P(PR) !;;;PR), and secondly

that inclusion is preserved by P-closures (i.e. if R !;;;R', then PR !;;;PR').

A relation Q over l is reflexive if for all x, x E Q(x). A pair of relations (P,R) over l is

asymmetric if for all x and x', not both x' E P(x) and x E R(x'); and preferences 'over l if

p!;;;R !;;;l,R is reflexive, and (P,R) is asyrnmetric.s In the sequel (P,R) are preferences over l.

Thus P is a strict and R a weak preference relation.

3The terminology stems from the standard demand theory interpretation. There l = 'P = !RIO for a
finite set l0 and B is defined by x E B(p) if px $ 1. Here l0 is a interpreted as a set of goods and x
and p are their quantities and budgets (i.e. prices divided through income), respectively. (The
budgets are intuitively the values of B, but are identified with the corresponding arguments as B
is bijective.) Nothing in this article depends on these choices and interpretation, however.
4Thus preferences (P,R) only requires that p!;;;R-R-I in addition to the reflexivity of R.
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Preferences (P,R) is transitive if RoR!;;;; R, RoP!;;;;P, and PaR!;;;;P; weakly transitive if

POp!;;;;P, RoP!;;;;R, and PaR!;;;;R; and complete if for all x and x', x' E P(x) or x E R(x').5

Finally say that (P',R') extends (P,R) (or (P,R) is subpreferences of (P' ,R')) if P c P' and R!;;;;R'

(Denoted (P,R) !;;;;(P',R'»).

Remark 1: With both a strong and a weak preference relation as basic concepts, the above

(strengthened) asymmetry is a natural defining property of preferences, as it is a direct

consequence of the intended meaning of the preferences (P,R). For to say that a person both

prefers one situation to another, and at the same time finds the latter at least as good (in the

same sense - and seriously), indicates, I think, that one does not understand the language used.

"Properties following directly from the meaning of the terms involved", is one interpretation of

"rationality assumptions" in economics. Under this interpretation, completeness is hardly a

rationality assumption, in contrast to different transitivity notions (together with optimization -

if this is well-defined). Another way to justify the rationality label is through "money pump"

arguments. Again completeness is hardly justifiable.

Remark 2: It is easily verified by induction that tp,PR) and (Rp,RR) are the weakly transitive

and the transitive closure of (P,R), respectively. In the same manner one verifies that the

condition for these to be preferences can be simplified:

tp,R) is asymmetric if and only if (pp ,PR) is asymmetric.

(p,RR) is asymmetric if and only if (Rp,RR) is asymmetric.

In the first case both sides say that there are no preference cycle with at most one weak

relation, whereas in the latter case they say that there are no such cycle with at least one strict

one.

5This notion of completeness coincides with the traditional one, as it is easy to verify that (P ,R) is
complete if and only if P = R-R-l and for all x and x', x' E R(x) or x E R(x'). If preferences are
complete, transitivity and weak transitivity coincides with transitivity of R and P, respectively.
Without completeness, however, our notions are generally stronger.
A little aside: The old, problem (Richter (1971)p. 36) of characterizing complete but not
necessarily reflexive preferences, seems to be a "Scheinproblem". The point is that without a
reflexive relation (other than the identity) it is not even clear how to define completeness.
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3. TIIE GENERAL TIIEORY

As mentioned, the problem is to characterize corresponding classes of preferences ~ and

rational choices ~ This is done by means of natural maps between the two types of objects.

The first task is to introduce these maps, namely the rational choice map r generating a

rational choice (correspondence) from preferences (P,R) and natural revealed preference maps

n generating preferences from a choice (correspondence) c.

Given preferences, the natural way to express rational choice is to require preferences to

be maximized in any situation - if this is well-defined. This can be done in two ways: The

maximal element choice, cP, is defined by x E cP(P) if x E B(p), and for all x' E P(x), x' ~ B(p);

and the best element choice, cR, is defined by x E cR(p) if x E B(p), and for all x' E B(P),

X E R(x'). Corresponding to these two definitions, there are two natural maps from preferences

to choice. Only the first is used here, however, namely the rational choice map, y, defined by

'}'(P,R)= cp. Also say that '}'(P,R)is the rational choice, given (P,R).

To obtain the revealed preference maps, first define the preferences generated by c,

denoted (Pc,Rc), by x E pC(x') if there is p such that x E c(P) and x' E B(p)\c(p); and x E Rc(x')

if x = x' or there is p such that x E c(P) and x' E B(p). Define the direct, weakly transitive, and

transitive revealed preference maps, ox, px, and Rx, respectively, by 0x(c) = (PC,Rc),

Pnec) = (PCpc,RcRC),and Rn(c) = (Rcpc,RcRC).The latter terms are chosen as, by Remark 2,

Pn(c) is the smallest weakly transitive and Rn(c) the smallest transitive extension of the

preferences generated by c, 0n(c) = (pc,Rc).

The "preference" terminology is so far misleading, as preference asymmetry is not

ensured. The following revealed preference axioms justifies this in the respective cases: A

choice c satisfies the basic axiom if (PC,Rc)is asymmetric, the weakly transitive axiom if

(PCpc,RC)is asymmetric, and the transiti~e axiom if (pc,RcRC)is asymmetric.f By Remark 2,

6Thete are many variants of the revealed preference axioms, and terminology is not fixed. The
most well-known are the single-valued ones: A choice c satisfies the single-valued axiom if Rc is
antisymmetric and the single-valued transitive axiom if RCRcis antisymmetric, where a relation Q
is antisymmetric if for all x and x', x E Q(x') and x' E Q(x) implies that x = x'. The single-valued
(transitive) axiom is equivalent to single-valuedness and the (transitive) axiom. The first of these
is Samuelson's (1938) weak axiom, and the second Houtakker's (1950) strong axiom.
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these axioms are equivalent to the asymmetry of 0Jr(c), pJr(c), and RJr(c), respectively.

To obtain the desired characterization of classes of preferences ~ and choices <!: by means

of the natural maps, a necessary requirement is that any choice is recoverable as the rational

choice from its generated preferences. Hence, presupposing the rational choice map, say that a

choice c is z-recoverable if c = YOJr(c).More specifically one might say that c is recoverable if

Jr = OJr, weakly transitive recoverable if Jr = PJr, and transitively recoverable if Jr = RJr.

Analogously, preferences (P,R) is Jr-recoverable if Jro'}{P,R) = (P,R).? Choices and preferences

are partially z-recoverable if = is replaced by ~ in the above definitions.

The characterization theorem can now be stated. The first part expresses that, on its

domain, z-recoverability of choice is equivalent to the corresponding revealed preference

axiom. Thus the revealed preference axioms have a double role: Theyensure that the appro-

priate revealed preferences are preferences, and at the same time that, on its domain, choice is

recoverable from these preferences.

The second part says, first, that y and Jr are bijections between the classes ~ of Jr-

recoverable preferences (relative to the budget space 'P) and ft!C of ·Jr-recoverable choices c

restricted to De. Thus these classes are in a sense identical. Next, let ~R be the class of

partially z-recoverable preferences (relative to 'P). Clearly preferences in q::>;Rextend the ones

in ~. More interestingly, any extension of some preferences in ~ generate the same choice

as these, at least on the domain of choice. Hence, given some preferences (P,R) in ~R'

Jro'}{P,R) is the observationally relevant subpreferencesof (P,R), relative to 'P.

A diagram of classes and maps (arrows) is commutative if all maps from one class into

another (or the same) class obtained by the composition of maps in the diagram are equal.

More formally the result is:

"7More abstractly, if they hold universally, these definitions require the revealed preference maps to
be right and left inverses to the rational choice map, respectively.
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CHARACfERIZA TION THEOREM: For each n:

1) On De, n(c) is asymmetric if and only if c = no/'(c).

2) The following diagram is commutative:

Here l is an arbitrary extension, !the restriction map, and t the identity map on a class.

Roughly, the result says that the basic axiom characterizes (partially) on-recoverable

preferences, the weakly transitive axiom characterizes (partially) pz-recoverable preferences,

and the transitive axiom characterizes (partially) Rn-recoverable preferences.

Instead of "shrinking" preferences (P,R) down to their observational part, no/'(P,R), they

have usually been extended to obtain completeness. Then observationally irrelevant infor-

mation (relative to the budget space, 1') is generally built into the preferences. In this abstract

case, however, completeness imposes no extra restrictions on choice. In the transitive case, the

conceptually somewhat complex partial recoverability notion can be replaced by the simpler

completeness in the characterization. (The last two statements are justified in Appendix 3).

The theorem will now be verified. First, n-recoverability is trivially preserved by both the

rational choice and the revealed preference maps (i.e. if (P,R) is z-recoverable, then /'(P,R) is

n-recov~rable; and for all n, if c is z-recoverable, then n(c) is z-recoverable). This verifies the

lower part of the diagram.

It is well-known that the rational choice map reverses inclusions on the P-component,.
which immediately gives that it also preserves partial z-reeoverability.f

P P'LEMMA 1: If P' ~ P, then c ~ c .

SIn contrast, inclusions are preserved on the R-component.
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Proof: Let P' ~ P and x E cp(p). Then x E B(p). Let x' E P'(x). Then by assumption, x' E P(x).
P . p'

Hence, since x E c (p), x' e: B(P), so x E C (P). o

Partial z-recoverability of choice is equivalent to the revealed preference axioms. E.g., in

the basic axiom case, c ~ c
pe

is equivalent to the asymmetry of (pe,Re). Or in terms of the

revealed preference and rational choice mappings:

LEMMA 2: For all z: c ~ '}'tln(c) if and only if n(c) is asymmetric.

Proof: Basic axiom: For the "only if" part, let x' E pe(x) and x E Re(x'). Then there is p such

that x E c(p) and x' E B(P). Hence by assumption x E cP\p). Clearly x E B(p), and since

x' E pe(x), x' e: B(P), contradiction. Conversely, assume x E c (P)\cpc (p). Then there is x' E pe(x)

such that x' E B(p). But then x E Re(x'), contradicting asymmetry.

Weakly transitive axiom: Substitute PCpefor pe in the basic axiom case proof.

Transitive axiom: Let x' E pe(x") and x" E ReRe(x'). Then there is x E Re(x') such that

x' E Repe(x). Next, substitute Repe for pe in the basic axiom case proof. o

We now verify the converse of partial recoverability on the domain of choice. Together

with Lemma 2, this establishes the first part of the theorem:

LEMMA 3: On De, for allz: '}'tln(c)c c.

Proof: As r reverses inclusions, the result follows from the fact that 0nCc)~ pn(c) ~ Rn(c) if

one can show that yo0n{c) ~ c. Assume not, and let x E cPC(p)\c(p), where p E De. Let x' E c(P).

Then since x E B(p), x' E pe(x), contradicting x E cpc(p). o

Finally we have an extension property, saying that any preferences extending the

preferences generated by a choice rationalize it - at least on its domain.?

f

9Appendix 1 states a variant of this result using the best element definition of rational choice.
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LEMMA 4: On Dc, if (pc,Re) ~ (P,R), then c = cp.

Proof: On De, it follows directly from Lemmas 1 and 3 that cP ~ c. For the converse, assume

that x E c(p)\ct (P). Then there is x' E P(x)nB(P). Hence x E Re(x'), and therefore since Rc ~ R,

also x E R(x'), contradicting preference asymmetry. o

Together with Lemma 3 and the corollary to Lemma 1, this verifies the upper part of the

diagram, and the theorem is proved.

So far, the R-part of partial °z-rec overabilit y has not been used. I show that it implies that

the maximal and best element choices are equal, by first establishing that preference

asymmetry implies cR ~ cP, and next that the R-part of partial on-recoverability is equivalent to

cP c cR:

PRoposmON 1: 1) cR ~ cP

2) cP c cR if and only if RJ> ~ R

Proof: 1): Let x E cR(p). Then x E B(p). Let x' E P(x) and assume x' E B(p). Since x E cR(p),

then x E R(x'), contradicting asymmetry. Hence x' e B(p), so x E cp(p).

2): For the "if' part, let x E cP(p) and x' E B(p). Then x E B(p) and x E ReP(x'). Hence by

assumption x E R(x'), thus x E cR(p). Conversely, let x' E ReP(x). Then there is p such that

x' E cP(p) and x E B(p). Hence by assumption x' E cR(p), so by the definition of cR, x' E R(x).o

It follows from the characterization theorem that the maximal and the best element

definitions of rational choice are equal in any theory where the basic axiom holds.t? Next, the

lOKim and Richter (1986) use the weaker V-axiom instead of the axiom. Then the equality between
the maximal and the best element definitions of rational choice is no longer generally valid. They
get a meta-result corresponding to Proposition 1 in their Section 6, however, by exhibiting a
correspondence between proofs in the frameworks based on the maximal and the best element
definition, respectively, by mapping R on p* = l-R-l and P on R* = l-P-l. The core of their
result is two convexity concepts of preferences which are carried into each other by these maps,
together with the fact thåt completeness is sufficient to guarantee the equivalence between the
two definitions of rational choice.
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weakly transitive and the transitive axioms are equivalent if a choice c is not many-to-many

(i.e. if for all p, p', x E c(p), and x' E C(p')IIC(p),P = p' or x = x'), expressing that indifference

curves have no adjacent kinks and flats:

PROPosmON 2: If a choice is satisfies the weakly transitive axiom and is not many-to-many,

then it satisfies the transitive axiom.

Proof: To show that (RcpC,RcRC)is asymmetric, i.e. that there are no revealed preference cycles

with at least one strict relation, pc, by induction on the number of weak relations, Rc.

Base case: Here there is one weak relation only. This is the weakly transitive axiom.

Induction case: Assume inductively that there are no such cycle with less than n weak

relations. Such a cycle with n weak:relations can then be decomposed as: x E pc(x'), x' E Q(x")

and x" E Rc(x), where Q contains n-l weak:relations. Then there is pli such that x" E C(p"),and

x E B(P"). If x eo ctp"), then x" E pc(x), and the result follows by the induction assumption.

Otherwise, x E ctp"). Then since c is not many-to-many, x = x" or p = pli. In the first case,

x E pc(x') and x' E Q(x). In the second case, x" E pc(x') and x' E Q(x"). In both cases the result

follows by the induction assumption. o

Trivially, the same result follows if choice is single-valued (or inversely single-valued).

Hence an analogy of the main result in Kim (1987), namely that in the single-valued case, the

choice consequences of partially px- and Rn-recoverable preferences are identical, is an

obvious corollary to the characterization theorem)1

The revealed preference axioms are often looked upon as rationality properties. If ratio-

nality is explained as in Remark 1, this is unwarranted, as preference completeness seems

11Even in the single-valued case, this result improves the one in Kim (1987) mentioned in the
introduction. He uses two other transitivity notions which are less intuitive and intuitively
somewhat stronger than weak: transitivity: Preferences (P,R) is semi-transitive if RoPoP ~ P and
PoPoR ~ p, and pseudo-transitive if PoRoP ~ P. He also assumes that P = R-R-1. To show that
weak:transitivity follows from these notions, however, needs some extra assumptions (to establish
PoR ~ R and RoP ~ R). In both cases, completeness clearly suffices. In the semi-transitive case, if
l is a topological spacer open lower P-sections and local nonsatiation (i.e. for all x, x E clP(x)
where el denotes topological closure) suffices, since then P ~ PoP.
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necessary to justify them. For the three revealed preference axioms in the text, this follows

from the discussion in Appendix 3. On the surface, the V-axiom is different, as it follows

directly from the definitions involved. One of these, however, is the best element definition of

rational choice, which roughly only makes sense if preferences are complete. Thus

completeness is again presupposed.

4. DUALITY AND INDIRECf PREFERENCES

Indirect preferences are preferences over the space of budgets 'P. The notation chosen

makes the duality between direct and indirect preferences transparent. Definitions concerning

indirect preferences are structurally identical to the direct ones, but interpretations differ. The

basic idea is from Richter (1979). The theory presented is, however, stated in terms of prefe-

rences instead of utility. By Lemma 2, our theory gets more content as our revealed preference

axioms are exact conditions for analogies of his notions of partial rationalization.

In the following, (W,V) is indirect preferences. The expression p' E W(p) is interpreted as:

The budget p' is worse than p. Similarly p' E V(p) is interpreted as: p' is at least as bad as p.

The minimal element choice, cW, is defined by p E cW(x) if pE B-I(x) and for all p' E W(p)

p' e B-I(x), the worst element choice, cV, is defined by p E CVex) if p E B-I(x) and for all

p' E B-I(x), pE V(p'), and the indirect rational choice map, -y'<, from indirect preferences to

inverse choices, is defined by 'f(W,V) = cW.

The indirect preferences generated by c = c-l, (We,Ve), is defined by p Ewc(P') if there

is x such that p E c-l(x) and p' E B-I(x)\c-l(x), and p E VC(p') if P = p' or there is x such that

p E c-l(x) and p' E B-I(x). The revealed indirect preference maps 01r*, W 1r*, and V1r* are

defined in the obvious way.

The setup is completely dual to the one of usual revealed preference theory. Thus proofs

and results immediately carryover back and forth by replacing signs in the one line below

with the corresponding ones in the other (also in composites like cPCand Rn):
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Many choice properties are self-dual, e.g. weakly single-sectioned. The next lemma shows

that our revealed preference axioms are self-dual:

LEMMA 5: For all z, re(c) is asymmetric if and only if re*(c-l) is asymmetric.

Proof: I only prove the basic axiom case, the other cases are similar. Also I only prove the

"only if' part, as the converse is dual. Let p' E Weep) and p E Veep'). Then there is x' such that

p' E c-1(x') and p E B-l(x')\c-1(x') and there is x such that p E c-l(x) and p' E B-l(x). Hence

x' E c(p'), x' E B(p)\c(p), x E c(P), and x E B(p'). But then x' E Rc(x) and x E pc(x'), contra-

dicting the asymmetry of re(c). o

The single-valued axioms, on the other hand, are not self-dual. Their duals have been

treated by Sakai (1977). Note, however, that by the present duality mappings, there are no

. need for a separate theory characterizing indirect preferences, as the structure of this dual

theory is the same as that of the primal one.

5. CONCLUDING REMARKS

The abstract nature of the theory presented makes it quite generally applicable, and at the

same time quite "airy". What it does is to provides a conceptual framework for more specific

theories, i.e. ones applicable only in narrower contexts, where more structure is introduced into

the theory. A nice feature of the theory is then that extensions of the characterization theorem

are obtained simply by showing that the additional corresponding notions of preferences and

choice are carried into each other under the rational choice and the appropriate revealed

preference map.

Which additional properties hold in the theory are of course dependent upon the particular

interpretation one has in ~mindwhich implies a choice of the choice space l, the budget space
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1', and the budget correspondence B. The following chapters impose additional restrictions

within the standard demand theory framework of Footnote 2.

APPENDIX 1:

TIIE V-AXIOM AND TIIE BEST ELEMENT DEFINITION OF RATIONAL CHOICE

The characterization theorem needs the maximal element definition of rational choice,

except in the transitive case. In the nontransitive case, the analog recoverability property using

the best element definition of rational choice is Richters (1971) V-axiom: cRc ~ c. (The

converse c ~ cRc is trivial). The V-axiom is weaker than the basic axiom, even for single-

valued choice. If, however, the values of the budget correspondence are additionally closed

under intersections, the V-axiom implies the basic axiom, as shown in Appendix 2. In contrast

to the basic axiom, the V-axiom is not self-dual, as shown in Example 1.

In the weakly transitive case, the analogy of the V-axiom is (*): cR' ~ c, where R' = peRC.

In general, (*) does not imply the basic axiom. This follows as (*) is satisfied in Example 1

below, If choice is single-valued, however, (*) implies the weakly transitive axiom, as is easily

shown. One might believe that (*) characterizes complete, weakly transitive preferences, in

analogy with Richter's (1971) result, that the V-axiom characterizes complete preferences. This

is not generally the case, however, as is verified in Example 2 below.

With the best element definition of rational choice, the extension property is the fol-

lowing, saying that preferences extending the revealed preferences generate the same choice, at

least on the domain of choice: 12

LEMMA 4': If (P,R) is preferences extending (PC,Rc), then on De, c = eR.

12This is a strenghtening of the interesting part of the main result in Clark (1988). Clark's article is
quite similar to parts of the present work, except that he uses the best element definition of
rational choice instead of'the maximal element one. The strengthening is that neither is the axiom
needed, nor need the strict preference relation be the asymmetric part of the weak one.
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Conversely, assume that x E cR(p)\c(p), and let x' E c(p). Then x' E pc(x) !::P(x). But since

x E cR(p), x E R(x'), contradicting preference asymmetry. o

As this result does not use the basic axiom, one might believe that it can be applied in a

theory based on the V-axiom also. There, however, one use Rc\(Rc)-l instead of pc as a strict

preference relation. Without the basic axiom generally only Rc\(Rc)-l !::pc, which does not

ensure that extensions of (RC\(Rc)-l,Rc) extend (pc,Rc). Hence one really need the basic axiom

for the extension property also in this case.

Example 1: The V-axiom is not self-dual: Let l = {O,1,2} and 'P = {O,l}, and let B and c be

given by: B(O) = {0,1,2}, c(O) = {1,2}, and B(l) = c(l) = {O,l}. One easily verifies that the V-

basic axiom holds at the six possible combinations in lx'P. Also, O!:: CV' (0)\c(0), where

V' = Vc, hence the dual of the V-axiom is false. Clearly also the basic axiom is violated here.

Example 2: Counterexample to: If (P,R) is weakly (semi- or pseudo-) transitive and complete

with single-valued rational choice, then (*) holds for cR: Let 1= {0,1,2} and 'P= {O',I',2'}. Let

R be reflexive, O E R(2), 2 E R(l), and 1 E R(O). Furthermore let B(O') = {O,l}, B(l') = {1,2},

and B(2') = {0,2}. Then O l!: cR(O'), 2 E cR(1'), O E cR(2'), and 2 l!: cR(2'). Hence O E P~(2) and

2 E RCR(I). Thus (0,0') violates (*) for cR, but all the assumptions are satisfied.
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APPENDIX 2: INCLUSION !NVARlANCE

Under weak assumptions, the basic axiom is characterized by another interesting choice

notion (due to Arrow (1957», called inclusion invariance: A choice c is downward inclusion

invariant (II!) if B(p') k B(p) implies c(P)IIB(p') k c(p'), it is upward inclusion invariant (Ill) if

B(P') k B(P) and c(p)rtB(P') ;#: ø implies c(p') k c(p), and it is inclusion invariant (Il) if it is both

downward and upward inclusion invariant)3 14 This says that if the budget at p' is contained in

the budget at p, then the choices at p' are exactly the choices at p contained in the budget at p',

provided any such exists.

To verify that inclusion invariance is equivalent to the basic axiom, I first show it to

follow from on-recoverability (and hence of the basic axiom on the domain, by the first part of

the characterization theorem). Next, with sufficiently many budgets, the basic axiom follows

from inclusion invariance (The proofs are slight generalizations of ones by Arrow):

LEMMA 6: A on-recoverable choice is inclusion invariant.

Proof: Let B(p') c B(p) and x E c(p)rtB(p').

We first show that x E c(p'). By recoverability, first x E cpc(p), and secondly, it is sufficient to

show that x E cPC(P'). If not, since x E B(P'), there is x' E pc(x)rtB(p'). But then x' E B(P),

contradicting x E cPc(p). Secondly, let x' E c(p'). To show that x' E c(p). If not, then x E pc(x').

Then, since by recoverability x' E cPc(p'), it follows that x e B(P'), contradiction. o

13The downward notion is due to Nash ~1950). It is also called independence of irrelevant alter-
natives, condition a, or Chernoffs axiom. If choice is at most single-valued, it implies full
inclusion invariance. In contrast to the revealed preference axioms above (including the V-
axiom), downward inclusion invariance is a rationality property of choice, under the interpretation
of Remark 1, as it easily follows from the maximal element definition of rational choice alone
(given preferences). The upward notion is also called condition {3+. It is easily verified by a
counterexample that this is not a rationality property in the above sense.

14If B is defined over lR~xlR~by x E B(p) if px $ 1, then B(p') k B(p) is equivalent to p' ~ p, thus on
"vertical" budgets the duål of downward inclusion invariance (and hence by the following lemma,
the axiom) implies that choice is not single-valued.
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LEMMA 7: Let the values of B be closed under intersections (with at least two elements).

Then an inclusion invariant choice satisfies the basic axiom)5

Proof: Assume x' E pc(x) and x E Rc(x'). Then there is p' such that x' E ctp') and x E B(p')\c(p')

and there is p such that x E c(p) and x' E B(P). Let B(p") = B(p)IIB(P'). Then x,x' E B(p"), so

by downward inclusion invariance, x,x' E c(p"). But as x' E c(P')IIB(p"), by upward inclusion

invariance, c(p") ~ ctp'). Hence x E ctp'), contradiction. o

As it is well-known that the V-axiom implies downward inclusion invariance, the

relationship between the different primal "variants" of the basic axiom are in general as

follows:

A ~ PRV L-

P
II!

i /
~II

Here A stands for the basic axiom, V for the V-axiom, PR for partial recoverability of

choice, and the different arrows are implications with the following meaning:

-+: holds in general.

~: holds on the domain of c.

--I: holds if the values of B are closed under intersections.

=}: holds if c is single-valued.

Hence if the values of B are closed under intersections and choice is single-valued, the V-

axiom is equivalent to the basic axiom.

15Despite Arrows argument, Lemma 7 does not seem to be well-known. E.g. Suzumura (1983)
denies it, and provides a tounterexample (Example 5) violating the closure property. This closure
property, however, seems quite natural in his social choice framework.
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APPENDIX 3: COMPLETENESS

That completeness imposes no extra restrictions on choice is, in our abstract cases, a

consequence of the characterization theorem and the following essentially well-known result:16

PREFERENCE EXTENSION THEOREM:

1) Any preferences have a complete extension.

2) Any weakly transitive preferences have a complete weakly transitive extension.

3) Any transitive preferences have a complete transitive extension.

Proof: 1): Trivial by adding x' E R(x) at "undecided" pairs.

2): Let (P,R) be weakly transitive preferences and R = ..f2\P-l. Then (P,R) is a complete

extension of (P,R). It remains to show that (P,R) is weakly transitive. It suffices to show that

PoR s; R, as RoP c R is similar. Let x" E P(x') and x' E R(x). Assume x" I!: R(x). Then

X E P(x"). Hence since (P,R) is weakly transitive, x E P(x'), contradiction.

3): This is a variant of the order extension theorem. It is proved by applying Zorn's lemma: Let

(P,R) be transitive preferences, $ the set of transitive preferences (over 1), extending (P,R) and

ordered by inclusion. Let {(PhRi) }I a linearily ordered subset of $. Obviously, (Uli,uIRi) is an

upper bound for {(Pi,RD}r It is also straightforward to check that (Uli,uIRi) is transitive
A A • •

preferences, so (Uli,uIRi) E ~. Hence by Zorn's lemma, ~ has a maximal element, (P ,R ). It

remains to show that (P·,R·) is complete. If not, there are x' and x" such that no R· relation

holds between them. Extend (P·,R·) to (p°,Ro) by (I want x" E RO(x'), the rest ensures

transitivity):

If x" E R·(x") and x' E R·(x), then x" E RO(x).

If x" E p·(x") and x' E R·(x), then x'" E RO(x).

If x" E R·(x") and' x' E p·(x), then X"'.E RO(x).

By construction (po ,R 0) is transitive, and it is also easy to check that it is asymmetric. Hence

(po ,R0) E $, contradicting the maximality of (p. ,R.). o

------___________ I

16The next chapter shows that (iii) is wrong if continuity is added.
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It follows that one can add completeness to the preference properties on the top left of the

diagram in the characterization theorem. In the transitive case, partial recoverability can be

dropped, giving a variant of Richter (1971), Theorem 8. This is a consequence of the following

trivial result:

LEMMA 8: 1) If (P,R) is complete, then RePk R.

2) If (P,R) is complete and transitive, then peP c P.

Proof: 1): Assume x E ReP(xl)\R.(x').Then there is p such that x E cP(P) and x' E B(P), and by

completeness, x' E P(x), contradicting the definition of cp.

2): Assume x E P~ (X')\P(X'). Then there is p such that x E cP(p) and x' E B(p)\,,t (p). Hence

there is x" E P(x')nB(p). By completeness, x' E R(x), so by transitivity, x" E P(x), contradicting

the definition of cp. o

Together with Proposition 1, (i) shows that the two definitions of rational choice are also

identical if preferences are complete.

Remark 3: Having thus, in the transitive axiom case, obtained complete, transitive preferences

rationalizing a given choice, there might still be no utility function doing the same. But the

reason for this is a rather trivial one, namely that there are too few reals (i.e. that there are no

injective order preserving mapping from the preferences to the reals with the standard

orderings).

Remark 4: As is well-known, completeness is not needed for equilibrium existence results. For

the general possibility of inferring preferences from choices the situation is slightly different.

The reason is that the basic axiom corresponds to partial recoverability of preferences, and as

seen, some measure of completeness (and transitivity) seems involved in this.
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CHAPfER 3: PREFERENCES, CHOICE AND CONTINUITYo

1. INlRODUCfION

A classical problem in individual demand theory is the full characterization of the choice

consequences of standard preferences (i.e. preferences which are complete, transitive, convex,

continuous, and monotone) on price generated budgets. This problem can naturally be divided

into two subproblems: First, to derive the appropriate properties of choice from the standard

preferences, presupposing rationality. Secondly, to construct standard preferences generating

the choice from a choice with these properties. This problem is so far unsolved.

Gorman (1971) shows that standard preferences are underdetermined by the choices they

generate, by showing that different preferences might generate the same choice. He then

proceeded to give conditions under which they are fully determined. We instead characterize

the class of preferences where differences have behavioral content. Thus whereas Gorman in a

sense starts with the standard preference properties, we start with the "standard" choice

properties, and determines the preference properties of the revealed preference relations. As

should not be very surprising, this allows a full characterization. The weakening involved on

the preference side is simply to replace completeness with what I call partial recoverability. As

completeness is not too plausible intuitively, this should not worry much. Weather these

"behavioral" preferences also have a complete, transitive, and continuous extension, seems to

be an open question. If so, one would have a solution to the main problem, although without

preference uniqueness.

Compared to Hurwicz and Richter t1971), the characterization involves full preference

continuity. We define 'preference continu~ty in terms of the ~ preference relation (as two

arguments by Uzawa (1959) and Stigum (1973) establish that the transitive strict revealed

0Thanks are due to Michael Jerison, Terje Lensberg, Bernt Stigum, and Lars Thorlund-Petersen
for valuable comments to this chapter.
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preference relation is open), and using the maximal element definition of rational choice. The

equivalence between different versions of preference concepts generally fails in the absence of

completeness. Therefore care is needed to choose appropriate concepts to get the result.

However, the characterization additionally involves preference, which corresponds to

inverse singlevaluedness (differentiability) of the choice function.

There is no need for any Lipschitz condition. One reason for this is the absence of any

(complete) preference uniqueness requirements in the above problem. That the Lipschitz

condition is related to the uniqueness question was noted by Mas-Colell (1977a,b). He

proceeded to give a characterization with such a uniqueness requirement. This characterization

also involves a Lipschitz condition. on preferences. Our characterization without this unique-

ness requirement is much simpler, however. This is nice, as uniqueness does not seem crucial,

at least for descriptive purposes.

An even simpler characterization is possible if transitivity is dropped. Then we define

preference continuity in terms of the ~ preference relation, as it is straightforward to prove

that the weak: (direct) revealed preference relation is closed.! Here, strict monotonicity arid

smoothness are superfluous in the characterization. The characterization, together with an

extension result providing completeness, is essentially a simplified variant of some results in

Kim and Richter (1986). The main simplification is that the desired preference properties are

established directly for the naturally generated revealed preferences.

A corollary treating single-valued choice shows that the Kihlstrom, Mas-Colell, Sonnen-

schein, and Schafer (1976) conjecture (saying that replacing the single-valued transitive axiom

of revealed preference by the single-valued axiom corresponds to removing transitivity of

preference) is correct.2 But what about Kim and Richter's (1986) counterexample to this

conjecture? They somewhat unnaturally restrict continuity of the choice function to the interior.
of the budget space, i.e. excludes zero prices. When this restriction is lifted, the counter-

example vanishes. Indeed without this restriction continuity and the single-valued axiom imply

the C-axiom they use to prove a similar result, as shown in an appendix.

lHence, it is natural to use the best element definition of rational choice.
2Their conjecture omits tn obvious "convexity" property of choice, i.e. that each interior bundle
is chosen at some budget. R. John's (unpublished) counterexample is due to this omission.
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Some additional restricting on the behavior at the boundary of the choice space is also

needed. We assume that indifference surfaces are tangent to the boundary. It corresponds to

choices always being in the interior of the choice space. This assumption, however, can be

weakened considerably, as will be indicated.

2. CONæPfS ANDNOTATION

In the following, let K = 'P= IR!O, where 10 is finite. Also, let x and p be elements of l and

'P, respectively. Under the standard interpretation, 10, l, and 'P are the sets of goods, quantities

and budgets (i.e. income normalized prizes), respectively. Define the budget, interior budget,

and hyperplane budget correspondences on lx'P, B, b, and H, respectively, by x E B(p) if

px ~ 1, X E b(P) if px < 1, and x E H(p) if px = 1. The budget correspondence has convex and

nonempty sections, is closed" and lower hemicontinuous.

We introduce some preference concepts. Preferences (P,R) are monotone if for all x and

x' ;) x, x' E P(x), strictly monotone if for all x and x' > x, x' E P(x), convex if for all finite sets

S, {xs}s' and x E [xs]s' there is SES such that x E R(xs), strictly convex if for all finite sets S,

{xs}s' and x E [xs]s\{xs}s' there is SES such that

x E P(xs)' P-open if P is open in l, R-closed if R

is closed, smooth (in l) if for all x E intl, x', and

and Richter (1986) and says that a point on a line

is at least as good as one end point, see Figure 1.

I

I
I
I
I
I
I
I

x", <x,x']nR(x) = <x,x"]nR(x) = ø implies that

<x' ,x"> k R-l(x)), and satisfies boundary

tangency (of indifference surfaces) if for all

x e: inU\){O} and p s B-l(x)nint'P, P(x)nB(p) is

nonempty.3 The convexity concept is fr~m Kim

Figure 1

3[xJS is the closed polyhedron generated by the points {x.}S' Also> and> are the standard
strict Euclidian orders defined by a strict inequality in all and at least one component.
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The strict convexity concept in the same spirit is new. Both convexity concepts imply the

standard ones if preferences are transitive and are implied by these if preferences are complete.

Smoothness says that a given (interior) point are at least as good as any line between points on

lines through the given point which are not as good as the given point. A typical violation is

shown in Figure 2. Boundary tangency is illustrated in Figure 3. Convexity, strict convexity,

smoothness, and boundary tangency are preserved under preference extensions.
~ ~

I
I
I
I
I X

,,,
\
\
\
\
\,
",'....

~~~--~---
~------------------~~

Figure2 Figure3
Next comes the corresponding choice concepts. Say that a choice c satisfies the budget

identity if c c H, has a large domain if int1' k De, large range if intI c Dc-I, large domains if it

has a large domain and a large range, interior domain if De k int1', interior range if

Dc-l k intl,4 interior domains if it has interior domain and interior range, is single-valued if

for all p and x,x' E c(p), X = x', inversely single-valued (i.e. differentiable) if c-l is single-

valued, and one-to-one (or single-sectioned) if it is both single-valued and inversely single-

valued.

Departing slightly from the terminology of the preceding chapter, a choice c is recoverable
if RC d .. I bl if p' h ,. RCp1 C = C an transitive y recovera el c = c, were P = c.

The characterizations build on the characterization in Chapter 2, relating the partial

recoverability notions to each other and axioms of revealed preference over abstract goods and

budget spaces. There the characterizations are restricted to the domain of choice. The

following result supplements it:

+This corresponds to essensiality. Thus essensiality is dual to the strengthening of monotonicity
to strict monotonicity.



-48-

LEMMA 1: If the choice c is closed, has a large domain, and satisfies the budget identity and

RC Rp<: Pc
the basic axiom, then Dc ,Dc ~ Dc ~ Dc.

Proof: (Figure 4) I first show that DcPC~ Dc. Let c(p) be empty and x E B(P). As c has a large

domain, p eo int'P. Let I be the positive compo-

nents of p (in Figure 4, 1= {2,3}), x' = x+e_1'

and pt = tp+ (1-t)/(e_Ix~I)e_r Then for t E <~,1>,

pt E int'P and x E btp'). Let xt E c(pt). Then by the

budget identity, thatxt E pc(x). Assume

{xt}<~,l> is bounded and let XYX, subsequential-

ly as t-+l. Then, since c is closed, x E c(p),

contradiction. Hence {xt}<~,l> is unbounded, so

there is t sufficiently near 1 such that xt E B(P).

Hence cPC(p) is empty.

I

I•,'."
, I ,
, I ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

.r. ,, ", x "
•••• )t........... I -, ...

or ........ I "
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.:

The rest is direct, using the basic axiom in the DcRC case. o
Figure 4

3. RESULTS

The main result without transitivity is simplest, and stated first:

THEOREM 1: 1) If preferences (P,R) is monotone, R-closed, convex, partially recoverable,

and satisfies boundary tangency, then the best element choice, cR, is closed, has large domains,

interior range, and satisfies the budget identity and the basic axiom.

2) If a choice c is closed, has large domains, interior range, and satisfies the budget identity

and the basic axiom, then the generated preferences, (pc,Rc), is monotone, R-closed, convex,

partially recoverable, satisfies boundary tangency, and generates c.
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Proof: 1): Closed: Let xn E cR(pn) and (xn,Pn)-+(x,p). Then Xn E B(Pn)' so since B is closed,

x E B(P). Let x' E B(p). Then, since B is lower hemicontinuous, there are ~-+x' such that

x~ E B(Pn). Hence, since Xn E cR(Pn), Xn E R(x~). Since R is closed, x E R(x'), so X E cR(p).

Budget identity: Assume x E cR(p)r\b(P). Then there is x' E B(p) such that x' » x. Then

x E R(x'). But by monotonicity, x' E P(x), contradiction.

Large domain: Let pE int'P. Then B(p) is compact. Let Rp(x) = R(x)r\B(P). Then, since R(x) is

closed, Rp(x) is compact. Let x E [xs]s' where x, E B(P) for all SES and S is finite. Then

x E B(p) and by convexity there is SES such that x E R(xs). Hence x E R (x.), so by Fanp

(1961, Lemma 1), fB(p)Rp(x) is nonempty, i.e. cR(p) is nonempty.

Large Range: Let x E inti. Assume R-I(x) '* l, as the result is trivial otherwise. Define P by

x' E P(x) if x e R(x'). Then P(x) is nonempty, and since R-I(x) is closed, P(x) is open in l.

Assume x E coP(x). Then x E [xs]s' where for all SES, XS E P(x), i.e. x e R(xs). But by

convexity for some SES, X E R(xs), contradiction. Hence x e coP(x). Since P(x) is open in l,

so is coP(x). Hence by separation (and monotonicity) there is p such that x E B(p) and

B(p)r\coP(x) is empty. Let x" E B(P) and assume x e R(x"). Then x" E P(x) r;;; coP(x),

contradiction. Hence x E cR(p).

Interiorrange: Let x E cR(p)\intlv{O}. Then x E cp(p), contradicting boundary tangency.

Basic axiom and recoverable choice: Proposition 1 in Chapter 2 shows that R-partial recover-

ability implies the equality of the two definitions of rational choice. The basic axiom and

recoverability then follows from the characterization theorem given there and Lemma 1.

2): Monotone: Let x,x' E Dc-I, x» x', and x E c(P). Then x' E b(p), so by the budget identity,

x' e c(p). Hence x E pc(x').

R-closed: Let x.x' E Dc-I, xn E RC(x~), and (xn,x~)-+(x,x'). Then there is Pn such that Xn E c(Pn)

and x~ E B(Pn). By interior range, {Pn} is bounded, so let Pn-+Psubsequentially. Then since c

and B are closed, x E c(p) and x' E B(P), sO x E Rc(x').

Convex: Let x E [xs]s and x E c(p). Then for some SES, XS E B(P). Hence x E Rc(xs).

Boundary tangency: Let x e intJ'v{O} and p E B-l(x)r\int'P. Since p E int'P, large domain, there

is x' E c(p). By interior range, x e c(P). Hence x' E pc(x)r\B(P). o



-50-

Substituting the V-axiom for the basic axiom (which is not essentially used here) and

completeness for partial recoverability, the second part of this result together with Proposition

1 of Appendix 1 is a simplified version of Kim and Richter's (1986) Theorem 8, except that

they use a compact choice set l instead of our assumptions of interior range. By strengthening

convexity to strict convexity, partial recoverability can be avoided in the above theorem>:

COROLLARY: 1) If preferences (P,R) is monotone, R-closed, strictly convex, and satisfies

boundary tangency, then the best element choice, cR, is closed, single-valued, has large

domains, interior range, and satisfies the basic axiom.

2) If the choice c is is closed, single-valued, has large domains, interior range, and satisfies the

basic axiom, then the generated preferences, (pc,Re), is monotone, R-c1osed, strictly convex,

satisfies boundary tangency, and generates c.

Proof: One only needs to verify the single-valued axiom and strict convexity:

Single-valued axiom: Assume x E R~(x'), x' E R~(x) and assume x ::j; x'. Then there is p such

that x E cR(p) and x' E B(P), and p' such that x' E cR(p') and x E B(p'). Let x" E <x.x'>. Then

x" E B(p)nB(p'). Hence by the definition of cR, x.x' E R(x"). But by strict convexity,

x" E P(x)vP(x'), contradiction.

Strictly convex: Let x E [xs]s\{xs}s and x E c(P). Then for some SES, XS E B(p). If x, E c(P),

then by single-valuedness, x = xs, contradiction. Hence x, ~ c(p), so X E PC(xs). o

This corollary, together with the extension theorem below and the extension property of

Chapter 2, verifies the Kihlstrom, Mas-Colell, Sonnenschein, and Shafer (1976) conjecture.

The direct use of the revealed preferences in the second part of this theorem is made possible

by the strict convexity concept, which in' this context is weaker than the standard one, but still

sufficient.

5Partial recoverability is somewhat less desirable in a characterization without transitivity, as
transitivity seems necessary (in addition to completeness) to derive it from more traditional
preference assumptions.
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The result with transitivity has essentially the same structure as Theorem 1. It is, however,

based on the maximal element definition of rational choice .. Also, it uses some extra

assumptions, namely smoothness and strict monotonicity:

TIIEOREM 2: 1) If preferences (P,R) is transitive, strictly monotone, partially recoverable, p-

open, convex, smooth, and satisfies boundary tangency, then the maximal element choice, cP,

is closed, inversely single-valued, has large interior domains, and satisfies the budget identity

and the transitive axiom.

2) If the choice c is is closed, inversely single-valued, has large interior domains, and satisfies

the budget identity and the transitive axiom, then the generated transitive preferences,

(Rcpc,RcRC), is strictly monotone, partially recoverable, P-open, convex, smooth, satisfies

boundary tangency, and generates c.

Proof: 1): Closed: Let XnE cP(Pn) and (xn,Pn)--!(x,p). Then x., E B(pn), so since B is closed,

x E B(p). Let x' E P(x), and assume x' E B(p). Then, since B is lower hemicontinuous, there are

X~--!X'such that x~ E B(pn). Since P is open (in J'), for sufficiently large n, x~ E P(xn),

contradicting Xn E cP(Pn). Hence x' '" B(p), so X E cP(p).

Budget identity: Assume x E cP(p)lIb(p). Then there isx' » x such that x' E B(p). By monotoni-

city, x' E P(x), contradiction.

Interior domain: Let x E cp(p), where p '" int'P. Then there is x' E B(p) such that x' > x, so by

strict monotonicity, x' E P(x), contradiction.

Interior range: Essentially as in the previous proof.

Large domain: Let p E int'P and assume that for all x E B(p) there is x' E P(x)IIB(p). Clearly

fp-lex) Ix E B(p)} is a covering of B(p), and since P has open lower sections and B(p) is

compact, it has a finite subcovering {P-,1"(xs)}S. But then by assumption, for all SES there is

t E S such that x, E P(xs). Hence since S .is finite and P is transitive, there is SES such that

x, E P(xs), contradiction.

I
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Large range: Let x E int l. Assume that P(x) is nonempty, as the result is trivial otherwise. By

open upper sections, P(x) is open inz', hence so is coP(x). Assume x E coP(x). Then there is a

finite set S such that x" E [xs]s and x, E P(x) for all SES. But by convexity, for some SES,

X E R(xs), contradiction. Hence x i!: coP(x). By separation (and monotonicity) there is p such

that x E B(p) and B(P)(\coP(x) is empty. But then x E cp(p).

Transitive axiom and transitive recoverability: This follows from the characterization theorem

in Chapter 2, together with Lemma 1.

Inversely single-valued: (Figure 5) Let x E cP(p')(\CP(p"), where p' ::f: pli. Then there is

x' E b(p')(\intl, X" E b(p")(\intl, and x E <x',x">

such that x »x. By monotonicity, x E P(x). Let

x' E <x.x']. Assume that there is x' E <x.x'[nRtx).

Then by transitivity, x' E c(P'). But x' E b(p'),

contradicting monotonicity. Hence <x.x'[nlc(x) =
ø. Similarly <x,x"](\R(x") = ø, so by smoothness,

-cx',x"> k R-I(x). Hence x E R(x), contradiction.

2) T . . (Rcp RCR)· . . b: . ransitrve: . c, c IS transitrve y

definition.
Figure 5Strictly monotone: As monotoni city is preserved

under extensions, it is sufficient to prove this for the generated preferences (pc,Rc). Let x > x',

X,X' € Dc-I, and x E c(p). By interior domain, p » O. Hence x' E b(p), so by the budget identity,

x' i!: c(p). But then x E pc(x').

Convex: Follows from the previous proof as convexity is preserved under extensions.

Smooth: Since smoothness is preserved under extensions of preferences, it will suffice to prove

this for the generated. preferences (Pv.Rv). Let <x,x'](\Rc(x) = <x,x"](\Rc(x) = ø, where

x.x',x'' E int.l', Then by Lemma 2, x CRc(x')(\RC(x"). Hence there is p' and pli such that

x E C(p')(\C(p"), x' E B(p') and x" E Btp''). By inverse single-valuedness, p' = pli. Hence

X',X" E B(p'), so <X',X"> k (Rc)-l(x).

I
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P-open: I first verify that pcpc has open lower sections (Figure 6). Let x E pC(x'), x.x' E Dc-I

and Xn-lX.Then there is p such that x E c(p) and

x' E B(p)-c(p). Since c(p) is closed, there is

x" E <x,x'>\c(p). By large range, let x" E crp"), so

by the basic axiom, x ~ B(p"). Hence x' E b(p).

But then by the budget identity, x" E PC(x~), so
pc

X E PC(x~). The general case follows by

induction. Note that the same argument also

verifies that pc and hence pCpc is order dense.

Next, I verify that PCpc has open upper sections Figure 6

(Figure 7). Let x E pc (x') and x,x' E Dc-I. Then

there is p such that x E c(p) and x' E B(P)-c(P).

Let x' E crp'). Assume that for all pli E <p,p'>

there is x'' E c(p")nB(p'). Let X"-lX, sub-

sequentially as p"-lp ({x"} is bounded as p is

pli E <p,p'> such that c(p")nB(p') is empty. Let

x" E C(p"). Clearly x' E B(p") and since

c(p")nB(p') = ø, x' ~ ctp"), Hence x" E PC(x')nb(p). Let Xn-lX, Xn E c(Pn). By interior range,

interior). Then since c and B are closed,

X E c(p)nB(p'). But then x E pc(x') and x' E Rc(x),

contradicting the basic axiom. Hence there is

Figure 7

X E intz', so {Pn} is bounded for n sufficiently large. Let pn-lp subsequentially. By inverse

single-valuedness, p = p. But then for n sufficiently large, x" E b(Pn)' so Xn E pc(x"), hence

Xn E pcPC(x').

That PCpcis open in I now follows from'Bergstrorn, Parks, and Rader (1976, Theorem 1), as it

is transitive, order dense, and has open sections. By Proposition 2.2, it follows from inverse..
. RC pc RC. .single-valuedness that pc = pc, so pc IS open ID I.

Boundary tangency: Follows from the previous proof as it IS preserved under preference

extensions. o
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Remark 1:·Inverse single-valuedness (i.e. smoothness) is used twice above: To show that pcpc .

RC pchas open upper sections and pc = pc.

Remark 2: It is clear from the proof of Theorem 2 that it is also valid when transitivity is

replaced by weak transitivity and the transitive axiom by the weakly transitive one.

Remark 3: One would like similar results under alternative boundary assumptions. A simple

alternative is the polar one, saying that indifference surfaces cross the boundary of the choice

space. A simple way to express this is: For all x ~ intlv{ O}, there is p E H-l(x)nint'P such that

P(x)nB(p) is empty. The corresponding choice notion is that the range of c, Dc-1 = J\{O}. The

problem with this concept is that it does not suffice to show continuity of the revealed

preferences. E.g., in the proof of Rclosedness in the first theorem, the sequence {Pn} might be

unbounded, as illustrated in Figure 8. The problem is eliminated by the following streng-

thening of the above concepts: Preferences (P,R)

satisfies boundary crossing if for each compact

;r ~ I such that O ~ ;r, there is a compact 'P' c 'P

such that for all x E !\intI there is p E 'P' and

such that P(x)nB(p) = 0. The corresponding

choice notion is similar: A choice has (strict) full

range if for each compact ;r ~ l such that O ~ ;r

there is a compact 'P' ~ 'P such that for all

X E !\intI there is p E 'P' such that x E c(p). Thus

all points on a bounded part of the boundary is

chosen at some uniformly bounded relative prices. With these concepts replacing boundary

Figur 8

verified.

tangency and interior range assumption, we again get full characterizations, as is easily

.
Both boundary assumption are restrictive. The reason is that they presuppose the same

type of boundary behavior everywhere. There are, however, no problems in extending the

results to cases which are mixtures of our two boundary assumptions. I.e., where the set of

goods can be partitioned into one group satisfying boundary tangency, and another satisfying

boundary crossing. The resulting characterization is sufficient for most applications., .,
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Remark 4: As interior domain and interior range are dual concepts, so are also their preference

counterparts, strict monotonicity and boundary tangency.

Remark 5: Interior domain (and hence the strict monotonicity) is used in Theorem 2 only to

ensure that some goods sequences are bounded in the proof of preference continuity. Hence, in

analogy with the discussion in Remark 3, it can be replaced with the dual of full range, i.e. full

domain. On the preference side the counterpart of this is the following: Preferences (P,R) is

locally satiated (with respect to all goods) if for each each compact 'P' ~ 'P such that O e 'P',

there is a compact l'~l such that for all p E 'P"Jnt'P there is x E l' such that P(x)I1B(p) = 0. A

counterexample to the uniformity property in this case is given in Figure 9.

Again, mixtures of the two dual boundary

assumptions are possible. But intuitively, the

above treatment of boundary of the choice space

is more interesting.

Characterizations of more specific types of

preferences follows easily, as is verified III

Chapter 4 and 6 for the law of demand and

separability type of restrictions, respectively.

Theorem 2 assumes that inverse choice is

single-valued, i.e. that preferences are smooth.

\
; \
; \

\ \.\....\\ ...\\~~..-----_ .._-_._-----_._-_. __ .

------- ..._--------------_.---
............

Figure 9

Thorlund-Petersen (1985) shows that smoothness can be dropped" if one instead assumes finite

transitivity. A choice, c, is finitely transitive if for all x', x E RC(x'), and neighborhoods Ux and

Ux', there is a compact set K and a natural number d such that for all x E Ux and x' E Ux', there

is Xr."',Xk with k ~ d such that x E RC(XI),xl E RC(X2),... ,Xk E Rc(x'). This says that if a point is

(indirectly) weakly revealed preferred to another, then this can be done locally in a finite

number of steps. Under these conditions one also gets an utility f~nction .

•



-56-

4. COMPLETENESS

In Theorem 1 and its corollary (i.e. without transitivity) completeness can be added to the

preference properties in Part 2. The argument modifies one by Kim and Richter (1986):6

EXTENSION 11IEOREM: Any monotone, convex, and R-closed preferences have a complete

R-closed extension.

Proof: Let preferences (P,R) be monotone, convex, and R-closed. Define R* by R*(x,x') =
R(x)f1R(x')f1[x,x']. Then since R is closed, so is R* and R(x)uR(x'). By convexity, [x,x'] ~

R(x)uR(x'), and by monotonicity, R(x)uR(x') is connected. Hence as R(x)f1[x,x'] and

R(x')f1[x,x'] are closed and nonempty, R*(x,x') is nonempty (since a closed connected set can-

not be partitioned into two nonempty closed sets). Extend R to R' by adding x E R'(x') if

d(x,R*(x,x'» $ d(x',R*(x,x'» at pairs undecided by (P,R), where d is the standard metric. Then

(P,R') is complete by definition. It remains to show that R' is closed. Let Xn E R'(x') and

(xn,x~)-?(x,x'). If Xn E R(x~) for arbitrary large n, then since R is closed, x E R(x') ~ R'(x').

Otherwise, d(xn,R*(xn'x~» $ d(x~,R*(xn'x~» for sufficiently large n. Hence since R* is closed

and d is continuous, d(x,R*(x,x'» $ d(x',R*(x,x'», i.e. x E R'(x'). o

This result is sufficient as the convexity notions are preserved under extensions and any

extension of the generated preferences gives rise to the same rational choice by the

characterization theorem in Chapter 2.

Remark: A similar result is trivial for weakly transitive preferences, as continuity is

preserved by the construction in the extension theorem in Chapter 2. I.e. the following holds:

Any P-apen and weakly transitive preferences has a complete, P-apen and transitive extension.

The extension properly with full transitivity, on the other hand, seems still to be an open

question, as mentioned in the introduction.

6The modification is that I prove the constructed extension, R', to be continuous, whereas they
look at its closure and v/rifies convexity. In my framework, however, taking the closure might
conflict with preference asymmetry. .
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APPENDIX 1: WEAK AXIOMS

There are some weaker variants of the revealed preference axioms. In contrast to the basic

revealed preference axioms, they are easily decidable on finite choices and also preserved

under subchoices. First, define the strengthened strict revealed preference relation, +PC, by

x E +pc(x') if there is p such that x E c(p) and x' E b(p). If choice satisfies the budget identity,

+pc !:;;; pc, and the terminology is justified. Adding continuity and transitivity makes the two

concepts equivalent: 7

satisfies the budget identity, then r=c +Psc+Pc.

PRoposmON 1: If a choice c is closed, convex-valued, with large interior domains, and

x' E H(p) as the result is trivial otherwise. Since

Proof: (Figure 10) Let x E pc(x'). Then there is p such that x E c(p) and x' E B(p)\c(p). Let

c(p) is closed, there is x" E <x,x'>\c(p). Since c is Xt

convex-valued and satisfies the budget identity,

let p" E H-l(x") be such that c(p)nB(p") is empty.

Let pt = (l-t)p+tp" for t s [0,1], and let xt E ctp').

Then for all t > 0, x' E btp'), so x' E +pc(x'). Since

c is closed, xO E c(p), so xO ~ B(p"). But then

since B is closed, for t sufficiently small,

x' ~ B(p"). Since (l-t)pxt+tp"xt. = p'x! = 1,

x' E b(p), SO X E +pc(xt). o
Figur 10

A choice c satisfies the weak: axiom if (+pc,Rc) is asymmetric, and the transitive weak:

axiom if (+pc,RcRC) is asymmetric. Thus ..these axioms are equal to the basic axiom and the

transitive axiom, except for the stronger strict revealed preference relation. In contrast to the

7This result is due to ~Fadden (1979). His additional assumtion of single-valued choice is,
however, superfluous.
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basic axiom and the transitive axioms, the weak and the weak transitive axiom are decidable

on finite (as sets) choices and preserved under subchoices. By Proposition l, the transitive

weak axiom is equivalent to the transitive axiom under the stated assumptions.

The weak axiom is from Hicks (1956), and often called the weak weak axiom. For a one-

to-one choice (i.e. a differentiable choice function), the weak axiom is equivalent to negative

semidefiniteness, and the transitive weak axiom is equivalent to symmetryand negative

semidefiniteness of the Slutsky matrix. The first of these results was proved by Kihlstrom,

Mas-Colell, and Sonnenshein (1976), and simplified in Hildenbrand and Jerison (1988). The

weak axioms are self-dual.

The weak axiom does not imply the basic axiom. Hence, the extension property (Lemma

2.4) and the equality of the two definitions of preference generated choice (Proposition 2.1)

does not generally hold for the weak axiom.

The transitive weak axiom Varian's (1982) "generalized axiom" and goes back to Afriat

(1967). Afriat showed that on a finite choice, it implies the existence of a concave utility

function rationalizing the choice. A variant of this result will be proved in Chapter 6, using a

more general characterization of the choices generated by a concave utility function.

Varian (1982, 449-450) claims that Afriat's result shows that monotonicity is unobservable

on finite choices (data sets). This interpretation cannot be correct, as monotonicity implies the

observable budget identity. The point is that the budget identity is "baked" into the weak, and

hence also the weak transitive axiom. Hence violations of the budget identity will be taken as

violations the weak transitive axiom in Afriat's case. This is supported by the following trivial

result:

PROPosmON 2: A choice which has large range and satisfies the weak axiom also satisfies

the budget identity.

Proof: Assume not, and let x E c(p)nb(p). Let x' E B(p) and x' » x.By large range, let x' E ctp').

Then x E b(p), so X E Rc(x') and x' E +pc(x), contradicting the weak axiom. o
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APPENDIX 2: THE C-AXIOM

Now for a strengthening of the basic axiom. A choice c satisfies the C-axiom if

Xn E RC(x~),(xn'x~)-I (x,x'), and x' E Rc(x) implies that x = x', Kim and Richter (1986) use this

continuous version of the single-valued axiom to prove the Kihlstrom, Mas-Colell, Sonnen-

schein, and Shafer (1976) conjecture. As we do not require strictly positive prices, it is a

consequence of the single-valued axiom:

PROPosmON 3: If a choice is closed, has interior range, and satisfies the single-valued

axiom, then it satisfies the C-axiom.

Proof: Let Xn E c(Pn)' »; E B(Pn), (xn,x~)-I (x,x'), and x' E Rc(x'). Then {Pn} is bounded, since

otherwise x e intz, contradicting interior range. Let Pn -I p, subsequentially. Then since c is

closed, x E c(p) and x' E B(p), i.e. x E Rc(x'). But then by the basic axiom, x = x'. o
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August 1989
Revised, March 1992

CHAPTER4:
THE LAW OF DEMAND AND RELATED NOTIONSo

1. INTRODUCI10N

The law of demand expresses a negative relationship between price and quantity

changes for a given income. It (or a partial version of it) was taken as intuitively obvious by

Walras (1871, 12. Lecon) and other early neoclassics. Here the law of demand is explicated

by a monotonicity notion taken from Rockafellar (1970, Chapter 24).1

Monotonicity is a strong concept, but often valid empirically. It has three nice

properties. First, it is easily characterized in preference terms, at least if preferences are not

required to be transitive. Secondly, it is preserved under aggregation over individuals if their

endowments are collinear (i.e. on a ray through O). And finally, (some variants of) it is

easily testable on finite data sets.

Monotonicity is extended in two directions. First, a hierarchy is introduced, differing

only in the order of the mean used in the definition of monotonicity. The first order (or

arithmetic) mean is the law of demand, the infinite order mean is the basic axiom of

revealed preference, and the zero-order (or geometric) mean (slightly weakened)

corresponds to homotheticity. This hierarchy gives a natural measure of the "perversity" of

income effects, and thereby a natural nonparametric way of imposing and testing stronger

restrictions than the Slutskyones on income effects. Thus it suggests a nonparametric

alternative to the Slutsky equation approach to empirical demand analysis. The charac-

terization in terms of preferences easily carries over to this hierarchy.

oAn earlier version of this chapter was presented at the Econometric Society meeting in Munich
in September 1989. Thanks are due to Tore Ellingsen, Thorsten Hens, Michael Jerison, Terje
Lensberg, Kjell-Erik Lommerud, Rolf Schmachtenberg, and Lars Thorlund-Petersen for
valuable comments and discussion.
lWith a slight change: Rockafellars (cyclical) monotonicity corresponds to my weak (cyclical)
monotonicity, and his maximal (cyclical) monotonicity to my (cyclical) monotonicity. This
explication of the law of''demand is not universal. I.e. Mas-Colell (1985) uses the law of demand
for the similar property of compensated demand, which holds generally in the standard model.



-61-

Secondly, a stronger notion called cyclical monotonicity is introduced. This is related to

monotonicity as the transitive axiom is related to the basic axiom. It is shown that cyclical

monotonicity is another characterization of homotheticity in the presence of transitivity. By

some results of Rockafellar (1970), cyclical monotonicity also characterizes concave

consumer surplus functions which are also utility functions, see Chapter 6. As monotonicity,

cyclical monotonicity is preserved under aggregation if endowments are collinear. A

hierarchy based on cyclical monotonicity is also introduced, as well as some variants of the

concepts. The characterization in terms of preferences (this time transitive) easily carries

over to the hierarchies. So far, however, neither the aggregation result nor the

characterization in terms of utility is extended to the hierarchies. This hierarchy gives a

measure of the degree of transitive homotheticity (i.e. cyclical monotonicity), and thereby

also a measure of the "correctness" of (Marshallian) consumer surplus.

Monotonicity and cyclical monotonicity were used by Shafer (1977), calling them

strong acyclicity of degree 2 and 00, respectively. He also proved the aggregation result.

The rest of this paper is organized as follows: Section 2 introduces the basic mono-

tonicity notion explicating the law of demand, as well the hierarchy based on it. Section 3

introduces cyclical monotonicity, as well as some variants of the concepts. Section 4

characterizes the monotonicity notions in terms of preference terms in an elementary way.

Section 5 gives the aggregation results.
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We continue to use the notation of the previous chapters. The notion explicating the law

of demand is the following: A choice c is monotone if for all Pl> P2, Xl E C(PI), and

X2 E C(P2)\(;(PI), (P2-PI)(XrXI) < O.. Thus monotonicity expresses a negative correlation

between price and quantity changes for a

given income. The above inequality is equi-

valent both to (XI+X2)/2 ~ B((PI+P2)/2) and to

(PIX2+P2xI)l2 > 1. The first of these says that

the mean bundle is outside the mean budget,

and allows a nice geometrical interpretation

(see Figure 1), whereas the second generalizes

in different directions. Note that monotonicity

is self-dual (i.e. invariant when x's and p's are Figure 1

interchanged).

For the hierarchy we need the generalized means: Define the æ-th order mean of the

positive reals Yl and Y2, ma(YhYV, by ma(Yl>Y2)= (((YI)a+(Y2)a)/2)l/a for a positive,

mO(Yl>Y2)= (YlY2)~' and moo(YI,y2)= sUP{Yl>Y2}'Then ma(YI,y2) is strictly increasing in a

if Yl ':f:. Y2,and constant if Yl = Y2.2

The monotonicity hierarchy can now be defined by simply replacing the arithmetic

mean by the a-order mean in the definition of monotonicity: A choice c is (X-monotone if

increasing in a, a-monotonicity is of decreasing strength in a. Here oo-monotonicity is the

basic axiom (of revealed preference) from Arrow (1957),3 l-monotonicity is monotonicity,.
whereas O-monotonicity is inconsistent, but a slightly weaker variant corresponds to

homotheticity, as explained in the next section. By the result mentioned in Footnote 3, 00-

2For a proof, see Leichtweiss (1980), Hilfsatz 21.1.

3For single-sectioned choke, this is between negative semidefiniteness and negative definiteness of
the Slutsky matrix in strength, see Kihlstrom, Mas-Colell, and Sonnenschein (1976).
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monotonicity corresponds to Slutsky negative definiteness. Thus the rnonotonicity hierarchy

is a simple nonparametric way to introduce more restrictive conditions on income effects

than Slutsky negative definiteness.

The monotonicity measure of a choice c, Jl(c) = infu{alc is a-monotone}. Thus, p(c)

measures the "perversity" of income effects of the choice c. For each a, a-monotonicity is

easily testable on finite data sets." Hence it is also easy to calculate the monotonicity

measure, which should therefore be of great interest empirically. In contrast to standard

parametric estimation and test techniques, nonparametric tests are exact. One can, however,

incorporate errors by accepting monotonicity even if the monotonicity measure is slightly

greater than one.>

Here, choice is a function of the budget. But one is often more interested in demand as

a function of relative prices. These influence the budget directly, but also indirectly through

income. Assuming endowments, i, and no profit income, choice as a function of relative

prices, c~, is defined by x E c~(p) if x E c(p/px). The monotonicity hierarchy obviously

carries over to this concept if prices are normalized such that income always equals one, i.e.

belongs to H-l(x). Thus it follows that for all p,p' E H-l(x), x E c~(p), and x' E c~(p'),

mU(px',p'x) ~ 1.

What about excess choice, e~, defined by z E e~(p) if z+x E c~(p)? If the choice c is

monotone, the corresponding excess choice, e~, is excess monotone (i.e. for all

p,p' E H-l(x), z E e~(p), and z' E e~(p'), (p'-p)(z'-z) ~ O). Thus again the law of demand

follows as above when prices are normalized so that the income always equals one.f Excess

monotonicity has a nice geometrical interpretation in [R2: The endowment vector x is the

minimum (maximum) allowed steepness of the graph of excess demand in the second

(fourth) quadrant. Thus with endowments of only one good, the graph of an typical

individual excess demand function satisfying excess monotonicity looks like the one in

+Not quite, as x' e c(p) is unobservable. The next section introduces related observable concepts.
On a finite data set, the obtained monotonicity measure is clearly only a lower limit of the
monotonicity measure of the "full" choice.
SIt is obviously of interest to find criteria delineating "slight" here.
6This was noted by Mas-Colell (1988).



Figure 2. It is thus easy to construct examples

where excess monotonicity does not aggregate,

by giving two individuals each endowments of

only one good. Thus to obtain aggregation,

one needs narrow restrictions on both endow-

ments and preferences." The monotonicity

hierarchy, however, has no simple counterpart

for excess choice. Thus it seems better to

investigate such preference restrictions in the

choice framework rather than in the excess choice one.

3. CYCLICAL MONOTONICITY
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Figure 2

Cyclical monotonicity has the same relationship to monotonicity as the transitive axiom

of revealed preference has to the basic axiom. To introduce it (and some variants of

monotonicity) requires more concepts. Let S stand for finite ordered sets with IS! elements.

Elements s of S are usually interpreted as time periods, but other interpretations (e.g. as

states in a theory of choice under risk) are also of interest. Let y = IR+,YS E -;, and

a E lR+u{oo}. The a-th order mean of yS' ma(y s)' is defined in the obvious way by ma(y s) =
((LsY~)/!S!)1/a for a positive, and let mO(yS)= (IIsys)lI!S! and moo(ys) = sup YS.8 This

hierarchy is also increasing in a:9

7In fact even homotheticity of individual choice is not enough for the axiom of aggregate demand
without additional assumptions on the distribution of resources.

80ne could also use weighted means here, and the following results would still go through. Having
found no natural interprejations for these, I stick to the symmetric means.
9For a proof, see Leichtweiss (1980), Hilfsatz 21.1.
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LEMMA 1: If a < a', then ma(yS)::; mal (YS), and if not all components are equal, then

ma(ys) < ma'(ys)·

For SES, let s+ be the next element in S, with the convention that the first element is

next to the last, and let S+ be equal to S, except that each element is replaced by the next.

Denote elements of rand r by Xs and PS' respectively. Also let PSxS E IR~,where scalar

products are componentwise in the obvious way. Furthermore, if Q c AxB, write as E Q(bs)

if for all SES, as E Q(bs), and as ~ Q(bs) if for some SES, as e Q(bs). The generalized

monotonicity notions can now be introduced, where k E IN:

A choice c is generalized (a,k)-monotone if for all S, Ps' and Xs E c(ps), ISI::; k

implies ma(psxs+) ~ l, and it is weakly (cx,k)-monotone, (cx,k)-semimonotone, (a,k)-mono-

tone, and single-valued (a,k)-monotone if additionally a strict inequality holds if for some

s E S,xs+ E b(Ps)' xsJpsxs+ e c(Ps)' xs+ e c(Ps)' and xs+ '* xs' respectively. Monotonicity is the

same as (l,2)-monotonicity. Generally the (1,2)-prefix is omitted and (a,2)- is written o-,

Thus e.g. generalized rz-monotoniciry says that the mean of order a of the "values" of the

chosen bundles, evaluated at the previous budgets along cycles of length two is at least one.

A choice c is cyclically a-monotone if it is (a,k)-monotone for all k E IN,and similarly for

the other notions. As the other notions, (a,k)-monotonicity is of decreasing strength in a for

finite k. Generalized, weak, and standard (æ.kj-monotoniciry are self-dual.lv The weak

notions are decidable on finite choices, in contrast to the standard ones. They are also

generally equivalent to the basic notions when attention is restricted to finite (as sets)

choices. We have introduced the semi-notions is that for a = 0, the standard notions are in-

consistent, whereas the seminotions characterize homotheticity. The

generalized and weak notions are preserved by subchoices. If choice
single-valued
l

basic

satisfies the budget identity, the relationship between the different

monotonicity notions is illustrated in the diagram for given (rz.k),

where arrows indicate decreasing strength:

/
semi- weak

/
generalized

lOSimilarly, the largest k such that c satisfies the k-axiom is a (discrete) measure of the degree of
transitivity of the (preferences corresponding to the) choice. Other such transitivity measures are
discussed in Jerison and Jerison (1989).
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The three variants of the concepts in the middle are rather close:, as shown by the follo-

wing result:

PROPosmON 1: 1) If a < a' then an rz-semimonotone choice is a'-monotone.

2) An æ-semimonctone and single-valued choice is single-valued a-monotone for a > O.

3) If a closed, convex-valued choice which satisfies the budget identity with large interior

domain is weakly cyclically a-monotone, then it is cyclically a-monotone.

Proof: 1): Let x E c(p), x' E c(p')\c (p). By weak a-monotonicity, mU(px',p'x) ~ 1.

Furthermore mU' (px',p'x) ~ mU(px',p'x), with a strict inequality if the terms are unequal.

That case is trivial. So assume that px' = p'x = t. Clearly t ~ 1. If t > 1, mU(px',p'x) > 1, and

if t = 1, then x'/px' = x' It c(p), so the result follows by a-semimonotonicity.

2): Let x E c(p), x' E c(p'), and x '* x'. If x'/px' It c(P), the result follows by æ-semimono-

tonicity, hence assume x'/px' E c(p). By single-valuedness, x = x'/px', so p'x = l/px'. By

weak æ-monotonicity, mU(px',p'x) = mU(px',l/px') ~ 1. But this inequality is strict if px' '* 1

for a> O, and if px' = 1, x It c(p), contradiction.

3): Let Xs E c(ps) and x, It c(Pst-) for some SES. Then by generaqlized a-monotonicity,

mU(Psxs+) ~ 1. Assume mU(psxs+) = 1, as the result is trivial otherwise. Assume further-

more that for all s, Psxst-= 1. Then Xst-E B(ps)' contradicting the transitive axiom, which

follows from the assumption by Lemma 3.2. Hence for some s, Psxst-< 1, so Xst-E b(ps). But

then by the assumption, mU(psxS+) > 1. o

The basic notions are essentially the maximally generalized ones, where a choice is

maximally generalized monotone if it is monotone and it has no maximally generalized

monotone extension. At least we have:
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PRoPosmON 2: 1) If a choice is maximally generalized monotone and satisfies the

budgetidentity, then it is monotone.

2) If a choice c is closed, monotone, and there is a closed set A such that intA k D'+c kA,

then it is maximally generalized monotone.

Proof: 1): Assume that c is not monotone. Then there is x E c(p) and x' E c(P')\c(P) such that

px'+p'x = 2. Let x' E B(p), since otherwise p'x < 1, so by the budget identity, x ~ c(P'), so we

could replace (x',p) by(x,p'). Let c' = cu{(x'/px')}. Then x'lpx' E c(p). Ifpx' < 1, this follows

from the budget identity, and if px' = 1, from the assumption. Hence c' extends c. It follows

that c' is generalized monotone by looking at the three permutations of the elements of c',

violating the maximality of c.

2: This is essentially the proof of Proposition 6.1, Part 2). O

Proposition 6.1 shows that a similar result holds for cyclical monotonicity .

. Single-valued monotonicity is Koch's (1987) "law of demand". For a = 00, one obtains

different revealed preference axioms. More specifically, weak:oo-monotonicityis equivalent

to the weak axiom, oo-monotonicityto the basic axiom (from Arrow (1957», and single-

valued oo-monotonicityto the single-valued axiom (usually called Samuelson's (1938) weak:

axiom). Similarly, cyclical =-monotonicity is equivalent to the transitive axiom (i.e. Richters

(1966) congruence axiom), etc.

At the other end of the hierarchies, O-monotonicity is inconsistent, whereas O-semi-

monotonicity and cyclical O-semimonotonicity corresponds to homotheticity in theories with

and without transitivity. Verifying this needs some more terminology: A choice c is homo-

thetie if for all p, x E c(p), and t> O, if tx E Dc-l, then tx E c(pit). For a relation Q, its

homothetie extension, Q, is defined by x·E Q(x') if there is t> O such that tx E Q(tx'). Then

a choice c satisfies th~ homothetic axiom if (Pc,RC) is asymmetric, and the transitive homo-.

thetie axiom if (pc,I(cRC) is asymmetric. We are then ready to prove an analogy of Varian

(1983), Theorem 2 for not necessarily finite choices:
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PROPosmON 3: The choice properties in the following two lists are equivalent:

1) Homotheticity and basic axiom.

2) The homothetie axiom.

Homotheticity and transitive axiom.

The transitive homothetie axiom.

3) O-semimonotonicity. Cyclical O-semimonotonicity.

Proof: I verify this in the nontransitive case. The transitive case is similar.

1)~2): Assume x E c(p), x' E B(p)\c(p), tx' E c(p'/t), and tx E B(p'/t). By homotheticity,

x' E c(p') and x E B(p'), contradicting the basic axiom.

2)~3): Let x E c(p), x' E c(P'), and x'lpx' e c(p). Then x E pc(x'/px'). If (px')x E B(p'), then

x' E Rc((px')x), contradicting the homothetie axiom. Hence (px')x e B(P'), i.e. (px')(P'x) > 1.

3)~1): Homothetic: Let x E c(p), tx E Dc-I, and assume tx e c(p/t). Let tx' E c(p/t). Then by

O-semimonotonicity, 1 ~ ((p/t)x)(ptx') > 1, contradiction. o

Hence the (transitive) homothetie axiom is self-dual, at least on the interior of the

domain. The weak:homothetie axiom is also equivalent to weak O-monotonicity, but these

does not quite imply homotheticity. Weak: cyclical O-monotonicity is Afriat's (1981)

homogeneous consistency.U For negative a, the monotonicity notions are inconsistent.

Parallel to the monotonicity measure, the k-monotonicity measure, Jlk, is defined by

Jlk(c) = infa {a Ic is (a,k)-monotone}, and the cyclical monotonicity measure, fL, by {lec) =

infa{alc is cyclically a-monotone}. Clearly, k ~ k' implies Jlk(c)~ Jlk'(c).When the cyclical

monotonicity measure, {l(c) ~ 1, the Samuelson' result mentioned in a footnote to Chapter

6.2, shows that preferences are homothetic (and transitive). Hence in the transitive case, the

cyclical monotonicity measure, as well as the monotonicity measure, measures a degree of

homotheticity. Proposition 6.2 also shows that the cyclical monotonicity measure measures

the deviation between the money metric and consumer surplus. They thus give a non-

11He also showed that weak cyclical O-semimonotonicitycharacterizes homothetie and transitive
preferences on finite choices. Indeed, he showed this condition to give more in that context,
namely a utility function which is additionally concave and continuous. He has also shown a
similar result for the weak transitive axiom. Thus Afriat has characterized limiting cases of the
weak:cyclically monotone hierarchy, but did not notice the hierarcy.
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parametric alternative to Vives (1987) approach to small income effects.l?

These hierarchies give a natural way to impose and test restrictions on income effects.

The monotonicity measures also allow one to non-parametrically express that the law of

demand or homotheticity is approximately satisfied in a finite data set. These hierarchies are

more informative alternatives te the Slutsky restrictions when it comes to empirical testing)3

Monotonicity stands up to empirical tests in most situations, or so I believe, whereas

cyclical monotonicity (i.e. homotheticity and transitivity) is often rejected)4 This suggest

that it is reasonable to build empirical theories of choice on monotonicity only. In terms of

preferences, this means that one drops transitivity. The resulting theory is simpler and in

many ways stronger than the standard theory, and presumably fares better empirically.

The relationships between the different monotonicity concepts is illustrated by the

following diagram, where arrows are in the direction of decreasing strength, a increases

downwards in the diagram, and k to the left:

transitive hormthetic axiom
( cyclical O-semirmnotonicity)

I
hormthetic axiom
and transitive axiom

--+ hormthetic axiom
( O-semirmnotonicity)

l l

l
rmnotonicity and
transitive axiom

rmnotonicitycyclical rmnotonicity

l
transitive axiom
( cyclical oo-rmnotonicity)

/ basic axiom
( oo-rmnotonicity)

12Por a sample of size k, the cyclical monotonicity coincides with the k-monotonicity measure.
It would be desirable with bounds on the deviation as functions of the monotonicity measures, as
well as a treatment of the relationship to Vives analysis.
13Por a differentiable choice function, it follows from Proposition 2 of Chapter 6 that cyclical
monotonicity corresponds to symmetr:y of the derivative matrix of demand in addition to
monotonicity. The latter is slightly weaker than negative definiteness of the derivative of
demand. Thus monotonicity and cyclical monotonicity impose the same restrictions on the
derivative of demand as the basic axiom and the strong axiom on the Slutsky matrix.
14Well - with aggregate data even a representative homothetic consumer is usually not rejected if
one has at least five goojis aggregates and less than thirty years, see e.g. Houtman and Maks
(1983). The explanation is presumably that data are too sparce and have too little price
variability in the space considered.
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Whereas the middle cases coincide with the left ones in the two limiting cases (with

respect to a), this is not the case generally. That cyclical monotonicity implies homo-

theticity follows from Proposition 2 in Chapter 6, as noted in a footnote there.

For single consumers, these classification schemes seem quite satisfactory. But

economists are usually more interested in aggregate demand. What about that? Recently

Hardle, Hildenbrand, and Jerison (1988), have used average derivative techniques to test the

analog of the homothetic axiom in the diagram on panel data, with a somewhat strong

maintained hypothesis called metonymy. Given this hypothesis, the analog fares quite well.

But as in the last footnote, the reason for this might be little price variability in the data,

rather than homothetic preferences.

4. PREFERENCE CHARACfERIZATIONS

In this section we introduce preference restrictions corresponding to the different mono-

tonicity notions of choice, and verifies the characterizations in case choice is single-valued.

More specifically, æ-monotonicity is characterized in a theory without transitivity and

cyclical æ-monotonicity in a theory with transitivity. These characterizations are simple, but

the preference conditions involved are not very intuitive.

Recently, Kannai (1989), building on Mitjuschin and Polterovich (1978), gave another

more complicated characterization of single-valued monotonicity in terms of ordinal proper-

ties of utility functions (i.e. with transitivity), assuming that these are twice continuously

differentiable. Kannai's characterization of the middle case in the above diagram, whereas I

characterize the bordering hierarchies.

Let Il = !R+ and Us denote elements 'of If. The preference counterparts of the choice

monotonicity notions are the following: Preferences (P,R) is generalized (aJc)-harmonic if

for all S with IS I s k, xS' and uS' Xs E R(xSJuS+) implies mUCus);?:1, and (aJc)semi-

harmonic, (a,k)-harmonic, and strictly (aJc)-harmonic if one additionally has a strict in-
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equality if for some SES, XSE P(XS)US+),Xs E P(xs+), and Xs '* xs+' respectively.U Say that

preferences are a-harmonic if they are (a,2)-harrnonic and cyclically a-harmonic if they are

(a,k)-harmonic for all k, etc. Again, drop a if it is one.

The characterizations build on the ones in Chapter 3, which essentially show that

complete characterizations of preferences in terms of choice under standard assumptions are

fairly straightforward if completeness is weakened.

It follows directly from the definitions that each monotonicity notion of choice is

equivalent to the corresponding harmony notion of the generated preferences. This is

verified next for the standard ones only:

.LEMMA2: The choice c is (a,k)-monotone If and only if (pc,Rc) is (a,k)-harmonic.

Proof;e: Let Xs E RC(xs)us+) and x, E pc(xs+) for some SES. Then there is Ps such that

Xs E c(ps) and xs)us+ E B(ps). Hence by (a,k)-monotonicity, mU(psxs+) > 1. But by the

definition of B, us+ ~ PSxs+' hence mU(us+) ~ mU(Psxs+) > 1.

~ Let Xs E c(ps)' xS+ ~ c(ps), and xs)us+ E H(ps)· Then PSxS+ = "s+ so mU(psxs+) =

mU(us+). Also Xs E RC(xS)us+)' and for some SES, XSE Pc(xs+)' so by (a,k)-harmony,

mU(us+) > 1, hence mU(psxs+) > 1. o

Since trivially RcR ~ R, it follows from a variant of Lemma 2 that strict a-harmony

implies single-valued a-monotonicity. Together with the corollary to Theorem 3.1, noting

that single-valued monotonicity implies the single-valued axiom, Lemma 2 gives the follow-

ing characterization of single-valued monotonicity in terms of preferences:

15The characterization at the weak monotonicity notions on thew other hand is similar, but in
terms of the strenghtened strict revealed preference relation, +pc.
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THEOREM 1: 1) If preferences (P,R) is R-closed, convex, strictly a-harmonic, and satisfies

boundary tangency, then the generated best element choice, cR, is closed, single-valued a--

monotone, with large domains, and interior range.

2) If the choice c is closed, single-valued, a-monotone, with large domains, and interior

range, then the generated preferences, (pc,Rc), is R-closed, convex, strictly a-harmonic,

satisfies boundary tangency, and generates c.

To get a similar characterization of cyclical monotonicity one need the following result

for the cyclical notions, whose proof is straightforward by induction:

LEMMA 3: If the generated preferences (pc,Rc) is strictly cyclically a-harmonic, then so is
RC RCthe generated transitive preferences ( PC, Rc).16

By partial recoverability, cyclical a-harmony implies cyclical a-monotonicity. Also

cyclical monotonicity implies the strong axiom. These facts, Lemmas 2 and 3, and Theorem

3.2 prove the following characterization of cyclical a-monotonicity:

THEOREM 2: 1) If the preferences (P,R) is partially recoverable, strictly monotone,

transitive, P-open, convex, cyclically a-harmonic, and satisfies boundary tangency, then the

generated maximal element choice, cP, is closed, cyclically a-monotone, satisfies the budget

identity and has large interior domains.

2) If a choice c is closed, cyclically a-monotone, satisfies the budget identity, and has large

interior domains, then the generated transitive preferences, (Rcpc,RcRC),is partially recover-

able, strictly monotone, transitive, P-open, convex, cyclically a-harmonic, and generates c.

Remark: As in Chapter 3, boundary tangency can be weakened in the characterization by

making corresponding changes on the choice side.

16The same holds for thl intermediate degrees of transitivity if one has (a,k)-harmony with k at
least as great as the desired degree of transitivity.
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5. AGGREGATION

This section shows that if the endowments of the individuals are collinear, then

monotonicity and cyclical monotonicity arepreserved under aggregation.I? In other words, if

resources are collinear and all individuals satisfy one of these properties, then there exists a

representative consumer with the same property.

Let I be the set of individuals, ~ and ms the (arithmetic) means with respect to I and

S, and z! the relative income distribution in situation s (i.e. with mIz! = 1).18 Let ci be the

choice of individual i, and define mean choice, C, by mIxI E c(p) if for all i E I, x' E c'(p/z'),

where the mean is taken componentwise. This says that mean demand only depends on the

income distribution through mean income, and is not well-defined generally. But in our

case, things works out nicely:

TIIEOREM 3: If each individual i E I has a closed-valued, and k-monotone choice c' satis-

fying the budget identity, and the relative income distribution z! is independent of s, then

the mean choice of order, C, is well-defined and k-monotone.

Proof: Let mIx~ E c(Ps) and mIx~+ e c(ps). Then for all i, x~ E c(ps/z~), and for some i,

x~+ e c(ps/z~). Let v~ = infx{psx/z~ Ix E ci(Psjz!+)}. Then since ei is closed-valued and cycli-

cally monotone, msv~ > 1. Hence mS(PSmIx~+) ~ mSmI(v~z~) = mImS(v~z~) = mI«mSv~)

(msz~)-covs(v~,z~» > 1-mIcovS(v~,z~) ~ 1. The last inequality follows as for each i E I,

covs(v~,z~) = 0, by the assumption on the income distribution. o

As seen from the proof, the essential condition for the result is the mean covariance

one, mfov s(v~,z~) $ O. This condition is also necessary in the sense that if it is violated,

there are mean choices violating k-monotonicity. Essentially the same result holds for the

17This should be no surprise, as monotonicity and cyclical monotonicity corresponds to negative
definiteness and symmetryand negative definiteness of the derivative of demand, respectively,
and these notions are preserved under addition.

18If the resources are colltnear, then the relative income distribution is independent of the situations
(relative prices), at least if the resources are the only source of income.



-74-

other monotonicity notions. This result was established by Shafer (1977). The only novelty

here is the extraction of the mean covariance condition.l?

This simple result is important as it sometimes justifies reasoning in terms of arepre-

sentative consumers. E.g., in class models where individuals in each class hold endowments

of only one good and satisfies the law of demand, a representative consumer for each class

satisfying the law of demand is justified. Secondly, monotonicity implies the basic axiom

for mean choice - which together with differentiability straightforwardly implies uniqueness

and stability (with respect to the tåtonnement process) of Walrasian equilibrium.

Theorem 3 rather trivially generalizes to the case where individuals' endowments are

still on a line, but not necessarily through 0, as we shall see.20 The idea is to translate the

monotonicity concept in the same manner as the origin. I only write out the standard case:

p(x'-xO) P:tX~xO)A choice c is xO-monotone if for all p, p', x E c(p), and x' E c(p')\c(p), m(p(x_xO) 'p x -xO»
> 1.21 Here again a hierarchy can be defined by varying the mean as before. What is the

relationship between the translated and the standard hierarchy? In general the xO-homothetic

axiom does not even imply monotonicity, as is seen by choosing xO= (-1,-1), P = (0.1,0.65),

p' = (3.5,0.1), x = (0.1,1.5), x' = (0.1,1.8). Then (px'+p'x)/2 = 0.86, hence monotonicity is

violated, whereas the budget conditions and the translated homotheticity condition are

roughly satisfied. For a = 00, i.e. in the basic axiom case, the translated hierarchies coincides

with the standard ones, thus xO-homotheticity and xO-monotonicity implies the basic axiom.

The aggregation result for monotonicity (Theorem 3) easily generalizes to translated

monotonicity in the following form: If the individuals choices are xO-monotone and the

individuals endowments are on a line through xO, then mean demand is also xO-monotone.

Thus if endowments are on a line, to ensure aggregation, it is sufficient to find that the

individual choices are xO-monotone for some xO on the line. This might help a little for

aggregation within endowment characterized groups, but does not help much generally.

19Cyclical monotonicity is equivalent to homotheticity and transitivity, as indicated in Footnote
6.9. Hence the cyclical monotonicity version of Theorem 4 is essentially Eisenberg's (1961)
aggregation result.

20But what one would like is results with endowments distributed in a some larger subspace.
21Note that one does notlequire xOE l.To avoid some complications, one would like pxo < 1, for
all p, which in our case is ensured if xO « O.
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April 1990

CHAPTER 5: SEPARABILITY

1. INTRODUCTION

In this chapter we will investigate what is an appropriate notion of separable choice. The

basic concept of separability is with respect to a group of goods, and this is the separability

notion we will treat here. In terms of preferences it says preferences between goods in the

group is independent of the amount held of goods outside the group. This concept was made

precise by Stigum (1967) and Gorman (1968) and slightly generalized by Bliss (1975), though

the general idea has been known for a long time.

A corresponding choice property is that the choice with respect to a group of goods only

depends on the group budget. This is Blackorby, Primont, and Russell's (1978) (weak) decent-

ralization, going back to Lau (1969) and Pollak (1970). It essentially says that the subgroup

revealed preference relations are well-defined relations. A slight strengthening of this concept I

call independence. It is a choice counterpart of Sana (1945) and Leontiefs (1947a,b) independ-

ence property of the marginal rate of substitution. As one might expect from Sana and

Leontiefs results, independence is a fundamental notion of separable choice. We show that

independence is equivalent to a subgroup version of the basic revealed preference axiom. In

addition to saying that the subgroup revealed preference relations are well-defined relations, as

required by decentralization, the subgroup axiom demands that these relations constitute

preferences, i.e. are asymmetric. The subgroup axiom is easily testable on finite data sets. It

expresses the separability idea more directly, and are more computationally efficient than

previous nonparametric notions like the ones in Varian (1983). It is easy to show that the sub-

group axiom characterizes separable preferences. Also a hierarchy of concepts between separa-

bility and homothetic separability is intro~uced and similarly characterized. This is analogous

to the hierarchies in the previous chapter.



-76-

2. SEPARABLE PREFERENCES

The section of a relation Q cP at x_I' Ox_r is defined by xI E Ox_I(xi)if XE Q(xi+x}.

Preferences (P,R) is I-separable if for all X_Iand x~I,RX_Ic Rx~r and generalized I-separable if

for all X and x', RxJxI) c RX~I(x~)or RX~I(x~)c Rx_I(xI),Separability says that the sections at

different points (in l) are equal, and generalized separability that the upper sections are

nested. These definitions are due to Stigum (1967) and Bliss (1975), respectively.l

Since we do not assume complete preferences, it is convenient to work with slightly

weaker separability concepts. These are structurally similar to our general definition of

preferences. For this, define the I-sections of a relation Q, Qr by XIE QI(x~)if there is X_Isuch

that XIE Ox_I(xi),and say that preferences (P,R) is I-asymmetric if their I-sections, (PrRI)' is

asymmetric, i.e. if the sections are preferences in their own right, and generalized I-asymmetric

if PI is asymmetric.2 If preferences are complete (and additionally transitive in the generalized

case), these notions imply the standard ones, as is easily verified.

The generalized notions are of interest only when preferences violates I-local nonsatiation,

(i.e. for all X there are xI -IXI such that xI E pxJxI».3 For I-asymmetry this is is a

consequence of the following result, which is analogous to the similar result for I-separability

in Blackorby, Primont, and Russell (1978, Lemma 3.1):

LEMMA 1: Let the preferences (P,R) be transitive, P-apen and I-locally nonsatiated. Then

generalized I-asymmetry implies I-asymmetry.

Proof: Assume X E P(xI+x_I)and x' E R(xI+x~I)' By I-local nonsatiation, there are xI -IXIsuch

that xI+xi E P(x'). Hence by transitivity, xI+xi E P(xI+x~I)'But since P is open, for sufficiently.
large n, x E P(x1+x~I)' contradicting generalized I-asymmetry. o

lBlackorby, Primont, and Russell (1978) call these notions strict separability and separability,
respectively.
2That generalized l-separability implies generalized I-asymmetry presupposes transitivity.
3The typical example is Leontief preferences.
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We introduce a similar notion of homothetic separability. First, the homothetic extension

of the relation Q, Q, is defined by x EQ(X') if there is t> O such that tx E Q(tx'). Then

preferences (P,R) is I-homothetic separable if RI c ~, and I-homothetically asymmetric if

(PI'RI) asymmetric. The latter notion is generally weaker, but implies the former if preferences

are complete.

Finally, hierarchies between homothetic I-asymmetry and I-asymmetry are introduced.

Preferences (P,R) is generalized (a,I)-harmonic if for all x and x', if XIE RI(xi/u') and

xi E RI(x/u), then mU(u,u') ~ 1, where rna is the (X-ordermean. Also, the preferences are (a,I)-

semiharmonic, (a,I)-harmonic, and single-valued (a,I)-harmonic if a strict inequality holds if

additionally XI E PI(xi/u'), XI E PI(xi), and XI '* xI' respectively. These notions are of decreasing

strength in (X and (oo,I)-harmony is equivalent to I-asymmetry.

3. SEPARABLE CHOICE

We then introduce our concepts of separable .

choice: A choice c is I-independent if for all p,

x E c(p)(\intl, and x~1E intl_r there is p' such that

xI+(1 E ctp') and pi/pixI = P/Plxl (see Figure 1).

Here P/Plxl is the I-section of p at x_r 1-

independence says that an interior point with the

same I-projection as some chosen point is chosen

at some budget with the same I-section. It is

implicit in Lensberg (1987) and closely related to

Sono (1945) and Leontiefs (1947a,b)

independence property of the marginal rat~ of substitution. A weaker notion is Lau (1969) and

Pollak's (1970) (weak) I-decentralization, defined by for all p, p', x E c(p)(\intl, x' E c(p')(\intl,

Figure I

P/PIX1 = pi/pixi implies that xi+x -I E c(p).4 This expresses that if the I-sections at chosen

+That *separability implies decentralizability follows from the axiom.

tiORGES HANDELSH0 r':"I\01 I

BIBLIOTEKET
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(interior) points are equal, then the sectional choices are also equal.> or in other words that the

I-sectional choice, cl' (defined by XIE cI(PI) if there is X_I and p' such that x E c(P') and

PI = pi/pixI~ is well-defined.

Subgroup analogies of the revealed preference axioms are introduced next. Write QJ for

(QC)I and say that a choice c satisfies the generalized I-axiom if +PIis asymmetric, the weak: 1-

axiom if (+PJ,RJ) is asymmetric, the l-axiom if (PI,RJ) is asymmetric, and the single-valued 1-

axiom if RI is antisymmetric.f As the corresponding revealed preference axioms these axioms

are generally of increasing strength and coincide if choice is single-valued. Whereas de-

centralization expresses that the revealed preference sections, (PI,RJ), are well-defined

relations on lI' the I-axiom says additionally that they constitute preferences, i.e. are

asymmetric.? The I-axiom is essentially equivalent to I-independence:

PRoposmON 1: 1): An I-independent choice which satisfies the basic axiom and the budget

identity also satisfies the I-axiom on the interior of its range.

2): If a choice is closed, inversely convex-valued, has large inverse domain, and satisfies the 1-

axiom, then it is I-independent.

Proof: 1): Assume x E c(p), xi+x_I E B(p)\c(p), x' E c(p'), and xI+x~I E B(p'). By I-in-

dependence there is p" such that x'+x E c(p") and p"/p"x' = p'/p'x' But then p"x Ip"x' =, I -I I 1 I r+r'r I I I 1

pixlpixi ~ 1, so X E B(p"),8 contradicting the basic axiom.

5In Chapter 6, it is shown that complete decentralizability (with respect to the finest partition) is
sufficient to characterize an additively separable utility function.

6These axioms express the idea of separable choice more directely than previous nonparametric
notions, like the ones used in Varian's (1983) Theorem 3. Also as these axioms avoid
existential quantifiers, tests based on them should be computationally more efficient.
7With only two goods, all the separability notions defined here are essentially powerless, e.g.
the I-axiom follows from strict monotonicity.

8Note that if x E H(p), th~n xi+x_I E B(p) if and only if PIxilpIxI ~ 1, i.e. xi E Blp/PIxI)'



2): (Figure 2) If not, there is p, x E c(p), and

x_rsuch that for all p' E c-l(xl+x~I)' plprxI =
pi/pixr Then there is xi such that

x' E b(P/P(xI+x~I))\B(P'). Let xt = tx'+(1-t)(x1+(I)

and xt E ctp'). If xI+x~1 E B(pt), then

xt E R(xI+x~I)' But by the budget identity,

x E PC(xf+x-I)' contradicting the I-axiom. Hence

xI+x~1~ Btpt), so x' E Btpt) for all t s <0,1].

Hence since c is closed, xI+x~I E c(pO) and x' E B(pO), contradicting the inverse convex-
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valuedness of c. o

P'lp'~

Figure 2

Lemma 2 is analogous to Lemma 4 in Lensberg (1987) and Lemma 1 in Chapter 6. These,

however, essentially presuppose complete separability (and one-dimensional factor spaces) due

to the weaker separability concepts used (e.g. decentralization in the latter case), whereas the 1-

axiom also works for separability more generally.?

The choice notions corresponding to homothetic separability are: A choice c is 1-

homothetic if for all p, x E ctp);' x~1' and t > 0, there is p' such that t(xI+x~l) E C(p'/t), and

pi/pixI = PI/P1xr10 satisfies the generalized homothetic I-axiom if +i>J is acyclic, the homothetic

I-axiom if CpI,RI) is asymmetric, and the single-valued homothetic I-axiom if RI is anti-

symmetric.

Next, I introduce hierarchies between the above I-axioms and the I-homothetic axioms,

which are subgroup versions of the monotonicity hierarchies in Chapter 4. Then a choice c is

9Assuming single-sectioned choice, it is straightforward to extend the result by Kihlstrom, Mas-
Colell, and Sonnenschein (1976) to show that the weak I-axiom is equivalent to I-separability
and negative semidefiniteness of the I-submatrix of the Jacobean of inverse demand on the
appropriate hyperplane. As negative definiteness is inherited by submatrices and the axiom
holds in the following, this is of less interest, however.

lOI-homotheticity is a ~omothetic version of I-*separability. Indeed it is equivalent to 1-
*separability and homotheticity of the I-sectional choice, cl' as is easily verified.
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is (a,l)-semimonotone, (a,l)-monotone, and single-valued (a,l)-monotone if additionally a

strict inequality holds if (plxlPlxi)xi+x_I ~ c(p), xi+x_I ~ c(p), and xi '* XI' respectively. Thus

(a,I)-monotonicity says that the I-sectional choice is a-monotone. When a = 00 these notions

are trivially equivalent to the above I-axioms. At the other end of the hierarchy, (0,1)-

monotonicity is inconsistent, but (Q,I)-semimonotonicity is equivalent to the homothetic 1-

axiom.U or more generally:

PRoposmON 2: For a closed, inversely convex-valued choice with large inverse domain

satisfying the budget identity, the following properties are equivalent:

1): Homotheticity of the I-sectional choice and the I-axiom.

2): I-homotheticity and the I-axiom.

3): The homothetic I-axiom.

4): (O,I)-semimonotonicity.

Proof: 1)::)2): Let x E c(p). Then XIE c(PI/PlxI)' so by homotheticity of cl' txI E cI(pltplxI)'

Hence tx E c(p'/t), where p'/pixI = plPlxr By the second part of Proposition 1, the I-axiom

implies I-independence, hence there is pli such that t(xI+x~I) E C(p"/t), where P~/P~xI = pi/pixr

2)::)3): Assume x E c(p), xI+x~l E B(p)\c(p), tx' E c(p'/t), and t(xI+x~l) E B(p'/t). By 1-

homotheticity, there is pli such that x'+x E C(p") where p"/p"X' = p'/p'x' But then as1 -I ' 1 1 1 I I r
xI+x~1E B(p'), p~xlp~xi = pixlpixi s 1. Hence x E B(p"), contradicting the I-axiom.

3)::)4): Let x E c(p), x' E c(p'), and (PIxlplxi)xi+x_1 ~ c(p). Then x E PC«plxlplxi)xi +x}, i.e.

XI E P1«plxlplxi)xi). Assume that (PIXtPlxl)xl+x~1 E B(p'), then x' E RC«Plxi/Plxl)xI+x~I))' i.e.

xi E RI«PIxllplxI)xl)' contradicting the I-homothetic axiom. Hence (pIxi/PlxI)xI+x~1 ~ B(p'),

i.e. (Plxi/PIxl)(pixlpixi) > 1.

4)::)1): Let XI E cI(P~), and assume that tx"1~ cI(P~!t)· Let txi E cI(plt). Then there is x_I' p, x~I'

and p' such that x E c(p), x' E c(p'), and PI'LPlxI= P~ = ptpixi. Clearly «ptt)txi/(pi/t)xI)xI+x~I =
t(xI+x~I) ~ c(p/t). Hence by (O,I)-semimonotonicity, 1 = p~(txi)(P~/t)xI > 1. o

llAgain, the (O,I)-semimonotonicity notions are simpler and computationally more efficient than
previous nonparametric c"onditions for homothetic separability, like the ones in Varian (1983),
Theorem 5.
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The homothetic separability notions are self-dual (i.e. preserved when x's and p's are

interchanged),12 since the definitions of (O,I)-monotonicity are. (l,I)-monotonicity is called 1-

monotonicity etc. As monotonicity (i.e. the law of demand), I-monotonicity is presumably an

important concept, though I have so far found no uses for it. All monotonicity concepts are

easily testable on finite data sets.13

4. CHARACfERIZATION RESULTS

This section characterizes some of the above preference separability concepts in terms of

the corresponding choice ones. Building on the characterization results in Chapter 3 and 4, this

is straightforward. With transitivity one has the following result:

TIIEOREM 1: 1) If preferences (P,R) is transitive, strictly monotone, convex, P-open, smooth,

strictly .(a,I)-harmonic, and satisfies boundary tangency, then the maximal element choice, cP,

is closed, single-valued (a,I)-monotone, has large interior domains, and satisfies the transitive

axiom.

2) If the choice c is closed, single-valued (a,I)-monotone, has large interior domains, and

satisfies the transitive axiom and the budget identity, then the generated transitive preferences,

(RcpC,RcRC),is strictly monotone, partially recoverable, convex, P-open, smooth, strictly (a,I)-

harmonic, satisfies boundary tangency, and generates c.

12This is not the case for the weaker notions despite the fact that monotonicity is self-duaL This
is due to the role of the group income shares.

13Group variants of cyclical monotonicity from Chapter 4 can also be defined: A choice c is
weakly cyclically (a,I)-monotone if for all S, PS, and Xs E c(PS), mS(PS(xIS++x_IS)) ~ 1. The
stronger cyclical notions are defined in the obvious way. Again, strength is decreasing in a,
cyclical (oo,I)-monotonicity is equivalent to the I-transitive axiom and cyclical (0,1)-
monotonicity the homothetic I-transitive axiom. The latter corresponds to homothetic separa-
bility (of group I) in theories with transitivity. Clearly the I-monotonicity notions imply the
corresponding I-axioms which are equal to (oo,I)-monotonicity.
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Proof: By Theorem 2 of Chapter 3, only (a,I)-monotonicity and (a,I)-harmony need to be

verified:

Single-valued (a,I)-monotonicity: Let x E cP(p), x' E cP(p'), and xi '* xr Since (PIx!PIxi)xi+x_I

E B(p), x E RCP«PIx!PIxi)xi+x_I)' Then by partial recoverability, x E R«PIx!PIxi)xi+x_I)' i.e.

XI E ~«PIx!PIxl)xi' Similarly, xi E RI«pixi/pixI)xI), and the result follows by (a,I)-harmony.

Strict (a,I)-harmony: Assume x E RC«xi/u'+x_I), x' E Rc«x!u+x~I) and XI '* xi. Then there are p

and p' such that x E c(P), xi/u'+x_I E B(p), x' E c(p'), and x!u+x~I E B(p'). Hence by single-

valued (a,I)-monotonicity, ma(PIxi/PIxrpix!pixi» > 1. But then since u' ~ PIxi/PIxI and

u ~ pix!pixi, so ma(u,u') > 1. o

Building on Theorem 1 in Chapter 3, one gets a similar characterization in the absence of

transitivity byessentially the same argument.I+

TIlEOREM 2: 1) If preferences (P,R) is R-c1osed, convex, strictly (a,I)-harrnonic, and satisfies

boundary tangency, then the generated best element choice, cR, is closed, single-valued, (a,I)--

monotone, with large domains and interior range.

2) If the choice c is closed, single-valued (a,I)-monotone, with large domains and interior

range, then the generated preferences, (Pc.Rs), is R-closed, convex, strictly (a,I)-harmonic,

satisfies boundary tangency, and generates c.

Let 1be a set of subsets of ID, and say that preferences (P,R) is I-separable if it is 1-

separable for each lEI, and similarly for the other separability notions. It is obvious that the

above characterizations carries over to these many-group notions. If the set 1 is large, one

would expect some redundancies in the characterization.

14Note that smoothness and strict convexity are unnecessary in this case.
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CHAPfER6:
CONCAVE UTILITYo

1. INTRODUCflON

Concave utility functions are important in economics. This article characterize their

demand (behavioral) implications by giving necessary and sufficient conditions on a choice

(demand correspondences) for the existence of concave utility functions which generates the

choice. Our construction is a based on two ideas: The first is Rockafellar's (1970) characteri-

zation of the superdifferential of a concave function. The second is that the superdifferential

of a concave function is equal to the choice it generates, up to a multiplier - the marginal

utility of income. This is a direct consequence of the first-order conditions for the utility

maximizing problem, which in the concave case are both necessary and sufficient.

Rockafellar's characterization of the superdifferential of a concave function is in terms

of a notion called "cyclical monotonicity:' For a differentiable function of one argument,

this simply says that the superdifferential function is decreasing. Our characterization of the

choices generated by concave utility functions uses a weaker notion called "cyclical quasi-

monotonicity" , differing by the fact that it admits the marginal utilities of income as

multipliers. For finite choices.! cyclical quasimonotonicity is a variant of Afriat's (1976)

"system of multipliers". Thus the finite choice version of this result has been known for a

long time. What we do here is to extend Afriat's results from finite to more general choices.

As for related work, Kannai (1977, 1986) characterized concavifiable preferences in

three different ways. Our main result appears simpler than the ones offered by Kannai. This

is because the condition for concavifiabiFty intuitively involves both quantities and prices.

For choices both are primitives, but for preferences the conditions involving prices must be

expressed in terms of quantities only. Theresult also show that Kannai's (1977) remark: "In

Ol am grateful to Lars Thorlund-Petersen and especially to Sjur Flåm for valuable comments to
this chapter. I-

lA finite choice is a choice which is finite as a set, i.e. one based on a finite set of observations.
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our context [Rockafellar's characterization] does not appear to be so useful" does not

substantiate in our slightly different context.

As noted by Debreu (1976) and Kannai (1977), cardinal utility makes sense with

concave utility. The reason being that attention can - without loss of generality - be

restricted to the least concave utility functions, and these are cardinally determined. This is

shown by a simple proof of the existence of least concave utility functions for a choice. In

contrast, the starting point for Debreu's (1976) classic proof is some preferences.

The plan is as follows: For background and perspective, we first review Rockafellar's

results. Thereafter we give our main result, and finally treat least concavity.

2. SUPERDIFFERENTIALS OF CONCAVE FUNCI10NS

This section restates Rockafellar's (1970, Theorem 24.8 and 24.9) characterization of

the superdifferential of a concave function. In our jargon, they say that the superdifferentials

of a concave function are the maximally generalized cyclically monotone choices.s For our

purposes it is convenient to add two minor new results: First, maximally generalized

cyclical monotonicity is equivalent' to the somewhat simpler concept of cyclical mono-

tonicity, which avoids the maximality construction. Secondly, the concave integral of a

cyclically monotone choice is a utility function - i.e. generates the choice.

Consider the class of functions li= {u:IRL+IRU{-00 } Iu is closed, concave, and u(xo) = 0}.3

Let u E iL The superdifferential of u, du!: 1R1x1R1,is defined by p E au(x) if for all x',

u(x') ~ u(x) + p(x'-x). Trivially, if u E iL, then au has convex values, and if u is closed, then

au is closed. A correspondence d ~ 1R1xIRIis said to be (decreasingly) generalized cyclically.
monotone if for all finite sequences {(Pi,Xi)} ~ d, LiPi(Xi+-Xi);::: O, where i+ denotes the

successor index of i in the sequence, assuming that the successor of the last element is the

2Rockafellar's "cyclical monotonicity" is our "generalized cyclical monotonicity." This is to
keep terminology in line with the revealed preference one in the preceeding chapters.

3The assumption u(xO) = O is a normalization to get rid of the indetermined integration constant.
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very first one.s We single out the class 'D = {d c 1R1xIR11d is generalized cyclically mono-

tone}, and focus on the subclass 'D* = {d E 'D Id C d' implies d' e: 'D}, i.e. the maximally

generalized cyclically monotone correspondences. In the one-dimensional case (l = 1), 'D is

simply the set of nonincreasing curves in 1R2,and 'D* is the set of connected nonincreasing

curves. Theorem 1 below says that 'D* is the set of superdifferentials of concave functions.

To show this, one need to define an inverse operation to the superdifferential, (J, i.e. an

integral. Let d e 'D. Define the (concave) integral of d, given Po, ud = ~,s by u~o(x) =
inf{po(XI-XO)+···+Pn-l(Xn-Xn-l)+Pn(X-Xn)I{(Pi,Xi)}!;;;d is a finite sequence}. The terminology

is justified by Rockafellar's (1970) Theorem 24.8 and 24.9 which can be restated compactly

in the form:

THEOREM 1: 1) If u E il, then au E 'D* and udu = u.

2) If d E 'D, then ud E iland d !;;;aud. If d E 'D*, then d = aud.

The domain of a correspondence d, is defined as Dd = {x Id(x) :jI!: Ø}. Superdifferentials

of concave functions can, without the maximality construction, be characterized as the

closed and cyclically monotone correspondences with essentially convex domains:

PROPOsmON 1: d s 'D* if and only if it is closed, cyclically monotone, and there is a

closed convex set A such that intA c Dd c A.

Proof: =>: Let d s 'D*. Then by Theorem 1, d = du for some closed concave function u.

Clearly, such a superdifferential is closed, and by Rockafellar's (1970) Theorem 23.4,

intA !;;;Dd !;;;A, where A = clDu. Hence it suffices to show that du is cyclically monotone.

Let Pi E du(Xi) for i = 1,... ,n and Pn e: du(xl). Since u is concave, by Theorem 1 again, du is

generalized cyclically monotone, i.e. l:Ri(Xi+-Xi)~ O. Assume that l:Pi(Xi+-xD = O. Since

Pn e: du(xl)' there is xn+l such that U(Xn+l)-U(Xl) > Pn(Xn+l-Xl). But U(Xn+l)-U(Xl) =

4It is cyclically monotone if a strict inequality holds if for some i, (Pi,Xi) e: d.
~ . .

sIn the following the index po is dropped from the notation.
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l::(U(Xi+1)-U(Xi» ~ l::Pi(Xi+I-Xi)= Pnxn+rPnxI, contradiction. The last equality follows from

l:;Pi(Xi+-Xi)= O.

<=: It suffices to show that if d is closed and monotone, then it is maximally generalized

monotone.f The conclusion then follows since generalized cyclical monotonicity implies

generalized monotonicity and a generalized cyclically monotone extension is also a gene-

ralized monotone extension. Let d be closed and monotone, assume that d' is a generalized

monotone extension of d, and let p' E d'(x)\d(x), where x E intDd and p E Dd-I. Let

x' E d-1(P'), xt = tx'+(1-t)x, and since x' E Dd, pt E c(xt) for tE <0,1>. Then since d' is

generalized monotone, (pt-p'jrx-x) = (pLp')(XLX)/t ~ O for t e <0,1>. Since x E intDd, by

Rockafellar's (1970) Theorem 23.3, df(x) is bounded. Hence {pt} is bounded as t-l(). Let

pLtp, subsequentially as t-O, Then (p-p'jtx-x') ~ O. But since d is closed, p E d(x). Hence

since d is monotone, (p-pjtx-x) < O, contradiction. o

For the rest of this chapter, we restrict ourselves to a demand theory framework.

Recall some notation: The budget correspondence, B ~ lx'P, is defined by x E B(p) if

px ~ 1, x ~ O, and p ~ 0.7 If c ~ B, then c is a choice (demand correspondence). A choice c

satisfies budget identity if x E c(P) implies px = 1. The choice generated by a utility

function u, cU, is defined by x E cu(p) if x E B(p) and for all x', if u(x') > u(x), then

x' ~ B(p).

We show that for a generalized cyclically monotone choice, the integral is indeed a

utility function:

PROPosmON 2: Let the choice c satisfy the budget identity. Then:

1) If c is generalized cyclically monotone, then UC generates an extension of c.

2) If c is maximally generalized cyclically monotone, then on De, UC generates c.

6A choice is (generalized) monotone if one restrict attention to pairs in the definition of
(generalized) cyclical moootonicity. .

7Thus we have normalized prices by setting income equal to 1.
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Proof: This follows from Theorem 1 if we can show: i) If c-l ~ due, then c ~ cue and ii) that

restricted to De, if c-l = due, then c = cue.

1): Assume x E c(p)\cue(p). Then pE due(x) and there is x' E B(p) such that ue(x') > ue(x).

Then by the definition of ue(x), there is a finite sequence {(Xi,Pi)}~ c such that ue(x') >

PO(XI-XO)+...+Pn(x-xn). Hence by the definition of ue(x'), ue(xl)+p(X'-x) > Po(xrxo)+",

+Pn(x-xn)+p(x'-x)~ ue(x'). Hence p(x'-x) > O, contradicting x' E B(p) and the budget identity.

2): Assume x E cU\p)\c(p). Then by assumption, p ~ due(X). Hence there is x' such that
ueue(x')-ue(x)> p(x'-x). Let x* E c(p). Then by 1), x* E C (p), so ue(x*) = ue(x). By assump-

tion, p E due(X*). Hence ue(x')-ue(x)= ue(x')-ue(x*)~ p(x'-x*) = p(x'-x) by the budget

identity, contradiction. o

The integral of a generalized cyclically monotone choice is simply the (Marshallian)

consumer surplus - the minimum willingness to pay to get to x from xOalong some path.f

3. CONCAVIFIABLE CHOICE

Theorem 1 gave a one-to-one correspondence between closed concave functions and

superdifferentials, i.e. (maximally generalized) cyclically monotone correspondences. We

use this result to verify a similar one-to-one correspondence between the class of closed

concave utility functions .u and a class of pairs of choices and associated multiplier maps.?

This correspondence characterizes closed concave utility functions in terms of choice. In

view of Theorem 1, it suffices to show that there is a one-to-one correspondence between

the class of superdifferentials, 'D*, and the class of pairs of choices and the associated

multiplier maps. As mentioned, this 'correspondence is essentially a straightforward

8Since a cyclically monotone choice is the superdifferential of a utility function, the marginal
utility of income is one, i.e. independent of prices. But as shown by Samuelson (1942), this
implies that choice is homothetic. Hence cyclical monotonicity is yet another characterization
of homotheticity.
9A multiplier map for a 'choice intuitively associate (Lagrangean) multipliers to each pair of
budget and choice at that budget.
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consequence of the first-order conditions for a concave utility maximization problem. We

need, however, some terminology to express this simple idea in an appropriate way.

A correspondence l"k lR+x(..fX1')is a multiplier map if (t,x,p) E l"implies t = ° or px = 1.10

Let t_r be the set of multiplier maps. A multiplier map l" is an (integrating) multiplier map

for a choice c if c ~ Dl" and for all finite sequences {(Xi,Pi)} ~ c, and 1i E 't(Xi,Pi)'

LituJi(Xi+-Xi)~ 0, and it is a binary multiplier map for c if the same holds for alll29irs. in c

(i.e., if x E c(p) and x' E ctp'), te 't(x,p), and t' E 't(XI,p'), then t(px'-1)+ t'(p'x-I) ~ O). Let t_rc

be the set of multiplier maps for c. A multiplier map for a choice c associates multipliers to

points in c such that 1) the complementary slackness condition holds and 2) the result of

scaling budgets by associated multipliers is generalized cyclically monotone - and hence has

an integrable extension. Different multiplier maps for a choice corresponds to different

concave utility representations. The values of the multiplier maps are essentially Lagrangian

multipliers, i.e. marginal utilities of income. Multiplier maps are preserved under sub-

choices, i.e. if c' ~ c and l"E t_rc, then 'r E 'rC'.

Let l!= {c Ic ~ Band t_rc;:f:. Ø} be the set of choices with associated multiplier maps.

Such choices we will also call generalized cyclically quasimonotone. Let rt;zc = {c E Q: Ic' is a

choice and c c c' implies c' e: Q:} be the set of maximally cyclically generalized monotone

choices, and *t_rc = {'r E t_rc Ifor all i :J 'r, i e: 'rc} the set of maximal multiplier maps for c.

The main result below gives a one-to-one correspondence between elements u E il. and pairs

of elements c E <t* and 'r E *t_rc. To show this we again need some more notation:

Given de 'D, define the choice generated by d, cd, and the multiplier map generated by
d

d, td ET, by x E cd(P) and te td(x,p) if tp E d(x), t ~ 0, X E B(p) and t = ° or px = 1.

Conversely, given CEQ: and 'r E t_rc, define the superdifferential generated by c and 'r, d'tC,by

P E d"CC(x)if there is p' E C-l (x) and t e 't(X,p') such that p = tp'. By the Kuhn-Tucker
.

theorem, the superdifferential of a concave function has value zero .or is equal to its

generated choice up to a multiplier - the .marginal utility of income. We use this to show

lOWith our price normalization, this is essentially the complementary slackness condition.
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that Cd is appropriately defined, i.e. that the choice generated by the superdifferential of a

concave utility function is equal to the choice generated by the utility function.U

LEMMA 1: If u is concave, then ev = cau.

Proof: CO!;;; J}o.: Let x E cu(p). By the Kuhn-Tucker theorem (e.g. Rockafellar (1970,

Theorem 28.3)), there is t z ° such that tp E au(x), x E B(p), and t(1-px) = O. Hence by the

definition of cd, x E cau(p).

ciJu. c co: Assume x E cau(p)\cu(P). Since x E cau(p), x E B(p). Hence, since x e cu(p), there

is x' E B(p) such that u(x') > u(x). But since x E cau(p), there is t;:::° such that tp E au(x)

and t = ° or px = 1. But by the definition of au, u(x')-u(x) ::;;tp(x'-x) ::;;0, contradiction. o

The announced correspondence between superdifferentials and pairs of choices and

associated multiplier maps is:

PROPosmON 3: 1) If d E 'D, then cd E (t, 'vi E 'rc, and d ~ d'vic
d
.

2) If c E <t and rE 'rc, then d'te E 'D, c ~ cd and r ~ fl, where d = d'te.

1*) If d s 'D*, then cd E <t*, 'td E *'re, and d = d'vicd.

2*) If c E <t* and rE *'re, then d'te E 'D*, c = cd and r = rd, where d = d'te.

Proof: 1) Let d E 'D. By the definitions, cd is a choice and ~ a multiplier map. To show that

'vi is a multiplier map for cd. Let {(Xi,Pi)} ~ cd be a finite sequence, and 4 E 'vi(xi,pD. Then

by the definition of 'vi and cd, there is 4;::: ° such that 4Pi E d(Xi). Hence LitiPi(Xi+-x.) ;:::0,

since d is generalized cyclically monotone. Hence cd E <t and 'vi E 're.

IlTo ensure that the nonrfegativity constraints are never binding, we impose a constraint on il: If
x ENntl, then there is a sequence {xn} ~ intf such that u(xn) ;::: u(x) and Xn ... x.



-90-

d c dtdcd: Let p E d(x). There are two cases: i) Assume p = O. Let x E Btp'). Then by the

definitions of cd and -rd, x E cd(pl) and O E -rd(X,pl). Hence by the definition of d'tc,

O E d-rdcd(x). ii) Assume p '* O. Then for some t > O, (p/t)x = 1. Then by the definitions of cd

and -rd,x E cd(p/t) and lit E ~(x,p/t). Hence by the definition of d'tc, p s drdcd(x).

2} Let c E ~ and 'r E :rc. Let {(Pi,Xi)} !:;;d'tc be a finite sequence. Then by the definition of

d'tc, there is pi E C-l(Xi) and ~ E 't"(Xi,Pi)such that Pi = ~i. But then, since 'r is a multiplier

map for c, LiPi(Xi+-Xi)= Li~i(Xi+-Xi) ~ O. Hence d'tc E 'D.

c!:;;c<fCc and t"!:;; -r: Let x E c(p) and t s 't"(x,p).Then x E B(p), t = O or px = l, and by the

definition of d'tc, tp E d'tC(x). Then by the definitions of cd and -rd, x E cd'tc(p) and
d'tc

t s r (x,p).

1*} Let d E 'D*. Then by 1), cd E ~ and -rdE 'Ic.Assume -rd~ *:rc. Then there is 'r E :rc such

that -rdc 'r. Let (t,x,p) E n-rd. Since r s 'Ic, (x,p) E c. Let dl = dU{(tp,x)}. Then since d E 'D*,

dl ~ 'D, so there is a finite sequence {(Pi,Xi)}!:;;d such that PI (XrXI)+ ...+Pn(x-xn)+

tp(XI-X) < O. By the definitions of cd and -rd,(Xi,P/PiXi) E cd and (PiXi,Xi,P/PiXi)E -rd!:;;'r. But

this contradicts r E :re. Hence -rdE *:rc.

Assume cd ~ ~. Then there is c E ~ such that cd c c. Let (x,p) E c\cd. Then for all t ~ O,

(tp,x) ~ d. Let dl = dU{(tp,x)}. Then since d e 'D*, dl ~ 'D, so there is a finite sequence

{(Pi,Xi)} !:;;d such that PI(X2-XI)+...+Pn(x-xn)+tp(XI-x) < O. By the definitions of cd and -rd,

(Xi,P/PiXi) E Cd!:;;c and (PiXi,Xi,P/PiXi)E -rdE :rc. But this contradicts c E (!. Hence cd E ~.

-vied . . -rdcdd = d : Since d E 'D*, this follows from d k d .

2*) Let c E ~* and 'i E 'Ic.Then by 2), d'tc E 'D. Assume d'tc ~ 'D*. Then there is d E 'D such

that d'tc k d. Let P E d(x)\d'tC(x). There are two cases: i) Assume x ~ c(P/px). Let

Cl= cut (x,p/px)}. Since c E <t', Cl~ ~ so there is a finite sequence {(Xi,Pi)} ~ c and

ti E 't"(Xi,Pi)such that tlPl (X2-Xl)+...+tnPn(x-xn)+P(XI-X)< O. But by the definition of d'tc,

tiPi E d'tC(Xi)c d(xi)' contradicting d E 'D. ii) Assume px ~ 't"(x,p/px) and let

r = rut (px,x,p/px)}. Then since 'r E *~c, r ~'Ic, hence there is a finite sequence

{(Xi,Pi)} ~ c such that tIPI(X2-XI)+...+tnPn(X-XI)+P(Xrx) < O. By the definition of d'tc,

(~Pi,Xi) E d'tc k d. Since (p,x) E d, this contradicts d E 'D. Hence in any case, d'tc E 'D*.
d'tc d'tc

C = c : Since c E ~, this follows from c ~ c . o



-91-

A choice is said to be generalized cyclically quasimonotone if it has a multiplier map.

For finite choices, this amounts to Afriat's (1976) "system of multipliers". This notion is

clearly self-dual, i.e. preserved by interchanging elements of l and 'P. By Theorem 2, a

generalized cyclically quasimonotone choice has a maximal extension (with respect to ~)

with the same properties. This is so because c E (t and 't' E Xcimplies cd't
c
E <!*.

The characterization of closed concave utility functions is a direct consequence of

Theorem 1, Proposition 3, and Lemma 1. Specifically, for c E (t and 't' E 'r, the utility

function generated by c and 't', n'tC= ud, where d = d'tc. Conversely, for u E il, let the

multiplier map generated by u, VI = jJu. The main result is:

TIffiOREM 2: 1) If u E .u, then cll E <!*, 't'l E *'rc and u = u'ttiC
ll
•

2) If c E (t and 't' E 'rc, then u'tc E .u, C~ C
U and 't' ~ tI, where u = u'tc.

2*) If c E <!* and 't' E *'rc, then c = CUand r = tI, where u = u'tc.

Proof of Theorem 2: 1) Let u E il Then by Theorem 1, du E 'D*. Hence by Lemma 1 and

Proposition 3, cll = cau E <!* and VI = jJu E *r:
ll
• By Theorem 1 also u = uau, and by

jJuau .
Lemma 1 and Proposition 3, du = d c = d'ttiCll

•Hence by definition, u = u'ttiC
ll
•

2) Let c E (t and 't' E 'rc. Then by Proposition 3, d'tcE 'D. Hence by the definition and

Theorem 1, u'tc E il Also by Proposition 3, c ~ cd and r c -vi, where d = d'tc. By Theorem 1,
aud ud u'tc _u'tc

d ~ dud. Hence, since cd preserves ~, c ~ c = c = c ,and similarly, 't' ~ ~ •

2*) Similar to 2).

Theorem 2 says that maximally generalized cyclical quasimonotonicity characterizes

choices generated by closed concave utility functions. Furthermore, for such choices, there

is a one-to-one correspondence between concave utility functions and maximal multiplier

maps.

,



-92-

Next, we introduce a variant of maximally generalized cyclical quasimonotonicity

which avoids the maximality construction: A choice c is cyclically quasimonotone if there is

a closed 't' E 'rc such that for all finite sequences {(Xi;Pi)}~ c and ti E 't'(Xi,Pi)' if for some i,

xi+ ~ C(Pi) or ti ~ 't'(Xi+,Pi)'then LitiPi(Xi+-Xi)> O. In analogy with Proposition 1, closedness

and cyclical quasimonotonicity on a convex set characterize the choices generated by

concave utility functions:

PROPosmON 4: c E l!* if and only if it is closed and cyclically quasimonotone, where

intA c Dc-l ~ A for some closed convex set A.

Proof: ~: Let c E <t* and pick 't' E *'rc. Then by Proposition 3, d = d'tc E 'D*. Hence by

Proposition 1, d is closed and cyclically monotone and there is a closed convex set A such

that intA ~ Dd ~ A. But then by Proposition 3 again, c = cd. Hence by definition, c is

cyclically quasimonotone. Also, since d is closed, so is c and r. Finally Dc=! = Dd.

~: Let c be closed and cyclically quasimonotone with intA ~ Dc-l ~ A for a closed convex

set A. Then there is a closed 't' E 'rc such that if for some i, Xi+~ C(Pi) or 1.j_ ~ 't'(Xi+,Pi)'then

Lif]_pi(Xi+-Xi)> O. Clearly Dd'tc = Dc-I, and r and c closed implies that d = d'tc is closed.

Hence it remains to show that d is cyclically monotone, since then by Proposition 1, d 'D*,

so by Proposition 3, c = cd E <t* and r = -vi E *'rc. Let {(Pi,Xi)} ~ d be a finite sequence with

Pi ~ d(Xi+) for some i. Then by the definition of d'tc, for each i there is pi E c-l(xi) and

ti E 't'(Xi,pi) such that Pi = f]_pi,and for some i, xi+ ~ c(pi) or 1.j_ ~ 't'(Xi,pi).Hence LiPi(Xi+-Xi)=
Lif]_pi(Xj+-Xj)> O by the above. Hence d is cyclically monotone. o

For finite choices, generalized cyclical quasimonotonicity is implied by the generally

much weaker transitive weak axiom:

PRoposmON 5: A finite choice which satisfies the transitive weak axiom is generalized

cyclically quasimonotone.
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Proof: Let X be finite (Xi,Pi) E c, and Mc(X) = {x E X Ifor all x' E pc(x) x' e X}. We make

an inductive definition: Let Xo = X, .Ko = ø, Xo E MC(Xo), and to = 1. Inductively, let Xi+l =
Xi-Rc(Xi), Xi+l = XiuRC(Xi), xi+l E Mc(Xi+l), and ~+l = max{max{Xj}~i,{Xk}~RC(Xi+l)

:Ejtj(Pjxj+l-l )/Lk(PkXk+l-l), l }. We show by induction on i that {x.} c Xi+l, :Ej~(Pjxj+l-l) ~ O:

Base case: Xl = Rc(xo): Let Xi,XjE Rc(xo). Then since Xo is maximal, XoE RC(Xi)' Hence

PiXj~ l, since otherwise x, E +pc(Xj)' contradicting the weak transitive axiom.

Induction case: Let XkE RC(Xi+l)' If Xk+l E RC(Xi+l)' then Pkxk+l ~ 1 as in the base case. If

xk+l E Xi+b then Pkxk+l > 1, since otherwise XkE RC(Xk+l)' so XkE Xi+l> contradiction.

Hence the denominator in the definition of ~+l is positive. But then for all XkE Xi+l'

ti+l:Ek(PkXk+l-1)~ :Ejtj(Pjxj+l-l), and the result follows. o

This proof corresponds to Algorithm 3 in Varian (1982), but verifies Afriat's (1976)

"system of multipliers" instead of his "system of multipliers and levels".

Together with Theorem 2, this proposition shows that the existence of a concave utility

function has no testable implications on finite data sets when attention is restricted to price-

generated budgets. This is the classical result by Afriat (1967).

3. LEAST CONCAVITY

The class of utility function for a given choice are generally only ordinally determined

(i.e. up to a positive monotone transformation). Debreu (1976) has shown for concave utility

functions, one may without loss of generality restrict attention to the subclass of least

concave utility functions and the latter is cardinally determined (Le. invariant up to a

positively affine transformation). Here we give a simple proof of a variant of Debreu's result

ensuring the existence of least concave utility functions. In contrast to Debreu who defines

least concavity with respect to preferences, we define it with respect to a choice, which

seems to simplify matters.
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A function u is least concave for a choice c if u E ilc and for all u' E ilc, there is an

increasing concave function f:u(l)~1R such that u' = feu. Clearly, any two least concave

functions for a choice are increasing affine transformations of each other. We will prove the

existence of least concave functions.

On il, define the (weak) less concave relation, ~, by u ~ u' if there is an increasing

concave function f:u(l)~1R such that u' = feu. Clearly, ~ is a partial order.t- Let 110 =
{u E ill(xO,pO)E ev and sup~(xO ,pO)= tO}, i.e. the concave functions (with value O at xO)

where the associated multipliers attain the same supremum (in the direction p0).13 In the

following restrict ~ to ila. Here the less concave relation, ~, reverses the standard order on IR,

and an infimum with respect to ~ is a pointwise supremum of values on IR:

LEMMA 3: l) On ila, if u ~ u', then for all x, u(x) ;?: u'(x).

2) On ila, if II = inf../{uil· I' then for all x, ll(X) = SUP{Ui(X)}.I.
~ IE IE

Proof: 1): Let u ~ u'. Then there is an increasing concave function f such that u' = feu. Since

f is concave, for all x, u'(xj-u'(xv) ~ df(u(xO))(u(x)-u(xO)). By the supremum condition on the

associated multipliers in ila, df(u(xO)) ::;;1. Hence u'(x) ::;;u(x).

2): Let II = inf~{ udr By the definition of u, for all i E I, II ~ UioHence by 1), for all x,

ll(X) ;?: Ui(X).Next, let a < y(x). It suffices to show that a < Ui(x) for some i E 1. Define the

strictly concave function f:u*(l)-+IR by fet) = at/(a+t). Then f(O) = O and df(O) = {l}. Let

a = a'y(x)/(y(x)-a'). Then f(.!.!(x))= a' = (a+.!.!(x))/2. Let u' = fOll. Then u' E ila, .!.!-< u' and
a < u'(x). Hence by the definition of n. there is i E I such that ui ~ u'. But then by 1),

a < u'(x) ::;;Ui(X). o

From Lemma '3, it follows that ~ is antisymmetric (on ila). We are ready to prove a

variant of the main result in Debreu (1976):

12The associated strict relation, -<, is defined in the standard way: u -< u' if u ~ u' and not u' ~ u.
13Since superdifferentials are closed-valued, the supremum is obtained. Though supressed in the
notation, the class deperids parametrically on both xO, pO, and to. The point of fixing these
values is to normalize away the cardinal indeterminacy of the least concave utility functions.
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PROPosmON 6: 1) A concave function generating a choice c has a less concave function

which is least concave for c.

Proof: 1: Let u E ilå, the set of concave functions generating c, with value O in xc. Let

iI8 = {u' E ilålu' ~ u}, and let {Ui}! be an ordered subset of iI8. Clearly, {uil! is bounded

below (in 110) by the appropriate affine function. Let .!J. = inf-<{uilr By Zorn's lemma, it

remains to show that YE ilå. By the definition of y, y ~ ui ~ u. Hence .!J. is concave. It

remains to show that c ~ cu.. Assume x E c(p)-c.ll(p). Then for all i, x E CUi(p) and there is

x' E B(p) such that y(x') > yex). Hence by Lemma 3, for some i, Ui(X')> y(x). But then by

Lemma 3 again, Ui(X')> Ui(X),contradicting x E CUi(P).o

To fill out the picture of Theorem 2, corresponding to less concave among concave

utility functions define the (weak) less decreasing relation, ~, on 'D (i.e. subsets of super-

differentials by d ~ cl if for all x, x', p E d(x), p' E d(x'), P E cl(x) and p' E cl(x), «p'_p)_(p'/p»

(uO(x')-uO(x» ~ O for some uOE iL The corresponding relative decreasing relation between

multiplier maps for a choice, ~, on 're is defined by 'r ~ :r if for all (x,p),(XI,p') E c, t E 'r(x,p),

t' E (X',p'), f E :r(x,p), and f' E :r(XI,p'), (fl/tl-flt)(uO(x')-uO(x» ~ O for uO(x):f:.O, and

(x,p) ~ :r(x,p) otherwise. To verify this is straightforward, so we omit it.
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May 1988
Revised, February 1990

CHAPTER 7: COMPLETELY SEPARABLE UTILITYo

1. INTRODUCfION

As mentioned in Chapter 3, so far, there is no full characterization of the choice (demand)

consequences of a standard utility function. Lensberg (1987), however, gave such a

characterization in the special case when the utility function is additionally completely

(additive) separable and strictly quasiconcave. In this Chapter we weaken Lensberg's strict

quasiconcavity assumption to quasiconcavity. The argument is also simplified, and its structure

made clearer. Furthermore, we show that similar characterizations easily follow when the

utility function additionally has concave components and is of the expected utility form,

respectively.

The first results in this direction, by Sono (1945) and Leontief (1947a,b), characterized

different kinds of separable utility in terms of an independence property of the marginal rate of

substitution. The present argument also proceeds via this independence property, and can thus

be seen as extending their work. With hindsight, the step from marginal rates of substitution to

choice seems fairly easy, especially if one assumes differentiability. Lau (1969) and Pollak

(1970) introduced a corresponding choice concept, called decentralization by Blackorby,

Primont, and Russell (1978, Chapter 5.3). Blackorby, Primont and Russell also slightly

generalized Pollak's characterization of separable utility by means of what they called "strong

decentralizability." Here the slightly weaker notion of (weak) decentralization is used. In

addition to avoiding differentiability assumptions, the present work (as the one by Lensberg)

puts the result Into an. integrability framework, i.e. it does not presuppose any utility notions
.

when showing that separable choice implies separable utility. The cost of this is that the result

is restricted to one-dimensional factor spaces.

Ol am grateful to Sjur 'Flåm, Bernt Stigum, William Thomson, Lars Thorlund-Petersen, and
especially Terje Lensberg for valuable comments to this chapter.
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Chapter 5 above established a similar characterization of separable preferences in terms of

choice which does not presuppose complete separability. It uses the stronger l-axiom instead of

decentralizability as the separability notion of choice. The I-axiom makes the restriction to

one-dimensional factor spaces unnecessary. On the other hand, in view of the lack of an

extension theorem in Chapter 3, this does not quite imply the existence of (separable) utility

function.

The main differences compared to Lensberg (1987) are: First, his separability concept,

called multilateral stability, and going back to Harsanyi (1959), is replaced by Blackorby,

Primont, and Russell's (1978) (weak) decentralization. The reason for this is that multilateral

stability does not easily generalize to correspondences. Secondly, the argument is formulated

in a demand theory framework, admitting only price-generated budgets in a fixed finite

Euclidean space, whereas Lensberg admits more general convex budgets and an infinite

sequence of such spaces. This allows the continuity concept to be simplified by using the

standard topology of Euclidean space instead of the Hausdorff one on the set of closed subsets.

Finally, a new argument is needed to show that inverse choice is single-valued almost

everywhere, as Lensberg's proof at this point relies heavily on the use of a choice function.

With these modifications, the argument roughly follows the one in Lensberg (1987).

The rest of the paper is organized as follows: After some preliminary results in Section 2,

the main result is given in Section 3. Sections 4 and 5 show similar characterizations when the

utility function additionally has concave components, and is of the expected utility kind,

respectively. Finally, some interpretations is shortly discussed in Section 6.

2. CONCEPTS AND NOTATION

We stick to the previous notation, but. need some additions. Let e E IR!O be the vector with

unit components. For simplicity, we usually write Xi for x{i}" A correspondence c is

unbounded (outside De) if for all p rt. De, pn-p, and' xn E c(pn), {xn} is unbounded.
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A function u is completely separable (with respect to the finest partition of 10) if there is

{uilIo such that u(x) = ~Ui(Xi). Our separability notion of choice is the fairly weak:

decentralization concept. Recall that for x E B(P) and PIxI '* 0, the section of the budget p at

x_I' p Ix_I = plPIxI (See Figure 1). Now, a choice c is I-decentralizable if for all p, pl,

X E c(p)(\intl, x' E c(pl)(\intl, plx_I = pllx~I implies xI+x~I E ctp') (see Figure 2). This expresses

that if the sections at chosen (interior) points are equal, then the sectional choices are also

equal, or in otherwords, that the choice from group I is only dependent on the group budget.!

Also, a choice c is completely decentralizable (with respect to the finest partition of 10) if it is

I-decentralizable for all I.

l

//~

: '. )~"":>--_I) ---7- \

\
- - ->-~

X_I
Figure 1

Figure 2

3. TIIE CHARACTERIZATION OF COMPLETELY SEPARABLE UTILITY

The characterization of completely separable utility for spaces of dimension three or more

is given by the following two theorems:

THEOREM 1: If u is a completely separable, continuous, quasiconcave, and strictly increasing

utility function, then its generated choice, c», is completely decentralizable, closed, has large

interior domain, large range, and satisfies the budget identity and the basic axiom.

----------------- ,
1Thus l-sectional budgets are well-defined objects (with equality) in the theory.
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Proof: We only verify decentralizability, by showing that if for all x and I, u(x) = uI(xI)+

u_I(x}, then cU is l-decentralizable. Let x E cu(p), p Ix-I = p' Ix~I and x' E CU(p'). To show

xi+x_I E cu(P). Since p'lx~1 = plx_r xtx~1 E B(p'). Hence since x' E CU(p'),u(xi) ~ u(xI+x~I)' sa

by the assumption on u, u(xi+x} ~ u(x). But then since x E cu(p) and xi+x_I E B(P),

X'+X_IE cu(P). o

TIIEOREM 2: If 110 I ~ 3 and the choice c is completely decentralizable, closed, has large

interior domain, large range, and satisfies the budget identity and the basic axiom, then there is

a completely separable, continuous, quasiconcave, and strictly increasing utility function, UC,

which generates c.

Remark 1: Debreu and Koopmans (1982, Theorem 9) have shown that the continuity

assumption can be dropped in Theorem 1.

Remark 2: A stronger separability concept, namely the l-axiom also follows in Theorem l,

with essentially the same proof.2 As noted there, I-decentralizability is too weak to

characterize I-separability of preferences, this works nicely for the l-axiom, in contrast to the 1-

axiom.

Does one get a characterization without the restriction to one-dimensional factor spaces by re-

placing I-decentralizability by the l-axiom? No, since that would presuppose a solution to the

general integrability problem on the subspaces. On the other hand if one, as is often done, pre-

supposes the existence of a utility function generating the choice such a result follows.

Remark 3: No strong axiom is needed in Theorem 2, though one gets transitivity out. The

reason for this is that complete decentralizability and one-dimensional factor spaces allows one

to reduce the problem to a set of two-dimensional ones. For such problems, the basic axiom

implies the strong one, as the result by 'Rose (1958) and Afriat (1965) easily generalizes to

correspondences. That nothing is gained by adding transitivity is also noted by Epstein (1987).

"2Note that using the I-axiom would slightly simplify the proof of Lemma 1.
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Remark 4: Theorem 2 is stated in terms of complete separability. But looking more closely at

the proof, especially Lemma 1 and the definition of the generated utility function, one sees that

what is actually needed is separability with respect to a binary chain in 10, i.e. a collection of

two-element sets {In} which exhaust 10 and satisfies IlUj+l nonempty. This accords to

Gorman's (1968) result on the identification of separable sections.

Remark 5: It is fairly straightforward to extend the characterization to larger classes of

"budgets", as long as these are convex, downward monotone (i.e. if x E B(q) and x' ~ x, then

x' E B(q», and have a nonempty interior. Lensberg (1987) works with the class of all such

budgets.

Remark 6: As by Lensberg, using this larger class of budgets and Hausdorff continuity make

the large range assumption superfluous in Theorem 2. In contrast to by Lensberg, however, it

seems that one cannot weaken the separability notion to one involving only two-element

groups. Also one cannot drop the basic axiom. The main reason for this is that the proof of

Lensberg's Lemma 1 relies heavily on the lower hemicontinuity of the choice function.

Furthermore, the conclusion of this lemma does not in general imply the basic axiom if choice

is not single-valued.

Remark 7: The dual of the above result characterizes completely separable indirect utility.

The proof of Theorem 2 proceeds via the stronger I-independence notion of separable

choice. This is closely related to Sono (1945) and Leontiefs (1947a,b) independence property

of the marginal rate of substitution. Recall from Chapter 5 that a choice c is I-independent if

for all p, x E c(p)lIint!, and x' E intz', there is p' such that xI+x~IE c(p') and p'l x~I= p Ix_r3
This says that an interior point with the same I-projection as some chosen point are chosen at

some budget with the same I-section. Also a choice c is completely independent if it is 1-

independent for all I. Under the conditions of Theorem 2, complete decentralizability implies

complete independence:

I-

3That independence implies decentralizability follows from the axiom.
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LEMMA 1: If the choice c is completely decentralizable, closed, has a large interior domain,

and satisfies the basic axiom, then it is completely independent.

Proof: Let x E c(p)()intl, and x~I E intl_r We verify that c is I-independent (i.e. that there is pI

such that xI+x~I E c(p) and pI Ix~I= p Ix} by induction on the size of -L

Base case: -I = {j}. (See Figure 3). Let
X
I

pt = tpI+((l-t)/xj)ej. Then pti xi = p IXj for all

t s <0,1>. It is sufficient to find t s <0,1> and

appendix, c is upper hemicontinuous. Hence by

l
/ I ,

/ I· ~I(PIX_I)

/ -,

I /1, -,
/ I « I -,

), \)- - - - ->-- - - --7

x~+xi E c(pt), since then by decentralizability,

xI+xi E ctpt). Let c c 1>«0,1> be defined by c(t)

= c(pt)j. As c has large domain and satisfies the

basic axiom c is convex-valued. Furthermore by

B(p') /

~
1" /, /, /

--+

the definition of pt and the lemma of the

the theorem of the appendix, its range c«O,l» is Figure 3

connected. Let x' E ctpi). It is sufficient to show, first that there is t e <0,1> such that xi ~ xi,
and secondly that there is t E <0,1> such that xi :::;xi.
First, let t-+l. Since c has interior domain, pl e De, hence since c is unbounded, txt} is un-

bounded. Hence since pi E int'P!' {xP is unbounded, which gives xi ~ xi for t sufficiently large.

Secondly, let t-O. Since c has interior domain, pO e De, hence since c is unbounded, txt} is

unbounded, and since P~ E int'P!' {xP is unbounded. Then for sufficiently small t, pi(xi-xi) > O,

hence p}(xi-xj) s 0, so xi-xj :::;O.

Induction case: Let ({k},L) be a proper partition of -L By the induction assumption, c is Iu{k}-

independent, so there is a p' such that xI+xk+xi.. E c(p) and pl I-; = plxL. Next, by the base.
case, c is also IuL-independent, hence there is pli such that xI+x~I = xI+x_k+xi..E ctp"), where

pli Ixk = pl Ixk. Finally, as the order of- sectioning does not matter, pli Ix~I= pli Ixk I -; =

pllxklxi.. = pllxi..lxk = plxLlxk = plx_r o
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Define the single-valued domain of c, Se = {p Ic(p) is a singleton}. Next, on the single-

valued inverse domain, Sc-l, let pe(.) be the inverse choice function determined by c,

PJ(x) = pc(x) Ix-I the corresponding I-section, and (for i ~ j) M~j(x)= prj(x)/prj(x)j the marginal

rate of substitution between i and j at x. Clearly, if c is I-independent, then PI(x) is in-

dependent of x_I"Hence if c is {i,jl-independent, then Mrj(x) is independent of X_ij'which is

Sono and Leontiefs independence property. Clearly also Mrj(x) = Mri(x)-l and Mrj(x) =
Mrk(x)M~j(x), If inverse choice were single-valued, the construction of Sono and Leontief

gives a completely separable utility function by integration of the marginal rates of

substitution. Though inverse choice is not single-valued everywhere, it is single-valued almost

everywhere, and this is sufficient for the construction to go through+

LEMMA 2: If the choice c is closed, has large domains, and satisfies the basic_axiom and the

budget identity, then intl k S(c) almost everywhere (with respect to the Lebesgue measure).

COROLLARY: There is xO E Sc-l such that for each i, Xi+xQiE Sc-l for almost all x.,

This follows from the lemma by the definition Of the product measure. This corollary is

what is used of Lemma 2 in the following.

Remark 8: By duality, choice is single-valued almost everywhere under the same assumptions.

Remark 9: Lensberg (1987, Lemma 7) applies only a two-dimensional analogy of Lemma 2.

Similarly, complete decentralizability (separability) makes a two-dimensional version of

Lemma 2, with a slightly simpler proof, sufficient here. Lemma 2 is of independent interest,

however. E.g., it seems just what is needed to extend Hurwicz (1971) integrability results

(without separability) to the general case of demand correspondences.

+The argument is a translation into choice terms of the main argument in Mas-Colell (1976). The
proof is given in Appendix 2.
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Next, independence implies that inverse single-valuedness is inherited from the adjacent

corners of a rectangle (see Figure 4): 5

LEMMA 3: Let N '* 0, ru '* 0, IrJ '* 0, lvI = 10,

!
~

!
x ~ ....'

.........../

and let the choice c be 1- and I-independent.

Then for all X and x', xI+x~r xJ+x~J E Sc-l

implies that X ESc-l.

Proof: Clearly X E intl. Let X E c(p)()C(p). By 1-

independence there are p' and p' such that

XI+X~IE c(p')nc(p'), P'lx~I = plx_I' and

p'l x~I= p Ix_r Since xI+x~I E Se-l, p' = p', so

p IX_I= p Ix_r Similarly, f-independence gives p Ix_J = p IX_I" Hence p = p, as these are

Figure 4

uniquely determined by their sectional components, since W '* O. o

Together, Lemmas 2 and 3 show that the only affine subspaces without single-valuedness

almost everywhere are normal to some axes.

For the rest of this section, let c be a choice satisfying the assumptions of Theorem 2.

On Sc-l, define the marginal rate of substitution of Xi, relative to xO,6 m~, by mr(xD =

Mrl(xi+xQi) for i,* 1, and mr(xI) = MT2(xI+x_I)M~I(xO), and the utility function generated by

c, uc, by uc(x) = liUi(Xi), where Ur(Xi)= IXbmr(t)dt for x, > Oand ur(O) = lim uret) when t-O,
Xl

As the choice c is closed, mr is continuous and hence measurable on {x.] Xi+xQiE Se-l},

i.e. almost everywhere. Also since c has an interior domain, mf(xi) is bounded on [x?,xil for

x, > O. Thus ur is well-defined and strictly increasing, so by definition UC is strictly increasing.
and continuous on l.As UC is trivially completely separable, it only remains to show that UC is

5This lemma presupposes at least three goods - as decentralizability (as most other separability
concepts) is powerless with only two goods, being a consequence of strict monotonicity.

f

6The bundle xOis defined in the corollary to Lemma 2.
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quasiconcave and generates c. For this, first note that if well-defined, the inverse choice

function is proportional to the derivative (denoted d) of the generated utility function."

LEMMA 4: If x ESc-l, then du=tx) is proportional to pe(x).

Proof: Let x ESc-l, mi = mr, and Mij = Mrj. By Lemma 3, since xOESc-l, for arbitrary i and

j, Xi+xQi,Xij+xQijESc-l. Furthermore, on Sc-l, due(x) = (mi(xi»Io. Hence by the definition of

Mij' it is sufficient to show that for i '* j, mi(xi)!mj(Xj) = Mij(X). There are three cases where the

independence property of Mij is used repeatedly:

1) Let i.j '* 1. Then m(x·)/m·(x·) = M·I(x+xO.)MI·(x+xO.) = M·I(x.+xO ..)MI·(x.+xo ..) =1 1 J J 1 1 -1 J J -1 1 lJ -IJ J lJ -IJ

M..(x.+xO ..) = M··(x)lJ lJ -IJ lJ·

2) Let j '* 2. Then ml(xI)/mj(Xj) = MI2(xI+xQI)M21(xO) Mlj(xj+xQ) = M12(xI+xQI)·

M21(xj+xQj)Mlj(xj+xQj) = M12(xl +xQI)M2/xj+xQj) = M12(Xlj+xQlj)M2/xlj+xQlj) = Mlj(xlj+xQlj)

= Mlj(x).

3) ml (xl)/m2(x2) = (ml (xl)/mj(xj»(m/xj)/m2(x2» = Mlix)Mj2(x) = MI2(x) by the previous

cases. o

Finally, it is verified that ue extends the preferences generated by c, from which the two

remaining properties follows. This will finish the proof of Theorem 2:

LEMMA 5: For all x,x', if x' E pe(x), then ue(x') >ue (x), and if x' E Re(x), then ue(x') ~ ue(x).

Proof: This is verified for the strict relation (the weak relation case is simpler). Let x' E pe(x).

Then there is p such that x' E c(p) and x E B(p)\c(p). There are two cases:

1) Assume that <x .x'> ~ Sc-l almost everywhere. Since c(p) is closed, and x f c(P), there is

x" E <x.x'> such that c·(p)n<x,x"> = 0. Hence for x! E <x.x">, x' E pe(xl). Let xl E c(PI). Then

by the basic axiom, x' f B(PI), i.e. pl(x'-xl) > O. Hence since xl E <x,x">, pl(x"-x) > O. Next,

let x2 E <x',x''> and x2 E c(p2). Then clearly x' E Re(x2). If x' E b(p2), then since c satisfies the

,
?Or as usually stated, that the marginal rate of substitution is equal to the price ratio.
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budget identity, x2 E pe(x'), contradicting the basic axiom. Hence x' e b(p2), so p2(x'-x2) ;;:::O,

from which also p2(x'-x") ;;:::O. Then by Lemma 4, du(xl)(x"-x) > O for all xl E <x,x">()SC-l,

and du(x2)(x'-x");;::: O for all x2 E <x',x">()Sc-l. Let x' = tx'+(l-t)x. By the case assumption,

x' E Sc-l for almost all tE [0,1], so du(xt)(x'-x) is integrable on Sc-l. Hence:
1 1

O < Iodu(Xt)(x'-x)dt = I,J odu(xt) (xi-xi)dt = I,i(Ui(Xt)-Ui(X?»= u(x')-u(x).

2) Otherwise, by Lemma 3 and the corollary to Lemma 2, x and x' have some common

coordinates, -I. By Lemma 2 and the definition of the product measure there are X and x' with

xI = xI' xi = xi, and x_I = x~I (i.e. parallel translations) such that <x,x'> ~ Sc-l almost

everywhere. By I-independence there is p E int7' such that x' E c(p) and p Ix_I = p Ix_r Thus

X E B(P). Assume X E c(P). Then, by I-independence again, there are i> E int7' such that x E cCi»~

and i> Ix_I = P Ix_r Hence x' E Btp), so x E Re(x'), contradicting the basic axiom. Hence

x e ctji), so x' E pe(x). Since <x,x'> ~ Sc-l almost everywhere, by case l) u(x') > u(x). Hence,

by definition, u(x') > u(x). o

LEMMA 6: The generated utility function, ue, is quasiconcave and generates c.

Proof: To verify quasiconcavity, let u(x'),u(x") ;;:::u, where u = ue, and let x E <x',x">. To show

that u(x) ;;:::u. Assume that <x',x"> ~ intz, Let x E c(p). By the definition of B, x' E B(p) or

x" E B(P). Assume without loss of generality that x' E B(p). Then x E Re(x'), hence by Lemma

5, u(x) ;;:::u(x') ;;:::U. If <x',x"> l l, then the result follows by continuity from the previous case.

To verify that u generates c, let x E c(p), and assume x' E B(p). Then x E Re(x'), hence by

Lemma 5, uCx);;:::u(x'), so X E cu(p). Thus c ~ cU. To show the converse, assume that

x E cU(p)\c(p). Since u is strictly increasing, p E int7'. Hence there is x' E c(P), so x' E pe(x). But

then by Lemma 5, u(x'»u(x), contradicting x E cu(p). o

f
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4. CONCAVE UTILITY

As an application of the main result, this section verifies that strengthening quasiconcavity

of the utility function to concavity in the main result corresponds to adding normality (of all

goods) on the choice side. Results in this direction has been proved by Gahvari (1986), and

Thorlund-Petersen (1980, Theorem 6). The former assumes differentiability, which is

dispensed with by Thorlund-Petersen. The main novelty here is that the result is stated without

reference to preferences (utility) and thus gives an integrability result. A preference

characterization of the resulting class of choices (or utility functions) has been given by Yaari

(1978), in terms of his principle of diminishing eagerness to trade.

To verify the result, note that the superdifferential of a concave function u, au, (defined by

p E du(X) if for all x', u(x')-u(x) S; pfx-x) IS equal to the inverse choice generated by u, except

for normalizations, and also that the indirect utility function, u*, (defined by

u*(p) = max, {u(x) Ipx S; l}) is concave in income.f

LEMMA 7: Let u be concave. Then for all p and x:

1) p E du(X) implies that x E cu(p/px).

2) x E cu(p) implies that there is t ;;::O such that tp E du(X) (if u is strictly increasing, t > O).

3) u*(y) = u*(p/y) is concave in y.

Proof: 1) Obviously x E B(p/px). Let x' E B(p/px), i.e. p(x'-x) S; O. Then since u is concave and

p E du(X), u(x')-u(x) S; p(x'-x) S; O. Hence x E cu(p/px).

2) Let x E cu(p). Then x solves u*(p) = maxx{u(x)lpx S; I}. Hence by the Kuhn-Tucker

theorem, there is t ;;::O such that O E du(X)\{ tp}, i.e. tp E du(X).

3) Let x solve u*(y), x' solve U*(y'), yt d ty'+(l-t)y, x' solve u*(yt), and t e <0,1>. Assume as

well that y z y' > O.' Then p(tx'+(l-t)x) S; yt. Hence by concavity, tu*(y')+(l-t)u*(y) =

tu(x')+(l-t)u(x) S; u(tx'+(l-t)x) S; u(xt) = u*(yt). o

"
8The first two parts of this lemma is a variant of Lemma 1 in Chapter 5.
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If u is completely separable, the superdifferential of u is equal to the cartesian product of

the component superdifferentials. Say that a choice c is normal (with respect to all goods) if

for all t ~ 1 and x E c(P) there is x' E c(tp) such that x' ~ x. The characterization is given by the

main theorems and the following two lemmas:

LEMMA 8: If u is completely separable, continuous, and strictly increasing utility function

with concave components, then its generated choice, cll, is normal.

Proof: Let u(x) = LiUi(Xi) and assume that cll is not normal. Then there is p, p' = rp ~ p,

x E cll(p), x' E cll(p'), and i such that xi> xj, By Lemma 7 there is t> ° and t' > t such that

tp E du(X) and t'p' E du(X'). By complete separability, tp, E dui(Xi) and t'p] E dui(xi), so by

concavity, (t'Pi-tpi)(xi-Xi) ~ 0, contradiction. o

LEMMA 9: If 110 I ~ 3 and the choice c is normal, completely decentralizable, closed, has

large interior domain, large range, and satisfies the budget identity and the basic axiom, then

the generated utility function, uv, is concave.

Proof: (see Figure 5) Let Xi+x~i E c(P)(\SC-I,

xi+x~i E c(p), and xi> Xi. By the definition of uC,

it is sufficient to show that pi ~ Pi. Let

xi+x~i E H(tp'). Then t ~ 1, hence since c is

normal, there is x" E c(tp') such that x" ~ xi+x~i.

Assume pi > Pi· Then x" E B(p). Hence

xi+x~i E Rc(x"). Assume that xi+x~i E c(tp'). Then

since xi+x~i ESc-l, P = tp', contradicting pi> Pi.

Hence xi+x~i e c(tp'). But then x" E PC0ci+xQi)'

contradicting the basic axiom. o

/"
p

Figure S
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5. SUBJECTIVE EXPECfED UTILITY

As a further application of the main result, this section verifies that in a finite state space

with one basic good, and a finite number of s.ates, subjective expected utility can be

characterized by adding a simple property called diagonal invariance to the choice properties

of the main result Diagonal invariance simplifies Lensberg's (1985) "constant beliefs", which

again is a translation into choice terms of Savage's (1954) axiom P4, also called "ordering of

events". The argument generalizes the one by Lensberg slightly by admitting risk neutrality,

and also simplifies it Savage's (1954) original result in contrast, has a convex state space, and

obtains cardinal uniqueness of the state utility function, which is lost here. The first finite state

space characterization of expected utility was by Stigum (1972) (and somewhat strengthened in

Stigum (1990, Theorem 19.5» in terms of preferences. Characterizing expected utility in terms

of preferences, he avoids the integrability problem, and can treat the case of more basic goods.

A choice c is ray invariant if there are xOE intl and pOsuch that for all t > O, tx0 E c(p0jt).9

This expresses that there is one rayon which all points are chosen at the same relative prices,

i.e. that there is some linear expansion path. Also an utility function u is an (slightly

generalized) expected utility function if ~here is x E intl, yOE IR!Osuch that yOe= 1, and a

concave strictly increasing function u: IR-+IR'J{oo} such that u(x) = LiY?U(xjx?). Note that in the

standard expected utility case, xO= e. In this case we term ray invariance diagonal invariance.

This means that points on the diagonal are always chosen at the same relative prices, or under

the choice under uncertainty interpretation, that sure outcomes (constant acts) are always

chosen at the same odds. These odds can then be taken as the individuals subjective

probabilities of the states. The characterization is given by the main theorems and the

following two lemmas: 10

9Lensberg (1985) uses a somewhat more complicated notion defined on bilaterallotteries, called
"constant beliefs", which is a translation into choice terms of Savages (1954) "ordering-of events".
The present notion is extracted from his proof.. . ---= -~.
lODne-dimensional factor spaces makes Savages (1954) "state independence" redundant here.
"Decentralization" and "'diagonal invariance" in this subjective framework corresponds to
Machina's (1989b) "replacement" and "mixture separability" in an "objective" framework.
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LEMMA 10:1f u is an expected utility function, then its generated choice ev is ray invariant.

Proof: Let u(x) = Liy~a(X!x?) and let p? = y?/x? Clearly tx0 E H(po/t). Let tx E B(pO/t). To

show that u(tx0) ;::::u(tx). Since a is concave and increasing, there is t' ;::::O such that for each i,

a(tx/x?)-a(t) s t't(xi-x?)!x? Hence since x E B(p0), u(tx)-u(txO) ~ tt'pO(x-xO)~ O. o

LEMMA lI: If Il0 I ;::::3 and the choice c is ray invariant, completely decentralizable, has large

interior domain, large range, and satisfies the budget identity and the basic axiom, then the

generated utility function, UC, is an expected utility function.

Proof: (See Figure 6). Since c is ray invariant,

there is pOand xOE intl such that txO E c(po/t) for

xall t > O. Then by Lemma 4, for almost all t,

duttxv) is proportional to pO, where u = uc. Let

aCt) = Ui(tx?)/p? for some i such that p? > O. Then

du.(txO) = pOda(t) almost everywhere, thus
J J J

u.(txO) = yOa(t) for all J. and t > O where
J J J

y~ = p?x? Obviously, a is strictly increasing, thus

it remains only to show that it is concave. For

------- t1xO

tx'

Figure b

given t.t', let r " y~eIt+Y~Ie_It' and x = tx~+t'x~r

Then x E B(pO/f), so since fxo E c(pO/f), fxo E Rc(x). Hence by Lemma 5, u(fxO) ;::::u(x). But

then aCT)= u(fxO) ;::::u(x) = y~ela(t)+y~Ie_Ia(t'). Thus a is concave. o

Remark 10: By duality this also gives a characterization of expected indirect utility. the latter

notion has recently been proposed by Yaari (1987) as an alternative to expected utility as a

theory of choice under risk. As ray invariance is self-dual, the question about choosing primal

or dual expected utility is essentially the question of in which space separability makes most

sense, at least in our context.

,
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Remark 11: The present finite state characterization of expected utility does not imply the

cardinal uniqueness property of the state utility function which is obtained in Savage's (1954)

framework with a convex set of states.

Remark 12: Hens (1989) has extended the notion of diagonal invariance to the case with many

basic goods, and given a characterization of expected utility in terms of preferences by means

of it, which avoids the convexity assumption, i.e. (non-negative) risk aversion. The resulting

characterization is simpler than the one by Stigum (1972).

6. SOME ADDmONAL INTERPRETATIONS.

Under the standard demand theory interpretation, complete separability (as well as

normality and ray invariance) does not seem generally plausible, though often assumed in

applied work. Under some other interpretations, however, the intuitive validity of these notions

seems less questionable.

First, interpreting the theory as choice under risk with only one basic good (money), l0 is

the (finite) set of (independent) states, subsets of l0 are events, l is the set of actions, Xi the

outcome of action x in state i (measured in the basic good), and 'P is the set of lotteries where a

lottery p describes an odds vector, pipe, and an initial position x such that px = 1. Note that

the assumed form of the space l excludes the possibility of bankruptcy, and that u(t) = u(txO)

is the utility of the sure outcome t in the standard case where xO= e. In this case, the

subjective probabilities are simply the odds at which sure outcomes are chosen.

Under this choice under risk interpretation, complete decentralization (separability)

expresses that the choice given an event is independent of what happens if the event does not

occur, normality that by an increase in income one would not choose to get less in any state

than before, and diagonal invariance that a sure outcome is chosen at the same relative state

contingent prices (or odds) independent of the initial income. Separability (Le. complete de-

centralization) and normality seem more plausible than diagonal invariance. Diagonal in-

variance makes it possible to define subjective probabilities (yO) dependent solelyon the

underlying space. For lecal analysis this might be more than necessary, i.e. under some
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smoothness assumptions complete decentralization and normality might suffice to define pro-

babilities locally. But there are situations where also decentralization is counter intuitive, as in

Machina's (1989a) parental inheritance example. Indeed working with objective probabilities,

Machina (1982) shows that smoothness alone is sufficient for the local properties of the

expected utility hypothesis. Whether one similarly can get rid of separability also in this

subjective probability framework is an interesting question.

Secondly, interpreting the theory as normative social choice, 10 is a set of individuals, and

elements of ;( are fully cardinal, interpersonally comparable measures of the "welfare"ll of the

individuals and elements of 'P are (hypothetical) constant "welfare" tradeoffs situations. Under

this interpretation, complete decentralizability expresses that the choice for a group of

individuals is independent of the allocation to individuals outside the group as long as the

situation withrespect to the group is not changed, normality that an increase in resources with

the same welfare trade off makes one choose no one worse off, and strong diagonal invariance

(i.e. ray invariance where xO= pO= e) that a symmetric allocation is chosen in a symmetric

situation. Normality thus seems rather generally acceptable, whereas complete deeentra-

lizability and strong diagonal invariance seems reasonable when one has to do with roughly

equal individuals, expressing their independence and equality, respectively.

So far, however, this is only a partial normative theory. To get a full one, one should at

the same time justify from more specified normative ideas both the "welfare" measure of the

individuals and the social evaluation thereof possibly expressible in the above theory. Finally,

note that it is only in normatively relatively simple situations that one should expect it to be

possible to express relevant considerations in such a simple framework as the above.

11"Welfare"may be interpreted subjectively as a measure of satisfaction or what peo_pleactually
desire, or more objectively as a standard of living, or an index of primary goods in--Rawls+1970)
sense. For the cardinality and interpersonal comparability requirements of the framework, it
seems clear that one should here stick to the latter type of interpretation here. What is intended
here is a measure of th~ normatively relevant characteristics of the individuals, whatever this
might be.
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APPENDIX 1: WEIERSTRASS' TIIEOREM FOR CORRESPONDENCES

Lemma 1 uses a generalization of the fact that a continuous function maps an intervalon

an interval. Let 1and 'P be topological spaces, and let A c 1and c c lX'P. The strong inverse

(image) of A under c, C+(A) = {p Ic(P) ~ A} and c is upper hemicontinuous if for each open

U E 1, c+(U) is open in P. Furthermore, a pair of open sets (UbU2) is a separation of a set

A c 1 if A ~ UlVU2, AnUl * 0, Ar\U2 * 0, and A()Ul()U2 = 0. And finally, A c 1 is connected

if it has no separation. The result is:

TIIEOREM: If 1and 'P are topological spaces, 'P is connected, and c ~ lX'P is upper hemconti-

nuous, nonempty- and connected-valued, then it's range, Dc-I, is connected.

Proof: Let (UbU2) be a separation of Dc-I. It is sufficient to show that (c+(Ul),C+(U2» is a

separation of 'P. First, since c is upper hemicontinuous, C+(Ul) and c+(U2) are open. Next, their

intersection is empty. If not, assume that p E c+(Ul)()C+(U2). It follows that c(P) ~ Ul()U2,

contradicting c(p) * 0. Third, 'P ~ C+(Ul)VC+(U2).If not, there is XbX2 E c(p) such that Xl e: Ul

and X2 e: U2. Hence since Ul and U2 covers Dc-I, xl E U2 and X2E Ul> contradicting the con-

nectedness of c(p). Finally, the two sets are nonempty. E.g. assume that C+(Ul) = 0. Then

De+ c U2, contradiction. o

To apply this result in Lemma 1, one needs that the closedness of the choice corre-

spondence implies its upper hemicontinuity, at least on the interior of the budget space:

LEMMA: If c is closed, it is also upper hemicontinuous on int'P.

Proof: Let U ~ l be open. To show c+(U) = {p E int'Pl c(p) ~ U} is open. Let p E int'P, c(p) ~ U,

and Pn-+P.To show c(pn) ~ U for n sufficiently large. If not, then there is XnE c(Pn), and since

p E int'P, {x.} is bounded. Let Xn-+X,subsequentially. Then since c is closed and U is open,

X E c(p )\U, contradictions o
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APPENDIX 2: PROOF OF LEMMA 2

Let Sc-l = {x E intllc-l(x) has at least two elements}. Then Sc-l = int1\Sc-l. To show that

Sc-1 has measure O. Let H(x) = Il{H(P)Ix E c(p)} be the intersection of the supporting

hyperplanes at x. Furthermore for a ray (l-dimensional subspace) L, let SLc-l = {x ESc-li L

is independent of H(x) and Llnric-l(x) :t. ø}, where riA is the relative interior of A and L.l the

normal space of L.

First, I show that Sc-l ~ u{SLc-IIL E l}, where l is the set of rays with a rational basis. By

the basic axiom, c-l is convex-valued on Dc-I. Hence, as intX ~ Dc-I,

Sc-l = {x E intll dimc-l(x) ~ l}, where dim is the affine dimension. Let x E Sc-l and

p E ric-l(x). Then dimH(x) < Il0 l-l, since dimH(x)+dimc-l(x) = Il0 l-l. Hence there is a ray L

normal to both p and H(x). Let L' be sufficiently near L with a rational basis. Then L' E l,L' is

independent of H(x), and there is p' E ric-l(x) which is normal to L'. Hence x E SL,c-l. Thus

since l is countable, it is sufficient to show that SLc-l has measure Ofor L E l.

SLc-l is measurable. This follows from Theorem III.30 in Castaing and Valadier (1977). First,

by the dual of the lemma in the appendix, c-l is upper hemicontinuous on intI, and hence

measurable. But then there is a countable sequence {O'n}of measurable selections such that for

each x E inti, c-l(x) = clu{O'n(x)}. Hence Sc-l = {x E int/l clu{O'n(x)} is a singleton} =
{x E intll for all n,m, O'n(x)= O'n(x)},so Sc-l is measurable. Next since c-l is measurable, so

is ric-l where the relative interior is only taken on the left. Hence, since L.l is closed, its lower

inverse {x E intll Llnric-1 (x) :t. Ø} is measurable.Tt follows that SLc-l is measurable.

Hence, by a basic property of the product measure, it suffices to show that for all translates L'

of L, SLc-lilL' is at most singleton. Assume x :t. x', where x,x' E SLc-lilL' for some translate L'

of L. Then there is p E ric-l(x) and p' E ric-l(x'). Hence since x.x' E L' and L' is normal to both

p and p', x' E B(p) and x E B(p'). If x' i.'O 'c(p), then x E pc(x') and x E Rc(x'), contradicting the

basic axiom. Thus x' E c(p). Since x :t. x', .L' is independent of H(x), and p E ric-l(x), there is

pli E c-l(x) such that x' E b(p"). But then since c satisfies the budget identity, x E pc(x'),

contradicting the basic axiomagain, Hence SLc-1 has measure O. o

,
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CHAPTER 8: LEXIMIN CHOICEo

1. INTRODUCflON

This chapter characterizes leximin choice (i.e. the choice generated by leximin pre-

ferences) as the choice which is nonempty-valued, diagonal (egalitarian) and completely

decentralizable (separable). The argument is simple and proceeds via an inductive definition of

leximin choice.

The result is mainly of interest under a social choice interpretation, as outlined at the end

of Chapter 7. There are three reasons for this. First, leximin choice is simply the maximal

diagonal (equal component) choice when restricted to price-generated budgets of standard

demand theory. Secondly, neither of the two properties seems plausible under the standard

interpretation. Hence we extend the class of budgets. Secondly, under the social choice

interpretation complete separability is reasonable in many contexts as discussed in Chapter 7,

and diagonality expresses that one should only deviate from equality in case of Pareto

improvements.

Compared to the earlier characterizations by Imai (1983) and Lensberg (1986), the present

one is more direct. Imai (1983) characterizes leximin choice as the choice function which

satisfies (in his social choice language) efficiency (Pareto optimality), symmetry, invariance

under linear utility transformations, independence under linear utility transformations other

than the ideal point, and individual monotonicity. Lensberg's (1986) result is nearer to the

present one, as he characterizes leximin choice' as the choice function which satisfies

efficiency, anonymity, individual monotonicity and complete separability (in a slightly.
different form from ours). Both also assume that the (generalized) budgets are convex, whichis

unnecessary here, as one should expect. This is nice, as such convexity is not plausible under

the social choice interpretation. A consequence is that leximin choice is no longer single-

valued, indeed it is also no longer convex-valued.

,
0Due thanks to Terje Lensberg for valuable comments to this chapter.
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2. TIIE CHARACfERIZATION

Let K = IR!where I is a finite set, and let 2:l be a collection of nonempty, closed, and

downward monotonic subsets of ..r,1 which excludes some point in ..r. Elements of 2:l are

denoted B and called (generalized) budgets. The terms x, i, and t denotes elements of ..r, I, and
scalars, respectively. If c c lx2:l ,2 then c is a choice (correspondence).

The lexicographic order on IRI,denoted >t, is defined by x' >1 x if there is i E I such that

xi > Xi, and for all j < i, xj = Xj' An ordering permutation is a function (J permuting the

elements of ..r, such that for all x and iS; j, otx), S; a(x)j' The leximin preferences, denoted

(PhRJ), is defined by x' E Pl(X) if a(x') >1 a(x), and x' E R1(x) if a(x') = a(x) or x' E P1(x),

where (J is an ordering permutation.

The diagonal point of B, eB = max.I te I te E B} where e has unit components. Let I(x,B) =

{i E I I there is x I E B such that xI ~ x and xi > x.}, the coordinate directions with points in B

exceeding x. Say that a choice c is (weakly) diagonal if x E c(B) and l(eB,B) = ø implies that

x = eB. Thus a choice is diagonal if it consists of

exactly the diagonal point at each budget which

does not contain any points above the diagonal

point. This expresses equality. The concepts are

illustrated in Figure 1, where l(eB,B) = {2} and

Let J c I be nonempty. The section of B at

x-J' denoted B Ix-J is defined by xJ E B Ix-J if

x E B. A choice c is decentralizable with respect

l(x,B) = ø.

Rgure I
to J if for all x, x', B, B', x E c(B), x' E c(B'), and

B [x-J = B'] x~J implies that xJ+x~JE c(B'j. This is the earlier decentralization concept, except

that the class of price-generated budgets, is extended to the class of convex and downward

lA set B is downward mønotone in ..r if x E B, and x' S;x and x' E .r, then x' E B.
2Inc1usionbetween sets is denoted by k, and strict inclusion by c.
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monotone budget sets. The leximin choice, denoted cPI, is given by x E cPI(B) if x E B and for

all x' E PI(x), x' e B. The characterization can then be stated formallyas:

TIIEOREM: A choice is nonempty-valued, diagonal, completely decentralizable if and only if

it is the leximin choice, cPl.

The only if part of the theorem is straightforward. Hence we set out to prove the converse.

This is done in two steps.First, we define inductively a choice d, which we show that is the

leximin choice. For x E B, let lj(x,B) = maxdtltxi+X_i E B}, the (maximal) multiplier of x in

direction i in B. Define the level n extended diagonal choice, dn, inductively by dO(B) = {eB},

and dn+1(B) = {tn(B)x1n(x,B)+X_In(x,B)IxE dn(B)}, where tn(B) = minxmindlj(x,B)Ix E dn(B)

and i E l(x,B)}, the minimal multipliers of points in dn(B), and In(x,B) = {i E l(x,B) Imi(x,B) =

mn(B) }, the directions of the minimal extensions. Here the level O extended diagonal of B is

simply the diagonal point of B, and the extended diagonal of level n+ 1 consist of the minimax

extensions in B of points in the level n extended diagonal, in the directions of the axes. Define

2ln = {B E ~ Ifor all x E dn(B), l(x,B) = Ø}, i.e. the points where the extended diagonal con-

struction terminates. Clearly ~ = un~. If B E ~, write d(B) for dn(B) and call d the extended

diagonal choice. In Lemma 2, we show that the extended diagonal choice equals the leximin

choice. For this we need that if a point belongs to the extended diagonal, then so does any

other point in B which is equal to it up to a permutation. We also add that the inclusion inva-

riance property of Chapter 2 holds for the extended diagonal. This is used in Lemma 3 below:

LEMMA 1: 1) If a(x) = øtx') and x' E B, then for all n, x E dn(B) implies x' E dn(B).

2) If BI c Band dn(B)IIBI -:/:ø, then dn(BI) = dn(B)IIBI.

Proof: Obvious by induction on n. o

,
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Proof: !;;;: Assume x e d(B)\cPl(B). Then there is x' e B such that a(x') >L a(x). Hence there is j

such that øtx), = øtx'), for i < j and a(x)j < a(x')j. But then since (J is an ordering permutation,

I(x,B) '* ø, contradiction.
:2: Assume x e cP1(b)\d(B)and let x' e deB). Then I(x,B) = ø, x e B, and x e R1(x'). Hence by

Lemma 1, Part i), x e deB), contradiction. o

To prove the theorem it remains to show that if a choice satisfies the stated properties,

then it equals the leximin choice. This is shown by induction on æn in Lemma 4, below. To

use separability in the induction step, we need for each B e æn+1 to define a set B* e æn with

the "same sections" as B. The idea is to "shrink" B uniformly from the points in dn+1(B)to the

points in dn(B). Let B e æn+1. Define B* = {xrn(x',B/tn(B)+x_rn(x',B)Ix e B and x' e dn(B)},

thus in Figure 1, B* is the shaded area. Then we have. the desired properties:

LEMMA 3: Let B e æn+1. Then:
1): B* c Band dn(B) !;;; B*.

2): dn(B*) = dn(B) and B* e 23n.

3): For all x e B* and x' e dn(B), BI xIn(x',B)= B* Ixrn(x',B/tn(B).

Proof: 1): This is immediate by the definitions.

2): The first part follows from i) and Lemma 1, Part 2).

3): This is also immediate by the definitions. o

LEMMA 4: If a choice c is nonempty-valued, diagonal and completely decentralizable, then

c = d, the leximin choice.

Proof: We show that c(B) = deB) for all B.e 23nby induction on n.

Base case: B e 23n.Then I(eB,B) = ø, so by diagonality, c(B) = {eB} =d(B).



-118-

Induction case: Let B E ~+ 1.

~: Let x' E d(B) = dn+1(B). Then x' = tn(B)xI(x,B)+x-I(x,B) for some x E dn(B). By Lemma 3,

Part 2), dn(B) = dn(B*) = d(B*). Hence by induction x E c(B*). But by Lemma 3, Part 3),

BI xI(x',B) = B* Ixi(x',B)' Hence by decentralization with respect to -I(x',B), x E c(B).

~: Let x E c(B) and x' E dn(B). Then xI(x',B/tn(B)+x_I(x',B) E B*. By Lemma 3, Part 3),

BI xI(x',B) = B* Ixi(x',B)' Hence by decentralization with respect to -I(x',B), xI(x',B/tn(B)+

x_I(x',B)E c(B*). Hence by induction, xI(x',B/tn(B)+x_I(x',B) E d(B*) = dn(B*) = dn(B). But then

x E dn+1(B) = d(B). o
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