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Chapter 1

INTRODUCTION

1. Objective
The purpose of this dissertation is to derive valuation theories for life insurance contracts based
on economic theory. Life insurance companies are exposed to two major sources of
uncertainty: Mortality risk and financial risk. In this dissertation mortality risk is treated as in
the classical actuarial models, i.e., from a risk neutral perspective. In traditional actuarial
theory, see, e.g., Borch (1980) and Sverdrup (1969), financial uncertainty is not modeled
explicitly. We introduce two sources of fmancial uncertainty, one related to the interest rate, the
other one to the amount of benefit. In the traditional models the interest rate is assumed to be
constant and the amount of benefit deterministic. Recently, however, new life insurance
products have been introduced, where the amount of benefit is linked to a financial asset,
whose market value fluctuates randomly. We present models where both these sources of
financial uncertainty are taken into account.

2. Organization
This dissertation consists of four chapters, in addition to this introductory chapter. Each chapter
is written as a self-contained paper. The first, entitled "Pricing of Unit-linked Life Insurance
Policies", is accepted for publication in the Scandinavian Actuarial Journal with Knut Aase as
co-author. The second, "Valuation of a Multistate Life Insurance Contract with Random
Benefits", was presented at the first Nordic Symposium on Contingent Claims Analysis in
Naantali, Finland, 8-9 May 1992 and published in a supplementary issue of Scandinavian
Journal of Management, Vol. 9, 1993. The third paper is entitled "Interest Rate Risk in Life
Insurance". The fourth paper, "Random Benefits and Stochastic Interest Rates in Life
Insurance", was presented at the Second Nordic Symposium on Contingent Claims Analysis at
Solstrand Fjord Hotel outside Bergen, Norway, 5-8 May 1994. As mentioned, the papers are
intended to bel self-contained, which, unfortunately, implies some duplications and to some
extent varying notation between the differentchapters.
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3. Overview
The dissertation can naturally be categorized according to the two sources of financial
uncertainty treated, i.e., the interest rate and the amount of benefit.

Figure 1. Structure of dissertation.

Benefit
Deterministic Random

Traditional Chapte:r2
actuarial Chapte:r3
theory

Chapter4 ChapterS

In Chapter 2 a theory for pricing unit-linked contracts is presented. Unit-linked insurance is
characterized by the fact that the benefit is linked to a mutual fund or another financial asset. In
the unit-linked version of a term insurance contract the insured's heirs receive, say, the value of
10 units of a mutual fund upon death. These types of insurances may also include a guarantee,
i.e., the heirs receive, say, the maximum of the value of 10 units in a mutual fund and 100 000
NOK. The model of the financial market in Chapter 2 is the same as the one used by Black and
Scholes (1973) in their derivation of the option pricing formula. In this model the interest rate
is constant and the price of the risky asset follows a geometric Brownian motion. In Chapter 2
we treat unit-linked versions of term insurance and pure endowment insurance contracts. These
two contracts can be combined into endowment insurance which is a popular contract on a

single life.

In Chapters 3, 4 and 5 we employ an extended model of the insurance contract. The insurance
policy is at each point in time assumed to be in one of a finite number of states and moves
between the states according to an inhomogenous Markov-process. This model of the
insurance contract is quite general and somewhat standard in the actuarial sciences. The
insurance contracts just mentioned are special cases of the Markov-model, and it can also be
used to model contracts on severallives. It is natural to use an inhomogenous Markov-process
in life insurance to reflect facts of life, such as that the probability of death or of becoming

2



disabled generally increases with age.

In Chapter 3 we also generalize the model of the risky security to a geometric Gaussian
process. The major advantage of this model compared to the geometric Brownian motion is
that the volatility of the risky security is allowed to be a deterministic function of time as
opposed to a constant when using the geometric Brownian motion. This added flexibility may
in particular be useful when long-lived contracts such as life insurance policies are considered.

Inclassical actuarial theory the interest rate is assumed to be constant. In Chapter 4 we develop
a pricing model where the interest rate is random and the benefits are deterministic. Whereas
unit-linked products are relatively specialized life insurance products, the model in Chapter 4 is
applicable for most traditionallife insurance products. The valuation theory is based on models
of the term structure known from financial economics.

InChapter 5 we again allow for random benefits linked to risky assets where also the interest
rate is random. In this model there is an arbitrary finite number of risky assets modeled by
somewhat more general processes than in the previous chapters. One example of application of
this model is the valuation of unit-linked contracts in the case of random interest rate.

4. The theory and model assumptions
We use models in continuous time. This approach is standard in the actuarial sciences as well
as in the theories we apply from fmancial economics. From an actuarial perspective, the new
component of the model is a financial market This addition is natural when dealing with unit-
linked insurance, but can also be applied when the benefit is deterministic. Our model of the

financial market is highly idealized. There are no transaction costs or taxes, and short-sale and
continuous trading are allowed and considered feasible.

The body of the financial theories we apply are known as arbitrage pricing theories. They are
characterized by the fact that the processes for the market prices of the fmancial assets are taken
as primitives. Furthermore, no arbitrage profit can be generated by trading with these

securities - a necessary condition for an economic equilibrium. However, these theories are
not general equilibrium theories where the market prices of the securities may be derived from
more fundamental primitives such as the agents' preferences and technology factors. Arbitrage
pricing theory! is sometimes called preference free pricing, meaning that the resulting pricing
formulas do ,ot explicitly depend on the agents' preferences. Continuous time arbitrage

3



theories are based on the seminal papers by Black and Scholes (1973) and Merton (1973) and
developed further by Harrison and Kreps (1979) and Harrison and Pliska (1981), see, e.g.,
Duffie (1991) for a current overview of this theory. The purpose of this dissertation is not to
create any new fmancial theory (nor do we apply the existing theories in their full generality),
but rather to merge the central ideas of these theories with actuarial models, attempting to find
valuation principles for life insurance contracts consistent with economic theory as well as with
traditional actuarial valuation principles.

This work is based on two important assumptions.

Assumption l.
The financial market is independent of the state of the insurance policy.

Assumption 2.
The insurer is risk neutral with respect to transition risk.

More precisely, the content of Assumption 1 is: All stochastic processes representing the market
values of the fmancial assets are statistically independent of the stochastic process representing
the state of the policy. We find this assumption rather plausible, though more or less realistic
counter-examples may be constructed. One counter-example is the situation when a person gets
a heart attack and dies because a dramatic decrease occurs at the stock market.

To explain the concept of transition risk we use tenn insurance as an example. In tenn
insurance the insured is in one of two states, alive or dead. The insured may die immediately

after the contract is signed, or at least much sooner than anticipated. This obviously represents a
risk for the insurance company, called mortality risk (a term used earlier) for this particular
contract Transition risk is just the natural generalization when there are more than two possible
states of the policy. In the actuarialliterature transition risk is often referred to as mortality risk

and even only risk. In our models also financial risk is present, so we prefer the term transition
risk, a terminology that also fits well to the underlying Markov-model.

The following example is intended to explain the concept of risk neutrality with respect to
transition risk. An insurer promises to pay the insured 100 000 NOK if he dies tomorrow (we
impose this short time horizon to ignore any problems connected to the time value of money).

The true probability for death tomorrow is known and equal 1o~oo. If the insurer is risk
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neutral with respect to transition risk, he charges 10 NOK for the policy, i.e., the insurer does
not demand any premium in excess of the expected pay-out to offer the insurance.

The justification for the risk neutrality assumption with respect to transition risk is based on a
pooling argument, i.e., the insurance company have a large number of independent and
identical contracts. From the strong law of large numbers, the aggregate number of deaths (and
other transitions causing the expiration of benefits) approaches the population's average as the
number of policies gets large.

The pooling argument does not hold for financial risk, because all policies are generally affected
by financial risk in the same direction. For example, every policy is exposed to the same
interest rates, or at least to highly correlated interest rates. The amount of financial risk is
therefore increased, rather than decreased, by increasing the number of identical policies.

5. Existing literature on the valuation problem
The pricing of unit-linked insurance is discussed in a number of papers. These can broadly be
classified in two categories. The papers of the first category were published in the 1970's and
culminated by the book of Brennan and Schwartz (1979a). The approach used was based on
the Black and Scholes (1973) methodology for the financial part, and on a discrete time model
of an endowment insurance for the actuarial part. The majority of the second category of papers
were published in 1993 or 1994. The timing ofthese papers is probably connected to the recent
introduction of unit-linked contracts in several European countries. Also here a discrete time
model of an endowment insurance together with continuous time finance models were used,
though these works apply the more modern martingale-based theory. Most of these papers are
reviewed in Chapter 2 of this dissertation.

There exist a few papers in the actuarialliterature dealing with stochastic interest rate in life
insurance. We refer to Parker (1994) for a review. However, we are not aware of other works
using the approach of Chapter 3, which is based on the existence of a financial market without
arbitrage opportunities. In Chapter 3 we have included a comparison between our approach
and a work of Norberg and Møller (1993) which is based on the traditional actuarial valuation
principle, or "classical theory of risk", originating more than a century ago.
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6. The results
As mentioned above, the classical actuarial models are based on a detenninistic rate of return
and detenninistic amounts of benefits. The only remaining source of uncertainty is at what time
the benefits expire. In classical actuarial theory the single premium may be found in one of two
ways: Either as the expected present value of the future cashflows, or by solving a
detenninistic differential equation. The first approach even has its own name, the principle of
equivalence. This principlewas established by Jan de Witt in 1671 (see, e.g., Borch (1990».

The underlying idea is that an insurer's income and expenses should balance on average. The

differential equation was first discovered by the Danish actuary Thorvald N. Thiele in 1875 and
was derived by Hoem (1968) for the Markov-model we use.

It is striking that the two main methodologies of the modem arbitrage pricing theories are quite
similar. The essence of the arbitrage theories is that the market price of a fmancial asset may be
found either by solving a detenninistic partial differential equation or as an expectation of the
present value of the future cashflows, but where the expectation is calculated under a risk
adjusted probability measure. The famous option pricing formula was originally derived by
Black and Scholes (1973) by solving a partial differential equation. Another example is the

tenn structure model of Brennan and Schwartz (1979b). In the financial literature these
differential equations are often referred to as fundamental differential equations. The risk
adjusted probability measure is called an equivalent martingale measure. Again we refer to
Harrison and Kreps (1979), but this approach is currently a central topic of every advanced
textbook in finance, see, e.g., Duffie (1992).

In this dissertation we construct probability measures so that the market prices of the insurance
contracts may be found as expectations under this risk-adjusted measure. This principle is
referred to as the principle of equivalence under Q, where Q denotes the risk-adjusted
probability measure. In the case of no fmancial risk, the probability measure Q is identical to
the original probability measure, so that our pricing principle coincides with the traditional
principle of equivalence. Also in the case of no life insurance specific factors, our probability
measure is identical to the probability measure from the fmancial theory. The principle of
equivalence under Q differs from the traditional principle of equivalence, where the single
premium of a policy is found as an expectation under the original probability measure. In our
idealized model the insurance company's income and expenses will balance on average. This
corresponds to the same fairness-idea underlying the traditional principle of equivalence. By
using any other pricing principle, e.g., the traditional principle of equivalence, the insurance
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contracts will be systematically mis-priced, That is, the company will either go bankrupt, or
other companies can offer the same policy at a lower cost.

In Chapters 2 and 4 examples are given where the premiums calculated by our principle are
lower than if they were calculated by the traditional principle of equivalence. A possible
explanation for this is the following: An investor buying financial assets generally demands
higher returns than the riskfree rate of return, to be compensated for the fmancial risk. The
return in excess of the riskfree rate is called a financial risk premium. By buying financial
securities, the insurance company accepts fmancial risk, and consequently receives -on

average- a fmancial risk premium. Then the insurance customers may benefit from this by
lower prices on their insurance contracts. Inour models the investments in the fmancial market
do not expose the insurance company to fmancial risk. The purpose of the investments is to
hedge the payoffs connected to the insurance benefits. Hence the financial investment reduces
the company's exposure to fmancial risk. This explanation may be plausible for a mutual
insurance company, i.e., a company owned by the policy-holders. For a an insurance
company owned by shareholders, one would expect that the shareholders also want a part of
the financial risk premium.

We also derive partial differential equations which can be considered as generalizations ofboth
the classical Thiele equation and various fundamental differential equations known from the
arbitrage pricing theory. These equations are derived using 3 different methodologies. In
Chapter 3 we use arguments involving duplicating trading strategies. In Chapters 2 and 4 we

use the martingale property of the financial assets under the risk adjusted probability measure.
The approach in Chapter 5 involves a general stochastic differential equation for the premium
reserve under the risk adjusted probability measure. The complexity of both these equations

and the risk adjusted probability measure are connected to the complexity of the financial
model. In the case of random interest rate the partial differential equations also depend on the

choice of term structure model.

In the two following sections we present our results in some more detail.

7. The pricing principles
First we fix a time horizon T and a probability space <o,1",P). See Chapter 2 for a more detailed
description of ~e notation. Let At denote the random accumulated payment stream in the period
[O,t] of an insurance contract. The random variable Ar represents the sum of all payments in
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the insurance period. See equation (12) of Chapter 3 for the expression for this quantity in the
Markov-model. Let rl denote the interest rate prevailing at time t. In Chapter 2 and 3 the
interest rate is constant and will be referred to as r (without subscript). The money market
account is defined by

and can be interpreted as the value of an investment at time zero of one unit currency, accruing
interest according to the short interest rate. We assume that the following expression for the
random payment stream discounted by the money market account is well-defined,

Observe that Vo is a random variable and represents the random present value of all cashflows
related to a particular insurance contract We denote the market price of the insurance policy by
Ilo. From the principle of equivalence under Q it follows that

(1)

where E Q [ • ] denotes the expectation under Q and E[ .] the expectation under the original

probability measure P. Formally, ~ represents the Radon-Nikodym derivative of Q with
respect to P, and is a random variable on (n,~p). The probability measures P and Q are
equivalent provided peA) =O if and only if Q(A) =O for all A e ~. An equivalent probability
measure Q is an equivalent martingale measure if ~ has finite variance and the price processes
of the financial assets under Q, after a change of numeraire, are martingales. An equivalent
martingale measure imposes the following conditions on the Radon-Nikodym derivative,

i)~ ~]= 1, ti) ~ > O P-a.s. andiii) Va{ ~] < 00. (2)

Both the economic interpretation and the economic purpose of the Radon-Nikodym derivative
are important. It can be interpreted as the shadow price of risk per unit probability, is
sometimes referred to as the pricing kernel. In our model ~ represents the shadow price of
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transition risk and financial risk per unit probability. From the independence assumption,

Assumption 1, it follows (see Chapter 4) that ~ splits nicely into the product of two factors,
i.e.,

(3)

where ~1 represents the shadow price of transition risk per unit probability and ~2 represents
the shadow price of financial risk per unit probability. We have assumed that the insurers are
risk neutral with respect to transition risk (Assumption 2), implying that ~1 = 1, and

That is, under the assumptions of independence between the financial market and the state of
the policy and risk neutrality with respect to transition risk, the pricing kernel for fmancial risk
following from economic theory should be used to price life insurance contracts. In the
arbitrage pricing theories ~ is on the following form,

(4)

where Wt is a standard Brownian motion on (O, 1", P) and aCt) depends on the model used. In
Chapter 2 and 3 both W t and aCt) denote one-dimensional processes. For the models in
Chapter 4 and 5, Wt represents a d-dimensional vector of independent Brownian motions and
aCt) represents a d-dimensional vector of processes (in which case a(t)2 should be interpreted
as the dot product). We sometimes refer to the multi-dimensional Brownian motion as the d

sources of uncertainty.

The quantity ~ serves a similar role as the marginal utility of the representative agent in general
equilibrium models. If the arbitrage theory we apply is consistent with a more general

equilibrium model possessing a representative agent with a utility function, the agent's
normalized marginal utility at time zero for consumption at time T would be identical to
expression (4).

The following ~ble shows the expressions for a(t), together with the model of the risky
securities, denoted by dS, used in the different chapters.
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Table 1.Pricing principles.

Ch. a(t) dS

2 'Il-r dS = TlSdt+ esewo

3 'Il(S.t)-r dS = Tl(S,t)Sdt + a(t)SdWo(t)

4 [~:l -

Sa [~l dS = Tl(S,t)Sdt + a(S,t)SdW

( V: J dS = TlSdt+ e.saw' + a2SdW2Sb
~2 [Tl- rt - alVt

Se
1 (.,(11- rJ - (f,(Y-rJ) as' = TlSldt + a1SldWl + a2SldW2

S201 - S102 al (1- rJ - Sl(Tl- rJ ds2 = yS2dt + slS2dWl + s2S2dW2

In Chapter 2 the drift and volatility processes of ~, Tl and a, respectively, are constants.
Hence a(t) is a constant and the conditions in (2) are satisfied. For the other models
restrictions on the parameters of the price processes must be imposed to ensure that these

conditions hold.

InChapter 3, Tl(S,t) is allowed to be a function of S and t, and a(t) is a general function of t.

In the model of Chapter 4 there are no risky securities. Here a(t) is a vector of market prices of
risk related to each of the d sources of uncertainty. The theory does notprovide any insight in
the parametric form of these functions. In applications, a parametric form usually must be
assumed before any estimation of parameters can take place, except for the cases where the data
are rich enough to permit non-parametric estimation.
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In Chapter S the parametric fonn of the market prices of risk depends on the number of risky
assets. In the case of no risky assets, this model is the same as in Chapter 4, i.e., '14 = A!, for
i = l, ... ,d. In the case of d or more risky assets, a(t) will be determined in terms of the

parameters of the processes governing the risky assets. When there are between I and (d - l)
risky assets, the parametric form of some of the ~ 's may be chosen arbitrarily, the remaining
will depend on these in addition to the parameters of the risky assets. To illustrate, we have
included examples in the table, labeled Sb and Se, where there are two sources of uncertainty.

In Sb there is one risky asset and we are not able to determine 'I'~,but Vt can be determined in
terms of 'I'~and the parameters of the price process of the risky security. In Se we introduce
another risky asset and a(t) is now completely determined in terms of the parameters of the
risky assets.

We would like to emphasize that in our life insurance model, knowledge of æ(t) completely
determines the pricing of the life insurance policies under our set of assumptions.

8. Partial differential equations for the market value of the
insurance contracts

We also develop equations describing the evolution over time of the market value of the
insurance contract. They are on the fonn

(S)

The term K is not a constant, but consists of several partial derivatives with respect to various
state variables and/or risky assets. These equations can be considered both as generalizations
of various fundamental differential equations from the theories of financial economics and also
possibly as a generalization of Thiele's equation from the actuarial sciences. Excluding the tenn

K, equation (S) is identical to the traditional Thiele equation. This equation can be interpreted in
an intuitive and straight-forward manner (see below equation (26) of Chapter 3). The above

equation also deals with economic risk, and as a consequence the new collection of terms K

appears. The w terms depend on the financial model, and in the following table the K terms for
the models in the different chapters are listed.
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Table 2.Differential equationso/the market value o/the insurance contract.

Ch. 1C

2 an l er 2a2n
rSas- + 2" S as2

3 an l 2 2a2n
rSas- + 2"a(t) S ail

4 anT l { Ta2n]az(l1z-GzA) + 2" GzGi. az2

5a an T an T l { Ta2n :r a2n } l { Ta2n T a2n ]
--az(l1z-GzA) + TsSrt+2" O'zOZaz2+azGSasaz 2: asaSail+asazazas

5b am [ l:r] an T l :ra2n T T a2n l { Ta2n ]
ax rt - 2:aaaa + TsSrt + 2:aaaa ax2 + aaas asax + 2: asasail

Se an an T l 2a2n a2n l { a2n]
aBBt(T)rt + TsStrt + 2:aaa!Bt(T) aB2 + a!a!asaB Bt(T) + 2: asa!-agz

These terms cannot be interpreted in a straight forward manner, as is the case for the other
terms in equation (5). In Chapter 2 the full-fledged version of this equation is not developed,
but the 1C tenn labeled 2 can be considered as a special case of the model in Chapter 3 where the
volatility process of the risky security is constant, i.e., aCt) = a. The 1C terms for the equations
in Chapter 2 and 3 involve fast and second order partial derivatives with respect to the risky
security.

In the model in Chapter 4 the economy is described by a vector of state variables Z and no
risky assets. The 1C tenn of this model involves the first and second derivatives with respect to
Z and depends also on A, the vector of market prices of risk.

In the model of Chapter 5 risky assets are introduced. The modellabeled 5a) is also based on a
vector of state variables Z and involves the first and second order partial derivatives with
respect to the state variables. In addition, the first and second order partial derivatives with
respect to the risky assets, and two terms representing the covariation between the state

variables and the risky securities, are included. The models in 5b and 5c are based on the
Heath, Jarrow and Morton (1992) model of the tenn structure. Here we suggest using either
the market price of a bond, B, as a state variable, or minus the integral of the forward rates, X,
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as a state variable. In both cases the structure of the 1C terms are similar to the model in Sa,
containing terms involving the first and second order partial derivatives with respect to the state
variable and the risky assets, and a tenn representing the covariation between the state variables
and the risky assets. However, the two last expressions do not involve the market prices of
risk.

9. Concluding remarks
In this dissertation we attempt to model the life insurance business as a part of an economic
environment and investigate how pricing in the financial market affects the pricing of life
insurance products. The model of the financial market is highly idealized and somewhat ad
hoc, as it does not provide any explanation for the financial price processes, which are our
primitives. However, this financial theory currently seems to be the industry standard both
among academicians and practitioners working in the field of financial economics. This
dissertation provides insights into how these theories may be applied in the actuarial sciences.
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Chapter 2

PRICING OF UNIT-LINKED LIFE
INSURANCE POLICIESl

The key feature of unit-linked or equity linked life insurance policies is the uncertain value
of the future insurance benefil By issuing unit-linked insurances that guarantees the
policy-holder a minimum beneru, the insurance company is exposed to rmancial risk.

The value of the insurance benefit is assumed to be a function of a particular stochastic
process. We use the financial theory of arbitrage pricing and martingale theory to derive
single premiums for different policies. We derive risk-minimizing ttading strategies
describing how the issuing company can reduce rmancial risk. We derive a partial
differential equation for the market value of the premium reserve which we compare to
Thiele's equation of the actuarial sciences. Our equation contains some new terms
stemming from our economic model

The interpretation of the principle of equivalence may be revisited in this framework; the
principle still holds but under a new risk adjusted probability measure, equivalent to - but
different from - the originally given probability measure.

Key words: Unit-linked Insurance, Equity-linked Insurance, Arbitrage Pricing Theory,
Thiele's Differential Equation, Principle of Equivalence.

1. Introduction

1.1 Focus
A life insurance contract or policy is an agreement between a customer and an insurance
company which specifies an event that must occur for the policy-holder to get a benefit from
the insurance company, a specified time-period, the insurance period, in which the contract is
valid and a premium-plan which specifies how the customer shall pay for the benefit

A unit-linked or equity-linked insurance (called variable life insurance in the United States) is a
certain kind of.life insurance where the amount of insurance benefit is linked to the market value
of some specitJed reference portfolio. This portfolio may consist of stocks, bonds and/or other

l This article is accepted for publication in the Scandinavian Actuarial Journal. Voll, 1994, with Knut Aase as
co-author.
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financial assets. The typical example seems to be shares in a mutual fund As opposed to
traditional insurance the benefit is random. To reflect this fact we model the amount of benefit
by a stochastic process. The principle of equivalence, which is the basis of pricing traditional
life insurance products, does not include random benefits. We therefore use fmancial theory to
value the benefit and then take mortality into account - assuming that the fmancial market is
independent of the insured's health condition. We call the resulting pricing principle the
principle o/ equivalence under Q. Like the traditional approach, it is also implicit in this
procedure that the insurer is risk neutral with respect to mortality. It does not assume that the
insurer is risk neutral with respect to financial risk.

Another feature of unit-linked insurance is that the components, i.e., benefits, premiums etc.,
may be measured in units of the reference portfolio. Furthermore, the insurance company is

supposed to have several portfolios available so that the unit-linked customer can choose a
(financial) risk-level of his insurance by choosing an appropriate portfolio. These factors will
only to a limited extent be taken into consideration.

We restrict attention to endowment and term insurances, which are the building blocks for most
of the interesting policies written on one life. The model is extended to more general life
insurance contracts in Persson (1994b).

1.2 Existing literature
The first treatments of unit-linked contracts with guarantees by modem financial techniques that
we are aware of, seem to have been conducted by Brennan and Schwartz (1976, 1979a, 1979b)
and Boyle and Schwartz (1977). While this problem had been discussed in the actuarial
literature for several years, no satisfactory theory had been developed (see, e.g., Corby, 1977).
This last reference also demonstrates that the actuaries were reluctant to accept these results.

Boyle, Brennan and Schwartz recognized that the payoff from a unit-linked insurance at

expiration is identical to the payoff from a European call option plus a certain amount (the
guaranteed amount) or to the payoff from a European put option plus the value of the reference
fund Options are specialized financial instruments and will be described in Section 3. Finally,
the option theory initiated by the results of Black and Scholes (1973) was utilized to value the
unit-linked contract.
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Delbaen(I990) and Bacinello and Ortu (1993) also analyzed unit-linked products by using the
martingale-based theory credited to Harrison and Kreps (1979).

In practice most life insurance contracts are paid by periodic premiums. In the traditionallife
insurance policies this fact does not influence the amount of benefit. H a person arranges to

pay, say, a tenn insurance with periodic premiums and dies the day after he signs the contract,
his heirs will receive the full benefit. This is generally not the case for unit-linked contracts.
The amount of tbe benefit will in general depend on, firstly, the time since issue and, secondly,
the random value of the reference portfolio. This contract therefore involves two new
properties compared to traditionallife insurance contracts.

Fix a time horizon T. Let N(t) and Set) be the prescribed number of shares of the reference

portfolio included in the benefit and the market value of one share, respectively, at time t, OSt
S T. Boyle, Brennan, Delbaen and Schwartz considered a certain contract where N(t) is
random and depends on the path of Set). To obtain the market price of the policy Brennan,
Boyle and Schwartz numerically evaluated a complex differential equation and Delbaen used
Monte Carlo simulation.

In contrast, we assume' that N(t) is non-random. In the single premium case our results
coincide with the earlier results. However, by our assumption we are able to get analytical
results in the case of periodic premiums and to treat contracts not previously addressed in the
literature, which also may be of interest from an applied point of view.

The basic assumptions are essentially the same in our model as in the model used by Black and
Scholes, but like Delbaen, Bacinello and Ortu, we use the theory that originated from the
papers by Harrison and Kreps (1979) and Harrison and Pliska (1981) to value unit-linked
insurance contracts. The present stage ofthis theory (see, e.g., Duffie, 1991) is rather general

and can in principle be used for valuing any contingent claim. When comparing option pricing

results with unit-linked results one has to take into account that options and life insurance
contracts are different products with different characteristics.For example while options
usually expire within one year, life insurance contracts have typically long contract periods
(more than 40 years are not unusual). Except solely for the purpose of comparisons. we are
therefore reluctant to state the prices of unit-linked products in terms of options prices which is

commonly seen in the literature.
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The earlier papers presented results for an endowment insurance which consisted of a pure
endowment insurance and a term insurance-both with guarantee. In contrast, we consider an
endowment insurance to be a combination of a pure endowment insurance and a term insurance
and concentrate our effort on valuing those building-blocks separately. It is then a simple task
to combine the building-blocks into various kinds of endowment insurances. Note that by our
approach we have a traditional, a pure unit-linked and a guaranteed unit-linked version of both
of the building-blocks. This means that we can make a total of 9 different endowment
insurances by combining them in different ways (of which one is the traditional endowment
insurance). Not all of these contracts may be offered by the insurance companies. Also
Bacinello and Ortu (1993) apply the martingale based valuation approach to other types of
contracts.

Also contrary to Brennan, Boyle, Delbaen and Schwartz, we use time-continuous death
probabilities which is common in the actuarial literature. This leads to results that can be
directly compared to the corresponding actuarial, as well as the pure fmancial, counterparts. As
a consequence, we find a connection between the celebrated Black and Scholes partial
differential equation (Black and Scholes, 1973) encountered in fmancial economics and the
familiar Thiele differential equation from the theory of life insurance, the latter dating back to
1875. The principle of equivalence in life insurance still holds formally, but now under a risk
adjusted probability measure, which means that the real interpretation of this principle is
changed in our approach.

1.3 Pure contracts and guaranteed contracts
The intention of this paragraph is threefold. FIrst to distinguish two classes of unit-linked

contracts, then to provide examples of unit-linked contracts and finally to illustrate the
equivalence principle under Q.

A unit-linked insurance can be equipped with a guarantee that assures the policy-holder a
minimum amount even though the value of the reference portfolio at expiration is below this
level. We denote such a contract a unit-linked contract with guarantee and a contract without a
guarantee a pure unit-linked contract. The latter contract transfers all fmancial risk to the
customer, so for the issuer there is even less financial risk connected to this contract than to the
traditional products.

We will now demonstrate how the methodology suggested in this article may be applied to find
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the single premium of pure unit-linked contracts. This example also introduces notation and
assumptions that will be maintained throughout the paper.

First we abstract from the insurance aspects of the policy and look at the valuation of different
financial assets. These financial assets will be used to model insurance benefits when the
insurance aspect is incorporated. Let C(t) and 7to(t) represent the payoff of the financial asset
payable at time t and the market value at time zero of C(t), respectively.

The payoff of the first asset is C(t) = 1, i.e., one unit of currency paid at the fixed time t. The
present value of C(t) is

(1)

where a represents the constant riskless rate of return.

Now let C(t) = S(t), i.e., one unit of the reference portfolio is paid at the fixed time t. In any
reasonable economic model the market value of the benefit at time zero must be the market value
of one unit of the fund at time zero, otherwise either the buyer or the seller would benefit from
not taking part in the deal. Hence

7to(t)= S(Q). (2)

Observe that 7to(t)is independent of t,

The asset described above is used to model the benefit of the pure unit-linked contracts. Even

though the time of expiration is uncertain for an insurance, we would like to emphasize that the
benefit basically is a financial asset that the customer equally well could have bought directly in
the financial market This observation implies that the insurance company can no longer
calculate this present value by using certain tables or discounting techniques, but has to watch
the financial markets to calculate correct prices of insurance contracts. We therefore denote the
value of the benefit the market value instead of the usual present value.

We now turn to insurance aspects again and commence with the pure unit-linked contracts. Let

U !:TI denote the single premium, or market value, of a contract which gives the policy-holder
(or his heirs), who is x years old when he buys the insurance, right to receive 1 unit of the
reference portfolio upon death within T years. This contract is the pure unit-linked version of
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the traditional tenn insurance. Let the random variable Tx denote the remaining life time of an
x-year old person. We assume that the probability density function for Tx exists and denote it
fx. The single premium for this policy is calculated as

U~m={fllo(t)d(l(T ."'Il}
where 7to(t) is given by (2) for this contract and 1fTILSt} denotes the indicator function which
takes the value 1 if {Tx ~ t} and Ootherwise. In the case of a traditionallife insurance contract
7to(t) is given by relation (1) and the above expression is simply the traditional equivalence
principle.

(3)

We get from relation (2) and since S(O)is observable at time zero that

UI.-TI = IT S(O)fx(t)dt.
x. o

Let tPx = P(T x> t) denote the survival probability for an x-year old policy buyer. The force of
mortality is dermed by J1x+t= flL(t). Then it follows that fx(t) = tPxJ1x+ t and that

tPlL

aat tPx= - J.1x+ t tPx·

Then we can write

which can be simplified to

(4)

Let TUx denote the single premium for a contract which gives the policy-holder, who is x
years old when he buys the insurance, right to receive 1 unit of the reference portfolio if he is
alive after T years. This is the pure unit-linked version of the traditional pure endowment
insurance. A similar approach on this contract gives
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(5)

Note that no assumptions regarding the stochastic process governing the evolution of S(t) are
necessary to obtain (4) and (5).

We have demonstrated how to find the market value of the pure unit-linked contracts, but
problems arise when the contracts include guarantees. Buying shares are risky investments in
that the investor may lose money, as well as make profits. In order to protect buyers of unit-
linked life insurances from the general downside risks of the stock markets, a guarantee may be
issued. This guarantee can be arranged in many different ways and in most countries it is
required and regulated by law. Denoting the guarantee at time t by O(t), one example of a
possible guarantee is O(t) æ O, for all 1, so that this guarantee is constant through time.
Another example is

O(t) = f);(S)dS,

where p(t) is the premium rate at time t. By this guarantee the customer is sure to get the
nominal value of his money back. The same guarantee may be imposed with an interest rate, r,
0< r < l,

O(t) = f:p(s)er(t- s)ds.

The customer is in this case guaranteed r·100% return on his insurance. In this paper we will
work with a general, non-random guarantee. A guarantee that is functionally dependent on the
premium rate is called an endogenous guarantee by Bacinello and Ortu (1993).

We now consider a financial asset with payoff C(S,t), typically on the fonn C(S,t) = S(t) v
O(t), where v is fonning the maximum. This fmancial asset will be used to model the life
insurance benefit in the case of guaranteed unit-linked contracts. Below we sketch the idea for
this more complex case which is the topic of the remainder of the paper.

Now we assume that the value of the fund evolves according to a given stochastic process and a
financial asset with payoff C(S,t) = S(t) v O(t) for some detenninistic function O(t). The
essence of an important result from fmancial economics can in this setting be formulated as
follows:
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(6)

where EQ[ ] denotes the expectation under an equivalent probability measure. At this point we
can consider EQ[ ] as a market consistent pricing principle. We return to its description in
Section 2.

To value a contract similar to the one described by equation (3) with benefit C(S,t) described
above, we still use the right hand side of relation (3), but where 7to(t) is given by (6). This
ought to explain what we mean by the tenn the principle of equivalence under Q, a topic we
return to in Section 3.

In Section 4 we derive an equation for the market value of the premium reserve. This equation
we compare with both the Thiele equation of the actuarial science and the Black and Scholes
equation from the theory of financial economics, and we find that our equation is a
generalization of both. We also discuss the concepts of economic risk premiums, mortality risk
premiums and savings premiums. In Section 5 we list certain risk minimizing or replicating

trading strategies which may be used by the issuing company to reduce the financial risk
associated with issuing unit-linked products. Some concluding remarks are included in Section
6.
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2. The economic model

1.1 Further references
In this section we reproduce some important results from the arbitrage pricing theory of
financial economics. This presentation must necessarily be brief and we can only refer to the
seminal works mentioned in the introduction or to textbooks in finance such as Dothan (1990),
Duffie (1988, 1992) and Huang (1991). InAase (1988) this theory is extended to include price
processes including possible jumps for the underlying security. Cox and Huang (1989) give a
comprehensive introduction and, as mentioned, Duffie (1991) presents an overview of the
current status of this theory. All relations involving random variables are understood to hold
almost surely, though the short hand notation a.s. is sometimes added for emphasis.

1.1 The model of uncertainty
We consider a finite time horizon [O,T] and a given probability space (0,1; P). The set O
consists of all the possible states of the world. Here :Fis a a-algebra of subsets of O and P is a
probability measure. Events are revealed over time according to a filtration, F = {:FlI t
E [O,T]}, a collection of increasing a-algebras, i.e., :Fsc :FlC :F for t ~ s. In addition we
assume that :Fo contains all the sets of probability zero and that the filtration is right continuous.
A filtration satisfying these conditions is said to satisfy the usual conditions. We also take :F=
:FT and :Fo to be almost trivial. This can roughly be interpreted as follows: At time zero no
information is ;available, at time t the agents can determine whether the events in :Fl have
occurred or not, and at time T all uncertainty is resolved.

To model the market value of the reference portfolio we use a standard Brownian motion W(t)
on (0,1; P) which includes that the increment {W(t) - W(s)} is normally distributed and
independent of :Fs' with mean O and variance (t-s), and W(O) = O. Let lil be the a-algebra
generated by the Brownian motion and the sets of probability zero from time O to time t.

A random time U is a stopping time with respect to a filtration F if the event {U St} belongs to

1t for all t E [O,T].

We recall that T x represents an x-year old person's remaining life time. This random variable
generates a a-algebra'4 = a({Tx > sl, OSs St). We observe that Tx is a stopping time with
respect to the filtration {'4. t e [O,T] }.
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We assume that the a-algebras (jt and !Jfr.are independent which basically says that the value of
the reference portfolio is independent of the insured's health condition. We also assume that 7't
= (jt v 94 where (jt v '4. is the a-algebra generated by the union of (jt and!Jfr.. This can be
interpreted as the total information available in the economy at time t is the information one can
get by recording the value of the reference portfolio and the state of the insured from time Oto
time t. We observe that Tx is then a stopping time with respect to the filtration F.

A stochastic process X: n x [O,T] is called measurable if it is product measurable with respect

to the smallest a-algebra on nx [O,T] containing all sets of the fonn A x B, where A E 7' and
B is a set in the Borel a-algebra on [O,Tj. A stochastic process X is adapted to the filtration F

ifXt is measurable with respect to !fr. for all t E [0,'11.

The security market model consists of two securities. Let B(t) denote the value of a riskless
bond and S(t) the value of the reference portfolio at time t E [O,T]. These securities are traded
in a frictionless market (no taxes, no transaction costs, short-sales allowed). We choose the
following price system where the bond price at time t equals

B(t) = e8t• (1)

As before, amay be interpreted as the constant riskless rate of return. The price process for the
reference portfolio (the mutual fund) is

(8)

The constants 'Il and (J may be interpreted as the instantaneous expected rate of return of the
fund and the instantaneous standard deviation of the rate of return of the fund, respectively.
Also S(O) is assumed to be a constant, interpretable as the price of one unit of the reference

portfolio at time zero. These interpretations may become clearer if we write (8) as (heuristic

notation)

~~i= 'Ildt + adW(t). given an initial value S(O).

It follows by ItO's lemma that (8) is the solution of this stochastic differential equation. Neither
of the securities pay dividends during (O.T). Here we observe that B(t). which is not
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stochastic, and Set), which is uniquely determined by Wet), are adapted processes.

We denote the insurance benefit payable at time Uby C(U), where U is a stopping time. In the
life insurance context U can be interpreted as the time of expiration of the benefit which is T for
a pure endowment insurance and Tx' if Tx S T, for a term insurance. For simplicity we only
present results for the case where the benefit is payable at the fixed time T (the pure endowment
case).

Let C(T) be a random variable with finite variance, representing the benefit payable at time T.
In this paper C(T) will be a measurable function of S(T) and since S = (S(t), te [O,T]} is
adapted, its value can be determined based on ~

The discounted price system, denoted by the *-symbol, is simply (7) and (8) divided by B(t),
or

and

*() - B(t) - IB t - B(t) =
Set) (",-3-j0'2)t+O'W(t)

S*(t) = B(t) = S(O)e .

2.3 Results from the theory of financial economics
An outline of the arbitrage pricing theory now follows.

First we define

): (1 ('" - 3)2 '"- 3 )"t = exp - '2 -0'- t - C1Wet) ,

for t E [O,Tl. It is easy to verify that E[~t]= I and Var[~t]= exp( ('" ; 3f t) - I < 00 and that
~t is a strictly positive random variable (almost surely) for t E [O,Tl. We then define a

probability measure by Q(A) = ~ IA~] for A E 1'. where ~ = ~T and lA denotes the
indicator function that takes the value I if the event A occurs and Ootherwise. Q thus defined is
equivalent to P, meaning that peA) =O <=> Q(A) =Ofor any A E ~ From Girsanov's theorem
it follows that

W(t)=W(t)+ "';3t
is a standard Brownian motion under Q which is also adapted to F.
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It follows that the discounted price process under Q is

1 2.. •

S*(t) = S(O)e - '2a.+aW (t) • (9)

Here we notice that EOfs*(u) I1"J = S*(t) for O ~ t ~ u ~ T, so S* = (S*(t), te [O,T]} is a
martingale with respect to Funder Q. The probability measure Q thus satisfies: (1) P and Q are
equivalent, (2) S* is a martingale under Q and (3) var(:::) < 00 and we say that S* admits an
equivalent martingale measure. A proof of uniqueness of Q may for example be found in
Huang (1991).

Now we turn to the trading strategies and the definition of arbitrage. A trading strategy is an
adapted measurable process or a dynamic investment rule describing how many shares of the
fund and bonds to hold at each point in time.

Let H be the set of admissible trading strategies in this model and let aCt) and l3(t) denote the
numbers of shares in the fund and bonds held at time t, respectively. As a matter of notation
we sometimes refer to the pair (a(t), l3(t), te 'tI as (a,I3), where the time period 't should be
clear from the context

A self-financing trading strategy is dermed as a trading strategy which does not generate capital
gains or require inflow of capital during the investment period and satisfies for t ~ T:

iT iTa(T)S(T) + I3(T)B(T) = a(t)S(t) + 13(t)B(t)+ t a(s)dS(s)+ t l3(s)dB(s) =

a(t)S(t) + 13(t)B(t)+ iT[a(s)'lls(S) + l3(s)SB(s)]ds+ iT a(s)aS(s)dW(s) a.s.

The integrals involving dS and dW are well-defined only as stochastic integrals. The similar
expression for the discounted price system under the equivalent martingale measure Q is

a(T)S*(T) + 13(T)= a(t)S*(t) + 13(t)+ iT a(s)aS*(s)d\\T(s) a.s. (lO)

To avoid technical difficulties let H consist of the self-financing trading strategies such that
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This restriction limits the size and the speed of the trades that may take place and ensures that
the stochastic integral in (lO) is a martingale with respect to F.

An arbitrage opportunity is a trading strategy that, loosely speaking, generates something out of
nothingor

a(l')S(T} + P(T}B(T} ~ O and a(t)S(t) + P(t)B(t) < O or

a(T)S(T) + P(T}B(T} > Oand a(t)S(t) + P(t)B(t) sO, for t sT.

In this setting, a complete economy means that any C(U) with finite variance can be obtained as
the terminal value a(T)S(T) + P(T)B(I') of some (a,p) E H, meaning that C(T} = a(T)S(T) +
P(T)B(T} a.s.

Lemma l
H S* admits an equivalent martingale measure, then there is no arbitrage.

Proof:
See, e.g., Duffie (1992), Chapter 6, paragraph F. Cl

Lemma2
The economy given by (O,'; P), F, S = (S(t), t E [O,T]}, B = (B(t), t E [O,T]} and H is

complete.

Proof:
The proof is based on the martingale representation theorem, see, e.g., Duffie (1992), Chapter
6, paragraph I or Cox and Huang (1989), Theorem 4. Cl

Lemma3
In the economy given by (O,'; P), F, S, B and H the unique market price of C(T} at time tis
given by 7tt(l') = a(t)S(t) + P(t)B(t), for some (a,p) E H.

Proof:
From Lemma 2 there exists some (a,p) E H which duplicates C(I'). From Lemma 1 there is
no arbitrage opportunities in this economy, so by investing a(t)S(t) + P(t)B(t) at time t and
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employing the strategy (a,p) from t to T, C(T) will be obtained at no extra cost. If (d,Ø) is
another strategy which duplicates C(T) and [a(t)S(t) + P(t)B(t)] :#- [d(t)S(t) + ø(t)B(t)], then
there is an arbitrage opportunity, so uniqueness follows. Cl

Lemma4
In the economy given by (O,'; P), F, S, B and H, the market price at time t for a benefit
payable at time T is given by

(11)

Proof:
Let C*(T) = C(T)e - 8I' and ~ (T) = 7tt(T)e - at. Consider the following equalities:

EQ[C*(T) I1"J= EQ[a.(T)S*(T) + P(T) I1"J= a(t)S*(t) + p(t) = 7t;(T) a.s.

The first equality follows from Lemma 2. The second equality follows from (10) by observing
that the stochastic integral is a Q-martingale. The third equality follows from Lemma 3.
Relation (11) now follows immediately. Cl

Observe that ~ (T), as a function of t, is a martingale under Q with respect to F.

The philosophy behind the traditional principle of equivalence is that the insurer's expenses and
income will average in the long run. The results from the previous paragraph imply that if the
insurer values the benefit different from the principle given in (11), he may systematically either
make a positive profit or lose money. However, by using (11) he will, by using the
corresponding trading strategies, neither lose nor win money. Observe that this principle forces
the insurer to trade actively in the market. The principle given by (11) states that the market
value of the benefit must equal its price. So, also the market values of premiums must be equal
to the market value of the benefits under our principle.

Intuitively, in this model we use finance theory to value the benefit and incorporate the resulting

market values into the standard actuarial models. There are two independent sources of
uncertainty, one relatedto the financial market, the otherrelated to mortality. Formally we may
model each source on its own probability space so that we can consider (0,1", P) as a product
space. From the discussion above we can consider ;T as a pricing rule for financial risk. By
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risk neutrality with respect to mortality it follows that the corresponding pricing rule for
mortality risk is identical to 1. From the assumed independence between financial risk and
mortality risk it follows that the pricing rule on the product space is l~T = ~T. Then the pricing
principle presented below follows formally from Fubini's theorem. This idea is explained in
Persson (1994c).

By considering the market value at time zero of a pure endowment policy and a tenn insurance,
it follows from this principle that

and

respectively, for the unit-linked pure endowment policy and the unit-linked term insurance.. In
the next section we treat these contracts with one particular example of a benefit.
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3. Single premiums of unit-linked contracts

3.1 Arbitrage pricing
The insurance company is exposed to fmancial risk by issuing unit-linked insurance contracts
involving guarantees. This implies that, even though the probability distributions for the value
of the reference portfolio and of the time of death are both supposed to be known, it is not
correct to compute premiums based on risk neutrality with regard to the financial assets.

Given the price system in (7) and (8), and transforming this system to a discounted price
system, and correspondingly transforming the probability measure, the discounted price system
becomes a martingale under the new probability measure. This measure is often called a risk-
adjusted probability measure. The Radon-Nikodym derivative ~T can be interpreted as an
infinite dimensional vector of weights so that after multiplying a cashflow C by this weight e.o
by ro, the expectation of the product, i.e., E[C~T] = EQ[C], represents the market price. As a
consequence we can still calculate single premiums as expectations, but where we use this new
probability measure Q in the computations instead of the originally given P, on which everyone
is assumed to agree, and which represents the agents' beliefs regarding the occurrence of the
future uncertain events. Thus Q has no meaning as a probability measure representing the
beliefs of the agents. Instead we can say that Q really represents state prices and also happen to
satisfy the formal requirements of a probability measure. The formal similarity between this
approach using Q, and the principle of equivalence is, however, striking and somewhat elegant.

3.2 Single premium for a guaranteed unit-linked pure endowment insurance
Recall the defmitions of C(t), N(t) and G(t), te [O,T] from the previous sections. A person at
age x buys a policy specifying that the benefit Cm = (N(T)S(T)vG(T» is to be paid at time T
if he is alive then. Let ~x denote the single premium. Then we can formulate the following:

Theorem}.
Assume risk-neutrality with respect to mortality, let the fmancial model be given as in

paragraph 2.2. and maintain our other idealized market assumptions. Then the net market

premium ~x of the insurance contract described above is given by

~x =TPx[Gme - 8I'cI>[-d~m] + S(O)Nmcl>[dY(T)]], (12)
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ly 1 2

where ~(y) = __ V ~" e -"2
u

du is the standard normal distribution function and for s ~ t

l{ NCI)S(l}] +(3+ .!.(2)(5 - t)
t G(.} 2
dl(s)= .rz=:

0v 5- t
(13)

and
(14)

Proof.
From (11) it immediately follows that this market value at time zero of the benefit is given
by E1:C*(T)]. Let us simplify the notation by writing Z instead of S*(T). Now, combining
insurance and finance using the policy specification and the independence between the value of
the stock and the policy-holder's remaining life time as well as risk-neutrality with respect to
mortality, we get that ,.ox = TPxEQ[(N(T)ZvG*(T»].

1 l' A

From (9) we have that Z = S(O)e -"20 +CSW(T) where \\T(T) is nonnally distributed with mean

O and variance Tunder Q. By taking the expected value as indicated above, we obtain the
expression

loo - .!.o".+ ow
,.ox = TPx __ [N(T)S(O)e 2 vG*(T)]f(w)dw,

1 2

where f(w) = V ~ e -7fw is the normal density function corresponding to mean O and

variance T. We find that when w > ~[ln(N~O»)+ talT] = w, N(T)Z > G*(T). We can
thereby split the expression into two integrals

{ liT r 1'_ )--0-' + øw,.ox = TP G*(T) __ f(w)dw +N(T)S(O) W e 2 f(w)dw .

1 ,_ 1 2--0-' +ow l --(w-oT)
It follows that e 2 f(w) = V 2nT e zr which is the normal probability density
function for a random variable with mean aT and variance T. The rest is a matter of routine

calculations. We substitute to the standard normal density function using u = ir in the first
integral and v =_wif in the second integral. The integration limit in the first integral then
becomes li= ;.r and in the second integral v = w;;r. By using the defmition of the

33



cumulative normal distribution function of the standard normal variable, denoted by ~(.),
G*(T} = G(T)e - 8I' and standard properties of the normal density, we obtain (12). Cl

Readers familiar with the theory of options will immediately recognize the similarities between
the payoff at expiration of this unit-linked contract and an option. A European call option
entitles the owner the amount [S(T} - G(T}] v Oat expiration, while the owner of a European
put option is entitled to the amount [G(T} - S(T}] v Oat time T. The insurance contract of
Theorem 1 entitles the owner, if he is alive, the amount G(T} + [N(T}S(T} - G(T}] v O =
N(T}S(T} + [G(T} - N(T)S(T}] v Oat time T.

The single premium could alternatively be expressed as

,.ox =TPx[G(T}e - 8I'(1- ~[d~(T)]) + N(T}S(O)~[dY(T)]].

The Black and Scholes European call option formula values the claim [S(T} - G(T}] v O at time
zero. The two last terms with N(T} æ 1 in the square bracket are identical to this formula, The
first tenn is simply the net present value of G(T) which must be included and has the given
fonn since G(T} is assumed non-random. The benefit will only be paid if the policyholder is
alive at time T, the whole expression is therefore multiplied with the survival probability TPx'
where we have used the independence assumption regarding S and Tx.

The formula (12) may also be written as

where the last two terms with N(T) = 1 inside the brackets are identical to the European put
option formula and the first tenn is the market value at time zero ofN(T}S(T}.

3.3 Single premium for a unit-linked term insurance with guarantee
A person at age x buys a policy specifying that the benefit C(t) = (N(t)S(t)vG(t» is payable

upon death at time t before T. Let ~:1i denote the single premium. We then have

Theorem2.
Consider the above contract with payoff C(t) if death occurs before time T, zero otherwise.
Then the market value, or the single premium, of this contract is given by the expression
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T
O~:"=L [G(t)e - &tI>[-dg(t»)+N(t)S(O)tI>[d~(t»))tPx~x+Pt. (15)

Proof.
The main difference from the policy of Theorem 1 is that the point of expiration for the tenn
insurances is random. However, this time point is distributed according to the probability

distribution fx(t) = tPx~+t for t ~ T, since for tenn policies the time of expiration coincides with
the time of death if death occurs before T.

We have that G!:TI = EQ[C*(i')). In this expression t = {Txl\Tl, where 1\ is fonning the
minimum. Since nothing is paid when Tx > T, we get by conditioning on Tx that G!:TI =
J~(t)ZvG*(t»)fx(t)dt, where Z = S*(t). We now proceed as in the proof of Theorem 1 to
complete the integrand above, and this yields the desired result a

As illustrated in the following example, Theorems 1 and 2 provide the building-blocks from
which the market values of many interesting unit-linked contracts can be found.

Example: Endowment insurance
Let TEx= TPxe- 8I'K be the single premium of a traditional pure endowment insurance, where

K is a constant, and A!:"f I = K[1 - Oax:T I - TPxe- 8I') be the single premium of a traditional
tenn insurance, where ax:TI = J'6 tPxe - 8\lt. By combining traditional, pure unit-linked and
guaranteed unit-linked pure endowment and tenn insurances, we get the following single
premiums for the possible endowment insurances:

of which the fæst is the traditional endowment insurance.

3.4 Economic risk premiums
Abstracting from administrative expenses, a general insurance premium is often modeled as
(see, e.g., Borch, 1990)

KO = E[e] +RP. (16)
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where KOis the single premium of a given policy, E[C] is the expected payoff of the benefit and
RP is an economic risk premium. The nature of the economic risk premium varies from one
type of insurance to another and may be interpreted as the insurer's compensation for bearing
risk.

Life insurance contracts usually have longer insurance periods than non-life insurance contracts
which often are renewed yearly. Therefore it is important to take the time perspective into
account in the expectation term in (16). We denote the expected present value E[PV(C)] so that

KO= E[PV(C)]+ RP (17)

for life insurance. For traditionallife insurance, the economic risk premium term RP is equal
to zero and (17) is thus simply a restatement of the traditional principle of equivalence.

Inunit-linked insurance the value of the benefit is supposed to behave according to the value of
the reference portfolio. The benefit may be considered as an asset which the customer equally
well could have bought in the fmancial market An investor buying financial assets is also
generally demanding a risk premium to carry financial risk. We denote by Kg(t) the market
price at time zero of the benefit C(t) = [S(t)vG(t)] payable at time t, as a function of the interest
rate S, From the results in paragraphs 3.2 and 3.3 it follows that

Kg(t) = G(t)e - ~'<l>[-d~(t)]+ N(t)S(O)<l>[d\(t)]

The expected payoff discounted by the risk-free rate ~ for this benefit equals e(TJ- ~)1tH(t).

Consider the pure endowment unit-linked contract From (17) we get that RP = TG x -

E[PV(C)].

By inserting the expressions for the single premium (12) and E[PV(C)] (where the expectation

also includes mortality) , we obtain

(18)

It is easily shown that !KMt)>O, so it follows that RP <O if and only if 11- ~ >O. Since the
portfolio is risky, normally we would have the situation that 11- ~ >O.
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Also note that the risk premium of a European call option calculated this way is RP =
e(1\- ~)TnB(T) - 1tg(T). For the unit-linked tenn insurance we get from (17) that RP = G!:fl -
E[PV(C)]. By inserting the expressions for the single premium (15) and E[PV(C)], we get

(19)

Also for this policy the economic risk premium is negative if Tl > li.

By issuing pure unit-linked contracts the issuing company acts merelyas a broker between the
customer and the financial market. The products with a guarantee naturally involves risk
bearing for the company. The customers are generally risk averse and will accept to pay a
positive risk premium for the insurance product, whereas they expect a positive profit on the
pure fmancial investments. Comparing the unit-linked products to the traditional ones, we see
that the customer can expect a higher payoff for unit-linked products when Tl > li. But naturally
unit-linked products are more risky than traditionallife insurance. This also means that the
companies can not treat these products the way they treat ordinary insurance risks. The
reinsurance market may be employed to relieve the company of some of the risk, but the
aggregate risk remains in this market. On the other hand, we will demonstrate section 5 how
the insurance company may completely diversify the fmancial risk by reversing the risk
minimizing trading strategies in the fmancial market. Thus the insurance companies must
actively "play the financial market" in this line of insurance in order to avoid losing money in
the long run.

In practice companies use a loading on mortality, which gives them the right safety margins on

the death elements of these contracts. This loading may be detennined by the market (see, e.g.,

Aase, 1992). We also note that if the single premium of a unit-linked contract, incorrectly, was
calculated by the traditional principle of equivalence, the single premium would have been too

large.

Example. The benefits o/the pure unit-linked contracts.
Assume that the price models (7) and (8) hold. The expected net present value of the benefit
S(t) then becomes E[e - ~tS(t)] =E[S(O)eXp( (Tl - li - ~(2)t +GW(t)] = S(O)e(1\- ~)t. From

the introduction we have that 1to(t) = S(O), so the risk premiums RP = TPxS(0)[1 - e(1\- ~)t] and
RP =T<1- Px)S(O)[1 - e(1\- &)t] for the pure endowment unit-linked policy and the pure unit-

linked tenn insurance, respectively. Both are seen to be less than zero if Tl > li.

37



4. A generalization of Thiele's differential equation

4.1 Periodic premiums
We now consider the situation where the premiums are paid continuously over the term of the
contract In the first paragraphs the periodic premiums are represented by a non-random rate
p(t). Therefore the principle of equivalence under Q is the same as the traditional principle, so
that pet) is determined from the equation

,.ox =LT
p(t)e-3ltPxdt

for the guaranteed unit-linked pure endowment contract and from

for the guaranteed unit-linked term insurance contract

4.2 Prospective premium reserves
The prospective reserve is dermed in traditionallife insurance theory as the conditional expected
present value of future benefits less premiums on the policy, given its present state. For the
unit-linked contracts, we are interested in the market value of the of future benefits less the
market values of the future premiums on the policy given the current state of the policy. These
are found using the methodology outlined above. For the guaranteed unit-linked pure
endowment contract we get

(20)

and for the guaranteed unit-linked insurance

(21)

where 7tl(s) = G(s)e - ~s-t)~[-d~(s)] + N(s)S(t)~[dHs)].

It is worth noticing that these reserves depend on Set), the market value of the reference
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portfolio at time t and are valid given that the policy-holder is alive at time l

4.3 Derivation of an equation describing the evolution of the market value
We now present the differential equations describing the evolution of the market value of the
premium reserve through time. The corresponding equations for the traditionallife products are
called Thiele's differential equations in the actuarial sciences.

Theorem3.
The market value of the premium reserve for the guaranteed unit-linked pure endowment
contract paid with periodic premium rate pet) satisfies the following partial differential equation:

av _ 1 _2 2 a 2V avTt = pet) + (J.I.x + t+ a)V(t) _ lo-S(t) as 2 _ aSet) as • (22)

Proof. Recall the definition of x;'(T) from Section 2. From (20) it follows that

~
Vet) =T_tPx+tX;(T)·e8t_ i p(u)e-8(u-l) u-tPx+tdt.

We first solve this equation for x;'(T), and get

e-lk
where V(t) =_...;..--

T-d'II+l

We now want to express the dynamics of x;(T) by using the partial derivatives of V. By
noting that ;t u - tPx + t = Jlx + t u - tPx + t and ;t 'lf{t)= _ (J.lx + t+ a)V(t) and also by considering
x; (T) as a function of S and t, we get the partial derivatives

and

The undiscounted price process for Sunder Q is dS(t) = aS(t)lt + aS(t)d\\'(t), so by Ita's
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lemma we get for s ~ t

(23)

By the fact that 7t;(1') is a martingale under Q (See Lemma 2). the drift term must be zero and
(22) follows since V(u) ~ Ofor all u E (t.s). I:)

Theorem4.
The market value of the premium reserve for the guaranteed unit-linked term insurance contract
paid with periodic premium rate pet) satisfies the following partial differential equation:

av - . l _2 2 a2v avTt = pet) + (Jlx+ t + S)V(t) - C(t)Jlx + t - Io-S(t) as 2 - SS(t) as • (24)

Proof: The structure of this policy is more complicated since the benefit may expire at any time
between t and T. Apart from this fact the proof is very similar to the previous proof.

We first define

From (21) we have that

Also note that

and av iT avu tTt = t Ttdu - V (t). (25)
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For this insurance vto =C(t)J.1x+ t - p(t), so

rTav Il av _J
t
Ttdu = Tt + C(t)~x+ t - pet). (26)

Again we express 7t;(u) as a function ofVU(t),

c-at
where X(t) = fl).

x+t\u-t

By the same arguments as in the previous proof it follows that

for u e [t,T]. By integrating this expression on both sides with respect to u from t to T, usiqg
(25) and (26), (24) follows. I:)

Note that the solutions of (22) subject to V(T) = COO and of (24) subject to V(T) = Oare given
by (20) and (21), respectively.

Also note that (22) follows by letting C(t) = O in (24), so expression (24) may be termed the
full-fledged Thiele's equation in our set-up. The three first terms on the right hand side may

be interpreted as: The value of the premium reserve in the time interval (t,t + dt) increases with
interest sv and premiums paid pet) and decreases with expected net payments from death
J.1x + t(C(t) - V(t». The two last terms are changes in the market value of the premium reserve
caused by changes in value of the reference portfolio and are not present in the corresponding
Thiele equation of traditionallife insurance, which really does not deal with economic risk. :Py

letting the insurance specific factors equal zero, i.e., ~x+t = O and pet) =O,we indeed get the
Black and Scholes partial differential equation, which is the original starting point for the
derivation of the celebrated option pricing formula, From financial theory we know that in this
economic model every contingent claim on a non-dividend paying security has to satisfy this
equation. Expression (24) therefore shows explicitly how insurance factors such as periodic
premium and mortality affect this equation. We are tempted to state that the equation resulting
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from the Cauchy problem, or the "heat equation" of Black and Scholes equals the fundamental
Thiele partial differential equation in the special case of zero mortality. However, here we

hasten to add that the traditional Thiele equation of ordinary life insurance does not contain the
terms containing Vss and Vs since in traditional insurance the benefit is not random. We remark
here that the traditional Thiele equation obviously does not deal with stock market risk and
treats mortality risk from the perspective of risk-neutrality, whereas the Black and Scholes
equation deals with economic risk. The above equation thus incorporates economic risk also in
life insurance.

4.4 Mortality risk premium and savings premium
It is common in life insurance to split the periodic premium rate into a mortality risk premium
rate and a savings premium rate. The mortality risk premium is usually called only the risk
premium. As mentioned earlier, unit-linked contracts with guarantee expose the issuer (and
also the buyer) to financial risk, so we should expect to find economic risk premiums as well
as mortality risk premiums. As showed in the previous section the economic risk premiums for

unit-linked products are negative, as compared to zero for traditional products. Thus buyers
may expect better return and must accept a higher risk than for ordinary products.

The quantity [C(t) - Vet)] is called the uncovered amount, and the mortality risk premium in the
context of life insurance is defined as J.1x+t(C(t) - V(t», i.e., the conditional expected benefit
payments in excess of the reserves.

Let pr and p~denote the mortality risk premium rate and savings premium rate, respectively.

For unit-linked pure endowment insurance the mortality risk premium rate is

pr= - V(t)J.Lx+t· (27)

For a unit-linked term insurance, on the other hand, we have that

Pr = [C(t) - V(t)]J.1x+ t· (28)

The savings premium is the part of the premium rate which is due to external inflows or
outflows of funds and it is convenient to use the concept of self-financing strategies to derive
expressions for these quantities.
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InSection 5 below we will calculate the trading strategies in the fund and in the bond (a+, Ii+)
such that

V(t) = a +S(t) + Ii+B(t). (29)

Ifwe denote the change in value of the reserve due to capital gains by AV, we have from the
definition of self-financing in Section 2 that this change is

(30)

By considering Vasa function of S in addition to t, we get from ItO's lemma that

[
av I _2 2 a2v av 1..'1 av

dV = "S(t) as + 2"a-S(t) as 2 + Tt" ft + aS(t) as dW(t). (31)

From the above defmition ofp~ we have that p~dt = dV - AV, where dV is given by (31). We
thenget

p~dt= (icrS2~:~ + ~~ - ali~(t) )<1t+ (~~ - a+)dS(t).

By choosing a+ = ~~ the stochastic part, dS, cancels out. Since Ii~(t) = V(t) - a+S(t), we

thenobtain

(32)

(33)

For both insurances we have that pf + p~ = p(t). By adding (27) and (33) we obtain (22),
which is just our version of Thiele's differential equation for a unit-linked pure endowment
insurance. By adding (28) and (33) we obtain (24), which is the same fundamental equation

governing a unit-linked tenn insurance.

UT al th th . lvi av d a2v d the savi .fY e may so note at e terms mvo vmg as an as 2 are connecte to e savmgs premium
and not to the mortality risk premium.
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4.5 Premium rate as a constant fraction of the value of the reference
portfolio

One of the ideas of unit-linked insurances is that the components of a contract should be
measured in units of the mutual fund. Inour models the benefit is specified to N(t) units. It is
also possible to let the periodic premium be a given number of units of the reference portfolio.
A consequence of this strategy is that the amount the customer is supposed to pay must vary
with the value of the reference portfolio. As this may be considered somewhat unusual to life
insurance customers, many potential customers may prefer the familiar constant premium rate.

Let A denote a constant fraction of the reference portfolio. Then pet) may be written as

p(t) =AS(t).

In this model the market value at time zero of the benefits equal the market value at time zero of
the premiums, so that

-rO. =E1J.\S(s).p.e - &ods] = fAS(O).p.ds

for the guaranteed pure endowment insurance and

G!,'f I=s{rAS(s).p.e - &ods] =r:kS(O)'p.ds

for the guaranteed tenn insurance.

The fraction A then may be found as

A = _....;.-rG"""T"";'x_

S(0)1 .Pltds
o

and
G!:fl

A=---=T--
S(o>J .Pltds

o
respectively, for the two policies.
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S. Trading Strategies

5.1 The market value of the premium reserve and self-financing strategies
The following theorem identifies the only case when the market value of the premium reserve
may be duplica1!edby a self-financing strategy.

Theorem5.
The periodic premium rate equals the mortality risk premium rate if and only if the value of the
premium reserve can be duplicated by a self-financing trading strategy in the fund and the bond.

Proof: We will first show that (a+,~-+')self-financing implies that pet) = p~. Assume that
(a+,~+) is self-financing. By defmition it follows that dV = ~+dB+ a+dS, hence dV = åV and
p~æ O. The other direction of the proof follows by reversing the arguments. Q

From (28) it follows that when pet) = p~, Thiele's differential equation is reduced to Black and
Scholes' differential equation. The reason for this is that the two insurance specific factors, the
mortality rate and the periodic premiums, exactly offset each other.

It is also known from actuarial theory that the situation when pet) = p~ is the lower limit of the
periodic premium rate to avoid the market value of the premium reserve to take negative values.

We also observe that in the single premium case, where pet) æ O, it is never possible to
duplicate the market value of the premium reserve by a self-financing strategy.

5.2 The duplicating strategies of the benefit
In most of this paper we have worked with the benefit C(u) = [N(u)S(u)vG(u»). From the
previous analysis we know that the market value at time t of this benefit is

7tt(u) = G(u)e - 3(u-t)<l>[~(u)] +N(u)S(t)<l>[dHu)]. (34)

Now we want to derive the duplicating strategy for this benefit,

From (lO) and Lemma 2 we have for u > t that
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C*(u) = x;(u) + lUa(s)aS*dW. (35)

By substituting for ~: in relation (20) and by noticing that X:(u) = C*(u), it follows that

(36)

By comparing (35) and (36) we see that a(t) = ~~t duplicates the benefit. So from (34) we get

a(t) =N(u)cl>[d\(u)] }

P(t) =G(u)e - &1cl>[-d~(u)] .
(37)

The latter expression follows since P(t) = X;(u) - a(t)S*(t).

5.3 Single premium contracts
We now use the strategies (37) to compute the duplicating trading strategies for the insurance
contracts we have treated. We will fmd trading strategies (a +,p+) satisfying (29).

The strategies can now be interpreted as the "risk minimizing" trading strategies that in our
model eliminate the financial risk associated with issuing unit-linked insurance contracts. ay
continuously adjusting the portfolio of stocks and bonds, which in this model is costless, the
issuing company duplicates the payoff of the unit-linked insurance. By reversing those
straægies in the financial markets, the financial risk inherent in these policies is eliminated.

These strategies mayor may not be followed by the insurance company. The idea is that the
potential use of these strategies gives a hedge against fmancial risks. In option pricing thepry
such strategies playa fundamental role, both in theory and in practical use in the market. Here
we may mention portfolio insurance, which is totally based on the existence of such duplicating
strategies, For issuers of unit-linked products these strategies may clearly be of practical
importance in reducing the financial risk.

The market value of the premium reserve for the guaranteed unit-linked pure endowment paid
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with single premium may be written

The duplicating strategy for this contract is

ex+ =T-tPx+tN(T)4>[d\(T)] }

I}+ = T_tPx+tG(T)e-8r4>[-d~(T)] .
(38)

For guaranteed unit-linked term insurance we can write the market value of the premium reserve
as

Here we get the duplicating strategy

ex+ = iT4>{d\{u»fx+t{u)du

I}+ = LTG(u)e - 8l1cl>[-d~{u)]fx+t{u)du

(39)

5.4 Periodic premiums

Case l: p{t) deterministic
The market value of the premium reserve for the guaranteed unit-linked pure endowment
insurance paid with a periodic premium rate p{t) is given by (20), and we get duplicating
strategy

For guaranteed unit-linked term insurance paid with a periodic premium rate p{t) the market
value of the premium reserve is given by (21) and the corresponding strategy is
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a + = iT (f>(d~(u»fx+t(u)du

li+ = iT [G(u)e - &I(f>[--d~(u)]fx+t(u) - p(u)e - &Iu_ tPx + Jdu

(41)

Case2:P(t) is afraction o/the value orone share of the fund
Note first that in this case the market value of the remaining benefits is

so that the market value of the premium reserve for the guaranteed unit-linked pure endowment
contract is

Then it follows that

a+ = T_ tPx+tN(T)(f>[d~(T)] - xiT u- tPx+ ~u)
t •

li+ = T - tPx+tG(T)e - 8I'(f>[--d~(T)]

(42)

For the guaranteed unit-linked term insurance the expression for the market value of the
premium reserve is

V(t) =iT [7tt(u)fx + t(U) - i..S(t) u_ tPx+ Jdu.

The duplicating strategy is accordingly given as

a + = iT [(f>(d\(u»fx+t(u) - i.. u_ tPx + Jdu

Ii+ = iTG(u)e -3u(f>[~(u)]fx+t(u)du

(43)

When the periodic premium rate is a deterministic function of time, the expected present value
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of the future premiums is known at each point in time. Since we also model the value of a bond
as a detenninistic function of time, in this set-up the value of the bonds held can be reduced by
exactly the expected present value of future premiums.

When the periodic premium is a constant fraction of the value of the reference portfolio, the
expected number of units of the reference portfolio to be received in the future is known. The
company can therefore at every point in time reduce the number of units held by just this
number.

We see from (40) and (41) that the trading strategy in bonds is adjusted while the strategy in
shares is unchanged, and from (42) and (43) that the trading strategy in stocks is adjusted while
the trading strategy in bonds is unchanged - both compared to the single premium case.

5.5 A stochastic version of the Thiele differential equation
We now present a stochastic differential equation for the market value of the premium reserve.
Here we deduce the stochastic Thiele equation corresponding to the non-stochastic version
given in equation (24). First we consider V(t) in equation (21) as a function of7tt(u) and t. By

differentiation we get dV= ~~dt + I a!~U)d7tt(u)du. From Lemma 2 we can write d7tt(u) =
a(t)dS(t) + P(t)dB(t), where a(t) and pet) are given in (37). By using (41) and (29), we now
get

dV = [pet) + (J.1x+ t+B)V(t) - C(t)J.1x+ t+ a +S(t)(11- B)ldt + a + aS(t)dW(t). (44)

This is a stochastic differential equation which also governs the evolution of the market value of

the premium reserve through time. The terms (Jlx+t +B)V(t), pet) and Jlx+tC(t) have the same
interpretation as before. The tenn (TI- B)a +Set) represents the additional expected capital gain

(which is negative if 11 < B) of the part of the premium reserve invested in the reference
portfolio. The tenn dW (t) of (44) represents the stochastic change of the value of the reference
fund. This term has expectation zero. If 11> B, which is the normal case, and a + > O is not
chosen so that all fmancial risk is eliminated, V will have a higher expected drift rate than is the
case for traditionallife insmance contracts.
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6. Concluding remarks

Unit-linked insurance is characterized by a random amount of benefit which is linked to some
financial asset. Therefore new valuation techniques are required to value these products. We
have shown how to use arbitrage pricing theory to derive expressions for the single premium
for a unit-linked pure endowment insurance contract and a unit-linked tenn insurance contract in
a continuous time model. Compared to the classical version, the equations for the market value
of the premium reserves for unit-linked products now contain some new terms, These terms

are not interpretable in the same way as the terms in the traditional Thiele equation, and we are
tempted to state that by economic theory we have developed this equation one important step
further.

This analysis is extended to a more generallife insurance contract in Persson (1994b). While
unit-linked products are highly specialized life insurance products, the same kind of results
may be expected for traditionallife insurance products in presence of a stochastic interest rate.
The latter problem is the topic of Persson (1994c).

Acknowledgements
The author would like to thank Ragnar Norberg for extensive comments and suggestions on
earlier versions. The referee report by an anonymous referee is also acknowledged.

50



References

Aase, K.K. (1988), Contingent claims valuation when the security price is a combination of an
ItO process and a random point process, Stochastic Processes and their Application,
28, pp. 185-220.

Aase, K.K. (1992), Dynamic Equilibrium and the Structure of Premiums in a Reinsurance
Market, The Geneva Papers on Risk and Insurance Theory 17,2 pp. 93-136.

Bacinello, A.R. and F. Ortu (1993), Pricing equity-linked life insurance with endogenous
minimum guarantees, Insurance: Mathematics and Economics, 12, pp. 245-257.

Black, F. and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, Journal of
Political Economy, 81, pp. 637-654.

Borch, K.H. (1990), Economics of lnsurance, K.K. Aase and A. Sandmo (editors), North-
Holland.

Boyle, P.P. and E.S. Schwartz (1977), Equilibrium Prices of Guarantees Under Equity-Linked
Contracts, Journal of Risk and Insurance, 44 (December 1977), pp. 639-680.

Brennan, M.J., and E.S. Schwartz (1976), The Pricing of Equity-linked Life Insurance
Policies with an Asset Value Guarantee, Journal of Financial Economics, 3 (June
1976), pp. 195-213.

Brennan, M.J., and E.S. Schwartz (1979a), Alternative Investment Strategies for the Issuers of
Equity Linked Life Insurance with an Asset Value Guarantee, Journal of Business, 52
(January 1979), pp. 63-93.

Brennan, M.J., and E.S. Schwartz (1979b), Pricing and Investment Strategies for Equity-
linkedLife Insurance, Monograph no 7 Ifhe S.S. Huebner Foundation for Insurance
Education, Wharton School, University of Pennsylvania, Philadelphia.

Corby, F.B. (1977), Reserves for Maturity Guarantees under Unit-linked Policies, Journal of
the Institute of Actuaries (London), 3, pp. 259-273.

51



Cox, J.C. and C. Huang (1989), Option Pricing Theory and its Applications, Theory of
Valuation, edited by S. Bhattacharya and G. M. Constantinides, Rowman & Littlefield
Publishers Inc., pp. 272-288.

Delbaen, F. (1990), Equity Linked Policies, Bulletin Association des Actuaries Belges, pp.33-
52.

Dothan, M. (1990), Prices in Financial Markets, New York, Oxford University Press.

Duffie, D. (1988), Security markets: Stochastic Models, Boston, Academic Press.

Duffie, D. (1991)i The theory of value in security markets, in: Handbook of Mathematical
Economics, vol. IV (Eds: W. Hildenbrand and H. Sonnenschein), North Holland, pp.
1617-1682.

Duffie, D. (1992), Dynamic Asset Pricing Theory, University Press, Princeton, New Jersey.

Harrison, J.M. and D. Kreps (1979), Martingales and Multiperiod Securities Markets, Journal
of Economic Theory, 20, pp. 381-408.

Harrison, J.M. and S. Pliska (1981), Martingales and Stochastic Integrals in the Theory of
Continuous Trading, Stochastic Processes and their Application, 11, pp. 215-260.

Huang, C. (1991), Lecture Notes on Advanced Financial Economics, Sloan School of
Management, Massachusetts Institute of Technology.

Persson, S.A. (1994b), Valuation of a Multistate Life Insurance Contract with Random
Benefits, Chapter 3 of this dissertation.

Persson, S.A. (1994c), Interest Rate Risk in Life Insurance, Chapter 4 of this dissertation.

52



Chapter 3

VALUATION OF A MULTISTATp.
INSURANCE CONTRACT WITH
RANDOM BENEFITSI

We present a model where the value of the life insurance benefit is random. The policy is al
each point in time assumed to be in one of a finite number of states and the evolution of the
policy through time ismodeled by a time-continuous, non-homogeneous Markov chain.

The insurance period of a life insurance contract is long compared to the contract period of a
typical financial contingent claim. The value of the insurance benefit is assumed to follow
a geometric Gaussian process which has certain appealing properties when dealing with such
long contract periods. We use the martingale-based arbitrage pricing themy to derive the
market value of a quite general life insurance policy and deduce a corresponding
genera1irnt;on of Thiele' s differential equation.

Key words: Unit-linked Insurance, Equity-linked Insurance, Thiele's Differential Equation,
Arbittage Pricing Theory, Continuous Time Markov Chains.

1. Introduction
Life insurance companies are exposed to mortality risk and financial risk. Financial risks have,
traditionally been avoided by guaranteeing a low rate of return on life insurance contracts. Jf
the companies then realized a higher rate of return, which they usually did, the excess return
was credited the insurance customer by various means such as bonuses, reduced premiums,
higher benefits etc. During the last two decades a new kind of life insurance contracts have
been introduced in several countries, most recently also in the Nordic countries. The insurance
contracts have different names in different countries such as unit-linked, equity linked, variable
life, universallife, universal variable life; this list is probably not even complete. In this paper
we will focus on the property these policies have in common-, namely that the value of the
insurance benefits depends on some economic factor which cannot be controlled by the

1This article was published in a supplementary issue of the Scandinavian Jownal of Management, VoL 9, pp.
S73-S86, 1993.
2 However, depending on the design of the policy, this is not the case for all versions of the universallife
insurance. See, e.g., Adelman and Dorfman (1992).
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insurance company. An example of a benefit may be that the insured receives the maximum of
the value of a given number of shares in a mutual fund and a given amount upon expiration.
The benefit could alternatively be linked to money market instruments, stock-indexes, etc.
Crucial for our model, however, is that this factor somehow must be traded in a competitive
market

The focus of this article is to demonstrate how results from the arbitrage pricing theory from
financial economics may be connected to the application of continuous-time Markov processes
in life insurance. The traditional theory of life insurance is based upon risk neutrality, meaning,
among other things, that net premiums can be calculated as expectations. This method of
calculating premiums even has its own name in the actuarial science, the equivalence principle.
In this model the value of the insurance benefit is uncertain. By guaranteeing a minimum
benefit the insurer is exposed to financial risk, and by assuming that the insurer is risk-averse
with respect to financial risk, the traditional equivalence principle can no longer be applied to
premium calculations.

The Markov set-up provides a common framework to model features which are usually
included in life insurance policies such as accidental death benefits, premium waivers and
family term coverage. An important result from the arbitrage pricing theory is that exogenously
given price models having a certain martingale representation property yield a complete market
where every contingent claim has a unique price. See Harrison and Kreps (1979), Harrison
and Pliska (1981) and Aase (1988). This result is utilized in the Markov set-up for life
insurance where the policy holder is assumed to be in one of a fmite number of states at each
point in time. Markov-chains in life insurance are discussed by Hoem (1968), (1969), (1988)
and Norberg (1991), among others.

Brennan and Schwartz (1976), (1979), Boyle and Schwartz (1977) and Delbaen (1990) have

presented some results for equity linked insurances. The present analysis is basically an
extension of the two-state model of Persson (1994a).

Motivating example.
To be more specific we specialize the uncontrollable economic factor to be a mutual fund. In
addition, a riskless bond exists, and these securities are traded in a frictionless market. The
values of the bond and the fund at time t are denoted B t and S 1" Their price processes are
exogenously given by
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(1)

and

Here dW t is the increment of a standard Brownian motion, a, 11and G are constants to be
interpreted as the risk-free rate of return, the instantaneous drift rate of the stock and the
instantaneous standard deviation rate of the stock, respectively. Neither of the securities pay
dividends.

Imagine a life insurance contract which entitles the insured (or, to be precise, the insured's
inheritors) the value C(t) =Max[SttG], where G is the non-random guaranteed amount, upon
death at time t within a given time horizon T. This contract is called a unit-linked tenn
insurance. The single premium of this contract is

T

G~:Ti= f {Ge - 6t+ h(So,t)} lltl: ' J.1x+t<lt,

°
(2)

where h(So,t) is a known function, which can be interpreted as the option pricing formula for a
European call option (Black and Scholes, 1973) with expiration date t and exercise price G. In

addition to t and G it depends on So' a and G. The function fx(t) = 1;:'J.1x+tis the probability
density function of the insured's remaining life-time which is customarily assumed to only
depend on x, the insured's age at the point of issue.

If this policy is paid by periodic premium rates p(t~ the following equation describes the
evolution of the value V of the policy through time

(3)

where J.1x+ t is the force of mortality. By letting J.1x+ t= Oand p(t) = O, this equation is reduced
to the differential equation which originally was the starting point for the option pricing
formula. It may also be interpreted as the similar equation for an option where the owner of ~
option receives a dividend In that case the terms involving p(t) and J.1x+tdescribe the dividend,
In the actuarialscience these types of equations are called Thiele's differential equations after
the Danish actuary Thorvald N. Thiele.
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These results will appear as special cases in the model presented in this paper.

Many financial, contingent claims have short contract periods, e.g., options usually expire
within a few months of the date of issue. Life insurance contracts on the other hand, typically
have long contract periods. Contracts lasting 40 or more years are not unusual.

In the previous example and in many applications of contingent claim theory, the price of the
risky security is assumed to follow a geometric Brownian motion. We propose a more general
price-model, a geometric Gaussian process, for describing the value of the risky security where
the geometric Brownian motion is a special case. By other specifications of the parameters of
the geometric Gaussian process, we obtain price models having more appealing features
compared to those of the geometric Brownian motion, especially when contingent claims with
long contract periods are concerned

In the next section we present some elements of the economic model. In Section 3 we
demonstrate how to value a quite general life insurance contract. In Section 4 we deduce
expressions for the prospective premium reserve and the corresponding generalization of
Thiele's differential equation. In Section 5 we give examples of the geometric Gaussian
process and apply the results to different insurance contracts.
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2. Economic model
In this section we will concentrate on the parts of the present model which differ from the
general theory. For complete treatments of the arbitrage pricing theory or Markov-chains in life
insurance we refer to the works mentioned in the introduction.

The geometric Brownian motion seems to have been accepted as a reasonable model of stock
prices in the financial literature. It is easy to estimate the two parameters included from
observations. Other price models are described in the literature, see, e.g., Merton (1971) or

Aase (1988). Here we use the geometric Gaussian process for describing the value of the risky
security. The mathematical complexity is quite similar to the geometric Brownian motion, but
as opposed to this process, it includes three functions whose mathematical structure must be
detennined befare any estimation of parameters can take place.

The following price system is exogeneously given:

B, = exp{St},

St = Soexp{R(t)},
(4)
(5)

where R(t) = J "f(s)ds + get) J j(s)dWs'

(O,t] (O,t]

Here "«t) is a integrable, adapted process, get) and jet) are two non-random square integrable
functions where g(t)·j(t) >O 'V t and R(O) æ O.

Here we list some properties of R for O< 't < t:

E[R(t)11iiI =J f "iCS)ds}
1(O,t]

(6)

Var[R(t)I9ij1 = g(t)2 f j(s)2ds,
(O,t)
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E[R(t)I~] = :~~R('t)- (1- :~~»)f yes)ds +J f yeS)dS)I!Ji}
(O,'t] 1('t,t]

(7)

and

Var[R(t)I,?t] = g(t)2 J j(s)2ds.
('t,t]

From Ito'"s lemma we also get the following representation of this price system,

dBt= 8Btdt,

dSt =K(St,t)Stdt + u(t)StdWt'

(8)
(9)

where

K(St,t) = -y(t)+ g'«:» {In sS t - J -Y(S)dS}+ ~{g(t)j(t)}2,
g o (O,t]

and u(t) = g(t)j(t).

For example, by letting g(t) ;æ a, j(t) ;æ 1 and yet) ;æ Tl - ~a2,Equation (9) is reduced to the
geometric Brownian motion given in Equation (1).

By applying this price system we have the possibility to choose the functions g(t), j(t) and yet)
and thereby obtain a flexibility not inherent in the simple geometric Brownian motion. It allows
us to work with price models where the limiting distributions have finite expectations and

variances and to model non-homogeneous variance.

This price system also has the required martingale representation property, yielding a complete
market so that every claim, contingent on the traded uncontrollable factor denoted St, may be
duplicated by a dynamic trading strategy of the available securities. The stochastic process St i~
defined on a given probability space (O, 1: P), where the sample space n is the set of all
possible outcomes, P is a probability measure on which everyone agrees. Here!F is a a-

algebra of measurable subsets of n. generated by the involved stochastic processes.

The filtration ~ is defmed by ~ = a{S.: s e [O,t]}. At time T all the uncertainty is
resolved. ~ is almost trivial, !? = ~ and {~ : OSt ST} satisfy "the usual conditions"
(increasing. right-continuous and augmented).
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There is an insurance policy and a set J = {O, .•. , J} of possible states of the policy. The
policy is issued at time O and expires within a given time horizon T. At any time t e [O,T] it is
in one unique state in J, commencing in state O. In some situations more than one payment
may occur at the same time. In such situations we consider the net cashflow. The benefits can
be of two kinds: Net transitions benefits a~h(Sttt) which are payable upon transitions from
state g to state h where g, h e J. Net annuities a~(St,t) are paid to the insured as long as the
policy is staying in state g e J. Premiums from the customer to the insurance company may be
considered as negative annuities. For transitions or sojourns which do not entitle the
policyholder to benefits aO(St,t)æ O. Note that the benefits are in general functions of St.

In addition, the benefits of the insurance contract may include a guarantee.

Some states are absorbing or external, meaning that once entered they are never left.

Endowment insurances are not treated explicitly. The benefit of an endowment insurance
expires if the policy is in a given state or set of states at a given point in time. Therefore, an
endowment insurance may be considered as a special case of an annuity.

The evolvement of the policy through time is modeled by a continuous time non-homogeneous
Markov chain X(t), t ~ O on the state space J, defined on the same probability space. X(t>
generates a filtration 9l'= o(X(s) : s e [O,tD, the a-algebra of all information provided by the
process X(t). Let r = it and 1"= ry!?~The Markov property means that for a fixed
present state of the process X(t) its future and past are conditionally independent.

We assume that the processes St and X(t) are statistically independent under P (this assumption
may seem reasonable, but it is violated, for example, in situations where the insured's death is
caused by, say heart attach, due to rapid changes at the stock market). The generic element Ol

of O contains at least two pieces of information; one describing an outcome of X(T), another

describing an outcome of ST.

Furthermore, the insurer is assumed risk-neutral with respect to a policy's transitions between
states during the insurance period. This is an extension of the classical assumption saying that
the insurer is risk-neutral with respect to mortality risk, usually being justified by arguing that
the company is holding a great number of identical contracts and referring to the law of large
numbers. Risk-neutralism with respect to mortality is discussed in Aase (1993). However, by

59



increasing the number of states or by other means specializing the contracts according to the
customer's particular needs, the argument for using the strong law of large numbers is
somewhat weakened. Since we are concerned with valuation, we must be explicit on this
point

We assume that the insurers are risk neutral with respect to financial risk. We would like to
point this out because the existing financial risk explains why we can not immediately use the
traditional principle of equivalence to calculate premiums. ff we, incorrectly, applied the
equivalence principle, the prices the insurer had to pay for the policy would be too high (see
discussion in Persson, 1994a).

Let Pij(S,t)denote the transition probability

Pij(S,t) = P{X(t) = j IX(s) = i}.

We impose the following regularity assumption

where ~j is the Kronecker delta and equals 1 if i =j and zero otherwise.

We assume that the following transition intensities exist. They are the basic entities in the
system and are easily interpretable. They are functions of only one variable, in addition to
certain characteristics of the person or persons being insured at the point of issue, for example
age, sex, health condition ete.

The transition intensity is defined by

~j(t) = lilPP!~:).
u+l

We also have the total transition intensity from state j

These intensities depend on t, the time elapsed since issue. They do not depend on other
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factors which may be relevant for practical considerations, e.g., how long or how many times a
certain state has been visited. By carefully constructing the state space J, some factors of that
kind may be included, see Hoem (1968) for details.

H j e J is external, JLjk(t)for all t and k e J equals zero.

From the Chapman-Kolmogorov equations

Pij(s,t) =LPig(S,'t)Pgj('t,t),
ge J

for sS 't S t, we may deduce Kolmogorov's forward differential equations

apij(S,t) _ ~ ( ) ( ) () ()
j}t - ~ Pig s,t JLgjt - Pij s,t JLjt

g ~j

(lQ)

and Kolmogorov's backward differential equations

(11)
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3. Valuation
The valuation process consists of two steps. First we use results from the contingent claim
analysis to value each benefit. This valuation is consistent with the risk: aversion present in the
market. Then we utilize the Markov-chain set-up (and the risk-neutrality assumption with
respect to transitions) to value the fmal insurance treaty.

Let Ngh be the function counting transitions from state g to h, that is Ngh(t) = I{ te [O,t]:X(t-)
= g, X(t) = hl. The random stream ofnet payments A may be written:

(12)

Here l {X(t)= j} is the indicator function which takes the value 1 if X(t) = j and zero otherwise
and A(t) is simply the undiscounted sum of the net payments from time zero to time t.

The existence of a complete market implies the existence of a probability measure Q equivalent
to p so that the market prices, denoted by x's, may be found as (dropping the subscripts on x
and aOwhich only describe under what conditions the benefits are being paid)

(13)

where EQ[ ] is the expectation with respect to Q.

Here xt(So) denotes the marketprice at time zero of the benefit aO(Stot)payable at time t, which
is called the expiration date of the benefit. If a guarantee is included, the benefit itself can be
considered as a contingent claim with respect to St. This process of finding market values takes
both the uncertain value of aO(Stot)and the time dimension into account as well as the attitude
towards fmancial risk in the market. From Equation (13) we see that the discounting is canied
out by the risk free rate o, and that the original probability measure P is replaced by Q, the risk
adjusted probability measure.

Equation (13) may equivalently be stated as
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Here the expectation is taken with respect to the original probability measure P and

J: = {_ J 1C(S.,5) - 8dW _ ! J (1C(S .,5) - 8 )2ds}
":It exp 1>(5) 2 1>(5)

(O,t] (O,t]

and ~ =~T' We may interpret ~ as the shadow price of risk per unit P probability.

The market value at time zero of the benefits included in the insurance contract are detennined
by Equation (13). To obtain the market value of the complete insurance treaty the probabilities
for the different benefits to expire should also be taken into account. By the market's risk
neutrality with respect to the policy's transition between the states, the independence between
X(f) and Sr and the given initial state 0, we obtain the following general valuation formula

(14)

In accordance with actuarial tenninology we may say that Equation (14) is derived from an
application of the equivalence principle, but under a risk-adjusted probability measure. Here Il
is the market value of the policy at time zero and represents the amount the insured has to pay to
the insurer at time zero. It is tempting to interpret Il as the single premium of the contract, but
this tenn is reserved for the case when the policy is paid fully at time zero. In general, a~, g e
X. for some x.!:: J, with corresponding market price 7tg' may be the periodic premium rate.

The probabilities POj in Equation (14) must in general be deduced from the Kolmogorov
differential equations and can only in special cases be replaced by explicit formulas,

In the example given in the introduction based on the price system (1), the policy's state space
consists of two states; State ° {policyholder alive} and State 1 {policyholder dead}.
Furthermore, all possible benefits equal zero except ~I(t) = C(t), with a market value at time
zero of h(So,t) + e-8ta. We also have that Poo(O,t)= I;: l and 1lo1(t) = J.1x+t so that Equation
(14) is reduced to Equation (2).
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4. Premium reserves
The premium reserve or the cash value at time t represents the value of the policy at time t. For
traditionallife insurance products it can also be interpreted as the insurer's debt to the insured at
time t or as the necessary funds the insurer should reserve at time t for future net claims.
Another characteristic feature of life insurance policies compared to other contingent, fmancial
claims is that several payments may take place between the issuer and the buyer before

expiration.

The value at time te [O,T] of a contingent claim is usually determined as the risk-adjusted net
present value of the future cash flows. In life insurance this is called the prospective premium
reserve. In addition, there is a retrospective premium reserve obtained, at time t, by
considering the cash flows from time zero to t,

At any t E [O,T] a policy's complete payment stream A(T) given by (12) splits into payments
after time t and payments up to and including time 1,

A(T) = {A(T) - A(t)} - { - A(t)}. (15)

At time 1, the terms included in the first bracket on the right hand side may be interpreted as the
future net expenditures for the insurer. The term in the second bracket may similarly be
interpreted as the past net income (due to the minus sign).

4.1 Prospective premium reserves
The market value of the first bracket in (15) is identical with the prospective premium reserve at

time t which is defined as the conditional expected present value of future benefits less

premiums on the policy given its present state. It is derived by the same arguments as we used
to arrive at Il,

We have the following expression, analogous to Equation (12), for the stream of payments

from time t to time T:

A(T) - A(t) = J L{ l {X(t) = j}~(S",t)dt +Lajk(S",t)dNjk(t)}.
(t,T] jeJ k¢j

(16)
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In order to detennine the market values of the future benefits at time t, we have for t S't ST,

(17)

Our next task is to obtain the market value of the stream (16) given the state of the policy at time
t. Let V;(t) denote the prospective value given current state g at time t.

From Equation (16) and the valuation fonnula of Equation (17) it follows that

(18)

Here V;(t) is the market value at time t of the remaining benefits from the policy in the time
interval (t,T] given current state g at time t

4.2 A generalization of Thiele's differential equation
We will now derive a differential equation describing the evolution of the value of the policy

through time.

We consider V; given in Equation (18) as a function of the market prices of the benefits at time
t, in addition to t, and denote it V;(7t,t),

(19)

We then obtain the following equation for the differential of V; ,

(20)
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The assumption about complete markets implies that the value of every benefit may be
duplicated by a self-financing trading strategy. Furthermore, the market prices of the benefits at
time t may also be duplicated by self-financing trading strategies, meaning that for all benefits
included in the insurance contract. we have (again dropping the subscripts on mt, a and 13)

(21)

where aCt) and 13(t)are the number of stocks and bonds, respectively, held at time t in the
strategy duplicating the market price at time t of the benefit

Wedefine

(22)

and

Note that V; (t) = a+ St + l3+J3t, so a+ and 13+may be interpreted as the trading strategies in the
stock and the bond which duplicates the policy. As we should expect, a+ and 13+are functions
of the conditional probabilities of future transitions given current state g, the duplicating
strategies of the benefits and the remaining time of the insurance period at time t. The
duplicating trading strategy is not necessarily self-financing due to inflows of premiums and

outflows ofbenefits during the insurance period. The trading strategy is risk-minimizing in the
following sense: Strategy (22) duplicates the benefit of the policy and by implementing the
reverse strategy in the financial market. the insurer has eliminated the financial risk connected to
the contract

Now dV; may be expressed as

d"+ - aV(x,t) d + dS A.+dB
vg- at t+a t+'" t· (23)
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It follows from Equation (19) that

(24)

Inserting Equation (24) into Equation (23) and by using the price system (8) and (9) and the

identity ~(t) = a+St + ~+J3t,we obtain:

{
8V;(t) - a;(St,t) - LJ.1gh(t)[a~h(St,t) + V; (St,t) - V; (Sttt)l + [K(St,t) - 81a+St}dt. (25)

h~g

By equating Equation (25) and the expression obtained by Ito's lemma applied to V; in
Equation (18) considered as a function of St in addition to t , we get

(26)

This is the multistate generalization of Thiele's classical equation for this set-up and may be
interpreted as is usual in the actuarial science.

The tenn 8V; (t) represents the capital gain of the premium reserve in the time interval (t,t+dt).

The tenn ~(St,t) represents the benefit to the insured in the time interval (t,t+dt).

The terms 1: J.1gh(t)a~(St,t) represent the expected benefit to be paid in the time interval (t,t +
dt) upon ~~sitions from state g. Payments connected to possible future transitions are

includedin the terms 1: J.1gh(tHV; (t) - V; (t)}whichrepresenttheexpectedpremiumreserve
in the state to which £~~olicy arrives in the time interval (t, t+dt), in excess of what is covered
by the premium reserve in state g.

The tenn Ji~St8 + t'\)(t)2S~::~} represents changes in the premium reserve caused by
changes in~e value of St in the time interval (t,t+dt) and is, contrary to the other terms, not
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present in Thiele's differential equation of traditionallife insurance. It is not easy to give a
meaningful interpretation "letter by letter" for this term as we can do with the other terms.

The terms 1: JLgh(t)V; (t) are added compared to the introductory example. Recall that the
state space hofgthat contract consists of only two states; State O {"policyholder is alive"} and

State 1 ("policyholder is dead"), where State 1 is external so that JLlO(t) = O 'fl t. In addition
no further payments occur if the policyholder is dead and the inheritors have received the
benefit, so also VI(t) = Oand the tenn JLlO(t)VI(t) equals zero. Furthermore, Vo(t) is denoted
V(t), ~I (t) = C(t), '\)(t) = CJ for the price system (1) and ~(t) = -p(t). Equation (26) is then
reduced to Equation (3).

In order to give a perhaps more intuitive interpretation of the change of the value of the

premium reserve in the time interval (t,t+dt), we~ay consider the eXp.reJsion in Equation (25).
Disregarding the terms [le(Svt) - a]a+st and ~: Sta + t'\)(t)2s~::i in Equation (26), all
the terms in (26) are contained in the dt tenn o (25). The tenn [le(Sl't) - a]a+st is readily

interpretable as the additional (if le > a) expected gain of the part of the premium reserve
invested in the risky security and the dW t tenn represents the stochastic variation of the same
part. However, as opposed to the Equation (26), the expression in Equation (25) is stochastic.

While the duplicating trading strategy for an insurance contract is not necessarily self-
financing, our approach demonstrates that the valuation formula of Equation (18) depends on
the completeness of the economy. The duplicating trading strategies of the individual benefits,
and consequently those of the market values of the benefits, included in the insurance treaty,
must be self-financing.

4.3 A comment on retrospective premium reserves
Inprinciple, the retrospective premium reserve is the market value of the second set of brackets
ofEquation (15), and expressions for this premium reserve are easily established for policies
which expire immediately upon transition from the initial state. There seem to be several ways,
although some appear incompatible, of defining expressions for more complex policies, see
Hoem (1988) and Norberg (1991).

No matter what has happened in the past, it seems reasonable for the insurer to consider the
future net claims when detennining the appropriate level of the premium reserve. We do not
make any attempt to deduce expressions for the retrospective premium reserve for our model.
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s. Examples
In this section we show examples of possible price models, market values of different benefits
and possible insurance contracts.

5.1 Examples of price processes
Consider the following Ornstein-Uhlenbeck process

dRt = k{ 'lT - Rtldt + adWt,

where the parameters 'IT, k and a may be interpreted as the long range mean to which R, tends
to revert, the speed of adjustment and the volatility, respectively.

2
At time zero E[RJ = 'if(1 - e - kl) and Var[Rt] = ~k (1 - e -2 kl) for t > O. The variance
increases with time, which may seem reasonable when modeling uncertain events. This is also

the case for the Brownian motion, but contrary to this process, with probability one, E[RJ -+
2

'lT and Var(RJ -+ ~k' so R, converges in distributi~n to a well-defined nonnally distributed
random variable with expectation 'lT and variance ~k' This property may be advantageous
when long-lived securities are concerned.

From Equation (S) we get

(27)

where 'If= 'lT+ lnSo + ;ka2•

Here 'If,which is connected to the long range mean of the process, depends on the price of the
security at time zero. The analyst may express his beliefs of the future price via the constant 'lT.

This price process follows immediately from Equation (7) by letting -y(t)= ldf1e- kl, g(t) = øe" kl

andj(t) = e kt. We also see that '\)(t) = g(t)j(t) = a. Notice that the volatility tenn in Equation

(27) equals the volatility tenn in Equation (1), so formulas that only involve the volatility tenn
will be the same for the geometric Brownian motion and the geometric Omstein-Uhlenbeck
process. The famous option pricing formula is one example of this.

Since the logarithm of St is a well-defined normally distributed random variable, it follows that
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S t is an equally well-behaved lognonnally distributed random variable and has the same
appealing features compared to the geometric Brownian motion as those mentioned above.

We obtain a price model having non-homogeneous variance by letting get) æ (J andj(t) = eet,
where 9 is a constant From Equation (9) we get

(28)

The variation tenn exponentially increases with time. For this price model the limiting
distribution does not have finite variance. The variance for the corresponding normally

2
distributed variable from Equation (5) is Var [RJ = ~e [e2et - 1], which does not converge.
The limiting distribution mayor may not have finite expectation depending on y(t) For
example by letting ')'(t)= ae - bt, E[RJ = i[1- e - btl, which converges to i as t gets large.

5.2 Examples of market values of benefits
Some examples of possible benefits and their corresponding market values given price system
(27)/(1) and (28) are given inTable 1.

Table l. Market value at time Ofor different benefits.

no aO(~,t) n(Se,> n(Se,>
(dS by (27» (dS by (28»

1 K (a constant) eo~tK eo~tK

2 St So So
3 Max[St,GJ h(So,t) + eo~tot A 3

h(So,t) + e" tot

Here

In_So + at + .!.p2
Gt 2 t

d1=------Pt

~ .) is the cumulative distribution function of the standard normal distribution, and
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p, = J u('t)2d't = ~: (e2et - 1).
(O,t]

(29)

See for example Corollary 1 of Theorem 5 of Aase (1988). By letting u(t) æ CS, p, equals alt
and h(So,t) equals h(So,t), the standard European call option pricing formula,

5.3 Examples of insurance contracts
First we consider a tenn insurance paid by leveled premiums including a premium waiver if the
policy-holder becomes disabled. The premium rate is p (a constant) when the customer is
active and changes to Ap, where O S; A < 1, upon disability. The insurance benefit is C(t) =
Max[St,GJ. The policy's state space is described in Figure 1.

Figure 1. Premium waiver.

StateD State 1

State2

State O. Policyholder active.

State 1. Policyholder disabled.
State 2. Policyholder dead.

State 2 is external. By disregarding the possibility of recovery, the state space becomes
hierarchical, i.e., it is not possible to return to a state once it is left. We will here consider both

cases.

Case 1. Recovery impossible.
Even though people recover in reallife, this assumption is common in many actuarial models.

Here ~ = -p, a~ = -AP, a; = O and ~1 = O, ~2 = a~2= C(t) =max[St,Gt]. The non-zero
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transition intensities are J..Im(t),J..Io2(t)and 1l12(t)and are indicated by solid arrows in Figure 1.

From Equation (14) we obtain the following market value at time zero

n(so) = f {x't[Poo(0,t)Jlo2(t) + POl(0,t)1l12(t)] - e-&tp[poo(O,t) +APOI(O,t)]}dt,
(O,T1

where xt = h(So,t) + e - Stot for the price system (27) and xt = h(So,t) + e - Stot for the price
system (28).

From the Kolmogorov forward equations it follows that

Poo(O,t)= exp{ - f IlO(S)dS}
(O,t]

and

POl(O,t)= f JloI(S)exp{ - f 1l0(S)ds}exp{ - f IlI(S)dS}dS.
(O,t] (0,5] (s,t]

When a policy has a hierarchical state space it is possible to get closed form solutions for the
transition probabilities. This is not the case in general.

If this policy is being paid only by the periodic premium rates (no initiallump-sum payment), p
is determined by equating n(so) to zero.

Here vso =°and Thiele's differential equations for State °and State 1become

av 'O 5: u+ - vt { av o 5: l 2 2a 2V o}Tt = {u+ Ilo(t)} vo(t) + p - J..IoI(t) l(t) - Jlo2(t)C(t) - asStU+ '2'\)(t) StTsT

av t 5: vr ~- { av 1 5: l 2 2 a2V 1 }and Tt = {U+ III(t)} l(t) +AP- 1l12(t)C(t) - asStU+ '2u(t) St TsT .

Case 2. Recovery possible.
In this case we allow for transitions between state 1 and 0, so IlIO(t) > ° (indicated by the
dotted arrow in Figure 1). Therefore we do not have a hierarchical state space and do not get
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any closed fonn solution for Poo(O,t) and POI(O,t) as we did in the previous case. Apart from
that, the expression for D(So) is the same. There are no changes in Thiele's differential
equation for State 0, but a new term is added for State l,

avt!:: vt '\~ ,.+ {aVl!:: 1 22a2VI}Tt = {u + ~l(t)} l(t) + AP- J.l.lO(t)vO(t)- TsStU + 'ru(t) St asr .
The next example is an orphan insurance where the child receives a benefit of Type 3 in Table
l upon death of the last of the parents within a given time horizon T. The contract is paid by a
premium rate p as long as at least one of the parents is alive. The premium rate is of the Type l
from the table above. See Figure 2 for a description of this policy.

Figure 2. Orphan insurance.
State O State 1

State4

State 2

State O. Father, mother and child alive.
State l. Mother and child alive.
State 2. Father and child alive.

State 3. Only child alive.
State 4. Child dead.

States 3 and 4 are external. The child becomes an orphan and the benefit expires upon
transition into state 3. The policy moves into state 4 if the child dies, and no further premiums

are to be paid. For this insurance ~ = a~= a; =- p, ai =~ = 0, and a;j=°for all transitions
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except a~ = a~3 = C(t) =Max[St,GJ.

The non-zero transition intensities are Jlol(t), Jlo2(t), Jl04(t), Jl13(t), Jl14(t),Jl23(t) and ll24(t) and
are given and indicated by arrows in the figure. Notice that for this insurance the transition
probabilities and consequently the transition intensities depend on the state of several
individuals.

From Equation (14) we obtain the following market value at time zero for this contract

n(so) = f (X"'[POl(0,t)Jl13(t) + P02(O,t)Jl23(t)] - e-Mp[1- p04(O,t)]}dt,
(O,T]

where Xl= h(So,t) + e - 6tal for the price system (28) and Xl = h(So,t) + e - atal for the price
system (29). Also for this policy the state space is hierarchical so the expressions for the
probabilities will be on the same fonn as for Case 1of the previous policy.

For this contract V3(t) = "l(t) = O. Thiele's differential equations (23) for the other states
become

a;t· = {Il + 1Io(tn vet (t) +P -Ilo, (t)Vt (t) -lIo2<t) V{ (t) - { a~o Stil + ~u(t)2s~ a;,.}
and

The benefit is not payable immediately upon transition from State 0, therefore C(t) is not
included in the equation for this state. From State 1 or State 2 the policy can move only to

external states. Thiele's equations for these states do not depend on the premium reserve in any

other states. In contrast, for State °~ele~s equation depen~ on vi (t) and V; (t). All the

expressions include a tenn on the form t.~~Sta + -k'\)(t)2s~ ::~ J-
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Chapter4

INTEREST RATE RISK IN LIFE
INSURANCE

We derive an economic valuation theory for life insurance contracts in a model with random
interest rates. Here we deduce a partial differential equation for the market values of the
assurances, which corresponds to the traditional Thiele equation of classical actuarial
sciences, but contains some interesting new terms. By using various models of the term
structure, we derive some new formulas for the market value of life insurance conttacts.

The intetpretation of the principle of equivalence may be revisited in this framework; the
principle still holds but under a new risk adjusted probability measure, equivalent to - but
different from - the originally given probability measure. This risk adjustment comes from
the economics of uncertainty.

Key words: Financial Risle, Arbitrage Pricing Theory, Thiele's Differential Equation,
Principle of Equivalence, Stochastic Interest Rate.

1. Introduction

I.l Focus
In life insurance two major sources of uncertainty prevail, one related to the future development
of the return on the fmancial investments, the other related to the future flow of payments,
which again typically is connected to the development of the population of life insurance
customers' health. We refer to the first source as financial risk and to the second source as

transition risk. The term transition risk is more general and corresponds better to the model we

use than the term mortality risk which is seen in other treatments.

In traditional actuarial models the rate of return on the fmancial investments is modeled by a
constant or at most, a deterministic function of time. In this paper we allow for a stochastic
development of the rate of return. We address the question whether the traditional principle of

equivalence can be used as basis for valuation in this stochastic model. After introducing a
simple model of a fmancial market, it turns out that the answer to this question is no. To obtain
values for the insurance contracts which are consistent with the economic model we have to use
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a new pricing principle. Still the insurance premiums are found as expectations, but now under
an equivalent probability measure which is constructed by the use of economic theory.

The equivalent martingale measure, also called a pricing measure, is the topic of Section 2. We
take as primitives a theory for the pricing of certain financial assets and a theory for pricing
mortality risk. We show how these theories can be combined to give consistent prices for life
insurance contracts. To be more specific we assume there exist theories such that market prices
are given as expectations under pricing measures. A pricing measure is formallya probability
measure equivalent to the one given in the model, but does not necessarily represent
probabilities of any future events in the model. Examples of such theories from financial
economics are included. We assume that the financial market is independent of the state of the
policy and in this situation we obtain a nice representation of the pricing measure, represented
by the Radon-Nikodym derivative of the pricing measure with respect to the originally given
probability measure. To simplify further, we assume risk neutrality with respect to transition
risk. This assumption is implicit in the traditional principle of equivalence.

In Section 3 we derive expressions for the single premiums and premium reserves for some
policies based on the independence between the state of the policy and the financial market,
One notable difference between these formulas and the corresponding traditional ones is that the
traditional discount function is replaced by an expression for the market value of a unit discount
bond. The unit discount bond is a financial security which is traded in the financial market. The
expression for its market value will generally depend on the term structure model being used.

A model of the term structure is described in Section 4.

In Section 5 we obtain the differential equations governing the evolution of the market value of
the insurance contract. These equations also depend on the underlying term structure model
and may be considered as a combination of the partial differential equations based on the no-
arbitrage condition known from the theory of financial economics and Thiele's differential
equations encountered in the actuarial sciences. Our equation differs from a corresponding
equation derived by Norberg and Møller (1993) in a model without a financial market. An
explanation for this is presented. We also give explicit examples of pricing formulas by
specializing to term structure models known from the financialliterature.

Section 6 contains some concluding remarks.
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Differential equations similar to the one described above is also the topic of Persson (1994a)
and Persson (1994b). These papers consider a special kind of life insurance called unit-linked
or equity-linked contracts where the interest rate is assumed to be constant, i.e .• detenninistic.
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2. Pricing in the presence of two independent sources of risk

2.1 Two sources of risk
Here we present one way to formalize the situation when two independent sources of risk are
present. We have in mind a continuous time model with finite time horizon T. However, in
this section the time dimension will not be given special attention. In the next section we
introduce filtrations to incorporate the dynamic aspects of the model

We assume there are two independent sources of uncertainty. In this paper one source
represents the financial market and the other source the state of the insurance policy. One way
to model this is by using two separate probability spaces and model each source of uncertainty
on its own space .. In this section we will focus on the use of a Radon-Nikodym derivative to

construct a pricing measure, i.e., a probability measure which does not represent the agents'
beliefs, but is constructed solely for the purpose of pricing and in addition happens to satisfy
the formal requirements of a probability measure.

We take as primitives the probability spaces (0l, (j, PI) and (~, !Jf, P2), the first used for
modeling the financial market, the second for the state of the policy.

In several continuous time models from financial economics we have a result like this (Harrison
and Kreps (1979»:

Subject to some technical conditions, no arbitrage opportunities implies the existence of an
equivalentmartingalemeasureQj such that, after a change of numeraire, the price of a financial

security may be found as an expectation under Ql. We denote by ~l the Radon-Nikodym

derivative OfQl with respect to Pl.

The models we have chosen to work with will be presented later, but we now give two
examples. Example 2.4 will be further explained and generalized later in the paper. First we
define a quantity called the money market account or the savings account which represents the
value at time t of one unit currency invested at time zero where interest is accrued according to

the short term interest rate.

Definition 2.1
Let r, denote the short term interest rate prevailing at time 1, t e [O,Tj. Formally, r, is a
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stochastic process defined on (Ot, (j, Pj), We define the money market account as

(1)

This means that dJ3t= rtJ3tdt,with the initial condition 130= 1.

Definition 22
A unit discount bond is a fmancial asset that entitles its owner to one unit currency at maturity
without any intermediate coupon payments. There is a continuum of such bonds maturing at all
times s E [O,T]. We denote by Bt(s) the market price at time t for a bond maturing at a fixed
date s ~ t. From the definition B.(s) = 1 (assuming no default risk).

Example 2.3 (Black and Sclwles (1973))
This model we use for pricing derivative securities. The underlying risky security is a stock
with price process

where r, Tland G are positive constants and Wt a Brownian motion on (Ot, (j, PI)' In addition
there is a constant short tenn interest rate so the money market account is given by l3t = ert.

The Radon-Nikodym derivative OfQI with respect to PI is

~ (1 CTl-r)2 TI-r )"'t=exp -"2 a T-aWT•

Let C denote the payoff at time T of a derivative security with finite variance. We use ~ as

numeraire and the market value at time zero of C is given as the expectation of ~T under QI'
i.e.,

Example 2.4 (Vacisek (1977))
A set of unit discount bonds maturing at all times s E [O,T] is given. The objective is to find
expressions for the market values of the bonds. The short tenn interest rate is the only factor in
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addition to time which explains the price development of the bonds and is modeled by the
stochastic differential equation

drt = q(m - rJdt + vdWt,

where m, q and v are positive constants and can be interpreted as the long-range mean to which
rt tends to revert, the speed of adjustment and the volatility factor, respectively. Assuming no
arbitrage possibilities, there exists a function called the market price of risk A(r.t). This
function does not depend on time to maturity, its importance stems from the fact that the Radon-
Nikodym derivative of Ql with respect to PI is expressed by A(rt.t) as

assuming that A(rtot) is well-behaved so that the above expression exists and ~l has unit
expectation and finite variance. Also here we use the money market account as numeraire,
where rt is given by the above stochastic differential equation. Recall that Bo(s) denotes the
market value at time Oof a unit discount bond expiring at time s. Then

Assume there is some probability measure ~ such that the price of a policy may be found as

the expectation under Q2. Let ~2 denote the Radon- Nikodym derivative of ~ with respect to

P2•

Now we proceed to construct a product space based on the two described spaces. The objective
is to characterize the Radon- Nikodym derivative of Q with respect to p. where P and Q are the

product measures on the product space.

The cartesian product between 0l and 02 is dermed as (COl'~) : cole 0l' ~e ~l, Le.,
the set of all ordered pairs from 0l and °2,and is denoted 0l x~. Any set on the fonn A x

B = ((COl'CO~: col e A c 0l' co2e B c 02lis called a rectangle. A rectangle A x B is
measurable ifA e (j and B e 9l.Define °= 0l X ~ and let !Fbe the er-algebra generated by
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the measurable rectangles. Now we consider the product space (O, 1).

From, e.g., Theorem 18.2 inBillingsley (1986) it follows that the measure P on '-defmed by

(2)

for measurable E = A x B, is well-defined and the unique probability measure with the
property described in relation (2).

The same result also holds for the equivalent measures given by the previous lemmas such that
Qdefined by

(3)

for a measurable rectangle E = A x B I is well-defined and the unique probability measure with
the property described inrelation (3).

We now want to find an expression for the Radon-Nikodym derivative of Q with respect to P.
We can then show the following proposition.

Proposition 25
The Radon-Nikodym derivative ~(Cl)l'~) such that

(4)

where E = A x B is a measurable rectangle,

is given by

Proof'
One way to calculate Q for a measurable set E =A x B is

83



for rolE 0l and ~E ~ (see. e.g.• expression 18.1 in Billingsley (1986). see expression 18.2
for an alternative way). Observe that the relations (2) and (3) follow immediately from this
expression.

By the definition of ~l we can write this as

for rolE 01' ~E 02 and E = A x B. a measurable rectangle.

By observing that lB(~)1A(rol) = lE(rol.ro2) and by the Fubini theorem. expression (4)
follows. It is easy to verify that ~(rol'ro~ is strictly positive P-almost surely and

In the case of two independent sources of uncertainty the Radon-Nikodym derivative of the
product space splits nicely into the product of the two Radon-Nikodym derivatives
corresponding to the pricing rules from the given probability spaces.

2.2 The principle of equivalence under Q
In this paragraph we explain the principle we will use to price life insurance contracts in the
remainder of the paper. FIrStwe impose an assumption:
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Assumption 2.6
In this paper we assume risk neutrality with respect to transition risk. Then the measures Q2

and P2 are the same, hence ~2= 1.

Risk neutrality with respect to the state of the policy is implicit in the traditional principle of
equivalence in the actuarial sciences.

As a consequence of Proposition 2.5 and Assumption 2.6 it follows that the pricing measure Q
is represented by

That is, the Radon-Nikodym derivative of Qwith respect to P is given by the Radon-NikQdym
derivative from the fmance model times one. The market price of an insurance contract will
accordingly be found as the expectation with respect to this measure. This pricing principle will
be referred to as the principle of equivalence under Q.
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3. The market value of a payment stream

3.1 The introduction of a financial market
In this paper we present an alternative approach to the use of the so called discount function
encountered in actuarial works. We introduce a financial market and the discount function is
replaced by market-based discounting using unit discount bonds. By using economic theory
we derive expressions for the market value of the unit discount bonds. These expressions will
depend on the chosen model of the financial market There is a number of so called tenn
structure models in the fmancialliterature. In the next section we present an example which
include many of the most popular models. In this section we demonstrate how our approach is
based on the use of economic theory and hence differs from the classical discount function
approach, whether the discount function is stochastic or not

3.2 Insurance factors
To model the insurance contract we use the multi-state Markov model which seems to be
standard in the actuarial sciences. See Hoem (1968), (1969) and (1988) and Norberg (1991)
for details.

The state of the contract is assumed to evolve according to the right continuous stochastic

process X, defined on (Ql1 se, P~ with left limits. Here X, is a continuous time,
inhomogenous Markov-chain with finite state space J = {I, ... ,I}. The transition probabilities
are denoted by Pij(S,t)=P(Xl =j IX,= i). The intensities Jlij(s)= lim P:j~~l), i ~ j, are assumed

. f .. lJ..to exist or 1, Je ,.

To model the flow of information in the time period [O,T] we use the filtration !Il = {!Ill :
te [O,T]}. Here we let !J4. = G(X.: O Ss St) augmented by the sets of probability zero, so the
process Xl is adapted to se Generally, a filtration is a right-continuous collection of increasing G-
algebras, i.e., !Ilsc !IllC !Il for t ~ s. In addition we let !ilT = se

We work with general deterministic insurance benefits. At any time t < T the policy is in one of
the states, commencing in state O. There are two types of benefits, a general life insurance

Bjk(t)payable upon transition from state j to state k at time t and a general annuity rate 8_j(t)the
insurer receives in state j at time t Payments from the insured to the insurer, such as
premiums paid during the term of the contract, are considered as negative benefits.
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3.3 The financial market
The financial uncertainty is generated by a d-dimensional standard Brownian motion W ={W,:
te [O,T]} on (nI' y, Pl)' Let y, be the filtration generated by Wand the collection of Pl-null
sets of nI' i.e., an increasing and right-continuous filtration, We take (jT = (j.

All trade is assumed to take place in a frictionless market (no transaction cost or taxes and short-
sale allowed) with continuous trading opportunities.

The total information available is given by ~, = y, v '4" the smallest a-algebra containing (j,

and '4,. By construction (j, and '4, are independent. We assume ~, is completed, i.e., contains
all the sets of P-measure zero.

To fit the ideas presented here into the framework of the last section we assume that the market
values of unit discount bonds can be represented in the following way.

Assumption 3.1
We assume that B,(s) for fixed s > t is an ItO-process on (nI' y, PI) and that there exists some
probability measure Ql equivalent to Pl so that

:, B,(s) =~{:.}

where p, is given by (1), or

(S)

where ~1[.] denotes the expectation conditional upon (jt. This is a fairly general description,
since most tenn structure models allow this representation. One example will be given in the
following section. The above relations may be interpreted as follows: After both the market
value at time t and the payoff at time s are divided by the numeraire, Pt and Ps, respectively, the
market value at time t is equal to the conditional expectation under Ql of the payoff.

As is common in the fmancialliterature, we refer to B ~s), as a function of s, as the tenn
structure ofinterestrate at time t. In this section we will frameourresults in terms of Bt(s) and
postpone a discussion of tenn structure models to the following section.
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3.4 Pricing principles
The random payment stream in the period [0,T] of this general insurance policy can be
described by

where l {X t =j} is the indicator function taking the value l ifX, =j and zero otherwise and Njk(t)
counts the number of transitions from state j to state k by time 1.

We denote by Vo the present value of the payments in the period [O,T] after discounting by the
money market account Then

Let 1to denote the market value at time zero of the payments in the period [O,T]. From the
principle of equivalence under Q from the last section we get that 1to= EQ[V01. This is different
from the traditional principle of equivalence which states that the price of the policy is equal to

the present value under the original probability measure, i.e., EP[V 01. By using Proposition
2.5,

where ~l denotes the Radon-Nikodym derivative of Ql with respect to P1,'implied by the
representation in expression (5). By using the independence of the financial market and the
state of the policy and the expression (5) we get that

(6)

The above expression represents our valuation principle for insurance contracts in our model.

One notable difference between this expression and the corresponding classical one is that the
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discount function is replaced by an expression for the market value of a unit discount bond

By the same arguments it follows that the premium reserve at time t, given that the policy is in
state g is

(7)

Example3.2
A) Pure endowment insurance
Let TRx denote the single premium of a contract with benefit Or if the insured is alive at time T
and O if nOL This contract is an important building block, for example in pension plans.

By the above principle it follows that

where TPx represents the probability for an x-year old insured to be alive at time T. In the
deterministic case Bo(t) = e - rt and the above expression is reduced to the familiar classical
formula for the pure endowment insurance contract,

B) Term insurance
By this contract the insured receives the benefit Ct upon death before time T. Let R!:T Idenote
the single premium. By the same arguments as above we get that

where tPxJ.1x + t is common actuarial notation for the probability density function of an x-year
old insurance customer's remaining life time. By assuming deterministic interest rate and
constant benefit, also this expression is reduced to the classical formula for term insurance.
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4. A term structure model

4.1 Term structure models
The following model is a d-factor model of the tenn structure, i.e., the value of a unit discount
bond depends on d factors in addition to time. Examples of these factors are the short tenn
interest rate, inflation and various long tenn interest rates. In this section we describe a model
which is related to the models by Vacisek (1977), Richard (1978), Brennan and Schwartz
(1979), Hull and White (1990).

4.2 State variables
We assume that the economy is described by n state variables of which one is the short tenn
interest rate. The short tenn interest rate is given by the stochastic differential equation

(8)

where ro is a constant to be interpreted as the short interest rate prevailing at time zero. The
continuous function 11and the (dxl) vector a, are assumed to satisfy technical conditions so
that equation (8) is a well-defined ItO-process and a solution exists.

In addition to rl there is an (n - Ij-dlmensional ItO-process Z of state variables. The n-

dimensional vector of state variables is given by Z = ( ~ ) or

~ = Zo + J:11zds + J:azdW. a.s,

where 11z= 11z(~,t), an n-dimensional vector and O'z= O'z~,t) an (nxd) dimensional matrix.
Zo is an n-dimensional vector of constants interpretable as the initial values of the state

(9)

variables.

4.3 The Securities
In this paper the security market consists only of unit discount bonds. We assume that Bl(s) is

a sufficiently smooth function of ~ and t for fixed s. From Ita's lemma it follows that Bl(s)
can be represented as

90



(lO)

l [aB T aa l ..J Ta2B]]
llB(t,S)= B,(s) a;zllz +at + 2'UL~az2

°B(t,S) = B~s)[ol:}
where : represents the (n x 1)-vector of first order derivatives of the bond price with respect
to the state variables and tr[A] denotes the trace. i.e .• the sum of the diagonal elements. of the

where

and

square matrix A. We impose the boundary condition B.(s) = 1.

The following lemma describes the local no-arbitrage condition from the theory of fmancial
economics.

Lemma4.1
Let ~(Zt.t). i = 1•...• d, be a function of current time and the state variables and A the (d x 1)
vector of such functions. No arbitrage opportunities implies the existence of a vector A such
that

(11)

Remarks
Each function Ai(Z.t) is independent of the expiration date s and can be interpreted as the
market price of risk related to the i'th source of uncertainty at time t, Observe that the market
prices of risk are related to the d sources of uncertainty. i.e .• the d Brownian motions and not to
the n factors characterizing the economy. The arbitrage pricing theory used here does not give
any insight into the mathematical structure of Ai(Zt>t). The quantity on the left hand side in
relation (11) is sometimes called the instantaneous excess expected return of the bond. The
product on the right hand side may be interpreted as the market price of risk (which may be
negative) connected to source of uncertainty i multiplied by the amount of risk related to source
of uncertainty i, added up for all sources. so relation (11) relates the instantaneous excess
expected return to the market value of the risk associated with a bond with given maturity. The
functions ~<Zt,t) sometimes occur with the opposite sign in other treatments.
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Proof:
We refer to, e.g., Vasicek (1977) and Richard (1978) for an arbitrage setting and Cox,
Ingersoll, Ross (1985) for a general equilibrium formulation for a proof. Here is a proof in our
model:

We fonn a portfolio of (d + 1) bonds with distinct maturities. This portfolio can be written

(12)

where x is a (d + 1) x 1 vector of portfolio weights,11 is a (d + 1) x 1 vector of drift processes
of the (d + 1) bonds and G is a (d + 1) x d matrix of diffusion processes representing d
diffusion coefficients for the (d + 1) bonds. Now, find a portfolio x so that

and

where 1 is a (d + 1) x 1 vector of the real number 1 and Ois a lxd vector of zeros.

We assume a solution to this problem exists, which imposes conditions on G. The portfolio x
has the property that the tenn involving dW in relation (12) vanishes so no risk is present.
Hence the portfolio is (locally) risk-free and the instantaneous expected drift rate of this
portfolio must equal the risk free rate, otherwise there is an arbitrage opportunity, i.e.,

Consider now the following linear programming problem:

subjectto

mln 11T·x
x

(~:}=(!) (P)

and no sign restrictions on the elements of the vector x. We recognize the constraints in this
problem as the constraints described above. The object function is artificial in the sense that it
does not have any economic interpretation, but is constructed solely for the purpose of studying
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the equivalent dual problem. First we observe that from the no-arbitrage condition, the value of
the object function is r and a solution to the problem exists (by the previous assumption on a).

The dual problem is

subjectto (O)

where 'I' is the dual variable corresponding to the first constraint in (P) and A. is a (d xl) vector
of unconstrained dual variables corresponding to the d remainder constraints. By strong duality
the value of the objective function of problem (P), which is identical to r, must take the same
value as the objective function of problem (D~ so 'I' = r. By substituting for 'I' in the
constraints in the dual problem, expression (11) is obtained. Cl

Assumption 4.1
We assume that the vector A. does not depend on properties, such as the expiration dates, of the
particular d+ 1 bonds in the portfolio constructed in the proof above.

In the case of a 1-dimensional Brownian motion this assumption will automatically be satisfied,
but it is not apparent from the above proof that this also is the case for multi-dimensional
Brownian motions.

Inserting the above expressions for TlB and Ga into relation (11) leads to

(13)

This equation together with the boundary condition Bs(s) = 1, is a version of the Cauchy-
problem.

Now we impose an assumption of technical nature.

Assumption 4.2

W. assume that EP { exp(~J.\1)..)] < 00. This condition is known as Novilrov's condition.
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Lemma4.3
The solution of the problem described above has the following probabilistic representation

where Btl-l denotes the conditional Pj-expectarlon with respect to (jt.

Proof:

We define A(u) = - iU(rv + jlTl}tv - !UlTdWv and Y(u) = Bu(s)eA(u~ A simple

calculation shows that Y(u), u e [t,s] is a martingale, so Et[Y(s)] = yet). The result follows by

observing that Y(t) = Bt(s) and that Y(s) = e~ - rr.,duH-rMW. - Ir).Tl.duJ-
a

We now defUle ~t = ex{- J:).TdW. - ·H~).Tl.duJ- Here ~t is a strictly positive random

variable on (1'11> (j,P1) Novikov's condition is sufficient to ensure that ~t has unit
expectation. We then define the probability measure Ql by Ql(D) = E[1D~T] for De (j.

Lemma4.4
The market price at time t for a bond maturing at time s, OSt S sST, is given by

(14)

Proof:

First let ~...= ex~ - r ).TdW. - Ir).TMU) and observe that ~ t[~.Tl = Lfor all t ST. The

following result is standard:
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Now,

and by the law of iterated expectations

so the result now follows from Lemma 4.3.

From Girsanov's theorem it follows that under Q

Zt = Zo + J:[l1Z - azA1du + J:a!<l(Vu a.s. (15)

and

Bt(s) = Bo(s) + J~ruBu(s)dU+ J:Bu(s)ald\\Tu a.s.,

where Ws is a standard Brownian motion under Q. We note that under Q the drift process of
the bond is rtBt(s). The variation processes under Q are the same as under P. Observe that
B~~S),where Pt is defined in (1) is a martingale under Q.

(16)
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5. A partial ditTerential equation for the market value of the
insurance contract

5.1 Thiele's equation
The equations describing the evolution of the premium reserve through time are called Thiele's
differential equations in the actuarial sciences. These kind of equations date back to 1875 and
are also the topic of current work, such as Linneman (1993), Møller (1993), Norberg (1992),

Norberg and Møller (1993) or Ramlau-Hansen (1991).

In this section we use the term structure model of the previous paragraph, we would expect that
different term structure models would give rise to other differential equations.

We derive a partial differential equation describing the evolution of the market value of the
policy. The idea is as follows: We knowone representation of Bl(s) under Q from (16). Then
we derive another expression for Bl(s) from the corresponding expression for the premium
reserves given by the relation (7). By equating the expressions for B ts) we derive one
differential equation for the market value of the contract.

We now obtain the partial differential equation for the market value of the insurance contract as

follows:

From (7) we may write nf =IT n;g(u)du, where n;g(u)= Bt(u)Pf and

Pf =~pgj(t,u){aj(u)+ ~J.Ljk(u)aJ'k(u)}.
J bJ

We notice that ranI(u) ad ~---atdu =Tt + ag(t) + ~J.Lgh(t)agh(t).
t h¢g

For fixed u we calculate Bt(u) = ;, n;g(u) and want to find an expression for dBt under the
probability measure Q. By using Kolmogorov's backward differential equation,
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we getthat

aBt(u) I ~ _h S anI(u))at = pf Jlsh(t)[x--(u) - n; (u)] + -at .
h~s

Recall that Bt(u) for fixed u is a function of Z. the vector of state variables, and t. From lw' s
lemma it follows that the drift process for dBt under Q is

From expression (16) and since Bt(u) = pIp n;S(u)we may also write this drift process as

By equating the above two expressions we get that

an~) T(llz _ GzA.)+j{ GzG1a;;U) ] +LJlgh(t)[~(U) - n;S(u)]+ ana;u) - n;S(u)rt = o.
h~S

By integrating this expression with respect to u from t to T we get the following differential
equation:

We may interpret equation (17) as the counterpart to Thiele's differential equation in the
actuarial sciences. However, our equation (17) also deals with economic risk. This is not the
case for the standard Thiele's equation. All the terms have reasonable and intuitive
interpretations(see, e.g., Hoem, 1969) except the terms in the brackets on the right hand side.
These terms stem from the economic theory of uncertainty. The above equation therefore
incorporates financial risk also in the context of life insurance.
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Møller and Norberg (1993) have derived an equation similar to our equation (17) in a model
with stochastic interest rate. Their model did not include an economic model of a bond market
and their ~uation did consequently not contain the term involving the market price of risk(a:T az'AJ The major difference between the two models is the valuation principle being
used. Møller and Norberg use the classical principle of equivalence, i.e., the single premium is
calculated as expectations under the originally given probability measure P which implies risk
neutrality with respect to financial risk. We argue that in the context of a financial market this
principle must be replaced by the principle of equivalence under an equivalent probability
measure Q which is constructed by imposing the no-arbitrage condition on the fmancial market.
This means in particular that the principle of equivalence under Q involves equating market
values of premiums to market values of benefits. Below we compare the two pricing principles
in a single state variable model.

It is common in life insurance to split the periodic premium rate into a mortality risk premium
rate and savings premium rate. For the multi-state contract we denote the savings premium rate
a~(t) and the transition risk premium rate a~(t) given that the policy is in state g at time t. For
this policy we get

a~(t) = LJlgh(t)[agh(t) +~ - xf]
h~g

and

From (17) it follows that - ag(t) = a~(t) + a~(t), i.e., net income equals the sum of the savings
and the transition risk premium. The new terms are related to the savings premiums and can be
traced back to the stochastic financial environment. Both financial risk and risk connected to

the state of the policy are present in this model. We therefore find it natural to refer to what is
usually called only risk premium as transition risk premium.
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5.2 Examples
A) Vasicek (1977)-model
In this case n = d = 1 and the only state variable is the short-tenn interest rate.

First we specialize (8) by choosing Tl(rl't) = q(m - rt) and a(rl't) = v, where q, m and v are
positive constants.

This Ornstein-Uhlenbeck process is described in Example 2.4 and the following short-hand
notation is common

dr, = q(m - rJdt + vdWt. (18)

This model is stated in nominal terms so one disadvantage by using this process is that negative
values of rt are possible, a fact which implies arbitrage opportunities in the bond market.

Now we assume that the market price of risk A.(rt,t)= A, a constant.

It follows that

(19)

l-e-qt (r. lov 1(v)2) 1(VHt)2)where H,« q andGt=exp\\.m--q-'2 q (Ht-t)-q 2 .

This result is from Vasicek (1977) (in his paper the market price of risk is dermed with the
opposite sign). Observe that the formula depends on the market price of risk.

The fundamental differential equation of the market value of a term insurance now becomes:

The single premiums of a pure endowment insurance and a term insurance follows from
expression (19) and Example 3.2:
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and

(20)

B) A comparison of our model with Norberg and Møller's model in the Vadsek-setting
In Norberg and Meller's model the short interest rate is the only state variable and is given by
(18). They also assume that the financial market is independent of the state of the policy, but
calculate the premium as expectations under the originally given probability measure P. In
particular this implies that the valuation equation corresponding to our equation (6) will be

where

G~ = exp( (m - t(~f)(Ht - t) - ~(V~t f). and H, is as previously defined.

We observe that Zo(t) has the similar role in Norberg and Meller's model as Bo(t) in our and
would now like to compare the two pricing principles. From expression (19) we can write

Bo(t) =Zo(t)exp( - Å; (Ht - t)).

Since 1 - x Sexp( - x) for x ~ O,it follows that (H,- t) SOfor q ~ Oand t ~ O.

By the arguments in Hull (1989) the market price ofrisk, when the underlying state variable is

an interest rate, is negative, so A. <O. Then ex~ - Å; (Ht - t») Sl, hence Bo(t) SZo(t).

With this result in mind and by comparing our valuation principle given in expression (6) with
the one above, it should be clear that our principle implies lower prices for insurance than tile
principle of equivalence. In a world where all our idealized assumptions of frictionless markets
were satisfied all the customers would buy insurance from our company and still our company
would not go bankrupt. The company of Norberg and Møller would then go out of business.

100



C) CIR-model
This model of the tenn structure was developed in an equilibrium setting by Cox, Ingersoll and
Ross (1985) and in an arbitrage free economy by Richard (1978). The short-term interest rate
is the only state variable and is given by

dr,= q(d - rJdt + vyr.,~t

under Q. Compared to the previous model this one has the advantage that the interest rate can
not take negative values. The price at time zero of a unit discount bond maturing at time t is

Bo(t) = ofIRe - H fIR.ro,

where ~

[ ]

y2
OCIR _ 2:ye(Q+l)t12

t - (y+q)(ell-l)+2y ,

CIR 2(ell-l)
Ht = -(y-+-q)....:.(e-ll---l....) +-2y-,

and
1

'Y= (q2 + 2v2) '2.

The market prices for the two single life contracts will take the same fonn as in the Vasicek-
model:

D - p OCIR e-H fIR·roT"~- T x· T

and
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6. Concluding remarks

We have derived pricing formulas for a generallife insurance contract in a model with random
interest rates based on the assumption that the state of the policy is independent of the fmancial
markets and that no arbitrage opportunities exists in the fmancial market. The market price was
found as an expectation under a different probability measure following from economic theory.
Furthennore, our differential equation of the market value of the insurance contract in this
model fonnally resemble the traditional Thiele's equation, but contains some new interesting
terms dealing with economic risk. By specializing to tenn structure models we have also
presented some new formulas for the market value of various life insurance contracts.

Ina companion paper Persson (1994d) these results are generalized to a situation where also the
amount of benefit is random and linked to the value of a financial asset. This situation is
relevant for unit-linked insurance.
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Chapter 5

RANDOM BENEFITS AND
STOCHASTIC INTEREST RATES
IN LIFE INSURANCE

Unit-linked or equity-linked contracts are examples of life insurance contracts where the
emount of benefit is contingent on the market value of some rmancial asseL Using
contingent claims theory and ttaditional actuarial theory, we derive an economic valuation
theory for such contracts in a model with random interest rates. We derive partial differential
equations for the market values of the assurances, which may be considered as
generalizations of both the traditional Thiele equation of classical actuarial sciences and well
known differential equations from the theory of financial economics based on no arbitrage
opportunities. Compared to the classical Thiele equation our equations contain some
interesting new terms which depend on the choice of model of the term structure. Here we
generalize the similar equation from Persson (l994c) to the case of a random benefiL We
deduce similar equations based on the Heath, Janow and Morton (1992) term sttucture model
both for deterministic and random benefits.

Key words: Life Insurance, Contingent Claims Analysis, Arbitrage Pricing Theory, Thiele's
Differential Equation, Principle of Equivalence, Term Structure Models.

1. Introduction

1.1 Focus
In this paper we are concerned with pricing of life insurance contracts in the presence of interest
rate risk. In particular we consider insurance policies where the amount of benefit is random
and linked to a financial asset. The principle of equivalence, which traditionally has been the
basis of the pricing of life insurance policies, neither deals with stochastic interest rates nor
stochastic amounts of benefits.

In an economic model where risky investment opportunities are present and also the return on
so-called riskfree investments is random, care must be taken regarding the valuation issue and
in our model the traditional principle of equivalence cannot be applied. The philosophy behind
this principle is that, abstracting from administrative expenses, a company's income
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(premiums), and expenses (paid benefits) should balance in the long run. Traditionally the:
discount factor used for the valuation purpose is interpreted as the company's return on i~
investments. In the described fmancial environment this return will depend on the chosen
investment strategy, which again depends on the company's attitude towards financial risk.
Here we adopt a conservative point ofview, i.e., we assume that the company does not want JO
accept more financial risk than it is forced to. This corresponds to the common opinion that the
insurance companies should not "play with other people's money", in most countries
manifested by legislation restricting the insurance industry's investments possibilities. We do
not address the important question whether an insurance company should accept more fmancial
risk and, if yes, how much more. However, we should expect that companies which choose
more risky strategies on average will get a higher yield on their investments and hence could
offer cheaper insurance than the conservative companies. At the same time risky investment
strategies increase the probability of bankruptcy of the insurance company.

Equity-linked or unit-linked insurance contracts link the amount of benefit to a fmancial asset.
usually a mutual fund. For the insurance industry, one of the reasons for introducing these
products is to take advantage of the higher yields in the financial markets and therefore offer
products more competitive compared to alternative ways of saving. These products also offer
the customers some flexibility in that they may choose more or less freely to which mutual fund
to link the benefit.

We assume that the policy at each point in time is in one of a finite number of states and moves
between the states according to a time inhomogenous Markov process. An important
assumption we maintain throughout the paper is that the insurance company is risk neutral with
respect to transition risk. The term transition risk is more general and corresponds better to the
Markov-model than the term mortality risk which is seen in other treatments. This assumption
is also implicit in the traditional principle of equivalence. Another important, though maybe
more reasonable assumption is that the financial market is independent of the state of the policy.

In addition to the pricing issue of unit-linked contracts we develop a partial differential equation
for the market value of the premium reserve which can be viewed as a generalization of the
Thiele equation of the actuarial sciences. The traditional Thiele equation was first discovered by
the Danish actuary Thorvald N. Thiele in 1875 and has been generalized and developed further

in more recent works such as Hoem (1968), Hoem (1969), Møller (1993), Norberg (1992) and
Norberg and Møller (1993) and Persson (1994a).
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The current paper is basically an extension of a companion paper Persson (l994c) in two ways.
First, we develop partial differential equations for the market value of the premium reserve
based on the Heath, Jarrow and Morton (1992)-model (henceforth referredto as the fUM-
model) of the term structure. We compare this equation with the correspondingequation from
Persson (1994c)which is based on another term structure model. Second, we explain a pricing
principle and develop the similar equations when the amounts of benefits are allowed to be
random.

In Section 2 we describe two term structure models and investigate the consequences for a
generalization of the traditional Thiele equation in Section 3. To focus on this difference we first
assume only one dimensional uncertainty (i.e., the model is driven by a one-dimensional
Brownian motion).and a deterministic benefit

In the first bond pricing models (Vacisek (1977), Richard (1978), Brennan and Schwartz
(1979c» in financial economics, the bond price is assumed to depend on certain state variables
of which one is the short interest rate. The HJM-model assumes that the development of the
forward rates and the initial term structure are given. By assuming that no' arbitrage
opportunities exist, the drift term of the forward rate is restricted in a way so that pricing can be
done from knowledge of only the volatility processes of the forward rate and the initial term
structure.

In Section 4 we introduce risky assets, we have in mind the modem life insurance products
mentioned above where the benefit is linked to the market value of some financial assets, Here.
it is natural to include multi-dimensional uncertainty modeled by a multi-dimensional Brownian
motion. We develop pricing principles consistent with economic theory and, ~ Section 5,
differential equations describing the evolution of the market value of the policies - similar to the
ones described above. These equations are more complex than the ones developed in.. Section 2
because of the multi-dimensional uncertainty and the random benefits.

Examples are included in Section 6 which compare the pricing of a typical unit-linked benefit in
the two term structure models. Here we also present some formulas for the unit-linked
versions of some insurance contracts. Some concluding remarks are given in Section 7.

The mathematical presentation is not completely rigorous in that conditions of technical nature
often are described very briefly, if mentioned at all. Technical conditions are required, e.g., on
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the drift and volatility processes of the ItO-processes (such as measurability, adaptedness, and
integrability-conditions) to ensure that these are well-defined. Smoothness conditions are
required to apply Ita's lemma, for example growth conditions are required to ensure that
stochastic differential equations have solutions. However, we have tried to mention any
condition of economic nature and to cite references where technical conditions can be looked
up. Also all relations involving random variables are understood to hold almost surely.
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2. Two term structure models

2.1 The financial market
This section presents a brief description of two different tenn structure models. In this section
we limit the discussion to one factor models meaning that only one source of uncertainty is
present. The generalization to several sources of uncertainty, which we will refer to as multi-
factor models, is straight-forward and will be shown in Section S.

A time horizon T is fixed and the financial uncertainty is generated by a l-dimensional standard
Brownian motion W defined on a probability space (0,1" ,P). All trade is assumed to take place
in a frictionless market (no transaction cost or taxes and short-sale allowed) with continuous
trading opportunities.

Definition 2.1
A unit discount bond is a financial asset that entitles its owner to one unit currency at maturity
without any intermediate coupon payments. There is a continuum of such bonds maturing at all
times s E [O,T]. We denote by Bt(s) the market price at time t for a bond maturing at a fixed
date s ~ t. From the definition Bs(s) = 1 (assuming no default risk).

2.2 The state variable model
Now we describe what we call the state variable model. In this model the bond price is
assumed to only depend on one state variable, the interest rate, in addition to time.

The short-term interest rate is given by the ItO-process

We refer to the functions Tlr and (Jr as the as the drift process and the volatility process of the
interest rate, respectively. These processes satisfy technical conditions so that there exists a
solution to the stochastic differential equation above. The parametric fonn of these processes
together with the constant ro are our primitives, so the dynamics governing the evolution of the
underlying state variable (for the moment only one) is known.

For fixed sST, we assume that Bt(s) is a function of rt and t. The functional relationship
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between Bl(s) and rl and t is at this step not known. By assuming that BJs) is sufficiently
smooth we obtain from Ito's lemma,

(1)

l [aB l a2B _2 aB] l aa .Here l1B(t,S)= B,(s) a;-l1r + 2'a;ror + Tt and O'B(t,S)= B,(s)a;-O'r The value of the urut
discount bond is 1 at maturity, so it is reasonable to expect that the volatility of the bond should
decrease as time approaches maturity. This is not generally the case for the above price
process.

From the theory of fmancial economics (see, e.g., Vacisek (1977» we have that no arbitrage

opportunities imply that there exists a function A(t) such that

(2)

In the case of a single state variable the function ACt) is called the market price of risk of the
interest rate, though it really is related to the underlying Brownian motion. A generalization of
this result is presented in Section 4. The above relation requires that the bond price is an ItO-
process on the form in expression (1), but does not require that the drift and the volatility
processes are on the particular forms implied by the state variable model given in expression
(1). However, by assuming the state variable model and substituting the expressions for l1B
and O'B in relation (2), we obtain the so-called fundamental partial differential equation
governing the value of the bond.

Assuming that A.(t) satisfies some technical conditions, we define

~,=exp( - f:A(U)dWu - H:A(UYdU)
and a probability measure Q by

(3)

It can be shown that the market value at time t of a unit discount bond is
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•-Irudu
Bt(s) = E?[e' l. (4)

We see that the quantity - ls
rJlu serves a special role. If for example, this is normally

distributed under Q. exp(- fr.,du) is IognonnaIly distributed and B,(s) follows from known

properties of these distributions. This is the case, e.g., for the model by Vacisek (1977),

where Bt(s) can easily be calculated from the above formula (see Section 6) and where the
resulting formula depends on the parameters of the drift and the volatility processes of the state
variable, the expiration date (s) and the market price of risk (A(t». It also follows that

(5)

and

(6)

under Q, where W is a standard Brownian motion under Q. We observe that the drift process
of r tunder Q depends on the market price of interest rate risk. To calculate the bond prices
from formula (4) we need knowledge ofA-(t) to be able to use expression (6).

2.3 The HJM model
The starting point for the tenn structure model of Heath, Jarrow and Morton (1992) is the
relationship between the instantaneous forward rates and the bond price,

(7)

Here ft(u) is the instantaneous forward rate for time u prevailing at time t. The forward rates
are modeled by ItO-processes on the fonn,
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fl(u) = fo(u) + J:<lv(U)dV+ J:av(U)dW v'

u E [O,T]. Here fo(u) is given for all u ST. The function av is called the drift process and the
function av is called the volatility process of the instantaneous forward rate, respectively. Both
these processes are assumed to satisfy technical conditions so that expression (8) is a well-
defmedItO-process. From (7) we see that also Bo(s) for SE [O,T] is given, so the whole initial
tenn structure is taken as a primitive. We will refer to the collection (av(u):u E [O,T]) as the
volatility structure. Inparticular, the short interest is given by

(8)

From expression (7) it follows that

where

(9)

u(v,s) = _15<lv(u)du,
and

a(v,s) = -15 av (u)du.

The process Xl(s), represents minus the integrals of the forward rates from time t to time s.
We assume that this process is a well-defined ItO-process which imposes some additional
constraints on the drift and the volatility processes of the forward rates (see, e.g., Heath,
Jarrow and Morton (1992».

It follows from Ito's lemma that

(lO)

where l 2b(v,s) = u(t,s) + '2[a(t,s)] .
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This stochastic differential equation does not involve any first or second order partial
derivatives of the (unknown) function B as the corresponding equation (1) does. Instead the
dynamics ofB are given in tenns of the primitives, Le., the drift and the volatility processes of
the forward rates. This model of the bond price also has the theoretical advantage that the
volatility process tends to zero as time approaches maturity.

The no-arbitrage condition corresponding to the condition (2) above is usually written as

(substitute 11B= rt + bu.s), GB = aCt,s) and differentiate with respect to s)

(11)

This condition is called the forward rate restriction. We now define the measure Q exactly as in
expression (3). By using the no-arbitrage condition (11) it follows that the forward rate
process under Q becomes

(12)

and the short interest rate under Q becomes

We see that the instantaneous forward rates processes as well as the short tenn interest rate

under Q are completely detennined by the volatility structure and the initial tenn structure. As
opposed to the previous model, we do not need knowledge of the function A.(t)to value bonds
byequation (4).

By using the no-arbitrage condition (2) the process in expression (9) becomes

(13)

and the expression for the bond price may be written
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(14)

i.e., the same fonn as the corresponding expression (5) in the state variable model.

The state variable model takes the short-rate interest process and the market price of risk as
primitives, while the mM-model takes the initial tenn structure, volatility structure and the
market price of risk as primitives. The bond prices depend on the parameters of the drift and
volatility factors and the market price of risk in the state variable model whereas they depend on

the initial tenn structure and the volatility structure in the IUM-model. The mM-model has the
advantage that it does not require direct knowledge of the market price of risk. Still A(t) must
satisfy some technical conditions, an issue we have not addressed here, to ensure that the
measure Q is well-defined (that A(t) is uniformly bounded is a sufficient condition). For a more
extensive comparison ofthese models we refer to Iamshidian (1991).
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3. Partial differential equations for the market value of the
insurance contract based on the one-factor models

3.1 The premium reserve
The premium reserve of a policy at time t can be considered as the insurer's debt to the insured
at time t. In this section we only deal with deterministic benefits and the one-factor models.
We derive a stochastic differential equation under the equivalent martingale measure Q for the
market value of the premium reserve. This equation is based on the assumption that the
instantaneous expected return of the bond price equals the short interest rate under Q, which is
the case for both the state variable model and the lDM-model. The economy in the state
variable model is characterized by a fmite number of state variables and considering the market
price of the premium reserve as a function of the state variables naturally leads to another
stochastic differential equation under Q also describing the market value of the premium
reserve. By equating the drift terms of these two processes we obtain a deterministic
differential equation that must be satisfied by the market value of the premium reserve. In the
lUM-model the forward rate processes serve the same purpose as the state variables.
However, there is not a finite number of these, but we suggest two ways to go around this
problem and present the resulting deterministic differential equations.

3.2 The insurance contract
To model the insurance contract we use the multi-state Markov model, by now standard in the
actuarial sciences. See Hoem (1968), (1969) and (1988) and Norberg (1991) for details.

The state of the contract is assumed to evolve according to a right continuous stochastic
process X, with left limits dermed on a given probability space (O,!F ,P). Here X, is a
continuous time, inhomogenous Markov-chain with finite state space , = {l,...,J}. The
transition probabilities are denoted by Pij(S,t) = P(Xl = j IX, = i). The intensities J.1ij(S)=
lim P:j~~l), i * j, are assumed to exist for i, je ,. Furthermore, we assume that X, is independent
bYall the processes describing the financial assets, which we refer to as the state of the policy is
independent of the financial market.

In this section we work with general deterministic insurance benefits. At any time t S; T the
policy is in one of the states, commencing in state O. There are two types of benefits, a general
life insurance a_;t(t)payable upon transition from state j to state k at time t and a general annuity
rate a_;(t)the insurer receives in state j at time t. Payments from the insured to the insurer, such
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as premiums paid during the tenn of the contract, are considered as negative benefits.

3.3 Partial differential equations for the market value of the insurance
contracts

The Thiele equation of the actuarial sciences can be viewed as a description of how the value of
an -in a certain sense- average insurance contract develops over time. The study of this
equation is therefore important both from theoretical and practical points of view. By
introducing models including fmancial uncertainty the Thiele equation based on the Markov-
chain model developed by Haem (1968) has been extended by Norberg and Møller (1993),
Persson (1994b) and Persson (1994c). In Haem's equation all terms have reasonable and
intuitive interpretations. The corresponding equations in the papers mentioned all captain
additional terms stemming from the financial risk. These terms can not be interpreted in a
similar straight-forward and intuitive manner as the terms in Haem's original equation.

The following lemma presents a formula for the market value of the premium reserve of an
insurance contract and is a special case of the results in Section 4 of this chapter.

Lemma2.1
Consider a life insurance contract as described in Section 3.2 with deterministic benefits.
Assume that the fmancial market is independent of the state of the policy and that the insurer is
risk neutral with respect to transition risk. The market value of the prospective premium
reserve for the insurance contract at time t given that the policy is in state g, is given by

(15)

where Bt(u) represents the market value at time t of a default-free unit-discount bond expiring at

time u.

Proof:
See Section 4 of this chapter.

Observe that I1f depends on the market values of the bonds.
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It is convenient to rewrite expression (1S) in a different notation. Let

(16)

where

pr =~pgj(t'U}{8j(U}+ ~Jljk(u}ajk(u}},
J bJ

By using Kolmogorov's backward differential equation,

we getthat

aN "'" woJtTt = ~Jlgb(t}[Pf - It-]·
h;ltg

From expression (1S) the prospective premium reserve may be written as

TIf =lTFf(u}du.

We now focus on the quantity Ff(u}, but first observe that

Fr(t} = ag(t}+ LJlgb(t}agh(t}.
h;ltg

Here ag(t)dt represents the benefit the insured is eligible to in the interval (t,t + dt) in state gat
time t, Jlgb(t}dt represents the conditional probability that the policy will jump to state h in the
interval(t,t + dt) given that it is in state g at time t and agb(t}is the amount the insured receives
upon a transition from g to h. In this sense Fr(t)dt represents the benefits the insurer on
average has to pay in the time interval (t,t+dt).

Now we use property that the dynamics of the bond under Q is dBtu} = rtB'u)dt +
(JB(t,u}B~u)d\\Tt (in the HJM-model (JB(t,u) was labeled a(t,u), but this is just a notational
issue}. The critical property is that the instantaneous expected return of the bond equals rt
underQ.
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From expression (16) and Ito's lemma follow that

We integrate this expression with respect to u from t to T, interchange the order of integration
and add and subtract some terms to obtain

From the definition of TIf and by interchanging the order of integration in the second line, we
get

We recognize the term in the square brackets inside the last integral above as F~(u) and write
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This is our first stochastic differential equation describing the dynamics of the market value of
the premium reserve under Q. The derivation is only based on the assumption that the expected
instantaneous return of the bond price is r l under Q, hence the equation is valid for both the
state variable model and the HJM -model, The volatility process is not expressed in terms of
IIf, but as soon will become apparent this fact does not matter. Observe that the drift process
of this equation contains exactly the same terms as the traditional Thiele equation.

For the state variable model another stochastic differential equation can easily be derived. We
derive this equation under Q by noticing from (15) that TIf is a function of BJs), s e [t,T],
which in the case of a single state is a function of rl and t for s e [t,T]. By considering TIf as a
function of rl and t it follows immediately from Ito's lemma and the dynamics of rl under Q
given byequation (6) that

(18)

The stochastic differential equations in (17) and (18) represent the same quantity, hence their
drift and volatility terms must be the equal. By equating the drift terms we obtain

(19)

Here we observe that expression (19) depends on A. the market price of risk. From two

stochastic differential equations under Q representing the same quantity we have derived one

partial differential equation for the market value of the policy. The measure Q serves as a
technical tool in the derivation of a detenninistic partial equation which the market value of the
insurance contract must satisfy. The above equation is a special case of an equation derived jo
Persson (1994c) using a somewhat different approach. We may interpret equation (17) as the
counterpart to Thiele's differential equation of the actuarial sciences. However, our equation
also deals with financial risk, which is not the case for the traditional Thiele equation.

As seen in Section 2, equations involving first and second order derivatives occur naturally in
the state variable model. A similar equation for the HJM-model would necessarily involve the
first and second order derivatives of TIr with respect to a quantity corresponding to the state
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variables. The collection (fl(u): ue [t,T]} are the primitives at time t of the HJM-model and, in
many respects. serves the same pwpose as the state variables in the state variable model.
However. the number of these variables are not fmite. One way to proceed is to represent this
continuum ofprocesses through one state variable. We suggest to consider

This quantity represents minus the integral from t to T over the instantaneous forward rates
prevailing at time t. The only motivation for the use of the minus sign is the relation X, =
Xl(T). where Xl(T) is defined in expression (9) and where we already know the dynamics for
Xl(T) under Q from expression (13). Another possibility is to use Bt(T) which essentially
contains the same information as X, (this is obvious from the defmition of Xt(T». We also
know the dynamics of Bl(T) under Q from expression (14). Maybe one advantage of using
Bl(T) instead of X, is that Bl(T) represents a well-defmed economic quantity. the market price
of a bond, whereas the economic interpretation of X l is somewhat lose. The deterministic
partial differential equations corresponding to equation (19) for these two cases are

and

These equations are derived exactly as equation (19), by equation the drift terms of two
stochastic differential equations under Q. They may be considered as generalizations of the

Thiele equation in the case of the HJM term structure model and deterministic benefits. The
terms involving the first and second order derivatives are different from the similar terms from
the state variable model. The equations involve the volatility structure of the forward rates
through a(t,T) but do not depend on the market price of risk as the corresponding equation (19)
of the state variable model do. Setting all the partial derivatives of equations (19), (20) and (21)
equal to zero leads to the traditional Thiele equation which does not deal with fmancial risk.
Setting the insurance specific factors. represented by ago agh (the benefits) and J.1gh (transition
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intensities), in equation (19) equal to zero leads to a well-known so-called fundamental,
differential equation from financial economics governing the value of, e.g., bonds in the state
variable mode1. We are not aware of any similar "fundamental" differential equations for the
HJM-model

121



4. The market value of an insurance contract with random benefits

4.1 Unit-linked insurance
The set-up in this section is applicable for unit-linked or equity-linked insurance (called
variable life insurance in USA). The distinguishing property of unit-linked insurance is that the
value of the benefit is linked to the value of a certain number of units in a mutual fund or
another financial asset. Earlier work on this type of insurance may be found in Boyle and
Schwartz (1977), Brennan and Schwartz (1976), (1979a), (1979b), Delbaen (1980),
BaccinelloandOrtu (1993), Nielsen (1993), Persson (1994a) and Persson (1994b). Some of
these works are reviewed in Persson (1994a). The current model generalizes the models of
Persson (1994a) and Persson (1994b) by introducing multiple sources of uncertainty including
a stochastic interest rate.

First we describe the extended financial market and explain the pricing principles, which are
common for both the term structure models. In Section 5we look at the particular properties of
the two term structure models. There are now several sources of uncertainty modeled by a
multi-dimensional Brownian motion. The model of the financial market is from Amin and
Jarrow (1992).

4.2 The financial market
The time horizon T is fixed and the financial uncertainty is now generated by a (d + e)
dimensional standard Brownian motion W ={W r t e [O,T]} on a complete probability space
(n, ~,P) together with a flltration {~l:t e [O,T]}, representing the flow ofinfonnation. All
the martingales encountered throughout will be martingales with respect to this filtration.

All trade is assumed to take place in a frictionless market (no transaction costs or taxes and
short-sale allowed) with continuous trading opportunities.

Definition 4.1
Let rl denote the short term interest rate prevailing at time t, t e [O,T]. Formally, rl is a
stochastic process defined on (n, ~ , P) and will be described later. We define the money
market account as

(22)
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i.e., the value at time t of one unit currency invested at time zero accruing interest according to

the short tenn interest rate.

As before there is a continuum of unit discount bond maturing at all times s E [O,T). We
assume that the market value of the unit discount bonds can be represented as ItO-processes on
the following fonn,

(23)

As indicated in Section 2, the drift process 11Band the volatility processes dB will depend on the
model of the tenn structure.

In addition to the bonds there are m risky securities. Neither of them pay dividends, which is
not an unreasonable assumption in the current insurance setting. They are modeled by ItO-
processes on the fonn

t d+e t

S{= sb +L11sj(u)Stdu +~L dsj(u)StdW~, j = 1,2, ... ,m.
1= 1

(24)

We assume that m ~ e and will sometimes refer to the (mx l) vector of security prices at time t
as St. The last e Brownian motions are reserved for modeling uncertainty related to the risky
assets.

Our next task is to describe the concept of the market prices of risk corresponding to the d+e
sources of uncertainty.

First f1X d bonds with expiration dates (TI' ... , T~, where O< TI < ... < Td STand fix e risky
assets referred to by (SI' ... ' SJ. The inclusion of the bonds is not strictly required (as long as
at least d + e risky assets exist), but allow us to relate this analysis to the restricted tenn
structure economy (i.e., no risky assets) used in Heath, Jarrow and Monon (1992) (see also
Persson (l994c) for a similarinsurance setting). We defIne
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1'1B(1,TI)- rl aå(t.Tt) ~(t.Tt) o o

1'1B(t.T~- rl aå(t.T~ ~(t.T~ o o
At= 1'1s1(t) - rl

• A2=
a~ 1(t) cfs1(t) cfs~l(t) cfs7(t)

1'1sc(t)- rl a~.(t) cfs.(t) ~+l(t) a::e(t)s.

Here At is an (d+e)-vector representing the expected instantaneous return in excess of the
short-term interest rate on the d bonds and the e risky securities. The rows in the (d+e)x(d+e)
matrix A2 represent the (d+e) volatility processes of the d bonds and the e risky assets.

We seek a (d+e)-vector A so that

(25)

The following condition imposes restrictions on the volatility processes of the bonds and the
risky assets and is sufficient to ensure that the inverse of A2 is well-defined and hence that a
solution to equation (25) exists.

Assumption 42
A2 is non-singular (almost surely and almost everywhere).

Each A~.i = 1•...•d+e. can be interpreted as the market price of risk of related to the i'th source
ofuncertainty at time t. In addition to 1,the vector A will depend on (Tt •...• T~ and the e risky
securities (S 1••••• S e). so we may write A( t,T1. •••• Td'S t •...• S e). Each row in the matrix on the
right hand side of equation (25) may be interpreted as the market price of risk (which may be
negative) connected to uncertainty source i multiplied by the amount of risk of source i. added
up for all sources. so this expression relates the instantaneous excess expected return to the
market value of the risk associated with a specific asset The A! 's sometimes occur with the
opposite sign in other treatments.

Amin and Jarrow (1992) show that. assuming that the A! 's are uniformly bounded, there exists
a unique equivalent martingale measure for the d bonds and the e risky securities so that the
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price processesof these asset discounted by the money market account are martingales.
However, we would like to find an equivalent measure so that the discounted price process of
any bond and any risky asset are martingales. A sufficient condition for this now follows.

Assumption 43
We assume that A(t,TI, ... , Td,SI, ... ,SJ = A(t) for all choices of (Tl' ... , Td) and (SI, ... ,Se).

That is, we assume that the A-vector in equation (25) does not depend on the expiration dates of

the bonds or the particular e risky assets involved.

In particular, for a bond with expiration date s we can write

d

1'lB(t,s)- rt = LdB(t,s)A~.
i= I

(26)

We notice that the expected instantaneous excess return of the bonds are not related to A~for i =
d + 1,... ,d + e. Similarly we can write for any risky asset j

d+e

1'lsp)-rt= LdsP)~·
i= I

(27)

These ~ 's will be the basis of the construction of the equivalent martingale measure Q. To
ensure that Q is well-defined we impose some conditions of technical nature.

Assumption 4.4

We assurne that +x{ t~ro..:>1ru. )] < 00. This condition is known as Novikov's

_J ( d+e r d+e ~ )J
condition. We also assume that v,exp - ~ 1A/.dW:. - t~L(A/ido < 00.

A price system that satisfying Assumption 4.2 and 4.4 is said to be L2-reducible by Duffie
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(1992). A sufficient condition is that the Å~ 's are uniformly bounded (an economic
interpretation of this assumption is that the agents are not allowed to be infinitely risk averse
with respect to any of the d+e sources of uncertainty).

We define an equivalent probability measure by

(28)

and show the following lemma.

Lemma4.5

S{ Bt(s)
The discounted price processes J3t and p.' for j = l •... .m and s e [O.T]. are martingales

with respect to 1i under Q.

Proof'
From Girsanov's theorem

w~=~+ J~A.!ds. i= l •...d + e
are independent Brownian motions under Q. Substituting for d~ in (23) and (24) and using
(26) and (27) shows that the instantaneous expected rates of returns of the assets equal the
short-term rate under Q,

(29)

The result follows by dividing the price processes by the money market account using Ita' s
lemma. Then the drift terms vanish. Q
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We have constructed an equivalent martingale measure in our economy, so no arbitrage
opportunities are present (see, e.g., Duffie (1992». Furthermore, it can be shown (see Amin
and Jarrow (1992» that Q is the unique measure with the property described in Lemma 4.5.

4.3 The insurance benefits
We allow the benefit to be linked to the market value of the risky securities. This means that the
benefit is either a traded asset or can be duplicated by a portfolio of a finite number of traded

assets. Note that also the payoff of detenninistic benefits can be duplicated by portfolios of
unit-discount bonds. As before there are two types of benefits, now denoted by aJ"k(St)for the
generallife insurance contract and by aj(St) for the general annuity rate. The benefits are
allowed to be general (measurable) functions of the m risky securities, which in particular
means that they may include guarantees.

Thus the insurance benefits can be viewed as contingent claims, in the usual sense known from
financial economics. The contingent claim theory based on the works by Harrison and Kreps
(1979) and Harrison and Pliska (1981) can then be applied for valuation. The uniqueness of

the measure Q implies that the market is complete, i.e., there exists a market price for every
contingent claim with finite variance. Let 7tt(u) denote the market value of the benefit a(Su)' for
the moment dropping the subscript of a(S J (and the corresponding superscript of 7t tu»
describing upon which event the benefit expires. In the financial model where all uncertainty is
modeled by lW-processes, the market prices will also be ItO-processes on the form

(30)

for some processes Tl" and a!t. To detennine this market price we again use a result of
Harrison and Kreps (1979) stating that the market price of a contingent claim can be found as

the conditional expectation of the payoff under the equivalent martingale measure Q after a
change of numeraire, or

(31)

using the money market account as numeraire. Observe that for t s s S u,
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ud" nI(u) J =EaEa a(S u) ]J =Ea a(s u) J = nt(u),L;.tlp, tlslpu tlPu Pt'

hence also the discounted market prices of the benefits are martingales under Q. The economic
intuition for this is as follows: The price processes of the bonds and the risky assets are
martingales under Q and the benefit can be considered as a portfolio consisting of a combination
of these assets. ff the price processes of the contingent claim is not a martingale, arbitrage
opportunities would be present and riskless profit could be made by taking opposite positions
in the duplicating portfolio and the contingent claim.

By the arguments used in the proof of Lemma 4.5 it is easy to show that the drift processes of

~(u) also satisfies

d+e

'Jln-rt= Lcfn(t)A4
i= 1

(32)

and that the process for any 7t (before discounting) under Q is

(33)

4.4 Pricing principles
The random payment stream in the period [O,T] of this general insurance policy can be

described by

where 1(X t =Il is the indicator function taking the value 1 ifX, =j and zero otherwise and Njk(t)
counts the number of transitions from state j to state k by time t

We denote by Vo the present value of the payments in the period [O,T] after discounting by the

money market account Then
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Let Ilodenote the market value at time zero of the payments in the period [O,Tl. In this model
there are two independent sources of uncertainty, one related to the fmancial market, the other
related to the transition between states. Fonnally we may model each source on its own
probability space and consider (O,1",P) as a product space. The Radon-Nikodym derivative ~
in expression (28) can be considered as a pricing rule on the probability space describing
financial risk. Risk neutrality with respect to transition risk implies that the corresponding
pricing rule for that risk is identical to one on the other probability space. The independence
between the two sources of risk then implies that the pricing rule on the product space is equal
to ~ times one on (O,1"'p). This idea is explained in Persson (l994c). The market value of
the policy is found as ilo = EQ[Vol, where Q is defined by ~ in expression (28). This is
different from the traditional principle of equivalence which states that the price of the policy is
equal to the present value under the original probability measure, Le., EP[Vol. Therefore,

By using expression (31) we obtain

(34)

The above expression represents our valuation principle for insurance contracts in our model.
By the same arguments it follows that the premium reserve at time t, given that the policy is in
state gis

(35)

In the special case of a deterministic benefit equation (35) is reduced to equation (15). This can

be seen from expression (31), 7tt(u) = ~(U)PtEf{ ~lDJ = ~(u)Bt(u) for a detenninistic benefit.
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5. Partial differential equations for the market value of the
insurance contracts

5.1 The one-factor models generalized
In this section we first generalize the one-factor models described in Section 2 to multi-factor
models. We assume that the uncertainty related to the term structure is generated by a d-
dimensional Brownian motion. After a short description of the general state variable model and
lUM-model, we develop partial differential equations for the market value of the insurance
contract. These equations are similar to the ones derived in section 3. but generalize these in
two respects. First we use multi-factor models of the term structure and, second, the benefits
are allowed to be random.

5.2 The general state variable model
Now we present an extension of the model with one state variable described in Section 2. In
the general state variable model the economy is described by n state variables of which one is
the short-term interest rate. The short term interest rate is given by the stochastic differential
equation

(36)

where ro is a constant to be interpreted as the short interest rate prevailing at time zero.

In addition to rtf we assume there are (n - 1) Itå-process 2j of state variables. We refer to the

n-dimensional vector of state variables by Z = (~) For notational convenience we do not

distinguish between the short interest rate and the other state variables and refer to the processes

describing the state variables as

(37)
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where zb can be interpreted as the initial values of the state variable j. Most popular tenn
structure models in the current financialliterature use one or two state variables.

For this model it is important to emphasize that the market prices of risk are related to the d
sources of uncertainty, i.e., the Brownian motions, and not to the n state variables.

We assume that Bt(s) is a sufficiently smooth function of the state variables in addition to t We
can now detennine l1B(t,s) and ~(t,s) from equation (23) for the state variable model, but first
we introduce a more compact notation.

Wedetine

ail c41 aB a~
aZI

alB
~

aB
ØL= and;2 =ØL

c4ø aB a~
ØLø azøaZI

Immediately from Ito's lemma it follows that

1 [aB T aB 1.5 Ta~]]l1B(t,s)= Bt(s) az l1z+Tt +'2uLO'ZO'Zaz2

n
. 1 ~ . aB .

aMt,s) = Bt(S)",",OZjaz.' 1= I, ... .d,
. 1 JJ=

where tr[A] denotes the trace, i.e., the sum of the diagonal elements of the square matrix A and
ATdenotes the transposed of the matrix A.

and

Now we want to detennine l1,,(t,s) and o!t(t,s) from expression (30) in a similar way. We
assume that the market price of a benefit is a function of Z. S and t for fixed expiration date u.

Welet
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11slS: ~lS: ~+eSl cht a2x a2x
Sit azl

a2x
azl azlazD

11s= as = ax
az= ":;;;2 =az

11smS~ OSmS~ ~+esm ax a2x a2xSm t azD azDaz 1 aza

ax a2x a2x a2x a2x
as 1

a2x
as1 as laSm

a2x
ez las 1 aZlasm

ax andas = ail= azas =
ax a2x a2x a2x a2x
aSm as mas 1 as! azDas 1 azDasm

a2x a2x

a2x
as lazl as lazD

asaz =
a2x a2x

asmazl asmazD

Directly from ItO's lemma it now follows that

and

Our next task is to derive another fundamental differential equation. The starting point for this
equation is expression (32) and the above expressions for 11xand~. By also using expression
(27). we obtain
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(38)

This equation is the pure financial counterpart to the equation we deduce in the next section.

From Girsanov's theorem follows that the processes of the state variables under Q are given by

(39)

These equations now depend on the market prices of risk and will be used in the derivation of
the similar partial differential equation of the insurance contract.

5.3 The HJM ..model
The following family of Itå-processes describing the instantaneous forward rate is given,

t d t

ft(u) = fo(u) + r av(u)dv +L r a!.(u)dWv'Jo i=lJo

The processes av(u) and <fv(u)are adapted and measurable, c,(u) integrable and cfv(u) square
integrable. The only economic restrictions imposed are that the forward rates have continuous
sample paths and depend on a finite number of Brownian motions.

Additional technical assumptions (see Heath, J3lTOwand Morton (1992» are required to assure
that the money market account and the value of the bonds are finite.

We detennine 11sand ~ in expression (23) as

11s(t,u) = rt + b(t,u)

and cfs(t,u) = ~(t,u),
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where

~(t,u) = -lua!(s)ds,

d

b(t,u) = u(t,u) + tLai(t,u)2
i= l

and u(t,u) represents minus the integral of the drift rate process of the forward rate as defined in
Section 2.

We have that Bl(s) = exp(Xl(s», where

l d l

Xl(s) = ln(Bo(s» +l [r,+ u(v,s)]dv +LI ~(v,s)dw!.,o . l o1=

i.e., the only difference from Section 2 is the multi-dimensional Brownian motion. The multi-
dimensional version of the forward rate restriction given in (11) is

d

~(s) = La!(s)[A.~ - aCt,s)]
i= l

By using this expression under the equivalent martingale measure Qwe obtain that

d t u d t

ft(u) = fo(u) +LI <fv(U)1 dv(s)dsdv +LI <fv(u)d\\T!.,
'10 v '101= 1=

and

The above processes represent the forward rates, minus the integral of the forward rates and
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the money market account, respectively, under Q. Observe that these processes are determined
by the initial term structure (fo(t), Bo(t» and the volatility structure (~(s),ai(t,s».

5.4 Partial differential equations of the market value of the insurance contract
We now derive the generalized versions of the differential equations developed in the one-factor
models for deterministic benefits in Section 3 using basically the same approach.

From expression (35) we may write I1f =lT
LFF(u)du, where

t j

(40)

We make the following observations,

aF!<U) = L~gh(t)[Ff(u) - ~j(u)]
h~g

and FF(t) = ag(t) + L~gh(t)agh(t).
h~g

From (33) we know that the expected instantaneous return of any 1t under Q is rt, so by using

expression (40) and Ito's lemma we obtain

Ff(u) = If(u) + !f.Ffi(u) + ~l1gh(S)[Ffi(U) - F:i(u))r + !af,i(s,u)dW"

where

By adding together this equation for all j and repeating the steps leading to expression (17) in
Section 3, we obtain
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This equation corresponds to equation (17) from Section 3 and describes the dynamics of the
market value of the premium reserve under Q. Also here the drift process contains exactly the
same terms as the traditional Thiele equation.

Now we proceed as in Section 3, obtaining deterministic differential equations by equating two
drift terms of stochastic differential equations under Q representing the same quantity. The
volatility processes are not important in this exercise and will not be shown. For the state
variable model we consider the market value of the premium reserve to be a function of Z. S
and t, From lw's lemma, expression (39) and the dynamics of S given in the previous section
we obtain the drift process as

(42)

For the lUM-model we again use the state variables X, and Bt(T), in addition to the risky
assets. Defme

The drift process under Q by considering I1f as a function of Xl' St and t is

cmp[ 1 T ] anp anpT 1 Ta2np T Ta2np 15 Ta2np]
ax rt-'2O'aO'a +Tt+---agStrt+'2O'aO'aax2 +O'aO'sasax +'2uLO'sO's as2

and the drift process under Q by considering I1f as a function of Bt(T), St and t is

anf anp anpT 1 T 2a2nf T Ta2nf 15 Ta2np]
-aaBt(T)rt + Tt + ---agStr, + '2O'aO'aB,(T) aB2 + O'aO'SasaB Bt(T) + '2uLO'sO'sas 2 •

We now derive our differential equation for the state variable model by equating the drift
process of equation (41) by the drift process in expression (42),
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(43)

In this section there are two sources of uncertainty, first the state variables, then the risky
securities. Compared to equation (19) which also is based on a factor model, we now have
two more (dot-products of) terms stemming from the risky securities and additional two
representing the covariation between the state variables and the risky securities. By letting the

insurance specific factors, represented by ag, agh and J.1gh' equal zero this equation is reduced to
equation (37) which is the fundamental partial differential equation from the theory of fmancial
economics. In the case of a detenninistic interest rate (and no other state variables) and only one
risky security this equation is reduced to the similar expression found in Persson (1994b).

The similar equations of the to variations of the lDM-model are

(44)

and

(45)

respectively. These equations are our counterpart to the Thiele equations of the actuarial
sciences, but contrary to the classical equation these deal with financial risk. We see that tlJ,e
terms stemming from the financial risk are on different fonns for the two different ~rqt
structure models and also differ with respect to how we choose the state variable in the HD4-
model. All three equations (43), (44) and (45) involve the terms from the classical Thiele
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· d,' additi th impTS d If Ta2np] hi hid thequanon an m non, etenns ---as lfl an '2 CJsCJsTs"l w c are re ate to e
risky assets. The terms involving the first and second 011 r derivatives with respect to the state
variables are of different fonn in the three equations. All equations involve terms representing
the covariation between the risky assets and the state variables.

These equations may be of importance in the construction of certain complex insurance
products, see, e.g., Ramlau-Hansen (1990). In cases where closed fonn solutions of these
equations are not available, numerical solutions may be obtained from the Feyman-Kac
formula,
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6. Examples

6.1 The state variable model
First we describe a special case of the model presented in Section 4. Then we give an example
of the pricing in the financial market before we also incorporate mortality factors. In this
example there is one factor, the short-term interest rate, and one risky security, so the bond
price is a function of the interest rate and time.

The short interest rate is given by an Ornstein-Uhlenbeck process

rt = ro + J:q(m - ruldu + J:vdW ~,

where ro. q ,v and m are constants. The price process for the risky security is assumed to be a
geometric Brownian motion:

(46)

where So>'" (Jl and (J2 are constants and WI and W2 are independent Brownian motions
under P. Observe that the value of the risky asset depends on one more source of uncertainty
than the bond.

Now we tum to the construction of the equivalent martingale measure. We assume that the
market price of risk related to the fast Brownian motion is a constant, i.e., ~ = A.l, and let

Here A.~ can be interpreted as the market price of risk at time t corresponding to the second

Brownian motion W~.

DefineQby

(47)
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One can verify that ~ ~] = 1 and va{~] < 00 and that ~ is strictly positive almost surely
so that Q is well-defined. The processes for the interest rate, for the risky security and for the
bonds under Q are

where d= m - ~VA.l,

St = So+ J~ruSudu + J~SU(Jld\\T!+XSU(J2d\\T~ ,

where \\Tl and \\T2 are independent Brownian motions under Q and

fort < s <T,

respectively. We observe that the instantaneous expected return of the risky asset and the
bonds equal the short rate rt. By taking Sto rt and A.l as primitives we have constructed an
equivalent martingale measure Q.

The solutions of the stochastic differential equations for rt and St are

rt = d + (ro - d)e - qt + J~ve - q(t - s)d\\T!,

and

This can easily be verified using It6's lemma. Now we want to derive some properties of the
money market account First we introduce a more compact notation by letting
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Observe that Pt = eR" so the quantity R, contains the same information as the money market
account. It follows that

(48)

so R, - N(At.r J. where Z - N(~.a2) denotes a normally distributed random variable Z with
expectation ~ and variance a 2.

Now we turn to the pricing of unit discount bonds. The price at time zero of a discount bond
with maturity at t is

(49)

The above formula is from Vacisek (1977) in a slightly different notation. We notice that this
formula depends on the market price of risk of the first factor A.l through ~ which depends on
d.

We consider the benefit payable at time t given by a(SJ = St v Gt. where Gt is a detenninistic
function of t. This may be a realistic contract of a unit-linked insurance. Also the benefit is a

function of a traded asset so contingent claims theory applies. We let ittCf) denote the market
value at time t of the benefit a(ST) =~ v GT payable at time T. From the pricing formula (31)
and the definition of Rt we obtain the market price at time zero for a benefit expiring at time 1,

ito(t) = ~[e -Rt (Gt v SJ). (50)

By noticing that Ste - R t and Gte - R t are lognonnally distributed the above expression can be

written as

where x and y are bivariate nonnally distributed with covariance matrix.
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(51)

Interms of the latter definition the problem can be restated as follows

(52)

The rest is simply a matter of algebra and properties of the bivariate normal distribution and we
present the result below in Lemma 6.1.

6.2 The HJM-model
The instantaneous forward rates are given by a family of ItO-processes on the following fonn

for u E [O,Tl, where at(s) is a detenninistic and bounded function. The price processes for the
bonds are

where b(t,u) and a(t,u) are defined in Section 2.

The price process of the risky security is also here given in expression (46).

We assume that the market price of risk related to the first source of uncertainty )..: is ap
arbitrary bounded process. Inpractical applications )..: can be estimated from the forward drift
rate restriction in expression (Il) since both ~(u) and at(u) for u ~ t are observable. It follows
that the market price of risk related to the second source of uncertainty is given by
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Then we define the measure Q by an expression similar to expression (47).

Our next task is to derive the dynamics for the money market account. Also here we do that
through the quantity R, defined previously. It follows that

1r rtR, = ln[Bo(t)l + 2"Joa(s,t)2ds - Joa(s,t)d\\'! .

This quantity is also for this model nonnally distributed.

We consider the same benefit payable at time t given by a(St) = St v Gl' where Gt is a
detenninistic function of t. By the same arguments as for the state variable model it follows that

t

!f a(s,t)2ds+X 1 l ~
i:o(t) =~[GtBo(t)e o v Soe - 2(a +a )t+Yl,

where x and y are bivariate nonnally distributed with covariance matrix

(53)

In terms of the latter definition the problem can be restated as follows

(54)

6.3 A formula for an asset expiring at time t
We present the solution of the described valuation problem in the following lemma.

Lemma6.1
Consider the problem (52) and the described state variable model and the problem (54) in the
described HJM..model. The market price at time zero of the claim a(SJ = St v Gt is for both
models given by the expression

(55)
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where

d: =~JI~+ ln(B~t~ J),
4= ~ - et,

where Bo(t) is given in (49) for the state variable model and follows from the initial tenn
structure in the mM-model and cl> denotes the standard normal distribution function.
Furthermore, et is given by (53) and (53) for the two models, respectively.

Proof:
Formula (55) follows by straight-forward calculations involving properties of bivariate normal
random variables. Q

The resulting formula depends on 10 parameters for the state variable model and 9 for the lUM-
model. These are: 4 parameters of the interest rate process (v, raoq,m), 3 parameters of the
stock price process (So, 01' (2), the market price of risk (A.l), the guarantee (Gt) and time to

expiration (t). The parameter A.l does not enter in the mM-model. We also note that it does not
depend on Tl,the instantaneous expected return of the risky security. In particular, it is worth
noticing that it depends on A.l through Bo(t) in the state variable model. After the bond prices
are detennined, a process which requires knowledge of A.l' the contingent claim pricing is done

in terms of the bond prices and consequently introduces dependence between A.l and the price
of the contingent claim.

Rabinovitch (1989) values the contingent claim (St - GJ v Oin a similar setting. His formula
is Socl>(~) - GtBo(t)cl>(4). This corresponds to the relationship between the value of (St v
GJ and [(St - G) v O]when the interest rate is detenninistic given by the Black and Scholes
formula (1973) and the results in Persson (1994a). We refer to the last reference for a
discussion.
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6.4 Market prices of insurance contracts
Let ,.ex denote the single premium of a contract with benefit a(Sr) = ST v Gr if the insured is
alive at time T and O if not. This contract is a unit-linked version of the traditional pure

endowment insurance.

By the independence between the financial market and the state of the policy, risk neutrality
with respect to transition risk and the expression (55) it follows that

(56)

where TPxrepresents the probability for an x-year old insured to be alive at time T.

We now consider a unit-linked version of a tenn insurance which entitles the insured to the

benefita(St) = St v Gt upon death before time T. Let C~:TIdenote the single premium. By the
same arguments as above we get that

(57)

where tPxJ.1x+ t is common actuarial notation for the probability density function of an x-year
old insurance customer's remaining life time.

Simple calculations show that formula (56) and (57) in the case where the interest rate is
constant are identical to Theorem 1 and 2 from Aase and Persson (1994).

6.5 Introduction of another risky asset
The model described depends on the market price of risk ~, which some places in the literature
is called a utility dependent parameter meaning that it will depend on the agents' attitude
towards financial risk. It is interesting to note that by introducing another risky asset without

increasing the number of sources of uncertainty, we would be able to also detennine 'A.: in
terms of the parameters of the model. For example if we let the second risky asset also be

given by a geometric Brownian motion,
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where 'Y, No, sl and s2 are constants, the market prices of risk are

A.l _ S2(T) - r&) -<J2(Y- r&)
t - S2Ø1-S1<J2

and
A.2 _ <J1(1- r&) - S1(T) - rt}
t - S2<J1-S1<J2 '

for the two sources of risk, respectively. This topic is discussed in Brennan and Schwartz
(1979c).
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7. Concluding remarks

This paper deals with pricing of life insurance contracts in a model with stochastic interest rates
and generalizes the results of Persson (l994c) in two ways. First, generalizations of the Thiele
equation based on the mM-model are presented and then, a pricing principle for insurance
contracts and versions of the Thiele equation are presented for random benefits. The derivations
are based on the assumption that the state of the policy is independent of the financial market

and that no arbitrage opportunities exist in the financial market. The market price was found as
an expectation under a probability measure, derived by the use of economic theory, and

different from the originally given probability measure.

Acknowledgements
The author would like to thank Knut Aase and Osmo Jauri for comments and suggestions to an
earlier version.

147



References

Amin, K. and R. Iarrow (1992), Pricing American Options on Risky Assets in a Stochastic
Interest Rate Economy, Mathematical Finance, 2, pp. 217-237.

Bacinello, A.R. and F. Ortu (1993), Pricing equity-linked life insurance with endogenous
minimum guarantees,lnsurance: Mathematics and Economics, 12, pp. 245-257.

Black, F. and M. Scholes (1973), The Pricing of Options and Corporate Liabilities, Journal o/
Political Economy, 81, pp. 637-654.

Boyle, P.P. and E.S. Schwartz (1977), Equilibrium Prices of Guarantees Under Equity-Linked
Contracts, Journal o/ Risk and Insurance, 44 , pp. 639-680.

Brennan, M.I., and E.S. Schwartz (1976), The Pricing of Equity-linked Life Insurance
Policies with an Asset Value Guarantee, Journal o/Financial Economics, 3 , pp. 195-
213.

Brennan, M.I., and E.S. Schwartz (1979a), Alternative Investment Strategies for the Issuers of
Equity Linked Life Insurance with an Asset Value Guarantee, Journal o/Business, 52,
pp. 63-93.

Brennan, M.I., and E.S. Schwartz (1979b), Pricing and Investment Strategies for Equity-
linkedLife Insurance, Monograph no 7 {The S.S. Huebner Foundation for Insurance
Education, Wharton School, University of Pennsylvania, Philadelphia.

Brennan, M.I., and E.S. Schwartz (1979c), A Continuous Time Approach to the Pricing of
Bonds, Journal o/ Banking and Finance, 3, pp. 133-155.

Cox, I., 1. Ingersoll and S. Ross (1985), A Theory of the Tenn Structure of Interest Rates,

Econometrica, 53, pp. 385-408.

Delbaen, F. (1990), Equity Linked Policies, Bulletin Association des Actuaries Belges, pp.33-
52.

148



Duffie, D. (1992), Dynamic Asset Pricing Theory, Princeton University Press, New Jersey.

Heath, D., R. Janow and A. Morton (1992), Bond Pricing and the Tenn Structure of Interest
Rates: A new Methodology for Contingent Claims Valuation, Econometrica, 60,
pp.77-10S.

Hoem, J.M. (1968), Application of time-continuous Markov chains to life insurance,
Memorandum of 29 April 1968, Department of Economics, University of Oslo.

Hoem, J.M. (1969), Markov chain models in life insurance, BlåtterderDeutschenGesellschaft
jUr Yersicherungsmathematik , 9, pp. 91-107.

Hoem, J.M. (1988), The versatility of the Markov Chain as a Tool in the Mathematics ofUfe

Insurance, International Congress o/the actuaries, 23, pp. 171-202.

Jamshidian, F. (1991), Bond and Option Valuation in the Gaussian Interest Rate Model,
Research in Finance, 9, pp.131-170.

Møller, C.M. (1993), A Stochastic Version of Thiele's Differential Equation, Scandinavian
Actuarial Journal, pp. 1-16

Nielsen, J.A. (1993), Equity-linked life insurance contracts fu an economy with a stochastic
development of the tenn structure of interest rates, Department of Operations
Research, Aarhus University.

Norberg R. (1991), Reserves in Life and Pension Insurance, Scandinavian Actuarial Journal,
pp. 1-22.

Norberg R. (1992), Hattendorffs theorem and Thiele's differential equation generalized,

Scandinavian Actuarial Journal, pp. 2-14.

Norberg R. and C. M. Møller (1993), Thiele's differential equation by stochastic interest of
diffusion type, Working Paper No 117, Laboratory of Actuarial Mathematics,
University of Copenhagen.

149



Persson, S.A. (1994a), Pricing of Unit-linked Life Insurance Policies, Chapter 2 of this
dissertation.

Persson, S.A. (1993), Valuation of a Multistate Life Insurance Contract with Random Benefits,
Chapter 3 of this dissertation.

Persson, S.A. (1994), Interest Rate Risk in Life Insurance, Chapter 4 of this dissertation.

Rabinovitch, R. (1989), Pricing Stock and Bond Options when the Default-Free Rate is
Stochastic, Journal ofFinancial and Quantative Analysis, 24, pp.447-457.

Ramlau-Hansen, H. (1990), Thiele's equation as a Basis for Product Development,
Scandinavian Actuarial Journal, pp. 97-104.

Richard, S. (1978), An Arbitrage Model of the Term Structure of Interest rates, Journal of
Financial Economics, 6, pp. 35-57.

Vasicek, O. (1977), An Equilibrium Characterization of the Term Structure, Journal of
Financial Economics 5, p.177-188.

150


