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Abstract

We analyze two-part tariffs in an oligopoly, where each firm commits to
a quantity and a fixed fee prior to the determination of unit prices. In the
case of homogeneous consumers, Harrison and Kline (2001) showed that
the equilibrium involves marginal cost pricing and that increased compe-
tition affects industry profit and the tariff structure solely by reducing the
fixed fee. We show that firms’ pricing strategies may change when we allow
for demand side heterogeneity. In particular, we find that the price per unit
can be either above or below marginal cost, and that the fixed fee increases
with increased competition. Finally, some numerical examples show that
full market coverage may arise as an equilibrium feature in cases where a
monopolist would exclude low-demand types. Hence, fostering competi-
tion may contribute to the fulfillment of the Universal Service requirement
that is common in industries such as telecommunications, which applies
nonlinear pricing on a normal basis.
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1 Introduction

Nonlinear prices are common in many industries and have been studied exten-
sively in the economic literature. As shown in Oi (1971), a single two-part tariff is
more efficient when it comes to extracting consumer surplus in a monopoly than
is a uniform price.1 Harrison and Kline (2001) analyzed two-part tariffs in an
oligopoly with strategic interaction and homogeneous consumers. In their paper,
increased competition affects industry profit and tariff structure solely by reduc-
ing the fixed fee, and the tariffs are merely modifications of the tariffs described
by Oi (1971) in a monopoly. However, most industries consist of heterogeneous
consumers; for instance, in telecommunications there are distinct residential and
business markets. This may have important implications for the firms’ pricing
strategies and for regulatory policy concerned with market coverage and universal
service in the industry. The hypothesis that oligopolistic firms practice nonlinear
pricing is empirically supported by Miravete and Röller (2003, 2004). In this
paper, we build a more realistic model to study two-part tariffs than Harrison
and Kline (2001) by assuming that there are two types of consumers, instead of
only one. It turns out that such extension of their model has major impacts on
the qualitative results obtained.

Our starting point is the framework developed in Harrison and Kline (2001).
Each firm commits to a certain quantity, as in a traditional Cournot model. In
addition, each firm sets its fixed fee, whereas the unit prices are determined by
market forces endogenously. Without the latter assumption, it is not possible to
escape a situation where a competing firm charges a uniform price and captures
all consumers. Harrison and Kline (2001) offered some examples of industries
where this treatment makes sense, such as home computer games and consumer
clubs. Harrison and Kline (2001) extended the basic problem of charging a group
of N identical consumers according to a two-part tariff, instead of a uniform unit
price, to a setting with competition – that is, they extended the first part of the
model in Oi (1971) to oligopoly. In equilibrium, they found that the unit price is
set equal to marginal costs, and that the fixed fee is positive for a given number
of firms, but that it approaches zero as the number of firms approaches infinity.

Our extension of the Harrison and Kline (2001) model to two instead of one
type of consumersturns out to be important for the firms’ pricing policy. In
addition, it makes it possible to analyze how competition affects market coverage

1The firm can achieve even greater profit by screening consumers whose willingness to pay
differs via a menu of two-part tariffs, or by using a more general nonlinear outlay schedule. The
firm takes into account the unobserved heterogeneity of individual demand by using a menu of
two-part tariffs, or a nonlinear outlay schedule, thereby introducing self-selection. See Wilson
(1993) on nonlinear pricing in a monopoly, Rochet and Stole (2003) for a guide to the screening
literature, and Stole (2001) for a comprehensive guide to the literature on price discrimination
in models with competition.
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– whether both types of consumers are served. A particular aim in this paper is
to explore whether full market coverage can arise as an equilibrium feature, and
we assume that a regulator can impose a Universal Service Obligation (USO) on
the firms. We explore whether a subgame with a Universal Service Obligation
is robust against unilateral deviations. In the absence of such an obligation, we
explore under what conditions firms are likely to cover the entire market.

First, let us assume full market coverage in the case of a USO, and pay at-
tention to the firms pricing policy. We then find that the per unit price may
be below marginal costs when as few as four firms exist, and that the fixed fee
may be positive even with an infinite number of firms. Hence, we cannot ex-
tend the results in Oi (1971) to oligopoly with heterogeneous consumers. Also,
introducing consumer heterogeneity makes the demand side of the model more
complicated. In the homogeneous type case, consumers’ behavior vis à vis each
firm is described by a single participation constraint. A consumer is indifferent
between two tariffs with different fixed fees and per unit prices, as long as they
both satisfy his or her participation constraint. In the case of heterogeneous
consumers, consumers’ behavior vis à vis each firm is given by two different par-
ticipation constraints. Whenever low-demand consumers are indifferent between
two tariffs, high-demand consumers will strictly prefer the one with a low per
unit price and a high fixed fee. On the other hand, if high-demand consumers
are indifferent between two tariffs, low-demand consumers will strictly prefer the
one with a low fixed fee and a high per unit price. Hence, if one consumer
type is indifferent between two firms, the other one will strictly prefer one of the
two firms. Consequently, unless they apply completely symmetric strategies, we
cannot expect all firms to serve both types of subscribers.

The extension of the model from one to two types of consumers partly ex-
plains the change in the per unit price. Without demand-side heterogeneity firms
practice cost-plus-fixed fee pricing, and a marginal increase in market share af-
fects firm i’s profit via the fixed fee revenue. The per unit price is adjusted
to maximize consumer surplus, whereas the fixed fee is adjusted to satisfy the
participation constraint. It is well known from a monopoly model that a firm
serving two types of consumers with a single two-part tariff should let the unit
price exceed marginal costs. However, in our duopoly model with demand-side
heterogeneity, firms cannot change the fixed fee on a unilateral basis without
violating the Universal Service requirement. Hence, they are de facto restricted
to compete in capacities. The isolated effect of this is that the per unit price
will be above marginal cost. However, as each consumer pays a fixed fee, a mar-
ginal increase in the market share increases the fixed fee revenues, which induce
oligopolistic firms to compete more aggressively than they would do otherwise.
Our results show that if the fixed fee is sufficiently large, this effect may dominate
and the firms price per unit below marginal cost.

Turning to the question of market coverage, we find that fostering competi-
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tion can contribute to full market coverage and the fulfillment of the Universal
Service requirement. Our results show that a subgame with a USO is robust
against unilateral deviations. Moreover, in the absence of a USO, we find that a
duopoly is more likely than a monopoly to cover the entire market. Hence, our
model does not support theories predicting that the firm operating under a Uni-
versal Service Obligation serves low-demand segments of the market while other
firms “skim the cream” by serving the more profitable high-demand segments.
The monopolist’s decision to exclude low-demand segments is based on its abil-
ity to control consumers participation, and expected profit per consumer (fixed
fee revenue plus variable sales revenue) is the same at the cut-off level whether
the low demand segment is served or not. In a duopoly, if one firm deviates
by changing its market coverage, the per unit price at the other firm tends to
change at the same time. Hence, the participation constraints are changed, and
the deviating firm is not able to sustain the same expected profit per consumer
as before a deviation.

The empirical research in Miravete and Röller (2003, 2004) on the US cellular
telephone industry support the hypothesis that nonlinear pricing prevails under
oligopolistic competition in telecommunications. Ivaldi and Martimort (1994)
showed that this is also the case for energy distribution.2 Universal Service ob-
jectives have been given much attention in Telecommunications, especially after
the introduction of competition.3 In our case, the weakness involved in focusing
on telecommunications is the assumption that firms commit to a fixed fee and a
capacity, but do not commit to the per unit price at the first stage. However, one
might argue that per unit prices are more flexible than fixed fees. For instance,
many mobile phone firms change their fixed fees by replacing existing tariffs.4

On the other hand, changes in the per unit prices are made within existing tar-
iffs. Another practice that makes the per unit price more flexible is that the
firms conduct continuous campaigns and promotional offers, such as offering con-

2The predictions are more ambiguous within the theoretical literature, which shows that
nonlinear pricing may not be sustainable in oligopoly. For example, Mandy (1992) found that
in a traditional Bertrand oligopoly with homogeneous products – where we allow the firms to
set nonlinear prices – all prices may collapse to a uniform price. This finding illustrates that
some of the assumptions in the traditional oligopoly model have to be relaxed in order to make
nonlinear prices sustainable in oligopoly. One extension is to introduce capacity constraints, as
was done in Harrison and Kline (2001), Oren, Smith and Wilson (1983), Scotchmer (1985a,b),
and Wilson (1993). Another extension of the traditional Bertrand model is to introduce product
differentiation; see Calem and Spulber (1984), Castelli and Leporelli (1993), Economides and
Wildman (1995), Shmanske (1991), and Young (1991). If future demand is stochastic to some
extent, Hayes (1987) managed to sustain nonlinear pricing under competition by assuming that
consumers are risk averse and have a preference for two-part tariffs. In the case of telephony,
Miravete (2002) ruled out risk aversion as a possible source of consumers’ biased taste for flat
rate tariffs.

3See for instance Riordan (2002) on Universal Service in Telecommunications.
4Some firms even list current and non-current tariffs on their web sites; see, for example,

www.vodafone.co.uk, and netcom.no.
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sumers free talk time, texts, or photo messages. In addition, telecommunications
firms tend to lock-in consumers by offering subsidized handsets subject to a 12-
or 18-month contracts. Within this period, the fixed fee is more or less the same,
but the per unit price is more flexible.

This article is organized as follows. In section 2, we formulate our model
using identical firms and characterize the outcome in two possible symmetric
strategy subgames, where either both types of consumers are served or only one.
In section 3, we explore the possibility that one, or both, of the symmetric strat-
egy subgames described in section 2.1 can be equilibria for the whole game in a
duopoly. We do so by asking first, whether one firm would earn a higher profit
if it deviates and covers the entire market in the subgame where the other firm
serves high-demand consumers only (section 3.1). Next, we check whether the
firm would earn a higher profit if it deviates and serves high-demand consumers
only in the subgame where the other firm serves both types of consumers (section
3.2). By using a numerical example, we show that there can be multiple equilib-
ria. Moreover, we show that the situation where both firms serve both types of
consumers can be an equilibrium duopoly outcome in cases where the monopo-
list would prefer to serve high demand types only. The driving force is that the
rival, non-deviating firm supplies a given quantity that it is committed to selling,
which acts as a constraint on the deviating firm’s price setting. Our results are
summarized in Figure 8. Finally, section 4 offers some concluding remarks.

2 Cournot competition with two-part tariffs

Consider a setup with k identical firms, k ≥ 2, supplying a homogeneous product
to N consumers, firm i ∈ K = {1, 2, . . . , k} serving ni ≤ N consumers. We
consider the case where the number of firms is exogenous, leaving the question
of entry outside the model. The cornerstones of the model with homogeneous
demand are presented in Harrison and Kline (2001), so we provide only a brief
presentation of the set-up.5

Consumers. We assume that there are two groups of consumers: low-demand
and high-demand consumers. Demand-side heterogeneity is defined by a type
parameter, θ, in the utility function. A proportion of consumers, λ, have the taste
parameter θ1, and a proportion, (1 − λ), have the taste parameter θ2, where θ1 <
θ2. We will refer to the first group as type 1 consumers, or low-demand consumers,
and to the other group as type 2 consumers, or high-demand consumers.

5It would be helpful for the reader to examine the seminal paper by Harrison and Kline that
explores the model setup and provides a thorough treatment of the model and the assumptions
that are needed in order to ensure that equilibrium exists. See also their article on entry in
this model.
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Consumers’ preferences are defined by a quasi-linear utility function, as fol-
lows:

V =

{
u (q, θ�) − T if they pay T and consume q units,
0 if they do not buy,

θ� = {θ1, θ2},
u (q, θ2) ≥ u (q, θ1) and uq (q, θ2) ≥ uq (q, θ1) ∀q

(1)

The utility function is assumed to be increasing and strictly concave in q,
u (0, ·) = 0, limq→0 uq (q, ·) ≥ c, limq→∞ uq (q, ·) ≤ 0. For any tariff T = A + pq,
where A is a fixed fee that is paid up-front and p is a per unit price, utility
maximization yields a downward-sloping demand curve for each individual that
is independent of income and, therefore, of the fixed fee.

Then, the consumers’ indirect utility, gross of the fixed fee, and the two
consumer types’ demand curves are given by:

q� (p) ≡ q (p, θ�) = maxq u (q, θ�) − pq − A,
V (p, θ�) = u (q� (p) , θ�) − pq� (p) ,
V ′

p = −q� (p) ,
� = 1, 2.

(2)

Firms. The cost function is characterized by constant returns to scale, C (Q) =
cQ, where c > 0 is the marginal cost and Q is output. For simplicity, fixed costs
are omitted from all measures. If firm i serves ni consumers, its profit is given
by:

Πi = niAi + (pi − c) Qi. (3)

As the fixed fee is a lump sum transfer from consumers to the firm, the unit
price in firm i’s tariff is adjusted in such a way that aggregate demand for firm
i’s product is equal to firm i’s supply. Hence, the unit price is independent of the
fixed fee. Whenever the fixed fee is positive, consumers will make all or nothing
purchases at firm i. When firm i serves a total of ni consumers, the unit price is
adjusted to satisfy the following market clearing condition:

Qi = niq2 (pi) . (4)

The unit prices charged by rival firms are adjusted to satisfy the market
clearing condition and consumers’ participation constraints. Let the aggregate
supply by firms competing with firm i be given by:

QJ ≡
∑

j �=i
Qj. (5)
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In particular, if every other firm charges the same per unit price p−i, this
must satisfy the condition:

QJ = (N(1 − λ) − ni) q2(p−i). (6)

The firm cannot exclude any consumer from buying its product. Taking
consumer behavior into account, firms act to maximize profit by choosing an
appropriate strategy si = (Qi, Ai), with Qi > 0 for all i ∈ K. We assume that
firms are able to commit to this strategy.

Consumer equilibrium. The allocation of consumers across firms (ni, i ∈ K)
is described by utility maximization. With quasilinear utility, we can measure
the indirect utility in monetary terms. Consumers choose to buy if they obtain a
nonnegative net surplus at some firm i, that is, if V (pi, θ�)−Ai ≥ 0, (i ∈ K, � =
{1, 2}). They buy from the firm that provides them with the highest surplus
– that is, they buy from firm i if V (pi, θ�) − Ai > V (pj, θ�) − Aj, (i, j ∈ K,
i �= j, � = {1, 2}). For a given strategy combination s = (Qi, Ai)i∈K , there exists
a consumer equilibrium satisfying both utility maximization and market clearing,
defining a consumer-price profile as (n, p) = ((n1, . . . , nk), (p1, . . . , pk)), with ni

being the number of consumers buying from firm i, and pi being the unit price
that clears the market at firm i. Although we define a firm’s strategy in terms
of its capacity and the fixed fee, from a consumer’s point of view he choose the
quantity that maximizes his or her utility for a given Ai and pi, and obtain net
utility V (pi, θ�) − Ai. This is formally defined in Harrison and Kline (2001).

Fixed fee

P
er

u
n
it

p
ri

ce

V (p1, θ�) − A1 = V (p2, θ�) − A2

PC�

(A1, p1)

(A1, p
′
1)

(A′
1, p

′
1)

(A∗
1, c)

(A2, p2)

(A2, p
′
2)

c

Figure 1: Consumer behavior with identical consumers.
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Consider a situation with two firms, 1 and 2, serving consumers of type
� only. As illustrated in figure 1, the consumer is indifferent between (A1, p1)
and (A2, p2) because they are located on the same indifference curve, PC�. The
slope of the indifference curve is the consumer’s marginal rate of substitution
(MRS) between the per unit price and the fixed fee, which is given by dp/dA =
−1/q�(p); that is, the larger is the consumer’s willingness to pay for quantity, the
smaller is his or her MRS. Given that the market clears at both firms at prices
p1 and p2, strategies (Q1, A1) and (Q2, A2) map into a consumer equilibrium
((n1, n2), (p1, p2)), with ni determined by Qi = niq�(pi). If Firm 1 increases its
output, the price at Firm 1 will fall, which will induce consumers to switch from
Firm 2 to Firm 1, and consumer equilibrium is restored at (A1, p

′
1) and (A2, p

′
2). If

Firm 1 increases output and the fixed fee simultaneously, consumer equilibrium is
restored at (A′

1, p
′
1) and (A2, p2). As is well known from Oi (1971), if a monopoly

can appropriate the entire consumer surplus above some exogenous level Ū , it
will apply marginal cost pricing, (A∗

1, c). Harrison and Kline (2001) showed that
oligopoly firms will attract customers by lowering the access fee. In addition,
they observed that per unit price equals marginal cost, as in a monopoly. Thus,
established insights from monopoly two-part pricing could lead us to believe that
the oligopoly results extend to demand-side heterogeneity, and that price will be
set above marginal cost to adjust for the heterogeneity in consumers’ willingness
to pay. However, as we show in the following section, introducing demand-side
heterogeneity makes the demand side of the model more complicated because
consumer behavior vis à vis each firm is given by two different participation
constraints, one for low-demand consumers and one for high-demand consumers.

Firms choose their strategies simultaneously and independently, giving a
strategy combination s = (s1, s2, . . . , sk). If firms choose symmetric strategies,
si = s = (Q,A), there are two possible outcomes: (i) both types of consumers are
served, or (ii) only high-demand consumers buy. Confining ourselves to symmet-
ric strategy combinations, we explore whether it is likely that the entire market
is covered in an oligopoly, and analyze the pricing strategy that may arise in
equilibrium. Sections 2.1 and 2.2 characterize two possible subgames where the
firms adopt symmetric strategies with respect to the capacity and fixed fee. Sec-
tion 3 explores the firms’ incentives to deviate from the two symmetric-strategy
subgames in a duopoly.

2.1 Consumer equilibrium with heterogeneity

For a strategy combination to map into a consumer equilibrium where all firms
serve both consumer types, all firms must charge identical fixed fees. In a con-
sumer equilibrium, it is not possible for any consumer to obtain a larger surplus
by switching to another supplier. If it is possible to obtain a positive surplus
from at least one firm, there will be no excess demand. Further, demand will be
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equal to supply at each firm.

Consider a strategy combination where firms i and j announce different fixed
fees (as in figure 1) above). Low-demand consumers are indifferent between firms
i and j when:

V (pi, θ1) − Ai = V (pj, θ1) − Aj. (7)

Hence, if Ai > Aj, it must be the case that pi < pj. If this is the case between all
pairs i, j, i �= j, each firm will serve (N/k)λ low demand types. If a high-demand
consumer buys from firm i, he or she obtains:

V (pi, θ2) − V (pi, θ1) + V (pj, θ1) − Aj, (8)

whereas if he or she buys from firm j, the high-demand consumer obtains:

V (pj, θ2) − Aj. (9)

High-demand types are indifferent between the firms if:

0V (pi, θ2) − V (pi, θ1) + V (pj, θ1) − Aj = V (pj, θ2) − Aj. (10)

Hence, when per unit prices are adjusted to satisfy (7), the high-demand
consumers’ participation constraint cannot bind simultaneously because (10) re-
quires that pi = pj, as q2(p) > q1(p).

This situation is illustrated in Figure 2. Low-demand consumers obtain a
zero surplus along PC1, whereas high-demand consumers obtain a zero surplus
along PC2, and a strictly positive surplus along PC′

2 and PC′′
2. At any point, low-

demand consumers’ indifference curves are steeper than are high-demand con-
sumers’ indifference curves because q2(p) > q1(p). In other words, high-demand
consumers are willing to accept a larger increase in the fixed fee against a de-
crease in the per unit price, relative to low-demand consumers. Moreover, the
high-demand consumer’s utility at B is larger than at A, whereas low-demand
types are indifferent between A and B. Type 1 consumers are indifferent no mat-
ter what the sizes of p and A are at each firm, as long as they are adjusted
according to (7). However, type 2 consumers will always prefer the tariff with
the lowest per unit price. If low-demand types are indifferent between the two
tariffs, high-demand types strictly prefer the tariff with the low per unit price.
Consequently, a situation with different fixed fees is not a sustainable consumer
equilibrium if we want this to involve all firms serving both types of consumers.

If the consumer equilibrium is the result of a symmetric strategy combination
si = (Q,A), (i = 1, . . . , k), we assume that all firms serve an equal share of each
consumer type, and the consumer equilibrium is given by the profile (n, p). Hence,
if both types are served by all firms, firm i serves a number of consumers given
by N/k. If low-demand types are excluded, the number is (1 − λ)N/k.
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Fixed fee
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V (p, θ1) = A

V (p, θ2) = A

PC1

PC2

PC′
2

PC′′
2

A

B

Figure 2: High- and low-demand consumers’ indifference curves over a fixed fee
and per unit price. Low-demand types are indifferent between A and B, whereas
high-demand consumers strictly prefer B.

A strategy combination with identical fixed fees, but different capacities
across firms, will result in a consumer equilibrium where the firms serve dif-
ferent numbers of consumers. Suppose, for instance, that there are two firms
in the market, Firm 1 and Firm 2. Suppose that Firm 1 increases its output.
This causes a fall in the per unit price at Firm 1 because there would be excess
supply otherwise. Consumers are attracted by the lower price at Firm 1 and
are tempted to leave Firm 2. Hence, the per unit price will fall at Firm 2 as
well. As the fixed fee is identical across firms, unit prices must also be the same.
Firm 1 will serve more customers than under a symmetric strategy combination,
with both A and Q identical across firms. However, we will assume that the
firms all serve the same share of high-demand and low-demand consumers be-
cause each consumer is indifferent between all firms. This is sufficient to ensure
that there exists a consumer equilibrium defining a consumer-price profile (n, p)
for a strategy combination with symmetric fixed fees, when there is demand-side
heterogeneity.

2.2 Symmetric strategy subgames with linear demand

Given the discontinuities of demand faced by the firms, generally it is not possible
to solve for the equilibria of the game analytically. Instead, we derive some
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insights into two-part pricing in oligopoly by focusing on two possible symmetric
strategy combination subgames. In the first subgame, low-demand types are
excluded from making purchases, whereas in the second subgame, both types are
served. Next, in section 3, we search for the equilibria for the duopoly version of
the game, using a numerical example with linear demand and constant marginal
cost.

Hereafter, we focus on a specific case where consumers’ preferences are rep-
resented by a quadratic utility function. We let the reservation utility be zero for
both consumers. V = θ�q− 1

2
q2−T , � = 1, 2, if the consumers pay T and consume

q units. Otherwise, the consumers obtain zero utility. Each consumer has a linear
demand function q� = θ�−p, � = 1, 2. Letting θ ≡ λθ1+(1 − λ) θ2 ≥ θ1, expected
demand is λq1+(1 − λ) q2 = θ−p ≡ q(p, θ). For a consumer paying a unit price of
p, the indirect utility, exclusive of the fixed fee, is V (p, θ�) = 1

2
(θ� − p)2, � = 1, 2.

Demand elasticity is defined as ε(p, θ) = −q′p(p, θ)p/q(p, θ) = p/(θ − p).

Because we are interested in how equilibrium strategies are affected by het-
erogeneity in demand, the example is simplified by letting θ1 = 1 and c = 1

2
.

Increased demand-side heterogeneity is captured by variations in λ and θ2. Then,
high heterogeneity can arise either from an increase in the number of type 2 con-
sumers (λ decreases), or because a type 2 consumer has a higher willingness to
pay relative to a type 1 consumer (θ2 increases). Hence, increased demand-side
heterogeneity is captured by an increase in θ.

In this section, we are particularly interested in whether a symmetric strategy
subgame where all firms serve both consumer types can be a stable equilibrium,
or if it is more likely that a symmetric strategy subgame where all firms serve
high-demand consumers only is an equilibrium for the whole game. We do not
consider asymmetric strategy subgames as equilibrium candidates. Hence, we
proceed by characterizing the firms’ symmetric strategies and the corresponding
consumer equilibrium in these two specific subgames. Then, we analyze the
firms’ incentives to deviate from a symmetric strategy. As will be demonstrated
in section 3, there is no unique equilibrium with respect to market coverage in
this game, and we may have multiple equilibria.

Low-demand types excluded. Consider first the subgame when the firms
serve high-demand consumers only (S1), which is the case presented in Harrison
and Kline (2001). Firms choose a capacity and a fixed fee at stage one, and per
unit prices are determined at stage two. When rival firms charge their consumers
according to the tariff T−i = A−i +p−iq, a consumer is indifferent between buying
from firm i and one of the other firms when his or her participation constraint
is binding. If the firm leaves the consumer with additional surplus, it sacrifices
profit. If there is at least one additional active firm where consumers would buy a
strictly positive quantity, we expect that the participation constraint is binding.

Firm i maximizes profit subject to voluntary participation and market clear-
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ing, as follows:

Πi = niAi + (pi − c)Qi. (11)

Ai = V (pi, θ2) − V (p−i, θ2) + A−i

QJ = (N(1 − λ) − ni)q2(p−i)
Qi = niq2(pi).

(12)

The outcome is stated in Lemma 1. The calculations leading to Lemma 1 are
given in Appendix A.

Lemma 1 (S1: Low-demand types are excluded) In a symmetric strategy
subgame, s = si = (Q2

TT , A2
TT )i∈K, where low-demand consumers are excluded,

the firms’ best response with respect to capacity and the fixed fee results in a con-
sumer equilibrium where the per unit price is equal to marginal cost.
As the number of firms (k) approaches infinity, the fixed fee and the profit ap-
proach zero

p2
TT = c,

A2
TT = min

{
V (c, θ2),

cq2(c)

(k − 1) ε(c)

}
,

Q2
TT ≡ Q =

N

k
(1 − λ)q2(c).

Lemma 1 is the result in Harrison and Kline (2001). These authors provided
a thorough treatment of Cournot competition with two-part tariffs and a single
consumer type and guided the reader through all proofs. In addition, they showed
that the pricing described in Lemma 1 is a unique Nash equilibrium in pricing
strategies in the single consumer-type game. In addition to the equilibrium with
symmetric market shares, there also exist equilibria that are asymmetric in mar-
ket shares.

According to this Lemma, the fixed fee in the single consumer-type case
converges toward zero as the number of firms approaches infinity. The optimal
tariff is a cost-plus-fixed-fee tariff. If firm i takes the number of consumers it
serves as given, for any tariff charged by rival firms, the reservation utility is
defined as a constant and will not affect the optimization with respect to unit
price. Then, the problem resembles the monopoly problem, and the marginal
price is identical to that in a monopoly. To attract additional consumers from
rival firms, firm i has to adjust the fixed fee. Hence, a marginal increase in
market share affects firm i’s profit via the fixed fee. Finding the profit maximizing
strategy reduces to finding the optimal number of consumers to serve.

Both consumer types are served. Now, we turn to the symmetric strategy
subgame where all firms are obliged to cover the market (S2). As prices are deter-
mined by market clearing conditions at the last stage, it is possible to determine
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the best response capacity for some arbitrary fixed fee, A ≥ 0. As described
above, one firm can increase its market share by increasing its capacity and ac-
cepting a lower per unit price. For any fixed fee A, in the interval [0, V (0, 1)],
there exists a unique best response capacity Q = N

k
q(p, θ). However, for each

fixed fee there exists only one per unit price such that the participation con-
straint for low-demand consumers binds simultaneously. Then, of all the possible
pairs (A, p) satisfying the firms’ best response behavior, we focus on the pair that
satisfies V (p, 1) = A. Lemma 2 presents the symmetric strategy subgame where
these conditions are taken into account.

Lemma 2 (S2: Both consumer types are served) In a symmetric strategy
subgame s = si = (Q12

TT , A12
TT )i∈K, where low-demand consumers are served, the

firms’ best response with respect to capacity choice results in a consumer equilib-
rium with a per unit price between zero and the uniform Cournot price.
If the number of firms (k) is not too large, and/or if demand-side heterogeneity
(θ) is sufficiently large, the per unit price is above marginal cost. Otherwise, the
market clearing price falls below marginal cost. Let θ ∈ 〈1, 2]

(a) The per unit price and the fixed fee are determined jointly by conditions:

p12
TT−c

p12
TT

= 1
kε(p12

TT ,θ)

(
1 − (k − 1)ε(p12

TT , θ)
A12

TT

q(p12
TT ,θ)p12

TT

)
,

A12
TT = V (p12

TT , 1) > 0.

(c) The firms’ capacity is given by:

Q12
TT =

N

k

(
λq1(p

12
TT ) + (1 − λ)q2(p

12
TT )

)
> 0.

(d) For k ≤ 3+8θ(θ− 1), the per unit price is above marginal cost. Otherwise,
the per unit price is below marginal cost. The fixed fee (the per unit price)
increases (decreases) with k. For any finite number k, fixed fee revenues
more than cover losses in variable profit. In the limit case where k → ∞,
the fixed fee revenues (N/k)A12

TT exactly covers the aggregate per unit loss
(p12

TT − c)Q12
TT , and profit becomes zero. Finally, profit is always larger in

this subgame with two-part tariffs than it is in a uniform pricing game.

Lemma 2 is proved in Appendix B. Lemma 2 shows that there are nontrivial
differences between pricing in the homogeneous type case and the heterogeneous
type case when the firm is exposed to competition. First, depending on the degree
of competition and on the demand-side heterogeneity, the per unit price varies
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between zero and the uniform Cournot price.6 Hence, firms may charge per unit
below marginal cost. Second, the size of the fixed fee increases with the number
of firms, and firms are able to extract all surplus from low-demand consumers. In
contrast to this, the per unit price with homogeneous demand is always equal to
marginal cost and independent of the number of firms, and the fixed fee decreases
with the number of firms.

The extension of the model from one to two types of consumers partly ex-
plains the change in the per unit price. Without demand-side heterogeneity firms
practice cost-plus-fixed fee pricing, and a marginal increase in market share af-
fects firm i’s profit via the fixed fee revenue. The per unit price is adjusted
to maximize consumer surplus, whereas the fixed fee is adjusted to satisfy the
participation constraint. It is well known from a monopoly model that a firm
serving two types of consumers with a single two-part tariff should let the unit
price exceed marginal costs; see Oi (1971). 7 However, in our duopoly model
with demand-side heterogeneity, firms cannot change the fixed fee on a unilateral
basis without violating the Universal Service requirement. Hence, they are de
facto restricted to compete in capacities. The isolated effect of this is that the
per unit price will be above marginal cost. However, as each consumer pays a
fixed fee, a marginal increase in the market share increases the fixed fee revenues,
which induce oligopolistic firms to compete more aggressively than they would
do otherwise. The fixed fee is sheltered from competition, and the firms compete
aggressively in order to capture the fixed fee revenues by lowering the per unit
price. If the number of competitors is big, and demand-side heterogeneity is not
too large, this effect may dominate and the firms prefer a high fixed fee and a per
unit price below marginal cost. Hence, if the firms can coordinate (or collude)
on the fixed fee, they prefer a high fixed fee and a per unit price below marginal
cost. The regulated per subscriber line price of unbundled access to the local
loop can be an instrument for such coordination (or collusion).

Figure 3 provides a graphical illustration of Lemma 2 in the duopoly case.
We find the duopoly symmetric strategy subgame tariff by searching for a fixed
fee along the path p̂(θ, A), such that the low-demand consumers’ participation
constraint is binding (at D(θ)). The monopoly tariff is found by choosing a
fixed fee such that the participation constraint binds at a per unit price p12

M (at
M(θ)). As θ approaches one – that is, as demand-side heterogeneity vanishes –
the duopoly tariff approaches (Ā12

TT , p̄12
TT ), whereas the monopoly tariff approaches

(Ā12
M , c). However, as the demand-side heterogeneity (θ) increases, p12

M increases

6The per unit price in a uniform pricing k-firm Cournot oligopoly is given by: (p12
UC −

c)/p12
UC = 1

kε(p12
UC ,θ)

.
7The mark-up in a two-part pricing monopoly with heterogeneous demand is given by:

(p12
M − c)/p12

M = 1−λ
ε(p12

M ,θ)

( q2(p
12
M )−q1(p

12
M )

q(p12
M ,θ)

)
= 1

ε(p12
M ,θ)

(
1 − q1(p

12
M )

q(p12
M ,θ)

)
, i.e., p12

M ≥ c. The price-cost
margin is higher the larger is the difference between the consumer types (θ1 versus θ2), and the
larger is the proportion of high-demand consumers (λ approaches zero).
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TT Ā12
TT Ā12
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faster than p12
TT , and for θ > 1

2
(
√

2 + 1) we find that p12
M > p12

TT , (M(θ) lies
north-west of D(θ)). If θ > 5

4
, we find that p12

M > p12
UC , (M(θ) lies north-west

of p12
UC). When θ is close to 1.5, p12

M is close to one and low-demand consumers’
purchases are close to zero, p12

TT is close to one when θ is close to two. The
trade-off between competition and demand-side heterogeneity in per unit prices
is illustrated in Figure 4. Figure 5 illustrates pricing and profit in the k-firm

14



0,8

6

0,6

0,4

5

0,2

0

432 10987

F
ix

ed
fe

e,
p
er

u
n
it

p
ri

ce

Number of firms

Uniform Cournot price

Per unit price (tpt)

Marginal cost

Fixed fee (tpt)

(a) Pricing

6

0,08

0,06

5

0,04

0,02

432 10987

P
ro

fi
t

Number of firms

Profit two-part tariff

Profit uniform Cournot price

(b) Profit
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symmetric strategy subgame described in Lemma 2. The fixed fee increases as
competition becomes fiercer, whereas the per unit price decreases and falls below
marginal cost if a sixth firm enters the market.

3 Symmetric strategy duopoly equilibrium

In this section, we ascertain whether one of the symmetric strategy combinations
in section 2.2 can be an equilibrium for the whole game when firms make their
decision about market coverage in a duopoly. In particular, we want to explore
whether full market coverage can arise as an equilibrium feature. As is well known
from studies on monopoly, it is sometimes beneficial for a firm to exclude low-
demand segments in order to exploit the larger willingness to pay of high-demand
segments. In other cases, it will be preferable to serve both high-demand and
low-demand segments. It is important for a regulatory agency concerned about
universal service in the industry to establish whether full market coverage arises in
equilibrium. If the subgame S1 is robust against unilateral deviations, full market
coverage is less likely to occur. It is likely that the regulator emphasizes market
coverage and it may impose a Universal Service Obligation on one of the firms. If
the subgame S2 is robust against unilateral deviations, fostering competition can
be a way to achieve full market coverage and the Universal Service requirement. If
the subgame S2 is not robust against deviations, we expect that the firms will try
to avoid the obligation, for instance, by offering optional tariffs that are attractive
to high-demand consumers only. Firms operating without such obligations will
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aim at high-demand segments, in other words, “cream scimming”.

The monopolist’s cut-off value is found simply by comparing the monopoly
profit in the two alternatives. Hence, if Π2

M > Π12
M low-demand segments will be

excluded. If λ < λ∗, the monopolist serves only type 2 consumers, whereas if
λ > λ∗, it serves both segments.

λ ≡ λ∗(θ) = 1
2

+
3−4θ2+

�
(4θ2

2−3)(4θ2
2−8θ2+5)

8(θ2−1)2
. (13)

For any pair (θ2, λ) satisfying λ∗(θ2), the per unit price is higher than the
monopoly per unit price.8. According to Lemma 2, the duopoly extracts all
surplus from low-demand consumers in subgame S2. Thus, although a duopoly
extracts all surplus from low-demand consumers, the joint duopoly profit is lower
than the monopoly profit. Further, if the two firms were able to coordinate their
decisions with respect to market coverage, they would choose to exclude low-
demand consumers in some cases where these consumers would have been served
in a monopoly. However, as we will demonstrate, without coordination it is
difficult to sustain a duopoly outcome that excludes low-demand consumers from
the market. A monopoly firm can extract surplus from high-demand segments by
deliberately excluding low-demand segments, because a monopoly can choose to
design a tariff that low-demand segments would never accept. However, a duopoly
firm cannot prevent a competing firm from applying a tariff that low-demand
segments will accept, and such a tariff will be strictly preferred by high-demand
segments.

In the following two sections, we examine the incentive of one firm to deviate
from the symmetric strategy combination subgames in Lemma 1 and 2. Section
3.1 examines one firm’s incentive to deviate when the low-demand segment is
excluded (from S1). Section 3.2 examines the incentive to deviate when both
consumer types are served (from S2).

3.1 Deviation if low-demand consumers are excluded

First, let us consider a symmetric strategy combination where both firms serve
only high-demand consumers, and the tariff is given by (A2

TT , c), A2
TT = V (c, θ2),

and na = nb = N
2
(1 − λ).

One firm, say Firm a, could deviate by setting a tariff (or, properly speak-
ing, choosing a strategy) that low-demand consumers are willing to accept, thus
capturing all type 1 consumers, λN . However, as low-demand consumers derive
a nonnegative surplus, high-demand consumers will derive a strictly positive sur-
plus by switching to Firm a. Then, the deviating firm will serve a mix of both

8They are identical for λ = 1
2 + θ2−

√
2

2(θ2−1)
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types. It will serve all type 1 consumers and more than half, but not all, of
type 2 consumers because the other firm holds capacity nbq2(c), which it will sell.
Because Firm a increases its market size, this tends to make such a deviation
profitable. However, profit per consumer is reduced.

Let the deviating firm choose a strategy (Q̃12
TT , Ã12

TT ), or equivalently, charge
a tariff (Ã12

TT , p̃12
TT ) in order to maximize profit, subject to voluntary participation

and Firm b’s strategy (Q2
TT , A2

TT ). The problem is to maximize the following:

Π̃12
TT = [N − n̄b] Ã

12
TT + (14)(

p̃12
TT − c

)
[Nλq̃1 + (N (1 − λ) − nb) q̃2] ,

subject to

V (p̃12
TT , 1) ≥ Ã12

TT (15)

V
(
p̃12

TT , θ2

) − V
(
p̃12

TT , 1
)

= V
(
p̄2

TT , θ2

) − V (c, θ2) (16)
N
2

(1 − λ) q2 ≥ n̄bq̄2, (17)

where q̃i = qi (p̃
12
TT ) , � = 1, 2, q̄2 = q2 (p̄2

TT ), and q2 = q2 (c). In order to re-
store voluntary participation, the unit price at firm b falls to p̄2

TT < c. As a
unit price reduction leads in turn to an increase in type 2 consumers’ demand,
q2(p̄

2
TT ) > q2(c), the capacity supplied by Firm b becomes insufficient to serve

half the population of type 2 consumers, and n̄b < (1 − λ)N/2 is adjusted to re-
store market clearing at Firm b. Formally, the participation constraint (16) and
the market clearing condition (17) jointly determine Firm b’s share of type 2 con-
sumers as a function of Firm a’s strategy, n̄b = n̄b(p̄2(p̃

12
TT )). One such deviation is

illustrated in Figure 6. S1 is given by the tariff at A on PC2, where high-demand
types are indifferent between buying and not buying – that is, the high-demand
types’ participation constraint is binding. PC2 is the indifference curve, where
the net utility of type 2 consumers is zero, V (p, θ2) − A = 0. The participa-
tion constraint of low-demand consumers is binding along the indifference curve
through C (equation 15), and high-demand types are indifferent between B and
C because they are on the same indifference curves (equation 16). As the per
unit price is lower in B, Firm b serves less than N(1 − λ)/2.

Although Firm a obtains a lower profit per consumer when it deviates, it
expands its market. When λ is low, or θ2 is high, the market expansion effect
is less likely to cover the loss of profit per consumer. In that case, there are
few type 1 consumers to serve and expected profit per consumer is significantly
lower when Firm a deviates. Conversely, we expect that a deviation is profitable
when demand-side heterogeneity is low. For a value of λ close to λ∗, the expected
revenue per consumer is identical. Therefore, we conjecture that it is profitable
to deviate.

In our numerical example, we find it profitable to deviate if λ > λ∗
D(θ2),

where λ∗ < λ∗
D. The results confirm our conjecture.
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3.2 Deviation if low-demand types are served

Second, let us consider the equilibrium candidate when both firms serve both
types of consumers, and the firms’ tariffs are given by (A12

TT , p12
TT ). Type 2 con-

sumers enjoy a positive surplus and type 1 consumers receive a zero surplus.
Firms have equal market shares, serving N/2 each, and they serve low-demand
types and high-demand consumers in proportions λ and (1−λ), respectively. The
consumer equilibrium per unit price will always be larger than the marginal cost
because k = 2 < 3+8θ(θ−1) for θ > 1. Pricing in the subgame where both firms
serve both consumer types is described in Appendix C. Let us now consider a
unilateral deviation by Firm a, (Ã2

TT , p̃2
TT ), when the strategy for Firm b is fixed,

(Q12
TT , A12

TT ).

In this case, Firm a can deviate by using one of two strategies: (i) Firm a
aims to serve all type 2 consumers, na = N(1 − λ), but to leave them a positive
surplus. In that case, the firm sets Ã2

TT < V (c, θ2); (ii) knowing that Firm b has
a limited capacity, Firm a could act as a monopoly on any residual demand. The
firm will then serve less than the entire pool of type 2 consumers, na < N(1−λ),
but it will extract all of the surplus Ã2

TT = V (c, θ2).

Consider the first strategy. Firm a announces a tariff (Ã2
TT , c) that is strictly

preferred by type 2 consumers. The firm will extract as much as possible from
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type 2 consumers via the fixed fee and will maximize the following:

Π̃2
TT = N (1 − λ) Ã2

TT , (18)

subject to:

V (c, θ2) − Ã2
TT ≥ V

(
p̄12

TT , θ2

) − A12
TT (19)

N
2

(λq1 + (1 − λ) , q2) ≥ Nλq̄1 (20)

where qi = qi (p
12
TT ), (� = 1, 2), and q̄1 = q1 (p̄12

TT ). The unit price p̄12
TT is adjusted

to account for the fact that Firm b is now left with type 1 consumers only, instead
of a mix of type 1 and type 2 consumers. Given that type 1 consumers receive
exactly their reservation utility, the unit price that clears the market at Firm b
cannot exceed p12

TT . Instead, type 1 consumers are rationed at Firm b. Hence,
0 < p̄12

TT < p12
TT . This restricts the fixed fee in (19), which in turn will restrict the

profits earned on type 2 consumers.

Looking at (18), it may appear that a deviation is profitable when λ is small.
However, when λ is small, p̄12

TT is low to ensure market clearing at Firm b, which
restricts the size of the fixed fee that Firm a can charge type 2 consumers. If
p̄12

TT < c, we have Ã2
TT < A12

TT . In our numerical example, we are not able
to find any profitable deviations, except for (θ2, λ) close to (1, 1

2
), which is not

economically interesting because it implies that the willingness to pay of the two
groups is almost identical, and that the groups are of the same size. In that case,
rather than charging a per unit price above marginal cost and extracting the
entire consumer surplus, Firm a would rather serve one half of the market at a
per unit price equal to marginal cost and extract almost all of the surplus. This
suggests that a duopoly outcome where both firms serve both types of consumers
can be an equilibrium outcome in situations where a monopolist would have
preferred to serve only one type of consumer.

Figure 7(a)-7(c) illustrates possible deviations along the high demand con-
sumers indifference curve through A, where high demand consumers are equal
off as before. The bold, dashed line is low demand consumers’ participation
constraint (where V (p, 1) = A). The other dashed lines represents indifference
curves with positive net utility for type 1. The bold, solid line is high demand
consumers’ participation constraint (where V (p, θ2) = A). The other solid lines
represents indifference curves with positive net utility for type 2. Firm a aims to
serve type 2 consumers at a tariff given by point B. If the per unit price at Firm
b falls, for instance to point D, the fixed fee at the deviating firm must be lower
than at point B. In figures 7(a) and 7(b), B is not a feasible tariff because type
2 consumers strictly prefer D over B. Type 2 consumers are indifferent between
C and D. At best, therefore, the deviating firm can offer tariff C. In figure 7(c),
low-demand consumers are rationed at Firm b, where they pay the per unit price
before deviation. In addition, Firm a can actually apply the tariff at B, but it is
left with few high-demand consumers.
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The other possible deviation strategy is for Firm a to act as a monopoly on
any residual demand from type 2 consumers, as illustrated by tariff B on PC2 in
figure 7(d). This time, consider a deviation where Firm a announces a tariff that
extracts all surplus from type 2 consumers, B= (V (c, θ2) , c). Type 2 consumers
enjoy a positive surplus by switching to Firm b’s tariff. Hence, because capacity
at Firm b is insufficient to meet all demand, type 2 consumers will crowd out type
1 consumers at Firm b. Firm a earns monopoly profits on each type 2 consumer
it serves, and aggregate profit is given by:

Π̃2
TT = [N (1 − λ) − n̄b] V (c, θ2) , (21)

where n̄b is the number of type 2 consumers that can be served by Firm b. Type
2 consumers are indifferent between the two firms’ tariffs when they receive a
zero surplus. Hence, the unit price in Firm b’s tariff must be adjusted in order to
restore voluntary participation for type 2 consumers, p̄2

TT . This time, Firm b is
left with type 2 consumers only, instead of a mix of type 1 and type 2 consumers,
as follows:

V
(
p̄2

TT , θ2

) − A12
TT ≥ 0 (22)

N
2

(λq1 + (1 − λ) q2) ≥ n̄bq̄2 (23)

N (1 − λ) ≥ n̄b. (24)

We find no examples where such a deviation is profitable, except for (θ2, λ)
close to (1, 0), which is not very interesting because it means that there are very
few type 1 consumers and that their willingness to pay is very close to that of type
2 consumers. Again, the fact that the non-deviating firm has committed itself to
selling a certain quantity acts as a constraint on the deviating firm’s behavior.
If there are few type 2 consumers, the non-deviating firm would serve them all
and the deviating firm would have no residual demand. If there are many type
2 consumers, the price per unit would be closer to marginal costs. If so, there
is a more limited scope for the deviating firm to generate additional consumer
surplus from type 2 consumers by setting price per unit equal to marginal costs.

Figure 8 summarizes our conclusions. The north-west part of the diagram
characterizes a case with low heterogeneity, whereas the south-east part char-
acterizes a case with high heterogeneity. Using monopoly two-part pricing as a
reference, we know that low-demand consumers will be excluded if the parameter
values lie in regions B, B1, C, and C1 (if λ < λ∗(θ2)), whereas both consumers
will be served in region A. Considering a duopoly with symmetric strategies only,
we reach the following conclusions. In regions A, B, and B1, the entire market
will be covered in equilibrium. All consumer types are served with a two-part
tariff that extracts the entire surplus from low-demand consumers. The per unit
price in the tariff is lower than the monopoly (two-part tariff) per unit price in
regions A and B, whereas p12

TT > p12
M in region B1. In regions C and C1, we have
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Figure 7: Deviations from a symmetric strategy subgame in which both consumer
types are served (A). Along PC2 through A (7(a)-7(c)) or along PC2 (7(d)). Solid
lines represent the high-demand consumers’ indifference curves, and dashed lines
represent the indifference curves of low-demand consumers.
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multiple equilibria. For the duopoly game, a symmetric strategy subgame where
both types are served, and a symmetric strategy subgame where low-demand
types are excluded, can both be Nash equilibria. If both types are served, the
per unit price p12

TT is below p12
M in region C1, whereas the opposite is the case in

region C.

Therefore, this particular case suggests that, to a large extent, a Nash equi-
librium in a duopoly where both firms serve only one type of consumer coincides
with the case where a monopolist prefers to serve only one type of consumer.
However, there are parameter values for which low-demand consumers would be
served in a duopoly, whereas they would be excluded in a monopoly.

4 Concluding remarks

Harrison and Kline (2001) have shown a way to extend the traditional Cournot
model to a setting with not only a per unit price, but also a fixed fee. They
found that each firm sets a price per unit equal to marginal costs, and a positive
fixed fee that approaches zero only when the number of firms becomes large. We
extended their model to account for demand-side heterogeneity, which is a natural
extension because most industries face heterogeneous demand. At the same time,
we added the assumption that a regulatory agency can impose a Universal Service
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Obligation on the firms. We found that the conclusions in Harrison and Kline
(2001) are not robust to such an extension because firms’ pricing strategies may
change when we allow for demand-side heterogeneity. In addition, we showed that
fostering competition may contribute to the fulfillment of the Universal Service
requirement that is common in industries such as telecommunications, which
applies nonlinear pricing on a normal basis.

If the market is covered – that is, if both types of consumers are served –
we found that the per unit price may be below marginal costs when as few as
four firms exist. In addition, the fixed fee may be positive even with an infinite
number of firms. Hence, the results in Oi (1971) cannot be extended to oligopoly
with heterogeneous consumers.

Our results showed that multiple Nash equilibria may exist. First, a po-
tential equilibrium outcome is that both firms serve only one type of consumer.
Numerical examples suggest that, to a large extent, this equilibrium outcome
coincides with the case where the monopolist chooses to serve only one type of
consumer. Nevertheless, the duopoly is more likely than a monopoly to cover the
entire market. Second, we found that both firms serving both types of consumers
can be an equilibrium outcome. In fact, we found no numerical examples where
the firms would deviate from such an outcome, beyond a very small set of excep-
tions that are economically uninteresting. Deviations from a symmetric strategy
subgame where both consumer types are served are not profitable because the
rival, non-deviating firm has a fixed quantity that acts as a constraint on the
deviating firm’s behavior.

A particular aim of this paper was to explore whether full market coverage
can arise as an equilibrium feature. Interestingly, we found that fostering compe-
tition can contribute to full market coverage and the fulfillment of the Universal
Service requirement. Our results showed that a subgame with a Universal Ser-
vice Obligation is robust against unilateral deviations. Hence, our model does not
support the theory that the firm operating under a Universal Service Obligation
serves low-demand segments of the market while other firms “skim the cream”
by serving the more profitable high-demand segments.

Appendix

A Subgame 1. Only high-demand types served

We assume N(1 − λ) identical consumers. Given that firm i serves a number of
consumers, ni, when it charges a tariff (pi, Ai), and that all other firms charge
identical tariffs (p−i, A−i), firm i’s maximization problem reduces to maximizing
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profit subject to voluntary participation and market clearing, as follows:

Πi = niAi + (pi − c)Qi. (A.1)

Ai = V (pi, θ2) − V (p−i, θ2) + A−i

QJ = (N(1 − λ) − ni)q2(p−i)
Qi = niq2(pi).

(A.2)

Choosing Qi, knowing that the market clearing condition must be satisfied,
amounts to maximizing profit with respect to pi, holding A−i, QJ , and Ai con-
stant. Hence:

(pi − c)
dq2(pi)

dp
= 0 ⇒ pi = c. (A.3)

Now, given that pi = c is optimal, the firm determines the size of the fixed fee
Ai by determining the optimal number of consumers to serve. Hence, under
the constraints of voluntary participation and market clearing, firm i maximizes
profit with respect to ni, which yields:

dΠi

dni

= V (pi, θ2) − V (p−i, θ2) + A−i + ni

[
−V ′

p

dp−i

dni

]
= 0. (A.4)

Substituting from the participation constraint in (A.2), differentiating the
market-clearing condition QJ = (N(1 − λ) − ni)q(p−i), and holding QJ fixed,
enables us to state the following condition:

Ai =
ni

N − ni

[
q2(p−i)p−i

/−p−i
dq2(p−i)

dp

q(p−i)

]
(A.5)

Further, let firms have equal market shares, ni = N(1 − λ)/k. When all firms
charge the same unit price, pi = p−i = c, and the participation constraint binds,
we obtain Ai = A−i ≡ A. Keeping in mind the fact that consumer surplus must
be nonnegative, evaluating the condition in (A.5) for p = c yields the following
expression for the fixed fee:

A = min

{
V (c, θ2),

cq2(c)

(k − 1)ε2(c)

}
. (A.6)

This verifies the statements in Lemma 1.

B Subgame 2. Both types are served

Now, let A be determined at stage zero. If all firms apply identical fixed fees, the
market clearing price must be the same across firms. In the following calculations,
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we impose the restriction that firm i chooses the same market coverage as all
other firms. Hence, if every other firm serves both consumer types, firm i aims
at designing a tariff that will maximize profit subject to the condition that both
consumer types are willing to participate in the market. Given that every other
firm holds its capacity fixed, if firm i changes its capacity, the market clearing
price and the market share will change for every firm, including firm i.

Taking rival firms’ capacity as given, firm i maximizes profit subject to mar-
ket clearing, given that both consumer types find it individual rational to buy.

Πi = niA + (p − c)Qi. (B.1)

V (p, θ1) − A ≥ 0
QJ = (N − ni)[λq1(p) + (1 − λ)q2(p)]
Qi = ni[λq1(p) + (1 − λ)q2(p)].

(B.2)

The optimality condition is given by:

dΠ

dp
= ni

(
q(p, θ) + (p − c)q′p(p, θ)

)
+

dni

dp

(
A + (p − c)q(p, θ)

)
. (B.3)

First, differentiating the market clearing condition QJ = (N −ni)q(p, θ), holding
QJ fixed, and assuming ni = N/k, we can write:

dni

dp
=

N

k

(
k − 1

)q′p(p, θ)

q(p, θ)
. (B.4)

Now, we can reformulate the optimality condition as follows:

p − c =
q(p, θ)

−kq′p(p, θ
− k − 1

k

A

q(p, θ)
. (B.5)

Finally, using the definition of the demand elasticity q′p(p, θ)p/q(p, θ) = −ε(p, θ),
we can write the mark-up as in Lemma 2.

p − c

p
=

1

kε(p, θ)

(
1 − (k − 1)ε(p, θ)

A

q(p, θ)p

)
. (B.6)

Given the reduced form profit after the last stage of the game, firms will choose
A such that the low-demand types’ participation constraint is just binding if they
can freely choose the fixed fee at stage zero. Hence:

A = V (p, θ1). (B.7)

This verifies the statements in Lemma 2
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C Tariff and profit in the numerical example

The following gives the firms’ pricing in the two subgames of the duopoly, ac-
cording to Lemmas 1 and 2. Superscript 12 is used when both consumer types
are served and superscript 2 is used when type 1 consumers are excluded, while
k denotes the number of active firms.

C.1 Only type 2 consumers are served

Pricing is given by Lemma 1. The unit price is always equal to marginal cost,
p2

TT (2) = p2
TT (3) = · · · = p2

TT (k) = c, and the firms’ profit per consumer is
whatever they manage to capture via the fixed fee A2

TT (k). Hence, Π2 (k) =
N(1−λ)

k
A2

TT (k). With less than three active firms, we have:

A2
TT (2) = A2

TT (3) = 1
8
(2θ2 − 1)2 .

With more than three firms, we have:

A2
TT (k) =

(2θ2 − 1)2

4 (k − 1)

C.2 Both consumer types are served

Pricing is given by Lemma 2. With two active firms, we have:

p12
TT = 4

5
θ − 1

5

√
θ2 + 5(θ − 1)2,

A12
TT = 1

2

(
1 − 4

5
θ + 1

5

√
θ2 + 5(θ − 1)2

)2

,

Π12
TT = N

100

(
20(θ − 1)2 + (5 − 2θ)

(
θ +

√
θ2 + 5(θ − 1)2

))
.

The per unit price in a corresponding monopoly is p12
M = θ − 1/2, whereas the

per unit price in a corresponding capacity game with uniform pricing is p12
UC =

1
3
(θ + 1). Hence, p12

TT = p12
M for θ = (1/2)(

√
2 + 1), and p12

TT < p12
UC for θ ∈ 〈1, 2〉.

With k active firms, the per unit price solves:

p12
TT (k) = c +

q(p, θ)

k

(
1 − (k − 1)

q1(p)2

2q(p, θ)2

)
,

and

A12
TT (k) = 1

2

(
q1(p

12
TT )

)2

, Π12
TT (k) =

N

k2

(
1
2
q1(p

12
TT )2 + q(p, θ)2

)
.
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The per unit price is declining in k, and hence, the fixed fee is increasing in the
number of firms. In addition, as k goes to infinity, profit becomes:

The cut-off value λ∗(θ2) in a monopoly solves the equation N(1 − λ)V (c, θ2) =
N

(
V (p, θ1) + (p12

M − c)q(p12
M , θ)

)
.

When both consumer types are served in a k-firm oligopoly and all firms charge
a uniform price, we have:

p12
UP (k) =

2θ + k

2(k + 1)
, and Π12

UP (k) =
N

k

(2θ − 1)2

4(k + 1)2
.
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