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1 | Introduction

This treatise is more of an inquiry into the structure of economic theory
than the structure of economic reality. Its main theme is the investi-
gation of mutually inconsistent properties of collective decision proce-
dures. It is thus in the tradition initiated by Arrow’s impossibility
paradox [1]. As such, most of the results we present are of a kind that
says that decision or allocation procedures with certain properties do

not exist.

They do not exist, not because they are exceedingly difficult to imple-
ment, or because they contradict some laws of nature, but because they
cannot possibly exist, by purely logical considerations. All of the results
in the following pages are derived by mathematical methods only. The
arguments employed are not only abstract and formal; in a certain sense,
they say nothing at all about the real world. So, how is it possible for
these results to be relevant or interesting in a field like economics, which
aspires to be an empirical science with at least some of the predictive

power found in natural sciences like physics or chemistry?

This objection is certainly not unique to social choice theory. It can
be raised to almost all of mathematical economics — for instance, it is
frequently pointed out that general equilibrium theory by itself implies
very little else than the existence of an equilibrium within the model.
Even Wassily Leontief maintained that “not having been subjected from
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the outset to the harsh discipline of systematic fact-finding, traditionally
imposed on and accepted by their colleagues in the natural and histor-
ical sciences, economists developed a nearly irresistible predilection for
deductive reasoning.” He goes on to criticize this deductive approach
for not “being able to advance, in any perceptible way, a systematic
understanding of the structure and the operations of a real economic

system.”

True, the proportion between deductive reasoning on one hand, and
empirical research on the other, is of a quite different magnitude in
economics than in the natural sciences. But to claim that this is in
some sense only due to the historical background of economic science is
an entirely different matter — it should be evident that the explanation
must be sought among more substantial causes. It appears to be two
main reasons to account for this difference between economics on one

hand, and the natural sciences on the other.

First, since the economic systems under investigation are so extremely
complicated, we tend to make simplified and highly abstract models
that are better suited to provide understanding than prediction. Also,
since the models for this reason are farther “removed” from the real
systems then what they are in most natural sciences, there is ample
scope for the existence of several different models of one and the same
system, each emphasizing separate aspects of the system. In physics, an
alternative model of a natural phenomenon is a sensation; in economics,
every issue of any journal abound with alternative models. And the only
way to gain understanding from a formal model is by deduction.

Social choice theory is primarily an attempt to model collective decision
processes using tools from economic theory, and is thus a part of eco-
nomics. All the so-called impossibility results in this theory essentially
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CHAPTER 1. INTRODUCTION

demonstrate that certain combinations of formulae and statements can-
not work as models in the theory without introducing inconsistencies.
While this says nothing about the world we try to model, it may say
something very interesting about the theory in which we create the
models. This is particularly relevant in a social science like economics,
where we not only use the theory to create models that describe exist-
ing systems, but to an equal degree try to implement real systems that
conform to certain models (by deregulating markets, invoking anti-trust
laws, etc.). In such cases it is of course extremely important to know
what may or may not constitute a model, and what properties a model
has. This is the second reason for the prevalence of mathematical de-
duction in economics. While inquiries of this kind are not empirical,
they are essential prerequisites for any empirical study: They establish
‘which concepts can be meaningfully subjected to empirical investiga-

tion.

With these methodological remarks behind us, the remaining part of
this introduction summarizes the contents of the chapters that follow.
The reference to the “continuity axiom” in the title of this work signifies
one of the key assumptions made: We require that social welfare func-
tions shall be continuous. This obviously presupposes that a topology is
defined on the class of preferences. In Chapter 2 we survey and discuss
a few of the most important contributions to the field. Sections 2.2 and
2.3 describes some often used topologies for spaces of preferences. In
Section 2.4 we look at their connection to social choice problems, and
in Section 2.5 we comment on a debate on the relevance of topological

methods in social choice theory.

In Chapter 3, we introduce a new class of topologies for preference

spaces. Let X be the choice space, e.g., a space of allocations. We

6



CHAPTER 1. INTRODUCTION

assume that a measure is.defined on X x X. We then define the dis-
tance between two preferences to be the measure of the symmetric set
difference of the graphs of the preferences. The possible domain of pref-
erences is thus very large; the only requirement for a preference to be
a member of the domain is that it should have a measurable graph. In
particular, typical properties like nonsaturation, continuity, transitivity,
or completeness, that are required in many of the other topologies, are
not prerequisites with this definition of distance.

It is easily verified that the distance function above has all the proper-
ties of a pseudometric. On the other hand, the distance between two
different preferences may actually be zero, if the preferences differ by a
set of zero mass. But if we define a binary relation between preferences
that holds if and only if the distance between two preferences is zero,
then this relation is an equivalence relation, and will thus partition the
preference space into equivalence classes, where the distance between
any two preferences in a particular class is zero. If we now define the
distance between two equivalence classes to be the distance between
two arbitrarily chosen preferences, one from each of the two classes, the

distance becomes a proper metric on the space of equivalence classes.

In general, different measures will generate different metrics. However,
if two measures are absolutely continuous with respect to each other,
they generate the same topology, and even when the measures are not
equivalent and different topologies are generated, these topologies still

have many properties in common. We will call them measure-based

topologies.

As mentioned, the measure-based topologies do not distinguish between

preferences that are equal almost everywhere. On the other hand, they

7



CHAPTER 1. INTRODUCTION

do distinguish between all continuous, transitive and complete pref-
erences, as long as the choice space is connected and the generating
Imeasure assigns positive mass to open sets, since the symmetric set

difference of any two such preferences has a nonempty interior.

One criterion one may use to evaluate topologies for preference spaces
is to which extent subsets of preferences with well defined choice theo-
retic properties are closed in the topology. We show that the space of
all preferences with measurable graphs is a complete space. The sub-
set consisting of equivalence classes containing at least one transitive
preference is closed, as is the subset of equivalence classes containing
at least one complete preference. Even the subset consisting of equiva-
lence classes containing at least one transitive and complete preference

is closed.

In Section 3.4 we give an axiomatic characterization of the measure-
based pseudometrics. Three conditions are listed, and a pseudometric
on preference spaces is a measure-based pseudometric if and only if
it satisfies these three conditions. The first condition says that the
pseudometric should satisfy a weak convergence criterion, continuity
from above. The remaining two conditions concern global properties
of the pseudometric. The second condition says that if two preferences
agree on the ranking of a pair of alternatives, it should not matter how
they rank the alternatives as far as the distance is concerned. The
rationale behind this condition is that we want the distance to measure
the extent of disagreement between preferences, and it should not be
influenced by irrelevant information about the ranking of alternatives

they agree upon.

The third condition involves the concept of Pareto efficient preferences.

We say that a preference Ps is Pareto efficient relative to two preferences

8
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P, and P, if whenever P; and P; agree on the ranking of a pair of
alternatives, P3 ranks this pair in the same way. The condition says
that in this case, the distance between P; and P, should equal the sum
of the distance between P; and Ps, and the distance between P3 and
P,. This will ensure that when P; is Pareto efficient relative to P; and
P,, it is not possible to find a fourth preference that is closer to both
P; and P, than P; is.

In the last section of Chapter 3 we investigate continuous aggregation
of preferences under the measure-based topologies. We show that the
space of transitive and complete preferences without “thick” indiffer-
ence surfaces, i.e., preferences where all indifference surfaces has zero
mass, admits continuous aggregation rules that respect unanimity and
is anonymous. This is also true for the space of all continuous, complete

and transitive preferences without thick indifference surfaces.

The three remaining chapters all investigate strategy-proofness of social
welfare functions, where the agents are allowed to take strategic con-
siderations when revealing their preferences; in other words, an agent
is assumed to report the preference that gives him the the best possible

social outcome, and not necessarily his “true” preference.

In Chapter 4, we analyze this idea on its most general level. It is known
(Chichilnisky & Heal [15]) that if the preference space is topologized in
a manner that makes it homeomorphic to an n-sphere, and there is m
agents, then, for any continuous social welfare function that satisfy a
degree condition, there is always an agent that can achieve any outcome
he wants, no matter what preferences the other m — 1 agents disclose
(in general, he will have to misrepresent his preference in order to do

this, of course).
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This result depends on properties of the function that are only mean-
ingful when the space of preferences is homeomorphic to an n-sphere.
The contribution of Chapter 4 is to reformulate the framework in a way
that makes it applicable to any space. Assume there are two agents,
both with preferences (with unique maxima) over a space Y of social
outcomes. An aggregation map f from Y X Y to Y now gives rise to
a two-person noncooperative game, where the possible moves for both
players are the points in Y, and with outcome f(y;,y2) if the players’
moves are y; and yz;. An aggregation map is called strategy-proof for a
given pair of preferences over Y if it is a Nash equilibrium in this game
that both players report their most preferred point in Y.

We define an exhaustive class of preferences over Y as a collection of
preferences so that every point in Y is the maximum of some prefer-
erice in the collection. Given an exhaustive class of preferences, we
say that f is strategy-proof for this class if it is strategy-proof for any
pair of preferences, both members of the class. We then show that for
a certain kind of spaces, retracted H'-spaces, if an aggregation map
respects unanimity and is strategy-proof for an arbitrary exhaustive
class of preferences, it must be dictatorial. Retracted H'-spaces can be

regarded as generalized n-spheres, and this establishes the connection
with the result of Chichilnisky & Heal.

In Chapters 5 and 6, we consider the same kind of questions as in Chap-
ter 4, but the assumptions we make about the nature of the preferences
are more specific. The concept of a metapreference is introduced in
Chapter 5. We now assume that the space Y that is being aggregated
upon is a space of preferences. If we want to analyze strategic disclosure
of these preference, we need to make assumptions about preferences at
a higher level — preferences that have Y as domain, and are used by
individuals to rank social preferences (points in Y). We use the term

10



CHAPTER 1. INTRODUCTION

metapreferences for these latter preferences whenever Y is assumed to

be a space of preferences.

The main result of Chapter 5 is a theorem that shows how a metaprefer-
ence over a space of preferences on a choice space X can be represented
by a measure on X x X. If we choose an arbitrary finite measure on
X x X, and assume that a preference P is singled out, we can define
a utility function on the space of preferences by letting the utility of a
preference ) be equal to the negative mass of the symmetric set differ-
ence between P and . This utility function generates a metapreference
in the obvious way. The surprising result is that any metapreference
that satisfy some weak conditions can be generated by this method.
This means that we, when analyzing strategic behavior, can work with
measures on X X X instead of the more abstract concept of a metapref-

erence.

The four conditions that characterize the class of metapreferences that
can be represented by a measure in such a manner, can be summa-
rized as follows. The first condition says that that only the differ-
ences between preferences should determine how they are ranked by
the metapreference. So if two preferences P and @) agree on the rank-
ing of two alternatives z and y, it should not matter how they rank z
and y (i.e., whether it is = y or % y) as far as the metapreferences

are concerned.

The second condition says that the metapreferences should have a max-
imal element, i.e., that there is some preference (to be interpreted as the
agents “own” preference) that is considered at least as good as all other
preferences. The two remaining conditions are of technical importance

only.

11



CHAPTER 1. INTRODUCTION

In Chapter 6, we use the metapreferences that can be generated by
measures to analyze strategy-proofness of social welfare functions. The
main result of this chapter appears in Section 6.3, and it says that if
all preferences are assumed to be linear orderings, and a social welfare
function is onto and strategy-proof for the class of all metapreferences
that can be generated by measures on X X X, then the social welfare
function must be dictatorial. In Section 6.4, we discuss the possibilities
of extending this result to preferences that are not linear orderings.

Finally, observe that the definition of some mathematical concepts can

be found in a separate appendix, whenever they are not defined within
the text itself.

12



2 | Topology and preferences

2.1 INTRODUCTION

Since its beginning, with the works of J. C. de Borda and M. de Con-
dorcet in 1781 and -85, social choice theory has mainly been concerned
with choices among a discrete set of alternatives, and the methods em-
ployed are usually some variants of combinatorics. This is in sharp
contrast to almost all other areas of economics, where one deals with
infinite sets endowed with a topology, and where the methods rely on
real and functional analysis.

This separation has several consequences. For one thing, it means that
it is difficult to integrate results in social choice theory with results
from other fields in economics. When the choice set is infinite, and
thus admits infinitely many different rankings of the feasible choices, it
also means that social choice theory misses an important aspect of de-
cision processes, whether these are due to markets or public decisions:
continuity. If we want a theory to have any predictive or explanatory
capabilities, we should ensure that small errors of observation do not
lead to large errors in the predicted outcome or set of outcomes. In
other words, the transformation from observations to outcomes should
be a continuous mapping, and this presupposes a suitably defined topol-
ogy. This has been the standard approach in the theory of competitive
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markets. An economy in its most general form can be described as a
set of agents, each with an initial endowment of commodities. To such
an economy we associate a set of price vectors (the possible equilibria
of the economy). These equilibria should result from continuous trans-
formations on the set of economies. In the same manner, we would like
-voting rules (or other procedures that aggregate preferences) to be con-
tinuous, so that small errors in the observation of individual preferences

do not lead to significant changes in the outcome of the aggregation.

In the following sections, we survey and discuss a few of the most impor-
tant contributions regarding topological preference spaces. The survey
is not meant to be exhaustive; in fact, it is more or less limited to those
results the reader should be aware of in order to follow the rest of this

text.

The choice space, or space of alternatives, will in general be called X.
A preference is any preorder over X, but most authors only consider
preferences that satisfy some additional restrictions. The space of pref-
erences is called P, but observe that the nature of this space may vary
from author to author. Since some writers identify a preference with
the preorder itself, and others identify it with the graph of the corre-
sponding preorder, a preference will be denoted in a generic fashion by
an italic letter like P, and the associated relation by >p, with ~p and

>p being the symmetric and antisymmetric parts, respectively.

A preference is said to be continuous if its graph is closed in X x X. In
the case where X is a subset of R", a preference is monotone if z > y

implies = » y.

14



2.2 PREFERENCE SPACES

2.2 PREFERENCE SPACES

In general, the “reasonableness” of a topology depends on how well it
interacts with other structural properties of the space. As an example,
take the usual topology on R™; this topology can be derived from the
algebraic structure on R™ in.a straightforward manner.

For spaces without a strong natural nontopological structure, there is
usually no single topology that stands out as the “obvious” one. E.g,
the family of all subsets of an arbitrary space has (as a starting-point)
little other natural structure than the lattice induced by set inclusion
(€). On such families, there are several topologies with equal status.

When constructing a topology for spaces of preferences, one natural
method is to relate it to the topology of the choice space X. This
is the approach taken by Kannai [28], who was the first to consider
sets of preferences as topological spaces. The topology he proposes is
the smallest topology that makes the set {(z,y,P):z >p y} open in
X X X x P. This is the same as requiring that if z >p y, z, — z,
Yn — ¥, and P, — P, then there is an m such that z, »p, y, for all

n2>m.

The Kannai topology has a pleasant property: A natural and important
subset of P is metrizable. Let Q C P be the set of continuous and
monotone preferences. The choice space X is now assumed to be the
positive orthant of R™. The subspace topology on Q induced by the
Kannai topology can also be induced by a metric on Q. Every preference
P in Q can be identified with a retraction fp from X to the diagonal
of X in the following way: For any z € X, let fp(z) be the unique y in
the diagonal of X that satisfies z ~p y.

15



CHAPTER 2. TOPOLOGY AND PREFERENCES

Figure 2.1: The Kannai topology does not distinguish between the two
preferences generated by the utility functions  and v.

For every P € Q, we can now construct a unique utility function
up: X — R! as up(z) = || fp(z)||. Finally, if we let

”uPI (z) - up, (‘T)“
1+l 7

d(Py, P;) = sup
reX

then d is readily seen to be a metric on Q. The equivalence of the
topology induced by d and the Kannai topology is shown in Kannai
[28, Theorem 3.2].

However, when a space of preferences includes locally saturated pref-
erences, the space is not Hausdorff when endowed with the Kannai
topology, as Le Breton [30] illustrates. An example is given in Figure
2.1. The choice space is here a closed interval on the real line, and
the Kannai topology does not separate the two preferences generated
by the utility functions v and v. All neighborhoods of the preference
generated by v contains the preference generated by w.

A larger topology is introduced in Debreu [17]. Here, the space of
continuous preferences is topologized by identifying preferences with

16
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their graphs, and endowing the space of graphs with the Hausdorff
distance (Hausdorff [28, p. 166]). If § is a metric on X X X, let p be
defined as
p(A, B) = sup 6(A,b),
beB

where A,B C X x X. In general, whenever X is unbounded, the im-
age of p is the nonnegative part of the extended reals. The Hausdorff
distance d can now be written as

d(A, B) = max{p(A, B), p(B, A)}.

It is easily verified that d has all the properties of a metric except that
of always being finite.

The space of preferences. endowed with the topology of the Hausdorff
distance is in general not a separable space whenever it contains pref-
erences with noncompact graphs. A topology that renders the space
separable also in this case is introduced in Hildenbrand [27], the closed
convergence topology. Like the Hausdorff distance, the closed conver-
gence topology is defined on the space of preference graphs. For a se-
quence of sets {Ap} in X x X, define the superior closed limit (lim sup)
to be the set of all z € X x X such that every neighborhood of z has
points in common with infinitely many A,, and the inferior closed limit
(lim inf) to be the set of all z € X x X such that every neighborhood
of z has points in common with all but a finite number of the A,. In

the closed convergence topology, a sequence {A,} converges to A if
lim sup A,, = liminf A4, = A.

It is easily verified that this topology agrees with the Kannai topology
on the space of continuous and monotone preferences, where the choice

17



CHAPTER 2. TOPOLOGY AND PREFERENCES

space is the positive orthant of R™. Furthermore, the set

{(z,9,P):z>py}

is open in X X X x P, so the closed convergence topology is larger
then the Kannai topology. It is smaller than, but closely related to, the
topology induced by the Hausdorff distance; the two topologies coin-
cide when X x X is a compact metric space, and when X X X is only
locally compact, the space of preferences with the closed convergence
topology can be embedded in the space of preferences with graphs in
the one-point compactification of X X X endowed with the topology of
the Hausdorff distance (see [27]).

Unfortunately, when applied to spaces of preferences with saturated
points, the Hausdorff distance (and the closed convergence topology)
have some questionable convergence properties. Consider the following
example. Let a sequence of preferences { P, } be generated by a sequence
of utility functions {u,} on [0, 1] defined as follows: For each =, partition
the interval (0, 1] into n consecutive half open intervals EF i =1,...,n,
ie.,

El ={(i - 1)/n,i/n].

For all n, if z # 0 let the integer function f§,(z) be equal to the index
of the set ET that has z as a member, that is, the integer that makes
T € EE,.(::) hold. Define u, by u,(0) =0, and,for0 < z <1,

nz — fa(z)+1 for fy(z) odd,

up(z) =
Bn(z) — nz for f.(z) even.

Figure 2.2 shows the first elements of the sequence, the three functions

U3, U2, and us.

18



2.3 SMOOTH PREFERENCES

U3 \ U2 U

Figure 2.2.

In the topology of the Hausdorff distance, {P,} converges to the trivial
preference, i.e., the preference that is indifferent between all alterna-
tives. One can certainly raise legitimate objections to a topology where
{P.} has this limit. The preferences in the sequence indicate very com-
plex behavior, while the limit preference indicates very simple behavior
(or perhaps one should say no behavior at all). For two arbitrary points
z and y, it will be increasingly difficult to predict the ranking of these
two points as n goes to infinity if we do not have exact knowledge of
the location of the points. In contrast, with the limit preference, the
location of the points does not matter; all alternatives are tied. It seems
that the best solution would be a topology where { P, } did not converge
at all. This is the case with the measure-based topologies presented in
Chapter 3.

2.3 SMOOTH PREFERENCES

Even if smoothness is a property usually associated with functions or
manifolds, one can imagine various intuitive notions of smoothness ap-

19



CHAPTER 2. TOPOLOGY AND PREFERENCES

plied to preferences as well. However, we know that preferences can be
mathematically represented in several ways, and constructing a formal
definition of differentiability that agrees on all of these representations

seems at the outset to be a nontrivial task.

In Debreu [18], three ways of approaching the question are considered.

Preferences are here assumed to be monotone and continuous.

First, a smooth preference can be regarded as a C? (i.e., continuous and
at least once differentiable) vector field g on the choice space X (which
is assumed to be the positive cone of R"), normalized in such a way
that ||g(z)|| = 1 everywhere. Such a vector field is obviously equivalent
to a map of class C! from X to the unit sphere S*~1. Informally, the
vector at a point z € X is orthogonal to the indifference hypersurface
through z, and is pointing in the direction of preference. The space of
smooth preferences can then be topologized by for instance the C?! sup

norm on vector fields.

It also natural to investigate the possible existence of a utility function u
from X to R that is C? and has a gradient that is everywhere a positive
multiple of g(z). It can be shown that such functions exist whenever
g(z) has strictly positive coordinates for all z in X, and in addition
satisfies a local integrability condition closely related to a theorem of
Frobenius (see Debreu [18] and Chipman et al. [16, ch. 9]). This means
that there is a second way to represent certain smooth monotone prefer-
ences — as C? utility functions. This representation will in general not
be unique, but since the relation between functions of representing the
same preference obviously is an equivalence relation, we can make the
representation unique by considering equivalence classes, or families, of

functions.

20



2.4 CONTINUITY AND SOCIAL CHOICE

A third approach to smooth preferences consists of making assumptions
on their graphs. Following [18], if the boundary of the graph of a
continuous, monotone, and complete preorder is a C2-hypersurface in
R2" the preorder is said to be a preference relation of class C2.

We have now seen three different approaches to smooth and monotone
preferences: A locally integrable and normalized -C* ‘vector field with
strictly positive coordinates, a family of monotone C? utility functions,
and a preference relation of class C2. Debreu [18] proves that all three
notions are equivalent, in the sense that we can postulate an object of
one kind and then derive objects of the two other kinds. This represents
a definite solution to the ambiguity of smoothness for preferences.

2.4 CONTINUITY AND SOCIAL CHOICE

Graciela Chichilnisky’s article from 1980 [8] is one of the first where
continuity is considered as a requirement for social welfare functions.
She defines a social welfare function with n agents to be a continuous
map ¢ from an n-fold cartesian product P" of a preference space P, and
into P. She then investigates the existence of social welfare functions
that have the following two properties:

(i) ¢ respects unanimity, i.e., ¢(P,...,P) = P.
(i) ¢ is anonymous, i.e., ¢(Py,..., Pn) = ¢(Fy(1); .-+, Po(n)), Where o
is any permutation on {1,...,n}.
A similar approach has also received some attention in the mathematical
literature: A map that satisfies (i) is typically called idempotent, a map

21
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Figure 2.3: This preference maps z to a point in §?!

that satisfies (ii) is called symmetric, and one that satisfies (i) and (ii)
is called an n-mean. Following Eckmann [19], a space that admits an
n-mean is called an M,-space. Chichilnisky’s investigation is thus a

special case of the more general problem of characterizing M,,-spaces.

In Chichilnisky’s work, preferences are represented by a C” (r > 1) lo-
cally integrable vector field over the choice space, with vector lengths
normalized to unity. As discussed in the previous section, this repre-
sentation was also considered by Debreu [18]. Chichilnisky, however,
replaces the requirement of monotone preferences with one of locally
nonsaturated preferences. Informally, the vector at a point z in the
choice space is defined to be perpendicular to the indifference surface
through z, i.e, it has the same direction as the gradient at z of any util-
ity function locally representing the preference. A preference can then
be regarded as a map from the n-dimensional choice space to §™~1 (see
Figure 2.3). If the choice space is compact, the space of preferences

can be topologized with the C” sup norm on C” vector fields. If the
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2.4 CONTINUITY AND SOCIAL CHOICE

choice space is not compact (e.g. the positive orthant of R"), a differ-
ent topology is needed; in Chichilnisky [7], a Sobolev-Hilbert manifold
structure on noncompact spaces is employed to give results analogous
to the compact case.

This topology excludes preferences with saturation points, i.e. with local
maxima, minima, or saddlepoints, since at these points the vector field
would vanish. .

It is easy to verify that the property of being an M,,-space is preserved
under retractions; in other words, if P is an M,-space and R is a retract
of P, then R is an M,-space, since an n-mean ¢ on P induces an n-
mean ro¢ on R, where r is a retraction. It is furthermore clear that the

1 is a retract of the space of preferences P

subspace of linear preferences
(choose an arbitrary point z in the choice space, and let the retraction
be the map that takes a preference P to the linear preference that maps
T to the same point in $*~! as P does). But in Chichilnisky’s topology,
the subspace of linear preferences is clearly homeomorphic to $*~1, so

if S*~1 is not an M, -space, neither is P.

In [8], Chichilnisky shows that S™ is not an M,-space for all m > 1 (see
also the 1943 paper by Aumann [2}). In Chichilnisky & Heal [14], the
authors show that if the space of preferences P is a CW-complex with
a convex hull that is also a CW-complex, then contractibility of each
component of P is sufficient for P to be an M,-space. If P is a para-finite
CW-complex, this condition is also necessary. Their theorem generalizes
a result in Eckmann [19, p. 336}, where he states that contractibility is
necessary and sufficient for a finite polyhedron to be an M,,-space?.

!That is, preferences where the vector field takes on a constant value at all points
in the choice space.

3See also the article by Eckmann et al. [20], where the same problem is analyzed
in a category theoretic framework.
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CHAPTER 2. TOPOLOGY AND PREFERENCES

2.5 CRITICISM AND DEBATE

Some objections have been raised both to the relevance of the noncon-
tractibility result of Chichilnisky & Heal [14], and of the topological
approach to social choice in general. Objections of the first kind occur
-in two articles by Le Breton & Uriarte [31, 32].

Of course, being a theorem, the correctness of the argument of
Chichilnisky & Heal is beyond debate. However, Le Breton & Uri-
arte question the relevance of this result, as they feel that the noncon-
tractibility of the preference space in the framework of Chichilnisky &
Heal is due to their choice of topology and the restricted domain of pref-
erences. Le Breton & Uriarte seem to maintain that noncontractibility
is not a typical property of preference spaces, and is possessed only by

certain subspaces or for certain topologies.

To support their argument, they topologize the space P of all continuous
and complete preorders over a choice space X with the closed conver-
gence topology. They then show that the subspace of strictly convex
preferences (with possibly one saturation point) is an M,,-space. This is
not surprising, since the subspace is obviously contractible. They also
give a technical definition of another subspace that is dense in P, and

show that this subspace is an M,,-space as well.

They then claim that since the subspace is dense in the space of all
continuous and complete preorders, this gives an approximate solution
of the Chichilnisky problem. However, as they point out, the space P
is not complete, so the theorem on extension of uniformly continuous

functions does not apply.
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The theorem of Chichilnisky & Heal has an interesting consequence:
Even though the conditions are necessary and sufficient, it is in general
easier to show that a preference space is not an M,-space, than to
demonstrate that a space is an M, -space. This is partly due to the fact
that the theorem requires that the space should be a para-finite CW-
complex. For many preference spaces, this can be difficult to show. But
if the space is not an M,-space, one can usually find a retract that is a
much simpler space, and easily seen to be a noncontractible, para-finite
CW-complex. Since the property of being an M,-space is preserved
under retractions, the original space can then not be M,,.

If the space is an M,,-space, retractions will not be of any help, of course.
We are then left with two strategies: (i) Show that the space is a CW-
complex (the complexity of this is very dependent upon the topology),
and then construct a homotopy that demonstrates contractibility, or
(ii) construct an n-mean directly. Preference spaces are in general so
complex that both of these strategies may be difficult to follow.

Even though there are some shortcomings in their arguments, Le Breton
& Uriarte address an important question: Is it the case that unrestricted
preference space with natural topologies are in general rendered non-
contractible by the topologies? Even though this is more a matter of
opinion than of mathematical deduction (since the concept of a “natu-
ral” topology is not a mathematical one), in view of the results in the
following chapter I believe the question may well be answered with a
Uy o

no”. This, of course, does not in any way invalidate or reduce the
~ relevance of Chichilnisky & Heal’s result.

Objections of the second kind can be found in Baigent & Huang [4].
Among other things, they claim that a topological framework is not
the right approach for the analysis of issues involving the proposition
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that large changes in the social preference should not result from small
changes in individual preferences. Their main argument to support this
claim seems to be that they think it is unlikely that it is possible to
find one particular topology that best formalizes the intuitive notion of
“closeness” of preferences. They write,

“The greatest merit of topological analysis is that it per-
mits very general and undemanding ways of expressing con-
tinuity. However, for spaces such as preferences, this same
generality makes it very difficult to know whether any par-
ticular topology does accord with our basic intuitions con-
cerning closeness. If this were not the case, then presumably
it would be possible to formulate axioms for a topology on
preferences and even state a characterization theorem. That
this has not been done, in an area in which axioms are ubig-
uitous, strongly suggests to us that a topological framework
is not the most appropriate for expressing our intuitions
concerning closeness of preferences.”

We present a class of topologies together with such a characterization
theorem in Chapter 3.

It is important to distinguish between the problem of choosing a topol-
ogy for a particular class of preferences on one hand, and on the other,
showing that if a topological space has certain properties, then certain
maps do not exist. The appeal of such impossibility results is already
subjective in nature. They say that certain combinations of desirable
properties are inconsistent. But to what extent the properties are de-
sirable, and thus how troubled one should be by this inconsistency, is
something that is an attribute of the individual reader and is, in a
sense, beyond mathematical deduction or empirical research. In this

perspective, there is no need for an agreement upon what constitutes
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the “correct” topology for preference spaces. The fact that many differ-
ent topologies have been proposed does not imply that it it meaningless
to topologize preference spaces — it merely means that the reader is
free to interpret the impossibility results in different ways, by using the
preferred topology of his choice. There appears to be no obvious topol-
ogy for such spaces (except for certain subspaces) because the intuitive
notion of “convergence” is itself an ambiguous and subjective concept
when it is applied to preferences.

However, it is in fact reasonable to maintain that continuity of a map
is too general a concept to ensure that the effect of observational er-
rors will be negligible. This is especially relevant for incomplete metric
spaces; as an example, take the space R— {0}, and define a function f on
this space by f(z) = 0 for z < 0 and f(z) = 1 for z > 0. This is a con-
tinuous function, but it seems difficult to argue that observational errors
should have less effect on this function than on a discontinuous one. To
avoid these “quasi-discontinuities” in continuous maps it is necessary to
require that the maps are uniformly continuous. For the same reason,
one should be extremely cautious with spaces that are not metrizable,
or at least does not admit a uniform topology, as uniform continuity
is not defined in these contexts. Of course, the impossibility result of
Chichilnisky is still equally relevant, since if continuous functions with
certain properties do not exist, neither do uniformly continuous ones.

In her reply to Le Breton & Uriarte [31] and Baigent & Huang [4],
Chichilnisky [12, p. 310] criticizes the approach of Le Breton & Uriarte
on the grounds that (among other things) the space they have chosen is
not topologically complete, and she maintains that “the whole meaning
of continuity in such a space is questionable.” As the simple example in
the previous paragraph shows, there is definitely something to be said
for this opinion. On the other hand, the requirement that the maps
should be uniformly continuous will resolve this.
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3 | Measure-based topologies

3.1 INTRODUCTION

This chapter introduces a class of measure-based metric topologies on
spaces of preferences.

In. Le Breton and Uriarte [32] the authors are calling for an extension of
the Kemeny distance! between preferences on a finite commodity space
to the infinite case. The topologies we present here can be regarded as
such an extension, although along a different line than that proposed
by Le Breton and Uriarte.

Topologies for spaces of preferences have been studied by several au-
thors. They have partly been motivated by problems in the general
theory of economic equilibria (e.g. Kannai [28], Debreu [17, 18], Hilden-
brand [27]), as in the study of the continuity of the core, and partly by
normative problems involving social decision rules and aggregation of
preferences (Chichilnisky [8, 9, 10, 11, 14} and several other papers by
the same author; Uriarte [40], Le Breton & Uriarte [31]).

The spaces under consideration in this chapter will all be subsets of the
class of measurable preferences on a topological space X (i.e. the class

!See Kemeny & Snell [29).



3.1 INTRODUCTION

of preferences having a graph that is a measurable set in X x X). We
further assume that X x X is endowed with a finite Borel-measure? p*.
Let 4 be the completion of y*. A pseudometric d, is then defined on
the measurable subsets of X x X as

du(P,Q) = u{(P-Q)U(Q - P)],

for measurable sets P and . By identifying graphs differing by a set
of zero measure, we get a metric space Q, of equivalence classes, where
each such class consists of preferences that are equal almost everywhere.
Topologies on classes of sets defined in this way are sometimes called the
fine topologies; such spaces are of course homeomorphic to the subset
of L}(X x X, u) consisting of the characteristic functions on X x X.
These topologies, defined on general spaces of measurable sets, form an
important part of measure theory. The contribution of this chapter lies

in their application to spaces of preferences.

In general, different measures may generate different topologies, but it is
easily seen that two topologies are equivalent if the generating measures
are equivalent (i.e., absolutely continuous with respect to each other).
In what follows, topologies defined according to the procedure described
above will be referred to as measure-based topologies.

The measure-based topologies do not distinguish between preferences
that are, in a sense, “equal almost everywhere”. However, they do dis-
tinguish between preferences that are continuous, complete and transi-
tive, whenever the generating measure assigns positive measure to open

sets (see Section 3.3).

2The Borel-o-algebra is chosen because this will ensure that the topologies are
well-defined on the interesting class of continuous preferences.
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CHAPTER 3. MEASURE-BASED TOPOLOGIES

The measure-based topologies can be given a very intuitive interpre-
tation that makes them an attractive choice in problems concerning
aggregation of preferences: Let v be a probability measure on X, and
endow X x X with the product measure v X v generated by v. The
distance d,x, between two preferences is then equal to the probability
that the preferences will differ in the ranking of two alternatives z and
y drawn independently from the distribution over X generated by v,
i.e., the probability that z > y for one of the preferences and z < y for
the other.

This also suggests a general principle for selecting a topology generating
measure; it can reflect the likelihood of how often a particular point in
choice space is expected to be among the feasible alternatives to be
decided upon. The exact value of such a measure is of less importance,
since, as we have already noted, equivalent measures generate the same
topology. |

Section 3.2 establishes a convenient notation, and also gives a more
formal presentation of the definitions introduced above.

In Section 3.3, we demonstrate some general properties of the measure-
based topologies. It is shown that Q,, is a complete space, and that some
important subsets of Q, are closed. Furthermore, if X is connected and
4 assigns positive measure to open sets, then d,, is a proper metric when
restricted to the class of continuous, complete and transitive preferences

(i.e. any two of these preferences differ by a set of positive measure).

Section 3.4 gives an axiomatic characterization of the measure-based
topologies, and Section 3.5 discusses the existence of social choice rules
that are continuous, anonymous, and respect unanimity — a problem
originally posed by G. Chichilnisky (see [9]). We show that some natural
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domains.of preferences endowed with a measure-based topology allow
social choice rules with these properties.

3.2 NOTATION AND DEFINITIONS

We start with some set-theoretical notation: For any set A, CA is the
complement of A. 4 and A° is the closure and interior of A respectively.
The boundary of A is indicated by JA.

In the following, X is a connected topological space of commodities
or resources. Let X x X have the product topology induced by the
topology of X. Let p be a finite and complete measure on X x X,
satisfying the condition that every Borel set is measurable.

A preference on X is any measurable subset of X x X (i.e., preferences
are identified with their graphs). Be careful to note that this is a very
general use of the word. A preference P is said to be complete if for all
(z,¥y) € Xx X, (z,y) ¢ Pimplies (y,z) € P (this should be understood
to imply that (z,z) € P for all z). We say that P is transitive if for all
(z,¥),(y,2) € X x X, we have that (z,y) € P and (y,2) € P implies
(z,2) € P. Complete and transitive preferences are also called complete
preorders. Finally, P is continuous if it is closed in X x X.

For the sake of readability, we sometimes use the operators »p, =p

and ~p, defined as follows: z >p y means (z,y) € P, z ~p y means

zxpyand y~pz,and z >p y means z Zp y and not y Zp z.

The operator of symmetric set-difference, A, is defined as
AAB=(A-B)U(B-A).
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Let A be the class of all y-measurable subsets of X X X. Define a
pseudometric d, on A by d,(P,Q) = pu(P A Q), and let R, be the
relation satisfying P R, Q if and only if d,(P,Q) = 0. Finally, let
Q, = A/R, and endow Q, with the quotient topology.

The subspace of Q, consisting of equivalence classes that contain at
least one complete preorder is-called P,, while ?fudenotes the subspace
of equivalence classes that contain at least one continuous and complete

preorder.

An ultrafilter U on a set Y is a collection of subsets of Y satisfying

)e¢U,Yel

(i) if A,B €U, then ANBeU

(iii) ifA€cUand ACBCY,then BeU

(iv) forall ACY,either A€Uor (Y —A)eU

An ultrafilter on Y is nonprincipal if it contains all the cofinite subsets
of Y (that is, subsets with a finite complement).

3.3 SOME PROPERTIES OF THE MEASURE-BASED
TOPOLOGIES

It is well known that Q, is separable if X has a countable base for its
open sets (in particular, if X is metrizable and separable), see Halmos
[24, p. 168]. This section will deal with topological completeness of im-
portant subsets of Q. In Le Breton & Uriarte [31] the authors seem to

32



3.3 SOME PROPERTIES OF THE MEASURE-BASED TOPOLOGIES

argue that completeness and some other mathematical requirements are
irrelevant to the evaluation of a topology’s economic appeal. It should
be apparent, however, that if subsets of P, with well-defined economic
properties also have well-defined topological properties, we have a clear
indication that the topology captures some important economic struc-
ture of the space.

Theorem 3.1 below shows that Q, is a topologically complete space,
and is well known from measure theory. We still include a proof, partly
because it employs a more direct method than those usually seen, and
partly because elements of this proof will be used in the proofs of The-
orems 3.2, 3.3, and 3.4.

Theorem 3.1 Q,, is topologically complete.

ProoF: Let {P,} be a Cauchy-sequence of preferences. Consider the
inferior limit of {P,}, written P, and defined as the set of all points
that are members of all but a finite number of the sets in P,. It can
also be expressed as

P, = G ﬁ P,. (3.1)

k=1 n=k

We show that {P,} converges to P..
We may assume that for any positive integer k there is an integer n;

such that L
d(Pp,Pn) < ok for n,m > nj.

Let

Ex=P, AP, (3.2)

k412
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Fom = Ey. (3.3)

»
TCs

Since p(Ex) = d(Pn,, Pn,,,) it follows that
Jlim p(Fn) =0. (3.4)

From (3.2) and (3.3) we get

Fn=J Pn- ) Pu : (3.5)

Consider the expression
[o o] [ o] [ o] [ o]
(p,,. oA p,.) - (pm n U A p,.) L @)
k=m n=k k=m n=k

This expression is equivalent to P, A P,, since we can replace the lower
index of the union operator in (3.1) with any integer without changing
the limit.

A comparison of (3.5) and (3.6) reveals that P, A P, C Fy,, and (3.4)

then implies lim u(Pn A P.) =0. [ |

The two next theorems show that the space of tramsitive preferences

and the space of complete preferences are both topologically complete.

Theorem 3.2 The set of equivalence classes containing transitive pref-

erences is closed in Q,.
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PRroOOF: The inferior limit of a set of transitive preferences is obviously
transitive. [

Theorem 3.3 The set of equivalence classes containing complete pref-
erences is closed in Q,,.

Proor: Let {P,} be a Cauchy-sequence of preferences. The superior
limit of { P}, written P*, is the set of all points that are members of an
infinite number of the sets in {P, }. The superior limit can be expressed
as

P = ﬁ O P,. 3.7

k=1 n=k

We first show that d,(P*, P.) = 0. Since P, C P*, we have

PPAP =) UP,,—DﬂP,. for any m. (3.8)

k=m n=k k=m n=k

It is easy to see that the right hand side of (3.8) is a subset of F,,, (see
equation (3.5)) for all m. Equation (3.4) then implies d,(P*, P.) = 0.

We have thus shown that {P,} also converges to its superior limit, and
from the observation that the superior limit of a sequence of complete
preferences is complete, the theorem immediately follows. [}

The last two results imply that the set of equivalence classes containing
at least one transitive and at least one complete preference is closed,
but they say nothing about the set of equivalence classes containing
preferences that are both transitive and complete. But as the next
theorem shows, this set turns out to be closed as well. To prove this,
we apply a construction called an ultralimit of a sequence of sets, defined
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as follows: Let U be a nonprincipal ultrafilter over the natural numbers.
PY is an ultralimit of the sequence {P,} whenever we have z € PU if
and only if {n:z€ P, } € U.

Theorem 3.4 P, is topologically complete.

Proor: We will show that a Cauchy-sequence of preferences {P,}
converges to an ultralimit PU of the sequence. It is immediately seen
that an ultralimit of a sequence of transitive preferences is transitive,
and from the fact that for any ultrafilter U on N, AU B = N implies
A €Uor B €U (see e.g. Eklof [21]), we can deduce that an ultralimit

of a sequence of complete preferences is complete.

Since the ultrafilter is nonprincipal, every cofinite set of integers is in
U, and every set in U is infinite. Hence, for an ultralimit PV, we
have P, C PY C P*. In the proof of Theorem 3.3 we showed that
dy(P*,P,) = 0, and the completeness of p then ensures that PU is

measurable. [

The measure-based topologies identify preferences that differ by a set
of zero measure. This is a natural consequence of the interpretation
of these topologies: If we attempt to estimate the difference between
two preferences by a sampling procedure on differences in the ranking
of randomly drawn pairs in X X X, (where the sampling distribution
is consistent with the probability measure u), preferences differing by a

set of zero measure are empirically indistinguishable.

Our next result, however, shows that under some general conditions, the

measure-based topologies do separate all points of an important subset
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of the space of all preferences. It says that if X is a connected space
and the generating measure pu assigns positive measure to open sets,
then d, is a proper metric when restricted to the class of continuous,
complete and transitive preferences.

To prove this result, we use the following lemma:

Lemma 3.5 Let P be a continuous, complete and transitive preference.
Ifa ~p b, but (a,b) ¢ P°, there exist (not necessarily distinct) points
z and v so that (a,z) € P°, (v,b) € P°, (z,v) € P° and (v,2) € P°.

ProoF: Since there is only one preference involved in this proof, we
omit the subscript P on the relations. Let A = {z€ X : z <a},
B={z€ X:z2>b}. Aand B are open and disjoint, and cannot both
be empty as this would imply P = X x X with every point an interior
point, contrary to the assumption of the lemma. Assume first that A
and B are both nonempty. Then 4 # @. If it was empty, 4 would
be a both open and closed nonempty set with a nonempty complement,
which is impossible since X X X is a connected space. By the same
argument, B # 2.

Pick a point z € JA, then z ¢ A; hence by completeness z > a. But, by
continuity we cannot have 2 > a, so 2 ~ a. Now every neighborhood of
z (in X) contains a point u < a, hence (a,u) € P°, which implies that
(a,2z) € P°. By a symmetric argument there is a point v € &B such
that (v,b) € P°, v ~ b. Observe that by transitivity z ~ v.

Every neighborhood of z has common points with both A and C4,
and every neighborhood of v has common points with both B and C'B.
From this it easily follows that (v, z) € P°, and the following argument
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shows that (2,v) € P°: By completeness every point r in CA has a
neighborhood N, so that z > z for all z € N,, and every point s in CB
has a neighborhood N, so that v X y for all y € N,. By transitivity
z > y for all (z,y) € N, X N,. But then every neighborhood of (z,v)

contains an interior point (7, s) of P.

We are left with the case where one of A and B is empty. Without loss of
generality, assume A = @. Then a must have a neighborhood N, where
z ~ a for all z € N, (if this is not the case, i.e. every neighborhood
of a has points strictly preferred to a, then (a,b) € P°, contrary to
the assumption of the lemma). Let z = a; then certainly (a, z) € P°.
By assumption a € CB, hence CB # @, and we can apply the same
argument as before to show that 3B # @. Choose a point v € 3B; then,
as before, (v,b) € P°. Observing that z ~ yif z € CB and y € CB, it
is a trivial exercise to show that (z,v) € P° and (v,z) € P°. |}

Theorem 3.6 If X is a connected space, and u assigns positive mea-
sure to open sets, then d, is a proper metric when restricted to contin-

uous, complete and transitive preferences.

ProoF: We show that for any two continuous, complete and transitive
preferences P and @, if P # @, then P A Q has a nonempty interior.
From this, the theorem immediately follows.

By assumption, P — Q and Q — P cannot both be empty. Suppose
without loss of generality that P —Q # @. This means that there exists
a point (a,b) € X x X so that a =p b and a <g b. The proof is in two
parts. We first suppose that
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(i) -(a,b) € P°. Every neighborhood N(,) of (a,b) contains a point
with a neighborhood O C P. By continuity of Q we can choose
Ni(a,b) 80 that z <q y for all (z,y) € N(, ). Hence, the open and
nonempty set (N(,4) N O) is a subset of (P — Q), which again is
a subset of (P A Q).

We are left with the case where

(i) (a,bd) ¢ P°. Since (a,b) ¢ P°, we must have a ~ b. By Lemma 3.5
there exist points z and v such that (a,z) € P°, (2,v) € P° and
(v,b) € P°. Since a <q b, by transitivity one of the following must
hold: a <q 2, z <g v, v <q b. Applying part (i) of this proof on
the pair where the condition holds gives the desired result. i

As mentioned in the introduction, the need for a topology is primarily
motivated by the possibility of observational errors. In [28], Kannai
defines a topology on a space P of continuous and complete preorders

as the smallest topology in which the set

{(z,y,P):z P y}

is open in the product topology of X x X x P. The appeal of Kannai’s
criterion is that whenever z >p y, this relation is also true for all z’,
y’, and P’ that are sufficiently close to z, y, and P; in other words,
whenever one alternative is strictly preferred to another, this will hold

even under small observational errors.

In general, the spaces Tff do not have the Kannai property. An example
will illustrate this. Let a sequence of preferences {P,} be generated by

39



CHAPTER 3. MEASURE-BASED TOPOLOGIES

Figure 3.1.

a sequence of utility functions {u,} on [0, 1] defined as follows:

1-(n+1)z for0<z<1/(n+1),
un(z) =4 0 for 1/(n+1) <z <1/2,
z-1/2 for1/2<z <1.

Figure 3.1 shows the first three elements of the sequence. If the measure-
based topology is generated by for instance the Lebesgue measure, then
this sequence converges to the preference P generated by the utility

function u defined as

0 for0<z<1/2,
z-1/2 for1/2<z< 1.

u(z) =

Clearly, for all P,, we have 0 »p, 1, thus, all neighborhoods of P contain
preferences where 0 > 1. But for P, we have 1 »p 0. This violates the

Kannai property.
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On the other hand, p({(z,y): 2z Xp, y & = >p y }) tends to zero as P,
tends to P. If u is interpreted as a probability measure, this means that
we can assume with a high degree of certainty that small observational
errors will not affect the outcome. Even if this differs from the Kannai

property, it still captures the same idea.

3.4 AN AXIOMATIC CHARACTERIZATION

In the literature we find many alternative topologies for spaces of pref-
erences, all more or less plausible, as is evident from Chapter 2. In most
areas of economics, it is common in such cases to resort to what may
be labeled “the axiomatic approach”. We shall try to put down a few
well founded criteria that describe properties we would like a topology
to have, and then determine which topologies satisfy these criteria.

For reasons explained in Chapter 2, p. 27, we will aim for a topology
that can be generated by a pseudometric d, since we want a metrizable
topology if possible. Of course, one of the reasons that so many different
topologies have been proposed, is the diffuse intuition one generally has
when it comes to “obvious” properties of convergence of preferences. We
shall try to circumvent the problem of this lack of intuition by letting
as many as possible of the conditions we put down describe properties
that do not refer to convergence at all.

Specifically, we list below three conditions® we would like a pseudomet-
ric to satisfy. Only the first condition makes any mention of conver-
gence, and the convergence concept involved is so weak that, hopefully,

3There is a close relationship between Conditions 3.2 and 3.3 in this chapter, and
two of the axioms used by Kemeny & Snell [29].
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it is immediately acceptable to the reader. We say that a sequence of
preferences { P, } is monotonic decreasing if P, C P, for n > m.

Condition 3.1 If {P,} is a monotonic decreasing sequence of prefer-
ences, then nll?olo d(P,, P) =0, where P = N3, P,.

This is usually called convergence from above, and is a standard concept

in set and measure theory.

The remaining two conditions does not mention convergence at all, but
pertain to “global” properties of the pseudometric. First, we want the
distance between two preferences to be a measure of the extent to which
the preferences disagree. We also want such a measure to be as specific
as possible, in the sense that it should not be influenced by anything
else than this disagreement; in particular, if two preferences agree on
the ranking of a pair of alternatives, it should not matter what ranking
they agree on as far as the distance is concerned. The plausibility
of this argument can further be seen by taking it to the extreme: If
two preferences agree on everything, they are identical, and we want
the distance between them to be zero no matter how they rank the

alternatives.

We will formalize this by saying that two preferences P and @ disagree
on an ordered pair (z,y) whenever z >p y and z ¥q y, or z ¥p y and

zTZqQUV-

Condition 3.2 If two preferences P and () disagree on exactly the
same ordered pairs as two preferences R and S do, and furthermore,
when restricted to these pairs, P is equal to R and Q) is equal to S, then
d(P,Q) = d(R,S).
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The next condition relates to the notion of Pareto optimality. We say
that a preference P; is Pareto efficient relative to two preferences P;
and P, whenever z >3 yifz >y yand z 2y y,and z s yif z Ya v
and z %, y, for all z,y € X. We want a condition that ensures that
if a preference P; is Pareto efficient relative to P; and Pa, it should
not be possible to find another preference that is closer to both P; and
P, than P is. This seems to capture an important intuitive property
of “closeness.” The condition below implies that the pseudometric will

have this property.

Condition 3.3 If a preference P; is Pareto eflicient relative to two
preferences P, and P, then

d(P],.PQ) = d(Pl,Pa) + d(Pa,PQ).

In other words, under Pareto efficiency the triangle inequality should
hold as an equality.

Theorem 3.7 A pseudometric on a o-algebra of preferences satisfies
Conditions 3.1-3.3 if and only if it is a measure-based pseudometric.

Proor: We first show that if a pseudometric satisfies the conditions,
it must be measure-based. The argument will be easier to follow if
we first translate Conditions 3.2 and 3.3 into statements involving set
operations. Condition 3.2 says that for any four sets P, @, R, and
S,f P-Q=R-Sand Q- P =S5 — R, then d(P,Q) = d(R,S).
Condition 3.3 says that if PN P, C P; C P, U P,, then d(P, P;) =
d( P, P3) + d(Ps, Py).
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Define a set function u by
p(P) = d(P, o).

We prove that p is a measure. First, we show that 4 is finitely additive:
Let {A;}, i = 1,...,n, be any collection of n mutually disjoint sets.
Define E,, by

By Condition 3.3 we must have
d(Ep,2) =d(EpyEm—1) + d(Ep—1,@) forl<m < n. (3.9)

But by Condition 3.2 we have d(E,, Ep,—1) = d(A,, @), so (3.9) can

be written
d(Em, @) = d(Am, @) + d(Em_1,0) forl<m<n.  (3.10)

Repeated applications of (3.10) then give

d(E,,2)= id(A.-, @),

=1

and this shows that y is finitely additive.

Clearly, since d has the properties of a pseudometric, p is finite and
nonnegative. Condition 3.1 implies that g is continuous from above
at @. Since pu also is finitely additive, we may conclude that u is a
finite measure (see Halmos [24, p. 39]). It is left to show that this
measure actually generates the metric, i.e., that d(P,Q) = u(P A Q).
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By Condition 3.3 we must have, for any two sets P and @,
d(P,Q)=d(P,PNQ)+d(PNQ,Q). (3.11)
But by Condition 3.2,
d(P,PNQ)=d(P-Q,2)

and

d(PNQ,Q)=d(2,Q - P).

We can then write (3.11) as

d(PvQ):’ d(P_ Qaz)+d(Q —P,@)
= u(P - Q)+ u(Q - P)
=u(P AQ),

and the first part of the proof is completed.

It remains to show that any measure-based pseudometric satisfies all
three conditions. Condition 3.1 is satisfied because any measure is con-
tinuous from above. Condition 3.2 is satisfied since P -Q = R— § and
Q—P=S-Rimplies PAQ =RA S. For any tree sets P;, P,, and
Py, if LNP,C PsC P,UP,, then P, A P; and P; A P, are disjoint
sets and P, A P, = (P, A P3)U(P; A P;). The additivity of the
measure then implies d(P;, P2) = d(P, P;) + d(Ps, P;), so Condition
3.3 is satisfied. This completes the proof. |}
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3.5 AGGREGATION OF PREFERENCES

The so-called “social choice paradoxes” show that seemingly week prop-
erties of social aggregation rules may be mutually inconsistent. The best
known paradox where continuity of the aggregation rule is involved is
due to Chichilnisky [9]. In her paper, the following three properties of
an aggregation rule ¢: P* — P (where P" is the n-fold cartesian product
of the preference space P, n > 2) are considered:

(i) ¢ is continuous
(ii) ¢ respects unanimity, i.e. ¢(P,...,P)= P

(iii) ¢ is anonymous, i.e. ¢(Py,...,Pn) = ¢(Ps(1);-- -, Ps(n)) Where o
is any permutation on {1,...,n}

" In the mathematical literature, a map that satisfies (i)—(iii) is called an

n-mean.

In Chichilnisky & Heal [14] it is shown that for CW-complexes with
a convex hull that is also a CW-complex, a sufficient condition for the
consistency of (i)-(iii) is that all connected components of the space
P are contractible. For parafinite CW-complexes this condition is also
necessary.

The requirement that P should be a CW-complex is crucial. Consider
a space () constructed in the following way: For each positive integer
n, let Cy, be the circle in R? with center at (1/n,0) and radius 1/n. Let
A=U,>;Cnand let @ = (A x[0,1])/(A x {1}), i.e., @ is the cone on
A. Tt is clear that Q is compact and contractible, but in [3], P. Bacon
shows that there is no map ¢: Q™ — @ that satisfy (i)—(iii).
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Since there is no natural way to identify CW-complexes with spaces
of preferences endowed with a measure-based topology, the results of
Chichilnisky & Heal [14] cannot be transformed to our framework. Even
though it is easy to show that some preference spaces (for instance, the
space P, with u absolutely continuous with respect to the Lebesgue
measure) are contractible, this does not immediately imply the existence

of an aggregation rule that is an n-mean.

However, if we only consider the subset of P, consisting of prefer-
ences without “thick” indifference surfaces, i.e., the preferences P where
p({(z,y) € P:z ~p y})=0,it is actually possible to construct an ag-
gregation rule with all the necessary properties. We shall also see that
this rule aggregates continuous preferences to a continuous preference,
so the subset of P, consisting of continuous preferences without thick
indifference surfaces will also admit an aggregation that satisfy (i)—(ii).
At present, these are among the widest possibility results known.

We will now assume that the measure g on X X X is a product measure
generated by a finite measure ¥ on X. It is natural to investigate
the connection between P,y, and the space of real-valued v-integrable
functions on X endowed with the pseudometric d!, defined as

&)= [ 15 -gld.
X

As usual, functions with zero distance between them are identified, and
the resulting quotient space is called L'(X,v).

For any preference P in P,,, the function

fr(z)=v({y:y3prz}) (3.12)
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exists?, and is easily seen to almost represent P in the sense that z =p y
is almost everywhere equivalent to fp(z) > fp(y). We shall see that this
transformation induces a map U from P,y, to L(X,v), i.e., the trans-
formation generated by (3.12) takes equivalent preferences to equivalent

functions. Furthermore, U is a continuous map.

Lemma 8.8 The map U:P,x, — L!(X,v) as described above is well

defined and continuous.

Proor: We show that d,x,(P,Q) 2 d,(fp, fq), so in particular,
dyx,(P,Q) = 0 implies d(fp, fqg) = 0, and it follows that U is well
defined in the sense that it maps equivalence classes to equivalence

classes.
First consider the inequality
v(A A B) 2 |v(A) — v(B)| (3.13)

for any measure v and measurable sets A,B. To see that this inequality
must hold, consider that ¥(A A B) can be written as

v(A - B) + v(B — A).
It is also trivial that

v(A - B) > v(A) - v(B),

‘For a somewhat related construction of utility functions, see Mount & Reiter
[34].
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and
v(B - A) 2 v(B) - v(A).

The inequality (3.13) follows immediately.
We now consider the expression (v x v)(P A Q). Let a subscript z
on a subset of X x X indicate a section of the subset (with the first

coordinate fixed at z), i.e., for a set A C X x X, the expression A; is
the set {y : (z,y) € A}. By Fubini’s theorem we have

(v x v)(P A Q)= / W(P & Q) du(z). (3.14)
X
But (P A Q). can obviously be written as P, A @, so (3.14), together

with (3.13), gives us

(v x V)(PAQ)> / IV(Ps) — (Qs)) di(z). (3.15)

X

Since the right hand side is just [|fp — fg|dv, we have shown that
X
dyx,(P, Q) > d'(fp, fq), which completes the proof. |

Consider now the map I'" that maps functions in L!(X, ) to preferences

according to the rule

(z,y) € I'(f) if and only if f(z) > f(y).

It is clear that I' is well defined, since equivalent functions differ on a
set of zero measure, and thus (by Fubini’s theorem) generate equivalent

preferences.
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In general, I" is not continuous. However, it becomes continuous when
restricted to the space K'(X,v) of all functions f in L(X,v) that
satisfy

v xv){(z,9): f(z)=f¥)}) =0,

as the following lemma shows.

Lemma 3.9 The map I': K}(X,v) — Py, is continuous.

PROOF: Assume that f, converges to f in K'(X,v). Then, for all
€>0,

I(f) AT(fn) C{(z,9):|f(z) = fa(z)| 2 €or
|f(y) — fa(y)] 2 €or
|£(z) — f(y)| < 2¢}. (3.16)

To see that (3.16) must hold, consider a pair (z’,y’) that does not
satisfy any of the terms in the disjunction. For this pair, we obviously
have f(2') > f(y') if and only if fu(2’) 2 fa(y’), so the pair cannot be
in I'(f) & I'(fa).

Without loss of generality, assume that u(X) = 1. By (3.16), Fubini’s
theorem, and some elementary logic we have, for all ¢ > 0,

wxv)(I(f) AI(fa)) L 2v({z:[f(z) - fa(z)| 2 e+ (3.17)
(v xv)({(2,9): |f(z) - f(y)| < 2¢}).

We want to show that, for any § > 0, we can find a k£ such that
(v xv)(I'(f) A I'(fn)) < 6 for all n > k. Since

v xv){(z,9): f(z)= f(») }) =0,
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by continuity from above we can find an ¢ sufficiently small so that

(v xv)({(2,9):1f(2) - f(¥)] < 2¢}) < §/2.

Convergence in L'(X,v) implies convergence in measure, so for this e,

we can find a k sufficiently large to make
v({z:|f(z)- fa(z)| 2 €}) < é/4

hold for all n > k. But then the right hand side of (3.17) is less than é
for all n greater than or equal to this k, and the proof is complete. i

Let PX , C P,x, be the space of preferences P that satisfy

(v xv){(z,9):2~py}) = 0.
Theorem 3.10 The space PK , admits an n-mean.

PRroOF: Define the map F:[K'(X,v)]* = K(X,v) by

[F(fiy.-.y fa)l(z) = min{f1(z),..., fu(2)} for all =.

This map is obviously an n-mean on K!(X,v). Consider the map ¢
defined by the diagram

@K —2—K
Uxmel r

[KV\(X,v)]*E—>K'(X,v)

51



CHAPTER 3. MEASURE-BASED TOPOLOGIES

Since I o U is the identity map on PX ,, and all involved maps are
continuous, the composite map ¢ must be an n-mean. i

With some further restrictions on i, we also get the following result:

Corollary 8.11 If X .is-a-subset.of R" and v is finite and absolutely
continuous with respect to the Lebesgue measure, the subspace of Tf,(x,,
that consists of equivalence classes that contain continuous and com-
plete preorders allows an n-mean.

PROOF: A result in Neuefeind {35, p. 174] implies (with some trivial
modifications of Neuefeind’s proof) that U maps continuous preferences
in PK , to continuous functions. Since both F and I maps continuous

objects to continuous objects, this also holds for the map ¢ constructed
above. |}
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4 | Strategy-proofness: A homotopy
approach

4.1 INTRODUCTION

In this chapter we consider strategy-proofness of continuous social wel-
fare functions and other aggregation procedures. Similar problems have
been examined by several authors, starting with the seminal papers by
Gibbard [23] and Satterthwaite [38], and surveyed by Pely [37], Pat-
tanaik [36] and Sen [39]. In most of the literature on this subject,
the social aggregation procedures under investigation have been social
choice functions or social choice correspondences. It is assumed that all
voters have preferences over a choice space X. A social choice corre-
spondence is then a relation between profiles of preferences (i.e., n-tuples
of individual preferences if there are n voters) and points in X. The
interpretation is then that a point in X is a possible outcome of the
social decision process for the given preference profile whenever the re-
lation holds. When only one point in X corresponds to each preference
profile, we get the special case of a social choice function.

In this setting, it is assumed that the result of the social decision pro-
cess is a point in X. A social welfare function, on the other hand,
assumes that society should choose a preference over X, rather than
a point in X. It is frequently maintained that while the inherent ra-
tionality that is embedded in the concept of a preference may be a



CHAPTER 4. STRATEGY-PROOFNESS: A HOMOTOPY APPROACH

reasonable assumption for individual behavior, there are few arguments
to support the claim that this rationality should also apply to collective
decisions. However, nearly all of economic theory is founded on the
assumption that the economic agents, or decision units, display suffi-
cient rationality for their choices to be modeled by preferences. In real
world applications, one will find a number of cases where the economic
agent in question is not an individual, but a group of individuals, and
with a choice behavior resulting from some kind of collective decision
process. If these decisions cannot be (more or less closely) modeled
by preferences, major parts of economic theory will simply not apply.
For this reason alone, the investigation of social welfare functions is an

important one.

While the literature on manipulation of social decisions concentrates
on social choice functions, the possibility of strategic voting should of
course be taken just as seriously when social welfare functions are in-
volved. Loosely speaking, a social welfare function can be manipulated
if any of the voters can benefit from insincere disclosure of their prefer-

ences.

The results we present here are closely related to two articles by
Chichilnisky [13] and Chichilnisky & Heal [15]. Their work on this
and related issues differs from most of the literature by the requirement
that the social welfare function is continuous.

This, of course, presupposes that a topology is defined on the space of
preferences. If we (for the moment) confine the study to linear prefer-
ences over R™ (i.e., preferences that can be represented by linear utility
functions), the orthogonal vectors to the indifference surfaces will have
the same direction everywhere. The space of linear preferences can then
be given the same topology as S™~! (the n — 1 dimensional sphere) by
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Figure 4.1: This construction maps a linear preference to a point s in
S1 '

identifying any preference with the point where the orthogonal vector
at the origin of R™ intersects an n — 1 dimensional sphere centered at
the origin of R™. The two-dimensional case is illustrated in Figure 4.1.

With linear preferences over R™ thus regarded as points in $™71, a
continuous social welfare function defined for m voters becomes a map
from the product of m copies of S™~! to the space of social preferences,
which we assume is identical to the space of individual preferences, i.e.
sn-1,

For instance, if we assume that the social welfare function is de-
fined for two voters with preferences over R2, the welfare function can
be regarded as a map from the torus to the circle. Call this map
f:81%x 81— S1. It can be shown that the degree of the restriction
of f to the diagonal of S X §? is equal to the sum of the degrees of the
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restrictions of f to the two subspaces z x S! and §! x z, respectively,
where z is an arbitrary point in S!. If the restriction of f to the diag-
onal is of nonzero degree (e.g., if f respects unanimity), then at least
one of the last two restrictions of f must be of nonzero degree. From
the fact that any map of nonzero degree is onto, it is easily seen that
at least one of the two agents can always achieve any social outcome he
may desire, given the preference the other agent reports (in general, of
course, he will have to misrepresent his preferences to accomplish this).
In the terminology of Chichilnisky & Heal [15], such an agent is called

a strategic dictator.

This argument is easily generalized to spheres of arbitrary dimension,

and an arbitrary number of voters, and the result then becomes:

Theorem 4.1 (Chichilnisky & Heal) If a continuous social welfare
function f:(S™)™ — S™ (where n > 1 and m > 2) is of nonzero degree

when restricted to the diagonal, there is always a strategic dictator.

The proof, using degree arguments, depends on the spherical structure
of the preference space. However, one can easily imagine spaces of
preferences that are not homeomorphic to an n-sphere. In several pa-
pers, e.g. Chichilnisky & Heal [14] and Heal [26), it has been shown that
noncontractibility of the preference space gives rise to social choice para-
doxes. It is then natural to ask whether there is a connection between
these paradoxes and the result above; in other words, can Theorem 4.1
(or some version of it) be extended to noncontractible spaces in general?

The rest of this chapter is devoted to that question.
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4.2 TWO COUNTEREXAMPLES

So far, we have been referring to spaces of preferences. However,
since the mathematical results presented here can be applied to other
problems than aggregation of preferences (for some examples, see
Chichilnisky & Heal [15]), we will henceforth consider just an abstract
topological space Y. We furthermore assume there is defined an aggre-
gation map f:Y xY — Y, to be interpreted in the following way: Two
agents each report a point in Y (their “votes”), and the aggregation

map then selects a social outcome in Y.

An example from game theory can illustrate the generality of this ap-
proach. Consider a game with two agents and a state space Y. The two
agents act independently. It is proposed that the agents either remain
in the initial state yo, or move a positive distance in direction z. Let
V be the space of all feasible directions. The two agents have differ-
ent preferences over the states in the system, and will bargain about
a common solution. The bargaining process can thus be modeled as a
map f:Y XY — Y, whereY is the space V U {yo}. It is a consequence
of the results in this chapter that for a fairly general class of spaces Y,
even though the game is perfectly symmetric in the sense that the two
agents are treated equally, the bargaining outcome will necessarily be

of a very asymmetric nature.

In order to keep notation and arguments as simple as possible, we will
not consider cases with more than two agents, even though there are

some generalizations to an arbitrary number.
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Let both agents have preferences! over the points of Y. It will be as-
sumed that these preferences have unique global maxima. If we regard
the agents’ preferences over Y as preferences over social outcomes, the
aggregation map gives rise to a two-person noncooperative game, where
the possible moves for both players are the points in Y, and with out-
come f(z1,z3) if the players’ moves are z; and z,. We say that the
aggregation map is strategy-proof for a given pair of preferences over Y’
if it is a Nash equilibrium in this game that both players report their
most preferred point (the unique maximum of their preferences).

In general, an aggregation map can clearly be strategy-prdof for some
pairs of preferences, but not for other pairs. By an ezhaustive class
of preferences over Y we mean a collection of preferences with unique
maxima, such that every point in Y is the maximum of some preference
in-the collection. Given an exhaustive class of preferences, we say that
f is strategy-proof for this class if it is strategy-proof for a,ny‘pa.ir of
preferences where both preferences are members of the class. In the
following, when we say that a map is strategy-proof without referring
to a particular class, we mean that the map is strategy-proof for at least

some exhaustive class of preferences.

We say that an aggregation map is dictatorial (with agent m as a dic-
tator) if

f(Z1ye e osZmyeeoyp) =2y forall z4,...,2,.

INote that the preferences we consider here have no connection with the prefer-
ences we described in Section 4.1. There it was assumed that the result of the social
decision process (the social outcome) was a social preference; the preferences we
introduce here are individuals’ preferences over social outcomes, whether these out-
comes are social preferences, or something else. If Y is regarded as a space of social
preferences, the preferences we describe in this section should then be interpreted as
preferences over social preferences.
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It is an easy consequence of Theorem 4.1 that given an arbitrary ex-
haustive class of preferences over the points in S™, the only aggregation
maps that may be strategy-proof for this class are the dictatorial ones

(assuming the map is of nonzero degree when restricted to the diagonal).

There is one requirement in the formulation of Theorem 4.1 that can-
not immediately be generalized to other spaces than S™, and that is
the nonzero degree condition. We will replace this with a stronger cri-
terion; we require that the aggregation map shall respect unanimity,
ie., f(z,...,z) = z for all z. For the spaces S™, this implies that the
restriction of f to the diagonal is of degree 1. Theorem 4.1 then implies:

Theorem 4.1’ Let Y be homeomorphic to S™ for some n > 1. For an
arbitrary exhaustive class of preferences over Y, if an aggregation map

respects unanimity and is strategy-proof, it is dictatorial.

We will try to extend this weaker version of Theorem 4.1 to a wider class
of spaces than the n-dimensional spheres. However, a simple counterex-
ample shows that any attempt to extend it to all noncontractible spaces
will fail. Let Y be homeomorphic to a cylinder, and define an exhaus-
tive class of preferences over Y as follows: Let d:Y x Y — R be the
natural metric on Y, i.e., the distance between two points is defined
to be the Euclidean length of the shortest path in Y that connects the
points. To any point 2 € Y, we associate a preference over Y that has

z as its unique global maximum, and where y > 2 if d(z,y) < d(z, 2).

The cylinder can be written as S? x I, where I is the unit interval. De-

note points in S* by o (with subscripts to distinguish between different
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Figure 4.2.

points), and points in I by ¢«. A point z; € Y can then be written
(01,¢41). Consider the aggregation map f:Y x Y — Y defined by

fl(o1, 1), (02,12)] = (01, t2).

This map is strategy-proof for the exhaustive class of preferences de-
scribed above, but it is not dictatorial. An example is depicted in Fig-
ure 4.2. We assume that agent 1’s most preferred point is z;, and agent
2’s most preferred point is z;. For each of the two corresponding pref-
erences, we have drawn the indifference curve that contains f(z;,z2).
We see that agent 1 has nothing to gain by reporting anything else than
z1, since he can only achieve outcomes that lie on the horizontal broken
line in the figure (assuming that agent 2 reports z3). The situation is
the same for agent 2, since he can only achieve outcomes on the vertical

broken line.

We have here a noncontractible space, with a very natural class of prefer-
ences and a nondictatorial aggregation map, where neither of the agents

have incentives to report anything else than their most preferred points.
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Consequently, Theorem 4.1’ does not extend to noncontractible spaces
in general. We also observe that the cylinder is homotopy equivalent to
the circle, where Theorem 4.1’ is valid, so the validity of the theorem
must depend on topological characteristics below the homotopy level.
The obvious question is then: Which of the topological properties that
are possessed by the circle, and not by the cylinder, are relevant to our
problem?

As a first attempt, we note that the proof of Theorem 4.1 relies heavily
on the important fact that any map from S™ to S™ of nonzero degree
is onto. A suitable generalization of this property to topological spaces
in general will be to require that any map from Y to Y that is homo-
topic to the identity map on Y, is onto. We shall call a space Y with
this property a retracted space. However, adding the requirement that
Y must be a retracted space is still not enough to ensure that only
dictatorial maps are strategy-proof for an arbitrary exhaustive class of
preferences. We use the torus as a counterexample.

Let Y be homeomorphic to the torus. Y can then be written as S x S1,
and points in Y will be denoted by (o,0’). Let d be the natural metric
on the circle, i.e., the distance between two points is the Euclidean
length of the shortest path in S! that connects the points. Define a
metric d on the torus by

d[(01,0}), (02, 04)] = /d(01,02)* + d(0}, o2

Define an exhaustive class of preferences on Y by exactly the same
method as in the previous counterexample. Let the aggregation map
be defined by

fl(a1,01),(02,02)] = (01,03).

The situation is illustrated in Figure 4.3, which is to be interpreted in
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Figure 4.3.

the same way as Figure 4.2.

Since the torus is a retracted space, this example shows that even re-
tracted spaces admit strategy-proof aggregation maps that are not dic-
tatorial. However, if we also require that the space shall be an H'-space
(to be defined in the next section), it turns out that we get an interesting
generalization of Theorem 4.1'.

4.3 SUFFICIENT CONDITIONS

Before we give the definition of an H’-space, we shall explain a few
mathematical terms. A pointed space is a topological space where an
arbitrary point, called the base point, is singled out. The V-union of two
pointed spaces X and Y, written X VY, is constructed from the disjoint
union of the spaces by identifying the two basepoints. Informally, the
two spaces can be thought of as being “glued together” at the base
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points, and at all other points they retain their original topology. More
formally, if X has base point zp and Y has base point yp, X VY may
be regarded as the subspace X X yoU zo XY of X x Y. E.g, the figure

eight can be regarded as the V-union of two circles.

A based map from a pointed space to a pointed space is a map that
takes the base point in the first space to the base point in the second.
If X,Y, and Z are pointed spaces, two based maps f: X — Z and
g9:Y — Z can be combined into a map (f,g): X VY — Z by letting f
apply to the X X yo part of X VY, and g to the zo X Y part.

An H'-space? is a pointed space Y together with a map u:Y - Y VY
with the property that the composite maps (where ¢ is the constant

map that maps everything to the base point, and ¢ is the identity map)

(c:)

YL>yvy2hy ad v—4-yvyri&hy (1)

are both homotopic to i. Some examples of H'-spaces will be given in

Section 4.4.

If Y is an H'-space, we can introduce a binary operator ‘*’ on based
maps from Y to Y by defining f * g to be the composite map (f, g)ou,
or equivalently, with the diagram

y—s>yvyYly

We shall call f % g the product of f and g.

?See for instance Maunder [33].
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Before we state our main result, we shall deduce a general property of
strategy-proof aggregation maps. For an aggregation map f and an
arbitrary point z¢ € Y, define the two maps f;°, f°:Y — Y by

1°(z) = f(z, o) (4.2)
f2°(z) = f(2o, ). (4.3)

If we assume that f is strategy-proof, we must have

f(z1,22) = flf(z1,22),29) for all zy,z5. . (4.4)

This is a consequence of the following argument: Let z; and z; be
two arbitrary points in Y, and let agent 1’s and agent 2’s most pre-
ferred points be f(z1,z2) and z,, respectively. Since f by assumption
is strategy-proof, we may suppose that agent 2 reports z;. By reporting
T, agent 1 can always achieve f(z1,z2) (his most preferred point). But
since the map is strategy-proof, the outcome f(f(z1,z2),z2) must be
at least as good for him. Considering that f(z,,z2) is the unique max-
imum of his preference, this implies (4.4). By a symmetric argument
we have

f(ZI,Zz) = f[zlv f(zla 22)]' (45)

It is now an immediate consequence of (4.4) and (4.5) that f{°(z) and
2°(z) are both retractions; that is, they are equal to the identity map
when restricted to their respective images.

We can now prove the main result in this chapter:

Theorem 4.2 Let Y be a path connected, retracted H'-space. For an
arbitrary exhaustive class of preferences over Y, if an aggregation map
respects unanimity and is strategy-proof, it is dictatorial.

64



4.3 SUFFICIENT CONDITIONS

Proor: Let f:Y XY — Y be an aggregation map that respects
unanimity. Qur aim is to show that if f is strategy-proof, it must be
dictatorial.

Pick an arbitrary base point zg € Y. Consider the three maps
fa, 7%, f3°:Y = Y, where f4 is defined as

fa(z) = f(=,2),

and f° and f3° are defined by (4.2) and (4.3). We first show that f4
is homotopic to f{° * f3°. Let u:Y VY — Y x Y be the inclusion map
[(i, ), (¢,9)]. Call the two composite maps in (4.1) ¢ and ¢’, respectively.
By the definition of the product of two functions, fi° * f;° is equivalent
to the composite map

Y4y vy—2>Y xY 1Y, (4.6)

that is, fo[(i,¢),(c,i)]op. An equivalent way of writing this is

fol(i,¢)on,(c,i)oul,

or shorter, fo(@,#’). The following diagram will thus define the same
composite map as (4.6):

vy yv-L.y

This map must be homotopic to f4, since both ¢ and ¢’ are homotopic
to i, and if we replace both ¢ and ¢’ in the above diagram with i, the
composite is seen to be identical to f4.

It is clear from the definition of the product that for any two based
maps g,h:Y — Y, we have (¢* h)(Y) = g(Y)UAR(Y). Since f{° * f3° is
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homotopic to fa (which is equal to the identity map, since f respects
unanimity), it must be onto, because Y is assumed to be a retracted
space. We thus have

YU RY)=Y.

We now show by contradiction that one of f{° and f7° must be a
constant map that maps everything into zg. Assume this is not the
case; we can then find a point z, different from zo so that z, € f{°(Y),
which implies f(z1,z¢) = z;. But then we have z¢ ¢ f5'(Y), as the
converse would imply f(z;,z9) = z¢. By the same argument there is a
point z different from z¢ so that z¢ ¢ fi2(Y). By the properties of Y’
and the fact that f{° * f7° is homotopic to the identity map, we must
have
EEUEE) =Y.

We then arrive at a contradiction, since the above argument implies
that z¢ is not a member of this union.

This means that one of f{° and f;° is a constant map. Without loss of
generality, assume this is true of f7°. The map f;° must then be onto,
since f{°(Y)U f3°(Y) =Y. As f{° is a retraction, and is onto, it is
the identity map on Y. For any z, fi must be homotopic to f;°, hence
onto (since Y is a retracted space), hence f§ must be the identity map.
But then agent 1 is a dictator. This completes the proof. |l

Remark: It is not hard to see that a strategy-proof aggregation map
that is onto, must also respect unanimity. If the map is onto, then, for
any point z, there must exist points z; and z, such that f(z,z2) = z.
This means that f{?(z1) = z, and since f;? is a retraction, we must
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have fi?(z) = z, i.e., f(z,22) = z. Again this means that f§(z;) = =z,
and fj(z) = z, but this is the same as f(z,z) = z. The condition of
Theorem 4.2 that the aggregation map should respect unanimity can

thus be replaced with a condition that only requires the map to be onto.

4.4 CONCLUDING REMARKS

We have seen that a path connected space that is both a retracted space
and an H'-space does not admit nondictatorial, strategy-proof aggrega-
tion maps that respect unanimity. The counterexamples in Section 4.2
illustrate that neither of the two properties are sufficient by themselves.
The space in Figure 4.2 is an H'-space, but it is not retracted, as the
identity map is homotopic to a map from the cylinder to a circle. The

space in Figure 4.3 is retracted, but it is not an H'-space.

To get an intuitive feeling for the characteristics of H’-spaces, it is in-
structive to consider an important class of such spaces, the suspensions.
The suspension of an arbitrary topological space Y is defined to be the
quotient space of Y X I where Y x 0 is identified to one point and Y x 1
is identified to another point. For example, the suspension of a circle
is a cylinder with the two ends collapsed into one point each; in other

words, a space homeomorphic to a sphere.

The property of being an H’-space is preserved under homotopy equiv-
alence. This means that the figure eight, for instance, is an H'-space,
since it is homotopy equivalent to the suspension of a space consisting

of three discrete points.
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oo

Figure 4.4: Folding a circle around itself.

Informally, retracted H’-spaces can be regarded as generalized spheres,
in the sense that they retain two properties possessed by the spher-
ical spaces: (a) They do not contain any proper subspaces homotopy
equivalent to themselves (so they are “minimal” representatives of their
homotopy type), and (b) loosely speaking, there is always a way to fold
such a space “around itself”, as illustrated in Figure 4.4.
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5 | Representation of metapreferences

5.1 INTRODUCTION

In the last chapter, we considered strategy-proofness of general aggre-
gation procedures. Earlier work on strategic disclosure of preferences
has mainly focused on agents’ behavior when faced with social choice
functions, i.e. functions f: P* — X, where P" is an n-fold product space
of individual preferences over the choice space X. The idea is then that
individuals will not disclose their true preferences if they by reporting
some other preference can ensure a more preferred (according to their

own true preferences) social choice in X.

In this context, all preference relations involved have the same domain
(the choice space X), although any preference may serve two different
purposes: As an argument to the social choice function, and as a cri-
terion for the individual to rank social choices when optimal strategic
behavior is to be determined. This is of course possible only because
the range of the social choice function is identical to the domain of the

individual preferences.

With social welfare functions, where the range of the function is not
the choice space X, but a space of social preferences, matters are differ-
ent. We can not use the same class of preferences both as arguments to
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the welfare function, and as individuals’ ranking criteria for social out-
comes. If we want to analyze strategic disclosure of preferences when
social welfare functions are involved, this requires two different classes
of preferences: The preferences in one class are to be used as inputs
to the function (these are the preferences that individuals reveal), and
the other class, consisting of preferences with the range of the welfare
function as domain, is used by individuals to rank social outcomes.

In the following, we will identify the space of social preferences (the
range of the social welfare function) with the space of individual pref-
erences. The two classes, or spaces, of preferences mentioned in the
previous paragraph can thus be described as (a) one space of individual
preferences over a choice space X, to be used as arguments to the wel-
fare function, and (b) one space consisting of preferences with the space
in (a) as domain; in other words, a space of preferences over preferences.
Preferences in this latter space will be called metapreferences.

In this context, any individual may disclose a preference from the space
in (a) above, and for each individual, one of the preferences in this
space will be assumed to be his “true” preference. In addition, we
assign a metapreference to each individual that (by ranking the possi-
ble outcomes of the welfare function) models his strategic disclosure of

preferences.

The main result in this chapter is a theorem that shows how a metapref-
erence over a space of preferences on a choice space X can be repre-
sented by a measure on X X X. As in Chapter 3, we identify preferences
with their graphs, so that any preference can be regarded as a set in
X x X. H there is a finite measure y defined on X X X, and an arbitrary
preference P is singled out, we can define a utility function u on the
space of preferences by letting u(Q) = —u(P A Q) for any preference
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Q. This utility function generates a metapreference in the obvious way.
It is, however, somewhat surprising that any metapreference that can
be generated by a utility function satisfying some natural conditions,
can be generated by a utility function of this particular kind, i.e., one
that measures the symmetric set difference between graphs. This is the
subject of the next section.

5.2 A REPRESENTATION THEOREM

We use the same notation as we did in Chapter 3, so that for a pref-
erence P, the symbol P itself refers to the preference graph, and >p
refers to the corresponding relation (z >p y if and only if (z,y) € P).
To avoid confusion, we shall use a slightly different notation regard-

ing metapreference relations; for a metapreference M, the relation is
M

denoted .

As we did in Chapter 3, we still assume that the class of all possible
preferences constitutes a o-algebra P. With preferences represented in
this way, a metapreference is thus a special instance of what we will
call a set preference. We define a set preference to be any preference
relation on a o-algebra of subsets of some space Y. Set preferences and
metapreferences will have the same notation, i.e., for a set preference

M
M, the relation is denoted .

~ In order to prove this chapter’s main result, we shall first deduce a
general characterization of set preferences that can be generated by
a utility function that is a finite, nonatomic measure on Y. These
will be the set preferences that satisfy the four conditions 5.1 to 5.4
below. Let M be a set preference on a o-algebra 8§ of subsets of Y.
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The first condition essentially says that when ranking two sets in 8, the
set preference should only depend upon the difference between the two
sets, i.e., the ranking of the sets should be determined only by points
that are in one of the two sets, but not in the other. We formulate this

as follows:

Condition 5.1 For any four sets A, B,C,and Din8,if A—B=C-D
M M
and B— A=D-C, then A B ifand only if C = D.

The next condition sayé that anything is as least as good as nothing,
and thus introduces a direction to the set preference.

M
Condition 5.2 For any set A in 8§, we have A > .

Conditions 5.1 and 5.2 together imply that the set preference is mono-

M
tonic, that is, F' D E implies F' > E. The argument is simple. We
obviously have

F-E=(F-E)-o,
E-F=g@-(F-E).

M M
By Condition 5.1, this gives us F' > FE if and only if (F — E) > @. By
Condition 5.2, the latter expression is true.

We say that a set preference M is nonatomic if for any set A and any

integer n > 0, it is always possible to find a partition of A into n disjoint

subsets so that for any two subsets B and C in the partition, we have
M

B~C.
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Condition 5.3 M is nonatomic.

Finally, we require that the set preference shall be sufficiently well be-
haved, to the extent that it can be generated by some utility function.

Condition 5.4 M can be generated by a real valued utility function
f defined on the o-algebra 8, in the sense that for any two sets A and

M
B, we have A > B if and only if f(A) > f(B). The function f is

continuous®.

This condition clearly ensures that the set preference is transitive, but
it also implies that the family of indifference classes of M (with the
order induced by M) is order homeomorphic to a subset of R.

It is clear that any set preference that satisfies Condition 5.1 has the
following property: For any three sets A, B, and C, if C is disjoint from

M M
AUB, then AUC > BUC if and only if A - B. This procedure (and
the associated equivalence) will be called disjoint addition.

Lemma 5.1 Let M be a transitive set preference that satisfies Condi-
tion 5.1. If A and B are disjoint sets, and C and D are disjoint sets,

M M M
and A> C and B, D, then AUB > CUD.

. M
ProoF: The assumption that A > C implies (by disjoint addition)
that M
AU(B-C)x BuUC, (5.1)

1For a formal definition of continuity for set preferences, see p. 112.
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M
and B » D in the same-way implies
M
BuC x Du(C - B). (5.2)

From (5.1) and (5.2) we get (by transitivity)

M

AUu(B-C)r DU(C-B).

By disjoint addition it follows that

M

AU(B-C)u(BnC)- Du(C-B)u(BnC(C),

but this is of course nothing but

M

AUB - DUC,

and the proof is complete. |

Trivial modifications of the proof give us the following two corollaries:

Corollary 5.2 Let M be a transitive set preference that satisfies Con-

dition 5.1. If A and B are disjoint sets, and C and D are disjoint sets,
M M M

and A> C and B> D, then AUB > CUD.

Corollary 5.3 Let M be a transitive set preference that satisfies Con-
dition 5.1. If A and B are disjoint sets, and C and D are disjoint sets,
and A¥X C and B¥ D, then AuB¥ CuUD.
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In order to prove Theorem 5.11, which says that a set preference sat-
isfying Conditions 5.1-5.4 can be represented by a measure, we shall
develop some intermediary results. We will in the following assume
that the set preference M satisfies all of the four conditions above. We
shall also make another assumption; it will be tacitly assumed that M
is not the trivial set preference, i.e., that there is at least one set A in
8 for which A ]g 2. By monotonicity and transitivity, this naturally
implies Y I‘»{ o.

For a given set preference M, we say that a set A has the k-property (or
is a k-set) for some integer k whenever there exists a partition (called
a k-partition) € of Y into k sets such that A is in €, and for all B and
C in €, we have B .

M
Lemma 5.4 For any k, if A is a k-set, then A > @.

ProOOF: Assume the proposition does not hold, i.e., A Yo (by mono-
M

tonicity of M, we cannot have @ > A). Let the k-partition that contains

A be called &, and enumerate the sets in € by E;, i = 1,...,k. By dis-

joint addition we have

() B (UE.-) ue,

i=1 1=1

since (by transitivity) E, ¥ . But this is of course the same as

n n-1

UE.M UEi,

=1 i=1
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which, by induction, gives Y M &. This is contrary to the assumption
M
we made at p. 75 that Y > 2. [

Lemma 5.5 For a given k, if A and B are both k-sets, then A ¥ B.

PrOOF:  Assume this is not true, and that we have (without loss
of generality) A );-{ B. Clearly, this must imply that A and B come
from two different partitions, which we call £ and F, respectively. By
transitivity of M, any set in € must be strictly preferred to any set in F.

Enumerate the sets in €& and F by E; and F; respectively, 1 = 1,...,k.

If n M n
U Ei b U -Fi’
i=1 =1
then (by Corollary 5.2)
n+l1 n+1
Ue¥UF,
=1 i=1

M
for n < k. Of course, E; = Fj, so an induction argument leads to
M
Y > Y, and this contradiction proves the lemma. [

Lemma 5.6 fAX B and AC B, then (B — A) ¥

M
PRrOOF: By contradiction. Assume (B — A) > @ (by Condition 5.2,
M
we cannot have @ > (B — A)). By disjoint addition we get

(B-A)UuAY suA
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. M
which is equivalent to B > A. This contradicts the assumption -of the
Lemma, and completes the proof. ||

We say that A is a weighted set if there exists an n and a k such that A
can be written as a union of n disjoint sets from a k-partition. In this
.case, A has weight n/k.

Lemma 5.7 If A and B are weighted sets with weights n/k and m/j
M
respectively, then A > B if and only if nfk > m/[j.

M
Proor: We first show that A > B implies n/k > m/j. This is done

M
by contradiction; assume A > B and m/j > n/k.

Since M is nonatomic, we can subdivide each of the k-sets into j subsets
all indifferent to each other, and with an induction argument involving
Corollary 5.2, it is not hard to see that the indifference relation will also
hold between such subsets from different k-sets. This means that all the
kj sets are indifferent to each other, and thus have the kj-property. Call
this partition £. In a similar way, divide all the j-sets into k sets each,
and call the resulting partition of jk-sets F. The set A is then written
as nj disjoint sets from &, and the set B is written as mk disjoint sets
from F. We assume that mk > nj, and derive a contradiction.

Enumerate the sets in € by F;, ¢ = 1,...,jk, and the sets in F by F;,
i=1,...,jk. By Lemma 5.5, any set in & is indifferent to any set in F.
Thus, by Corollary 5.3, we have

I+1 141
Ue~* U~
=1 1=1
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whenever . .
M
U E; ~ U -Fi’
=1 =1

for I < nj. An induction argument then gives

M "
A¥|JE.

=1

A is thus indifferent to a subset of B. By monotonicity and transitivity,
M
this implies B > A. This, together with the assumption of the lemma
M

that A - B, gives us A ¥ B. Transitivity and Lemma 5.6 then implies

U F M.
i=nj+1

However, this, together with monotonicity and transitivity, contradicts
Lemma 5.4 whenever nj < mk. This concludes the first part of the

proof.

We then show that n/k > m/j implies A g B. With the same proce-
dure as used above, write A as nj jk-sets, and B as mk jk-sets. By
assumption, nj > mk, and an induction argument similar to the one
above will show that B is indifferent to a subset of A. By transitivity

M
and monotonicity, we get A > B, and this proves the lemma. [
Corollary 5.8 The weight of any weighted set A is unique.
Lemma 5.9 For any weighted set A with weight p, and any rational q

where 0 < ¢ < p, there exists a weighted set B C A with weight q.
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Proor: Write p as n/k, and ¢ as m/j. Partition the n k-sets into
j subsets each, all indifferent to each other. Pick mk of these subsets,
and form their union. This union has weight mk/kj. |l

Lemma 5.7 does in particular imply that if A and B have the same
weights, they are indifferent, and thus f(A) = f(B). For any rational
number ¢ in [0, 1], by Lemma 5.9 it is clearly possible to construct a set
W C Y with weight ¢. Define a map ¢’ by

9'(q) = f(W),

where W has weight ¢g. By the above remarks it does not matter which
set W we choose, as long as its weight is ¢, since these sets all give the
same value for f.

We now have a map ¢’ from the rational numbers in [0, 1] into the range
of f. By Lemma 5.7 this map is strictly monotonic, and we shall see
that is it uniformly continuous, and hence has a unique extension to a
continuous one-to-one map on all of [0,1].

Lemma 5.10 The map ¢’ is uniformly continuous.

Proor: We must show that for any § > 0 there is an € > 0 so that
|z — y| < € implies |¢’(z) — ¢'(y)| < § for any two rational z,y € [0,1].

Let T be the class of all pairs of weighted sets (A, B) that satisfy
|f(A) — f(B)| > 6. Let w(A) be the weight of a weighted set A. By
contradiction, we prove that inf |w(A) — w(B)|, where the infimum is
taken over all (A, B) € T, must be strictly positive. We can then set €
to the value of this infimum.
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Assume that igf Jw(A) — w(B)| = 0. This means that there exists a
sequence of pairs {(A;, B;)} from T such that

lim |w(4s) - w(B:)| = 0. (5.3)

Consider now the sequence {w(A;)}. From elementary topology we
know that any sequence in [0, 1] has a convergent subsequence, so there
is a subsequence of {w(A;)} with a limit in [0, 1]. Also, since any conver-
gent sequence in [0, 1] has a weakly monotonic (increasing or decreasing)
subsequence, there will thus be a monotonic subsequence {w(A4;;)} of
{w(A:)}. Without loss of generality, assume {w(A;;)} is weakly mono-
tonic decreasing. By Lemma 5.9, we may thus assume A;, C A;; for
k>j.

It is a consequence of (5.3) that {w(B;,)} is a convergent sequence as
well, with the same limit as {w(A;,)}. Thus, {w(B; )} has a weakly
monotonic subsequence {w(B.-,‘, )}. Without loss of generality, assume it
is weakly monotonic decreasing. By Lemma 5.9, we may again assume

B, C B, forl>j.
Let A be the limit of A;, , and B the limit of Bj, . Since
fim (i) = fim w(B),

it is not hard to see that 4 M B, and thus f(4) = f(B). Since f is

continuous from above, we must have

fim () = fim (B
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and thus
Jlim [f(A;,) = f(Bi, )| = 0.

This implies inf |f(A) — f(B)] = 0, (4,B) € J. But this contradicts
the assumption that all (4, B) € T satisfy |f(A) — f(B)| 2 6, and the
proof is complete. ||

With the uniform continuity of g’ established, we can extend it to a
unique continuous map on all of [0,1]. Call this extension g. Since g’
is strictly increasing, this must also hold for g. Thus g has a strictly
increasing inverse, g~1. Consider the composite map g~1o f. Call this
map u. Since g~! is orderpreserving, the map u considered as a utility
function will generate the same set preference as f. It is left to show

that u is a measure.

Theorem 5.11 If a set preference M on a o-algebra 8 satisfies Con-
ditions 5.1-5.4, then and only then can it be represented by a fi-

M
nite nonatomic measure u, in the sense that A > B if and only if

u(A) 2 u(B).

Proor: If M is the trivial set preference, i.e. the preference that
is indifferent between all alternatives, then we let u be the measure
that assigns zero to any set, and the theorem is obviously true. If M
is nontrivial, we may (due to monotonicity) assume Y };-l @, and may
thus employ all the results and definitions in the preceding lemmas and
paragraphs.

Let u be defined as g7' o f. We must prove that u is a finite nonatomic
measure. We first show that u is additive. From the definition of y it
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is clear that if A is a weighted set, then u(A) = w(A) (were as before,
w(A) is the weight of A). Furthermore, the reader should by now have
no problems verifying that w is an additive set function on the weighted

sets.

Let A and B be two disjoint sets in the o-algebra. Thus, g(A) and
p(B) are two real numbers in [0,1]. Assume that u is not additive for

these two sets, and furthermore, that
W(A) + u(B) < (AU B).

Pick two rational numbers ¢ and d that satisfy ¢ > u(A), d > u(B), and
c¢+d < p(AUB). Let C and D be two weighted sets with weights ¢ and d,
respectively. Since ¢+d is less than 1 (because u( AUB) must be less than
orl equal to 1), we may clearly pick D disjoint from C. By the fact that
u considered as a utility function generates M, and that for weighted
sets, u evaluates to the weights, we must have C };-l Aand D };-l B. Since
w is additive, we must also have AU B };-l C U D. But this contradicts
Corollary 5.2. By a symmetric argument, we may in the same way derive
a contradiction from the assumption that u( A)+u(B) > u(AUB). Since
A and B were arbitrary disjoint sets, 4 must be additive.

By Condition 5.4 and the fact that g~! is continuous, y is continuous
from above. Since u(@) = 0, u is nonnegative, and (YY) = 1 implies
that u is finite. We may thus conclude that u is a finite measure (Hal-
mos [24, p. 39]). Condition 5.3 implies that u is a nonatomic measure.

The converse statement, that a set preference generated by a finite mea-
sure satisfies the four conditions, follows trivially from the properties of

measures. This completes the proof. [l
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Theorem 5.11 will for instance have applications in location theory; it
gives necessary and sufficient conditions for a preference over different
areas of land to be consistent with a per-unit price structure, i.e., a price
structure where the land can be divided into arbitrarily small units, and
where the price of any piece of land is equal to the sum of the prices of

the units it consists of.

Our motivation for deriving the theorem, however, is due to the fact
that it provides us with the necessary foundation to prove Theorem 5.12
below. This theorem says that under some reasonably weak conditions,
any metapreference can be generated by a finite measure in a particular

way.

For the rest of this chapter, it will be assumed that the space of prefer-
ences is a o-algebra P of subsets of X X X, where X is the choice space.
The first condition displays certain similarities with Condition 3.2 in
Chapter 3. Intuitively, the condition states that only the differences
between preferences should determine how they are ranked by some
metapreference. To formalize this condition, we use the same terminol-

ogy we defined on p. 42.

Condition 5.5 If two preferences P and @ disagree on exactly the
same ordered pairs as two preferences R and S do, and furthermore,

when restricted to these pairs, P is equal to R and @ is equal to S, then
M M
PrQifandonlyif R 1 S.

Converted to set notation, this condition looks exactly the same as
Condition 5.1.
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In order to illustrate Condition 5.5 with an example, assume that the
preferences in question are interpreted as the possible preferences of
a set of candidates up for election, and the metapreference is a given
voter’s ranking of the candidates (or more correctly, their preferences).
If two candidates agree on a particular issue, and then both change
their opinions on the issue, but in such a way that their new opinions
are still in agreement with each other, Condition 5.5 dictates that the
voter’s ranking of the two candidates should not change. In other words,
whenever the voter ranks two candidates, he takes into consideration

only issues where the candidates disagree.

The next condition says that for an agent with a metapreference M,
there should be a preference P (the agents own preference, or his most

M
preferred preference), such that for any preference Q, we have P = Q.

M
Condition 8.6 There is a preference P in P such that P = Q for all
Q inP.

In other words, M should have a maximal element.

The last two conditions are just restatements of Conditions 5.3 and 5.4:
Condition 5.7 M is nonatomic.

Condition 5.8 M can be generated by a real valued utility function
u defined on the o-algebra P, in the sense that for any two sets () and

M
R, we have @ = R if and only if w(Q) > uw(R). The function u is
continuous.
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Theorem 5.12 If a metapreference M satisfies Conditions 5.5-5.8,
then and only then can it be represented by a finite nonatomic measure

M
W, in the sense that Q > R if and only if u(P A Q) < u(P A R).

ProoF: Let 8 be the class of sets defined by
P AQisin 8 if and only if @ is in P,

where P is the preference referred to in Condition 5.6. First of all,
observe that 8 is a o-algebra, since we actually have § = P: Since P,
being a o-algebra, is closed under symmetric set difference, 8 must be
a subclass of P, and P must be a subclass of 8 since any set @ in P can
be written as P A (P A Q).

Now define a set preference N on § by
N M
PAR~-PAQifandonlyif @ = R.

Clearly, if we can show that N satisfies Conditions 5.1-5.4, then, by

Theorem 5.11, we are almost done.

Let us start with Condition 5.1. Assume that A, B, C, and D are four
sets in P. Furthermore, assume that

(PAA)-(PAB)=(PAC)-(PAD), (5.4)
(PAB)—(PAA)=(PAD)-(PAC). (5.5)

By elementary set theory we have

A-B=[(PAA)-(PAB)-PlU(PN[(PAB)-(PAA))
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for any two sets A and B, so (5.4) and (5.5) implies

and by Condition 5.5 we get
M M
B> Aifand onlyif D > C. (5.6)
By the definition of N this is equivalent to
N N
(PAA)~-(PAB)ifandonlyif (PAC) % (P A D).
But then we may conclude that N satisfies Condition 5.1.

Condition 5.2 is trivially satisfied by N, since Condition 5.6 implies that
PAQ g P A P for all Q. It is furthermore obvious that N satisfies
Condition 5.3. Finally, to see that Condition 5.4 is satisfied, consider
the function f on 8 defined by f(P A Q) = —u(Q). This function
will generate N, and it has the necessary continuity properties by the

continuity properties of u.

By Theorem 5.11 we may conclude that there is a finite nonatomic

N
measure p such that we have (P A Q) - (P A R) if and only if it is
the case that u(P A Q) > u(P A R), and by the definition of N, this
M

is equivalent to Q > R if and only if u(P A Q) < u(P A R).

That a metapreference M that is generated by a finite nonatomic mea-
sure satisfies Conditions 5.5-5.8 follows trivially from the properties of
measures. This completes the proof. ||
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5.3 CONCLUDING REMARKS

We have seen that under some plausible and weak conditions, any
metapreference can be generated by a measure on X x X. If this mea-
sure is a product measure, it can be derived from a measure on X.
This is somewhat surprising,. since it is conceptually a long way from a
measure on X to preferences over preferences over X. The result also
gives further support to the relevance of the topologies we examined in
Chapter 3.

The measure on X x X that generates a metapreference, can be inter-
preted as reflecting the relative importance an agent with this metapref-
erence assigns to disagreement on the ranking of pairs of alternatives.
Disagreement on sets of pairs with small mass will thus (in a certain
sense) be deemed less important than disagreement on sets with larger

mass.

By applying Theorem 5.12, we can work with measures on X x X
instead of the more abstract concept of a metapreference. We will do
this in the next chapter, where we investigate strategic disclosure of

preferences under social welfare functions.
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6 | Strategy-proofness and
measure-based metrics

6.1 INTRODUCTION

In an innovative article by Bossert & Storcken [6], the authors investi-
gate strategy-proofness of social welfare functions. In their paper, they
assume that the choice set is finite, and that preferences are transitive,
complete, and antisymmetric (i.e., linear orderings). It is also assumed
that an individual with a preference P has a metapreference M gener-
ated by the Kemeny distance dx between preferences, in the sense that

M
Q > R if and only if dx(P,Q) < dx(P, R).

With metapreferences defined in this way, a social welfare function is
manipulable by strategic voting if a coalition of one or more individuals
can achieve a more preferred outcome (according to the metaprefer-
ences) by insincere disclosure of preferences. A social welfare function
that is not manipulable is called coalitional strategy-proof. Bossert &
Storcken show that for choice sets with at least four alternatives, there
are no coalitional strategy-proof welfare functions that satisfy some ad-
ditional requirements (these requirements imply, among other things,
that the social welfare functions must be nondictatorial).

It can be argued that the concept of coalitional strategy-proofness is a
very strong one. It assumes that any group of individuals can form a
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coalition, agree on a disclosure strategy, and enforce the implementa-
tion of such a strategy. There may well be a number of factors that will
make such an assumption implausible; if the electorate is large, the cost
of organizing some coalitions may be prohibitive, and anyway, informa-
tional concealments like secret ballot may make it impossible for the
coalitions to enforce their strategies. In that case, coalitional strategies
are only plausible if they also are Nash equilibria.

A weaker assumption would be to require only that the social welfare
function should be strategy-proof (as defined in Chapter 4); that is, that
no single individual can achieve a more preferred outcome by insincere
disclosure of his preferences. This means that the strategy where all
agents report their true preferences should be a Nash equilibrium.

Our second remark on the framework of Bossert & Storcken concerns
their use of the Kemeny distance. For linear orderings of a finite choice
set, the Kemeny distance between two orderings P and Q (where P and
Q denote the graphs of the orderings) can be defined as the number of
elements in the set P—(Q (see Bogart [5]). This distance has a particular,
arbitrary property associated with it; a property that is essentially due
to one of the axioms Kemeny & Snell [29, p. 10] use to characterize the
Kemeny distance. This is their Axiom 2, which says that if a preference
@) results from P; by a permutation of the alternatives, and @, results
from P, by the same permutation, then dx(P;, P2) = dx(Q1,Q2)-

We shall illustrate this with an example. Assume there are four alter-
natives in the choice space: Orange juice (0), water (w), skim milk (s),
and regular milk (m). Consider the two preferences P; and P,, where
P; ranks

oO>w>mx>3s
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and P, ranks

o> wH>>Ss»>m.

The point here is that P; and P, can be regarded as being rather close,
since they only differ in the ranking between two alternatives of similar
quality and nature (regular milk and skim milk). They both prefer

orange juice to water, and water to milk.
Now consider the two preferences @; and @2, where @, ranks
S>m>w>o

and @, ranks
S»-m»>or w.

One can easily argue that these two preferences are not very close, since
they differ in the ranking of two alternatives that possess rather different
qualities, water and orange juice. But according to Kemeny & Snell’s
Axiom 2, the distance between @, and @2 should be the same as the
distance between P, and P,, since ¢; and Q2 can be derived from P;
and P;, respectively, by one and the same relabeling of the alternatives

(swap o and s, and w and m).

While disguised as an independence of what names we assign to the
choices, this condition is of course much more comprising than that.
Axiom 2 induces us to disregard any information pertaining to the al-
ternatives; we are not at all allowed to take into consideration that a
difference in the ranking of one pair of alternatives may be much more
significant (and indicate a more substantial disagreement between the

preferences) than a difference in the ranking of another pair.
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While some applications involving the Kemeny distance may justify the
validity of Axiom 2, it is highly unlikely that metapreferences generated
by a metric should necessarily conform to this condition. Typically,
when ranking social preferences, an individual will put more weight on
differences between the ranking of some alternatives than of other alter-
natives. For instance, if the choice space is a space of possible resource
allocations, an individual will likely be more concerned about differences
over issues that affect how much he himself will be allotted, than issues
that do not affect his share. We should allow for this possibility, and
use a larger class of admissible metapreferences than those generated

by the Kemeny distance.

The subject of this chapter integrates the material in the previous chap-
ters. Like Bossert & Storcken, we shall analyze strategic disclosure of
preferences under social 'welfare functions, but we will be content with
social welfare functions that are strategy-proof (as in Chapter 4), in-
stead of coalitional strategy-proof. On the other hand, we shall admit
a wider class of metapreferences, and will only assume that they can
be generated by a measure-based pseudometric — in other words, the
metapreferences that were characterized in Chapter 5. This also al-
lows us to consider choice spaces that are not necessarily finite, and

preferences that are not necessarily linear orderings.

In Section 6.2, we deduce a few general properties of social welfare
functions that are strategy-proof for the class of all measure generated
metapreferences. These properties are used in Section 6.3 to prove that
if all preferences are linear orderings and the social welfare function is
onto, then strategy-proofness is equivalent to the existence of a dictator.
In Section 6.4, we discuss the possibilities of extending this result to

preferences that are not linear orderings.
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6.2 STRATEGY-PROOF WELFARE FUNCTIONS

We shall investigate social welfare functions that are strategy-proof for
a particular exhaustive! class of metapreferences, namely the class of
all metapreferences that can be generated by a measure according to
the procedure ‘described ‘in-the previous-chapter. As we-did in Chapter
4, for reasons of notational simplicity we will only consider the case
where there are two agents. We shall denote by Q the space of all
measurable preferences on a choice space X, i.e., Q is a o-algebra on
X x X, and whenever we talk about measures, it is assumed that the
measures all have Q as their domain. We shall also take it for granted
that X contains three or more alternatives. Initially we analyze welfare
functions that are defined on product spaces of Q; later on, we will
restrict the attention to the case where the preferences are assumed to

be complete and transitive.

Assume now that the social welfare function f:Q x Q — Q is strategy-
proof for the class of metapreferences M that consists of any metaprefer-
ence that can be generated by a measure with Q as a domain. We shall
assume that M also includes metapreferences generated by measures

with atoms.

If f is strategy-proof for M, this means that for any two preferences P

and @, and any measure-based pseudometric d, we must have

dIP, f(P,Q)] = pin d[P, f(R, Q), (6.)

1See p. 58 for a definition.

92



6.2 STRATEGY-PROOF WELFARE FUNCTIONS

and symmetrically,
d[Q, f(P, Q)] = min d[Q, f(P, R)]. (6.2)
We will achieve this if f has the property that for any P and Q
PAf(P,Q)CPAf(R,Q) Toral ReQ (6.3)

and

QA f(P,Q)C QA f(P,R) forall Re€Q, (6.4)

since in this case d[P,f(P,Q)] will always be less or equal to
d[P, f(R,Q)] for any R in Q, and the same relation holds between
d[Q, f(P,Q)] and d[Q, f(P,R)]. So if (6.3) and (6.4) hold, f will be
strategy-proof. In fact, the converse is also true; f is strategy-proof for
the class M only if it satisfies (6.3) and (6.4). To see this, assume that
there is some R such that P A f(P,Q) is not a subset of P A f(R, Q).
This means that the set £ = [P A f(P,Q)] - [P A f(R,Q)] is
nonempty. Pick a point z in E, and define a measure gz with domain Q
by
1 ifz€eA,

p(A) = ,
0 ifz¢A.

Clearly, since z € P A f(P,Q) and z ¢ P A f(R,Q), we must have
du[P, f(P,Q)] > d,[P, f(R,Q))], and f would not be strategy-proof for
M. It is in general not necessary to resort to a measure with such
extreme properties as u, of course; the point is that we can always find
a measure where E has a mass that is sufficiently large relative to that
of sets disjoint with E.

The first result below shows how strong the notion of strategy-proofness
is in this context, where we require that the functions should be
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strategy-proof for all of M. We assess one agent’s influence on the
social outcome, under the ceteris paribus assumption that the other

agent reports a preference Q).

Lemma 6.1 If a social welfare function f is strategy-proof for M, then,
for a given preference Q, any ordered pair (z,y) € X x X satisfy one of
the following:

() (z,y) € f(P,Q) for all P.

(ii) (=z,y) ¢ f(P,Q) for all P.

(iii) (z,y) € f(P,Q) if and only if (z,y) € P for all P.

The situation is similar if we take P as given, and let Q vary.

PRrooF: Expression (6.3) implies that for any P and @, and any pair

(z,9), if (z,y) ¢ P, but (z,y) € f(P,Q), then (z,y) € f(R,Q) for all
R. So (z,y) satisfy (i) in the theorem. Consider the set

U[f(PaQ)_P]‘

PeQ

All ordered pairs (z, y) in this set will clearly satisfy (i). It is also implied

by (6.3) that if (z,y) € P, but (z,y) ¢ f(P,Q), then (z,y) ¢ f(R,Q)
for any R. The set

U [P_f(P’Q)]'

PeQ
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will thus be a set of pairs that satisfy (ii). The set of pairs that we have
not accounted for so far is thus

XxX- U[f(P’Q)_P]U[P—f(PaQ)]

PeQ

It is easy to see that all pairs in this set will satisfy (iii).

Running through the same argument by using (6.4) instead of (6.3) will
naturally prove the symmetric case with P fixed and Q varying. i

Lemma 6.1 says that given a preference @, the space X X X can be
partitioned into three sets, corresponding to the conditions (i)-(iii),
such that if (z,y) is in one of the first two sets, the choice of P has
no effect on the way f(P,Q) ranks (z,y), and when restricted to the
third set, P is equal to f(P,Q). So, given the second agents preference,
then, for any (z,y), either the first agent has no influence on the way
the social preference ranks (z,y), or the social preference ranks (z,y)
in the same way as he does himself. The result is of course similar if
we fix the preference of the first agent, and analyze the situation for
the second agent. Observe that Lemma 6.1 does not require that the
social welfare functions should be continuous; it will hold for any social
welfare function that is strategy-proof for M.

This is about as far as we get without making further assumptions.
However, many will object to this setting as being too general; we should
at least require that whenever all individuals report preferences that
are transitive, the social preference should be transitive as well, and
whenever all individuals report preferences that are complete, the social
preference should be complete. This will also make the conclusions

more comparable to other results in the social choice literature, where
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it is usually assumed that all preferences involved are transitive and

complete.

If we require that the social preference should be transitive/complete
whenever all individuals report preferences that are transitive/complete,
we can develop a stricter classification of strategy-proof welfare func-
tions. Lemma 6.1 is of course still valid. Call the subsets of X x X
that correspond to (i)—(iii) in Lemma 6.1 for I, II, and III, respectively;
e.g., (z,y) € 1if and only if (z,y) satisfy (i). Let A be the diagonal of
XxX,ie,A={(z,2):2€X}.

Lemma 6.2 Assume that f is strategy-proof for M, and evaluates to
a transitive/complete preference whenever both arguments are transi-
tive/complete. Assume also that the given preference Q in Lemma 6.1
is complete and transitive. Then 1, II, and III U A are transitive sets.

PRroOF: We first show that I is transitive. Assume that (z,y) and
(v, 2) are in L. Then (z, 2) cannot be in II, as f(P,Q) would then never
be transitive for any P. Obviously, (z,2) must be in f(P,Q) for all tran-
sitive P. But there clearly exists some transitive P such that (z,2) ¢ P,
and it follows that (z,z) cannot be in III. This leaves one possibility
only: (z,2)isin L

Next assume that (z,y) and (y, z) are in II. We must have z, y, and z
all different, since otherwise f(P,Q) would never be complete for any
P. Since (z,y) and (y,2) are never in f(P,Q) for any P, we have
(z,2) ¢ f(P,Q) for any complete and transitive P (since f(P,Q) must
then be complete and transitive). So (z,2) is not in I. Also, there is

clearly some complete and transitive P for which (z,2) € P, and thus,
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if (z,2) was in III, (z, 2) € f(P,Q). It follows that (z, z) cannot be in
I11, so it must be in II.

Finally, we show transitivity of IIl U A. Let (z,y) and (y, 2) be in III.
If either z = y, y = 2, or z = 2, we immediately have (z,z) € IIIU A.
Assume that z, y, and z are all different. We cannot have (z, z) € II,
as there clearly exists a transitive P for which (z,y) and (y,2) are in
P, so (z,z) € f(P,Q). Suppose that (z,2) € I. There is clearly some
complete and transitive P so that neither (z,y) nor (y, 2) arein P, thus
both (y,z) and (z,y) must be in f(P,Q) (by completeness of f(P,Q)).
But if (z, z) € I, we must then have (z,y) € f(P,Q), by transitivity of
f(P,Q). But we picked a P for which (z,y) ¢ P, so we have arrived at
a contradiction to the assumption that (z,y) is in III. This shows that

(z,2) is not in L.

Since (z, z) is neither in I nor II, it must be in ITI, and the proof is
complete. ||

The reason that transitivity will only hold for III U A, and not for III
alone, is that for any z, (z,z) is always a member of any complete
preference. Moving (z,z) from III to I will thus not have any influence
on the outcome of the welfare function whenever all the arguments are

complete.

In fact, if we augment III some more, we can establish an even stronger

property. Let S be the symmetric part of IUII, i.e.,
S={(z,9):(z,y) €TUIl and (y,2z) € IUII }.

Define the set D to be (X x X) - S.
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Lemma 6.3 The set D U A is the graph of an equivalence relation on
X.

Proor: We have to show that D U A is reflexive, symmetric and
transitive. It is obvious that the set is reflexive, and it follows immedi-
ately from-the definition of .S that the set must be symmetric. To show
transitivity, assume that (z,y) and (y, z) are two pairs in D (we may
assume z, ¥, and z all different, since transitivity is otherwise trivial).
We need to prove that (z, z) is in D, and this amounts to showing that

at least one of (z,2) and (z,z) is in III

That (z,y) and (y,2) are in D means that at least one of (z,y) and
(y,2) is in III, and at least one of (y, z) and (z,¥) is in IIIL. Since III by
Lemma 6.2 is a transitive set, the only nontrivial cases are when only

(z,y) and (z,y) are in III, or only (y,z) and (y, 2) are in IIL

First, assume that (z,y) and (z,y) are in IIL. If neither (z, 2) nor (2, z)
is in III, at least one of them must be in I, or f(P,Q) would never be
complete for any P. If (z,z) is in I, we arrive at a contradiction, since
there is clearly a transitive P for which (z,y) € P and (z,y) ¢ P, but
this would imply by transitivity (z,y) € f(P,Q) and contradict the
assumption that (z,y) is in III. Similarly, if (z,z) is in I, there exists a
transitive P for which (z,y) € P and (z,y) ¢ P, but then by transitivity
(2,9) € f(P,Q), and again we have a contradiction, this time to the
assumption that (z,y) is in III. We have to conclude that at least one
of (z,z) and (z,z) is in III.

The case where (y, z) and (y, 2) are in III can be treated in a symmetri-
cal way, and the details are left to the reader. This completes the proof.
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The equivalence relation in Lemma 6.3 will generate a partition of X in
the usual way. This partition has the following interpretation: We say
that the first agent has veto power on (z,y) for a given Q if (z,y) € P
implies (z,y) € f(P,Q) (but (y,z) ¢ P will not necessarily imply
(v,2) ¢ f(P,Q)). Lemma 6.3 then says that if two points z,y € X
both are members of some set in the partition (that is, both should be
members of the same set), then the first agent has veto power on (z,y).
If z and y are members of two different sets in the partition, then the
first agent has no influence on the way the preference ranks z and y.
So we can divide X into a class of mutually disjoint subsets, and the
agent has veto power “within” each subset, but has no influence on the

ranking of points from different subsets.

The results we have developed so far will be used in the next section to
prove a theorem that is, at least on the surface, similar to Theorem 4.2,
even though the methods employed are very different from those used
in Chapter 4.

6.3 WELFARE FUNCTIONS THAT RESPECT UNA-
NIMITY

In this section we will assume that all preferences are linear orderings.
The aim is to derive a result that says that a strategy-proof welfare

function that is onto, must be dictatorial.

Let L be the class of linear orderings on a (not necessarily finite) choice
set X. L is thus a subclass of Q. If M is the class of all metapreferences
that can be generated by measures (as defined in the previous section),
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let M be the class of the same metapreferences restricted to L. Thus,

any metapreference in M has £ as domain.

The lemmata in Section 6.2 will still hold true if we replace Q with L,
and M with M, as it is easy to check that the arguments and proofs
nowhere presuppose the existence of preferences that are not linear or-

derings.

In the previous section, we introduced the sets I, II, and III, correspond-
ing to statements (i)—(iii) in Lemma 6.1. This lemma refers to a given
preference @, and in genéra.l, the sets I-III will be different for different
values of @. In the following proofs, we will often refer to the set III,
and if the second agent’s preference is fixed at @, we write the set as
IT1,(Q) to indicate that it depends upon Q. When we look at the sit-
uation from the second agent’s viewpoint, and keep the first argument
fixed (at say, P), we write the set of pairs that satisfy Lemma 6.1(iii)
as ITI;( P).

Furthermore, when all preferences are linear orderings, and thus anti-
symmetric, it is easy to see that for any two points z and y (with z # y),
if (z,y) satisfy Lemma 6.1(i), then (y,z) must satisfy (ii), and if (z,y)
satisfy (ii), then (y,z) must satisfy (i). So I UII will be symmetric,
and the set D in Lemma 6.3 will thus be equal to III. So III;(Q)U A
and III;(P) U A will both be graphs of equivalence relations. This also
implies that III;(Q) and III;( P) are both symmetric sets.

In order to simplify the proof of the main result of this section, we shall
develop three intermediary propositions. In Lemmas 6.4-6.6 it will be
assumed that f is a social welfare function from £ x £ to L that respects

unanimity and is strategy-proof for M.
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For any linear ordering P, we shall define —P to be the “opposite”
ordering, i.e., (z,y) € —P if and only if (y,z) € P.

Lemma 6.4 For any linear ordering P and any two points z and y in
X, we must have (z,y) € III;(P) if and only if (z,y) ¢ IlI;(-P).

Proor:  Assume (z,y) € III;(P). Thus, (z,y) € f(-P,P) if
and only if (z,y) € —P. But since P is antisymmetric, this means
(z,y) € f(—P,P) if and only if (z,y) ¢ P, so we cannot have (z,y) €
III;(-P).

Assume (z,y) ¢ III;(P) and (z,y) ¢ IlI;(—P). This leads to a con-
tradiction: Without loss of generality, assume (z,y) € f(—P,P). We
must then have (z,y) € I;(P) and (z,) € Io(—P). We will thus get
(z,y) € f(P,P) and (z,y) € f(—P,—P). This is impossible since f
respects unanimity, and P is antisymmetric. So (z,y) ¢ III;(P) must
imply (z,y) € III2(Q). This completes the proof. I}

Lemma 6.5 For any linear ordering P, and any three points z, y, and
2, where ¢ # y and y # z, we cannot simultaneously have (z,y) €
III;(P) and (y, 2) € IIIy(-P).

Proor: By contradiction. Assume there are three such points so that
(z,y) € UI(P) and (y, z) € III;(-P).

First assume z = 2. This means (z,y) € III;(P) and (y,z) € II;(-P).
Since III; (—P) is a symmetric set, we must also have (z,y) € III;(-P).
But this contradicts Lemma 6.4.
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We may thus assume z # z. We must now have (z,z) ¢ III;(P),
because (z, 2) € III;(P) would imply (y, z) € III;(P) (since we assumed
(z,y) € IIIy(P) and III;(P) U A is symmetric and transitive). By
Lemma 6.4 this is impossible, since we assumed (y, z) € III;(~P).

We must also have (z,z) ¢ III;(—P), because (z,z) € III;(-P)
‘would imply (z,y) € III;(~P)(since we -assumed (y, z) € HI2(P)-and
III; (- P) U A is symmetric and transitive). By Lemma 6.4 this is again
impossible, since we assumed (z,y) € III;(P).

But (z,z) ¢ III3(P) and (=, z) ¢ III;(—P) contradicts Lemma 6.4, and
this completes the proof. i

Lemma 6.6 Let f be a social welfare function from L x L to L that
respects unanimity, is strategy-proof for M, and is nondictatorial. Then
there must exist some P in L such that

f(P,-P)# P and f(P,~P)# —P.

Proor: We will assume that there is no P with this property, and
then show that f is dictatorial.

Assume there is no such P. This means that £ can be partitioned into
two classes £ and L, defined by P € L, if f(P,—P)= P,and P € L,
if f(P,-P)=-P.

Assume neither of £; and L, are empty. Pick a preference P from £,
and a preference @ from L. It is not hard to see that as long as the
choice set X contains more than two alternatives (as we postulated on
p. 92), it must be possible to pick P and @ such that —P # @.
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By the definition of L;, we have f(P,—P) = P. Clearly, III3(P)
must be empty, since the second argument —P disagree with the so-
cial outcome P for every pair of alternatives. By Lemma 6.4, this
means that III; (— P) must be equal to X X X. But then we must have

f(Q,-P)=Q.

Since @ is in L3, we have f(Q,—Q) = —Q. By a symmetric argument,
we see that ITI;(Q) must equal X X X, and this implies f(Q,—-P) = —P.

However, if f(Q,—P) = Q and f(Q,—P) = —P, this implies Q@ = —P.
But we picked P and @ such that —P # Q. We are thus forced to
conclude that one of £; and L5 is empty.

Assume without loss of generality that L3 = @. This implies that for
all @ in £, we have f(Q,—Q) = —Q. By the same argument as above,
III2(Q) must equal X x X (for all Q). But then we have, for any Q in
L, f(Q,P) = P for all Pin L. This shows that the second agent is a
dictator, and the proof is complete. [l

It is now easy to show that strategy-proofness is equivalent to the exis-

tence of a dictator:

Theorem 6.7 Let f be a social welfare function from L X L to L that
is onto. Then f is strategy-proof for M if and only if it is dictatorial.

Proor: Assume there is such a function f that is strategy-proof
and not dictatorial. By the remark on page 66, we can assume that
f respects unanimity (although the development in Chapter 4 requires
continuous aggregation maps, the particular argument in the remark
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does not depend upon continuity, so it will also apply here, where no
assumptions about continuity of the social welfare function are made).

Since f is not dictatorial, by Lemma 6.6 there will be a preference P
in L such that f(P,—P) # P and f(P,—P) # —P. There will then be
two points z and y so that (z,y) € P and (z,y) € f(P,—P) (if there
were no such points, f(P, —P) would equal —P). Since f(P,—P) # P,
there must also be two points w and 2 so that (w,z) € P and (w, 2) ¢
f(P,-P).

Since (z,y) € f(P,—P) and (z,y) ¢ —P, we must have (z,y) ¢ III;(P),
and thus (by Lemma 6.4), (z,y) € III;(—P).

First assume that z = z. This means (w,z) € P and (w,z) ¢ f(P,-P).
We must thus have (w,z) ¢ III;(—P), so by Lemma 6.4, (w,z) €
III2(P). But this contradicts Lemma 6.2, since (z,y) € III;(-P).

We may thus assume z # z. Since (z,y) € III;(—P), this implies
(2,z) ¢ III3(P), as (2,z) € III;(P) would contradict Lemma 6.5.

By Lemma 6.4, we must then have (z,z) € III;(—P). By Lemma 6.5
we would get (w,z) ¢ IIIz(P), so, by Lemma 6.4, (w, 2) € III;(-P).
But this is impossible, since (w, z) € P and (w,2) ¢ f(P,-P). |

6.4 CONCLUDING REMARKS AND FURTHER RE-
SEARCH

In Sections 6.2 and 6.3 we assumed that metapreferences could be gen-
erated by measures that might include atoms. In many situations, it
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will be reasonable to disregard such measures. A subject for further
research would be to take an even more general approach, and allow
for the possibility that some sets in Q are always assigned zero measure
(for instance, all the countable sets). Call these sets insignificant sets.
When we have decided on a class of insignificant sets, we can then define
a class N of metapreferences, consisting of all metapreferences that can
be generated by measures, under the restriction that these measures

assign zero to the insignificant sets.
Equation (6.1) implies that for any P and Q,

WP A f(PQ)]-[PA f(R,Q))=0 foral ReQ

for any measure u that generates metapreferences in N. In other words,
the argument to u in this equation must be an insignificant set for all
R. If this was not the case, we would always be able to find a preference

R and some measure u so that x4 assigns a mass to the set

E=[PA f(P,Q)- [P A f(R,Q)]

that is arbitrarily large relative to the mass of sets disjoint from E. This
would violate the condition expressed by (6.1).

In the following, when we say that a statement about points in X x X
is valid almost surely (a.s.), we mean that the set of points that do not
satisfy the statement is an insignificant set.

It is not hard to see that for any P, @, and R, the two sets

E, = [P—f(PaQ)]nf(RaQ),
E2=[f(PaQ)—P]_f(R7Q)
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will both be subsets of E, and thus insignificant sets. This means that,
for any R and @, the following two statements will hold:

(i) ¥ (z,y) € f(R,Q), then we have (z,y) € f(P,Q) or
(2,9) ¢ f(P,Q) only if (z,9) ¢ P,

a.s., for all P.

(ii) If (z,y) ¢ f(R,Q), then we have (z,y) ¢ f(P,Q) or .
(z,y) € f(P,Q) only if (z,y) € P,

a.s., for all P.

The argument is simple: The set of pairs that do not satisfy (i) will
be the set of (z,y) for which (z,y) € f(R,Q), (z,y) ¢ f(P,Q), and
(z,y) € P, but this is just the set E; above. In the same manner, those
pairs that do not satisfy (ii) belong to E,.

There is clearly some similarity between (i) and (ii) above, and
Lemma 6.1 in Section 6.2. The statements (i) and (ii) are together
considerably weaker than Lemma 6.1, though. Let the set f(R,Q) be
called F;, and let Fj; be the complement of F;. The two statements (i)
and (ii) apply to F; and Fj;, respectively, and thus partition X x X
into two subsets. However, to get something comparable in strength to
Lemma 6.1, we ought to subdivide F; and Fj; further into two subsets
each; say, F* and F? (and F? and F}), so that (z,y) € F® implied
(z,y) € f(P,Q) as. for all P, and (z,y) € F} implied (z,y) € f(P,Q)
if and only if (z,y) € P a.s. for all P (and similarly with F¢ and F?).
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Whether such a partition is possible is an open question. The problem is
essentially that an arbitrary union of insignificant sets is not necessarily
insignificant. With the setup in Section 6.2, only the empty set is
insignificant, and since an arbitrary union of empty sets is empty, this
accounts for the strength of Lemma 6.1.

The reason we would like a result comparable to Lemma 6.1 also in
the case with nontrivial insignificant sets, is obviously that this might
provide us with a result similar to Theorem 6.7. It would not be unrea-
sonable to restrict the space of preferences to complete and transitive
preferences without “thick” indifference sets, i.e., preferences where the
indifference sets are insignificant sets. Such preferences would be gener-
alizations of linear orderings, since linear orderings are what we would
get in the special case where only the empty set is insignificant. If we
then define a dictator to be an agent such that the social preference
always differs from the agent’s own preference on an insignificant set
only, it might be possible to prove a result along the same lines as
Theorem 6.7, but where linear orderings are replaced with preferences
without thick indifference sets. This would significantly expand the
range of situations where the result might be relevant.

The subjects addressed by this dissertation can be divided into two
categories: We have investigated metrics on preference spaces and the
associated topologies, and we have analyzed strategy-proofness of gen-
eral aggregation maps, and social welfare functions in particular. In
view of the relative simplicity of the results, it appears that the ap-
proach we have chosen — measuring the symmetric set difference be-
tween preference graphs — is a natural and fruitful one. In particular,
the measure-based metrics have a property that we have barely touched
upon: Applied to real world situations, it is actually possible to gen-
erate a statistical estimate of the distance between two preferences by
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looking at how the preferences rank alternatives from a finite subset of

the choice space.

It is possible that this property might lead towards something like an
econometric, or statistical, theory of social choice. Social choice theory
has (so far) mainly been concerned with characterizing and analyzing
“absolute” properties of choice or welfare functions, under the implicit
assumption that all of the individual preferences in the domain have an
equal status, without regard to the fact that some of these preferences
(or combinations of them) may in some sense be unreasonable or less
likely to occur. An alternative approach would be to look at how such
functions perform “on the average”. The measure-based metrics, in
view of their natural interpretation as being generated by probability
measures, might provide the foundation for such an analysis. While
beyond the scope of this thesis, developments along these lines would

make an interesting future research topic.
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A | Mathematical prerequisites

This appendix lists the definitions of some common mathematical terms
that occur in the previous chapters. It is not intended to be a tutorial,
and can definitely not be used as one. It is merely included as a refer-
ence, to help refresh the memory of readers who are already acquainted

with the subject matter.

A.1 GENERAL TOPOLOGY

A pseudometric is a real-valued function d on pairs of elements of a

space M satisfying

(i) d(=z,y) 2 0.
(ii) d(z,y)=0ifz = y.
(iii) d(z,y)=d(y,z).

(iv) d(z,y) +d(y,2) > d(z, 2).

If (ii) holds with “if and only if” instead of “if”, the pseudometric is

called a metric. We say that M is a metric space with metric d. Let



APPENDIX. MATHEMATICAL PREREQUISITES

z be any point of a metric space with metric d, and let ¢ be a positive
number. The e-neighborhood S(z,r) of the point z is the set of all
points y in M such that d(z,y) < e. The class of all e-neighborhoods
in M forms a basis for a topology. Such a topology is called a metric
topology. For a topological space X, if there exists a metric such that
the basis of e-neighborhoods yields the original topology, X is called a
metrizable space.

Let M be a metric space with metric d. A sequence {z,} of points in M
is called a Cauchy sequence provided that for any positive number e,
there is an integer N, sufficiently large that d(z,,z,) < € whenever m
and n exceed N.. A metric space is complete if every Cauchy sequence
of points in M has a limit point in M.

Let M and N be metric spaces with metrics d and p, respectively. A
transformation f: M — N is continuous provided that for each point z
in M and each positive real number ¢, there exists a positive real number
4(z,¢€), in general depending on both z and ¢, such that p[f(z), f(y)] < €
whenever d(z,y) < 6(2,6). If the number 6(z,€) can be chosen to
be independent of the point z, we say that the transformation f is
uniformly continuous.

A set Y of points in a space S is said to be dense in S if the closure of
Y is S. A space is separable if it has a countable dense subset.

A space S is HausdorfT if, given two points of S, there exist two disjoint
open sets, each containing just one of the two points.

Let S be a space that is not compact, and let w be any abstract element
not in S. The one-point compactification S of the space S consists
of the points of S U {w} with a basis for a topology of S consisting of
(a) all open sets of S, and (b) all subsets U of § such that $— U is a
closed compact subset of S.
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A.2 MEASURE THEORY

A class R of subsets of a space X is called a ring if it has the following

properties:

(i) o eR.
(i) fA€eRand BeR,then A-BeR.

(ii) if A€ R and B € R, then AU B € R.

A ring R is called an algebra if it has the additional property that
XeR

A class R is called a a-ﬁlgebra if it is an algebra with the additional
property:

HA,eRforn=1,2,..., then U An, € R.

n=1

A Borel-o-algebra on X is the smallest o-algebra that contains all
the open subsets of X (and thus, all the closed ones as well). A Borel-

measure is a measure with a domain that includes a Borel-o-algebra.

An extended real-valued function is a function with values in R or one
of the two values 0o and —o0. A set function y is an extended real-
valued function defined on a class D of sets. Let u be a set function
defined on a ring R. We say that u is countably additive if

p (D En) = f:l‘(En)

n=1 n=1
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whenever the E, are mutually disjoint sets of R such that their union
is also in R.

The superior limit of a sequence of sets {A,}, written A*, is the set
of all points that are members of an infinite number of the sets in {A,}.
The inferior limit of a sequence of sets {A,}, written A., is the set
of all points that are members of all but a finite number of the sets in
{A,}. If the superior limit is the same as the inferior limit, we say that
{An} has a limit, and write im{A,} = A* = A,.

A set function u is continuous if u(lim{A4,}) = Jim ;z(A,.) whenever
{An} has a limit.

A measure is a set function u having the following properties:

(i) The domain A of y is a o-algebra.
(ii) p is nonnegative on A.

(iii) p is countably additive on A.

(iv) u(2)=0.
A real-valued set function is called finitely additive if
m m
plUE;| =3 mE)
i=1 1=1

for any finite collection of mutually disjoint sets E;, j = 1,...,m.

If p is a measure and p(X) < oo, we say that y is a finite measure.

112



A.3 HOMOTOPY THEORY

A measure y with domain A is said to be complete if for any two sets
N, E the following holds: If N C E, E € A and u(E) = 0, then N € A.

A real-valued set function A is said to be absolutely continuous with
respect to a measure y if for any € > 0 there exists a number § > 0 such
that, for any measurable set E with u(E) < 6, |M(E)| < e.

An atom of a measure u is a set E different from @ such that if F C E,
then either = 0 or F = E. A measure with no atoms is nonatomic.

Let u and v be finite measures on two spaces X and Y, respectively. For
anyset Ein X XY,let E;={y€Y:(z,y)€e E}and E¥={z€ X :
(z,y) € E}. Define a set function A by

NE)= [WE)du= [u(E)dv

whenever all the E; and E, involved are measurable. Then A is a
measure, and it is called the product of the measures x4 and v, and we
write A = y X v.

Fubini’s theorem says that if & is a nonnegative, measurable function
on X xY, then

/hd(pxu):[/hdydu:/ hdvdp.

A.3 HOMOTOPY THEORY

A subset R of a space S is a retract of § provided that there is a
continuous map r: S — R, such that r(z) = z for each point z in R.
Such a map r is called a retraction.
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Two maps f and g of a space X into a space Y are homotopic if there
is a map h: X x [0,1] = Y such that for each point z in X,

h(z,0)= f(z) and h(z,1)=g(z).
The map h is called a homotopy between f and g.

The relation between maps from X to Y of being homotopic is an
equivalence relation. The family of all continuous maps from X toY can
thus be decomposed by the homotopy relation into disjoint homotopy
classes.

Two spaces X and Y are of the same homotopy type (are homotopy
equivalent) if there exist maps f: X — Y and g:Y — X such that the
composite maps fog and gof are homotopic, respectively, to the identity
maps i:Y = Y and i: X — X. v

A space X is contractible if the identity map i(z) = z of X onto itself
is homotopic to the constant map ¢(X) = p (where p is a point in X).
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