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Abstract: In this paper we discuss how three different public policy
measures affect water storage controlled by hydropower producing firms. In
particular we discuss measures to promote competition, increase transmis-
sion capacity and rationing. The analysis is conducted within the framework
of an oligopoly model where 2 hydro producing firms engage in dynamic
Bertrand competition. We extend this model to be able to analyse how
the three policy measures affect storage by hydropower producing firms and
focus especially on the probability of hydropower replacing thermal produc-
tion.

We find that competition, represented by the Bertrand-Nash solution
leads to lower storage compared to the monopoly solution. Furthermore,
we find that increased transmission capacity and rationing both lead to
more fierce competition in situations when water is plentiful and thus to a
reduction in storage. These results imply that increased competition, trans-
mission capacity and rationing all contribute to an increased probability of
hydropower replacing thermal production.
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1 Introduction

Deregulation of electricity markets around the world has been followed by a
large number of analyses of competitive strategies in such markets1. Most
of these studies focus on static analysis of competitive behavior in markets
dominated by thermal power. In several electricity markets hydropower
contributes a significant share of total production. This includes the Nordic
market, New Zealand, South American markets like Chile, Colombia and
Argentina, Switzerland and also to some extent markets in the US2.

The problem facing a hydropower producer is to decide how to allocate
a scarce renewable resource between different periods in time. As noted by
Garcia et al. (2001), in markets where hydropower plays a significant role,
analysis of dynamic pricing behavior is important in order to understand
how firms act strategically in such markets.

Garcia et al. refer to an earlier version of a paper by Bushnell (2003)
and another by Scott and Read (1996) as some of the few known exceptions
focusing on dynamic strategic behavior. In addition we note that Crampes
and Moreaux (2001), Johnsen (2001) and Mathiesen et al. (2004) also con-
duct an analysis of dynamic strategic behavior in electricity markets. These
five papers analyze dynamic strategic behavior in a finite-horizon setting
where quantity is the strategic variable. Also, only a couple of these pa-
pers (Johnsen (2001) and Mathiesen et al. (2004)) address the question of
strategic behavior when there is uncertainty with regard to inflow.

Garcia et al (2001) analyze dynamic strategic behavior of hydropower
producers in an infinite-horizon setting where two firms engage in dynamic
Bertrand competition and where inflow is uncertain. They show that a tight-
ening of the price cap on electricity in a market with significant hydropower
production would reduce the alternative value of production in the current
period and thus increase the competition between producers when water
is plentiful. Furthermore, as an extension to their basic model they show
that the price cap also affects the probability of hydropower replacing ther-
mal production of electricity. If the price cap is sufficiently low, prices in
situations with full reservoirs become so low that thermal production is elim-
inated and replaced by hydropower. If there is no inflow in the following
peirod this might effect the reliability of the system.

Following the conclusion reached by Garcia et al (2001) it seems nat-
ural to ask whether there are any public measures that can be imposed to

1This include for example Green and Newbery (1992), Green (1996), Newbery (1998),
Borenstein and Bushnell (1999) and Borenstein, Bushnell and Wolak (2002).

2See Bushnell (2003).
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reduce the potential problem of hydropower replacing thermal production
in situations where inflow is plentiful. Of cource, a high price cap would
give producers incentives to store water for periods with little inflow. How-
ever, a high price cap might be politically undesirable as this would imply
a high price for electricity. Thus it is relevant to look at the properties of
other public measures. Motivated by the observed energy shortage during
the winter 2002/2003 in Scandinavia and the following discussion, we look
at three such public measures in this paper.

First, we look at measures to promote competition. Authorities can
promote competition for instance by taking actions to prevent collusion or
preventing mergers from taking place. We analyse the effect of promoting
competition on the probability of hydropower replacing thermal production
in the simplest possible way, by comparing the Bertrand-Nash outcome de-
scribed by Garcia et al (2001) to the monopoly outcome. Even though
Garcia et al (2001) describe the collusive outcome which can be identical
to the monopoly solution, they make no explicit comparisons of the two
outcomes. Our description of the monopoly outcome is also more suitable
for comparisons with the Bertrand-Nash solution. We find that competition
represented by the Bertrand-Nash outcome implies a higher probability of
hydropower replacing thermal production than the monopoly solution.

Another public measure that has been proposed in order to reduce the
problem of energy shortage in low inflow situations is increased transmis-
sion capacity. The idea is that increased transmission capacity would make
it possible to increase production through imports in situations with low
inflow and thus reduce the problem of energy shortage. There are several
ways this could be modelled. Here, we model transmission between two
geographic areas with one hydropower company in each area. In this set-
ting, we find that an increase in transmission capacity leads to a more fierce
competition between the two hydro producing companies and thus increases
the probability of hydropower replacing thermal production. This effect is
similar to a reduction in the price cap as described by Garcia et al (2001).

Finally, we consider the effect on storage by rationing imposed by au-
thorities. Rationing may be thought of as a measure to secure supply of
electricity in situations with little or no inflow. We model rationing as an
action by authorities to reduce demand in situations when the energy re-
source is belived to be scarce. Rationing will only affect profits directly
in the periods where such rationing is imposed and also affect producers’
storage levels. These effects are different from a reduction in the price cap
analysed by Garcia et al. We find however, that the effect of rationing is
similar to a reduction in the price cap. Increased rationing leads to a more
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fierce competition when water is plentiful and thus increases the probability
of hydropower replacing thermal production of electricity.

In section 2 we restate the basic model developed by Garcia et al (2001)
and compare the Bertrand-Nash solution to the monopoly solution. In sec-
tion 3 we extend the model to include a situation with limited transmission
capacity between two different geographic areas. In section 4 we change the
model to include an element of rationing. In all three sections we discuss
storage when thermal production is included. In section 5 we provide some
concluding remarks.

2 Market power and storage

In this section we repeat the basic features of a model developed by Garcia
et al (2001). We then develop a monopoly solution and compare this to the
basic Bertrand-Nash solution described by Garcia et al. (2001) in a situation
with price taking thermal producers present in the market. By doing so we
are able to analyse in a simple way how market power affects storage in a
hydropower system.

2.1 The Bertrand-Nash solution

The general framework of the Garcia et al (2001) infinite-horizon model is
a situation with two hydropower producers, where each producer controls
one storage facility. The two reservoirs are of equal size. At the beginning
of each period both producers observe how much water that is available for
production in the two storage facilities. Thus, there is complete information
with regard to the history of the game. At each stage of the game, however,
producer i = 1, 2 does not observe the other producer’s action before the
move is made. After observing storage levels the two producers set their
prices simultaneously. If they set the same price, it is assumed for simplicity
that one of the two producers serves the entire market. This produces
asymmetry with regard to storage levels between the producers. However,
as Garcia et al (2001) show, the results are unaffected by this assumption3.

Without additional restrictions there would be a vast number of states
(storage levels) visited by the two producers. Garcia et al (2001) solve this
problem through a number of assumptions. First it is assumed that demand
is equal to one unit in every period and perfectly inelastic. As noted by
Garcia et al (2001) this assumption is consistent with the operation reality

3Se Garcia et al (2001) section 2.2.
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of many real-time wholesale electricity markets. In particular they argue
with reference to Train and Shelting (2002) that the widespread use of fixed
rate contracts in retail markets makes the responsiveness of market demand
extremely limited.4

Second, it is assumed that the storage capacity is also equal to one unit.
This implies that one producer is not able to store more water than just to
cover demand in each period. Garcia et al (2001) also make the assumption
that the maximum output capacity is equal to one unit in each period.

Thirdly and finally it is assumed that water inflow w at the end of each
period follows a simple binomial process, where w = 1 with probability q and
w = 0 with probability (1− q). It either rains one unit or it does not. The
initial assumption by Garcia et al. (2001) is that both players are identical
with respect to the probability of inflow.

The three main assumptions above with regard to demand, storage ca-
pacity and water inflow imply that each producer either has one unit avail-
able for production or the reservoir is empty in which case production is zero.
Thus, there are just two states of storage levels visited by each producer.
When we combine the storage levels experienced by the two producers we
get four different states, first when both producers have full reservoir, sec-
ond and third when either producer 1 or 2 have full reservoir and fourth
when neither of the two producers have water available for production. If
we assume as Garcia et al (2001) that both producers have equal marginal
costs normalized to zero, the two states where either producer 1 or 2 have a
full reservoir would be identical.

The static game solution to a situation where both producers have empty
reservoirs is simply that no production takes place. If one of the two pro-
ducers has a full reservoir, then this producer is in fact a monopolist. The
producer charges the maximum allowed price c∗ for the one unit available
for production. We interpret this price as the consumers’ reservation price5.
If both producers have full reservoirs, then because the firms are symmetric
with respect to marginal costs we have the so-called ”Bertrand paradox”
where both firms charge a price of zero equal to the marginal cost.

In a dynamic game, actions taken today may affect payoff in future
periods. It is assumed that current payoff is unaffected by storage levels in
previous periods. It means that the action chosen by producer i = 1, 2 based
on the current reservoir level would have been taken irrespective of storage

4This is also noted by Borenstein et al. (2003) with regard to the electricity market in
California.

5Garcia et al (2001) interpret this price as either a reservation price or the price cap
set by the regulator.
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levels experienced in previous periods. The Markov updating of the game
makes it possible to express the payoff for producer i as a value function
representing the payoff to producer i for the remainder of the game once a
certain state of reservoir level has been reached. The value function consists
of the current period payoff and the effect that the current action has on the
probability of reaching a certain state in the next. The value function for
producer i in the state (x, y) is given by Vxy, where x ∈ {0, 1} is the reservoir
level of producer i and y ∈ {0, 1} is the rival’s reservoir level. Future payoff
is discounted by the factor β ∈ (0, 1). Because both producers have marginal
cost equal to zero and equal probability of inflow the value functions will be
symmetric.

Garcia et al. (2001) define value functions for each of the four possible
states that can be experienced by producer i. The most interesting state is
where both producers have a full reservoir. In this state both producers are
able to cover demand and have to decide whether to undercut the rival’s
price or store the water for future periods. Garcia et al. (2001) derive the
following equilibrium price6:

p
∗
11 = β(1− q)c∗ . (1)

The intuition here is that the equilibrium price would have to be equal to
the alternative value associated with production in the next period. In the
next period producer i would receive the reservation price c∗ if there is no
inflow at the end of the current period. This occurs with probability (1−q).
Also, producer i would have to discount this expected payoff by the factor
β. We observe that the equilibrium price is increasing in the reservation
price c∗ and in the discount factor β. Finally, a higher probability of inflow
will reduce the equilibrium price.

When adding thermal production, Garcia et al. (2001) assume that
demand in each period is equal to 2 units. Furthermore, it is assumed that
the fringe thermal producers have a deterministic capacity in total of one
unit and constant marginal cost equal to cT . They then focus on the state
where both hydro producing players have one unit of water available for
production, (1, 1) and find that hydropower replaces thermal production
when the equilibrium price p

∗
11 < c

T .
If the equilibrium price is higher than the marginal cost in thermal pro-

duction, one unit of water will be saved for production in the next period.
Now, if both units of water are produced in the state (1, 1) and there is

6See Garcia et al. (2001), equation 2.8.
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no inflow before the next period there will be to little capacity available to
cover the demand of two units.

2.2 The monopoly solution

According to Garcia et al. (2001) a collusive agreement between the two
Bertrand players is sustainable for any price ep11, such that c∗ ≥ ep11 ≥ p∗11, if
and only if β ≥ 1

1+q . Even though the collusive solution described by Garcia
et al. (2001) is identical to the monopoly solution when c∗ = ep11, it is not
straight forward to compare this solution to the Bertrand-Nash case when
thermal production is introduced. When thermal production is introduced,
this affects the extent to which a player can be punished for deviation from
the collusive equilibrium. In order to avoid this problem we describe the
monopoly solution.

We let the function Vx represent the monopolist’s value for the state
(x), where x ∈ {0, 1, 2} denotes the monopolist’s storage level. This value
function represents the monopolist’s value for all remaining periods once the
state (x) is reached. We consider first the state where the storage facility
is empty. In the current period there is no production. In the next period
it either rains one unit with probability q or it does not with probability
(1− q). We want the monopoly case to compare to the two firm Bertrand-
Nash outcome described in subsection 2.1 above. Thus we imagine the
monopoly case to be the case where the two hydropower producers have
merged into one company. Then, if it rains the monopolist would experience
an inflow of two units (w = 2) and receive the value V2 for the remaining
periods. Otherwise the producer faces the value function V0. Future payoff
is discounted with the factor β ∈ (0, 1). We can now state the monopolist’s
value function for the state (x = 0) as follows:

V0 = β[(1− q)V0 + qV2]. (2)

The next state (x = 1) may occur as a result of a situation where the
monopolist at the beginning of the previous period had 2 units available for
production. In the previous period one unit was produced and there was
no water inflow at the end of this period. With only one unit available for
production the monopolist could choose between production in the current
period at price c∗ or save the water for future production. The monopolist
would always choose to produce in the current period as long as future profit
is discounted with a value less than 1 or the probability of inflow is higher
than zero, 1 > β(1 − q). In the following period the monopolist will either
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have zero or two units available for production depending on whether it rains
or not.

V1 = c
∗ + β[(1− q)V0 + qV2]. (3)

The last possible state for the monopolist (x = 2), is a situation where
the producer has more than enough water available to cover demand in the
current period. This state is a result of inflow at the end of the previous
period. Now, the monopolist would always produce one unit at price c∗

during the current period and save one unit for possible production in the
future. The choice is between producing now and receiving c∗ and producing
in two periods from now if there is no inflow in between. The discounted
value of the latter option, β2(1− q)2c∗ is always less than the certain payoff
today (c∗) as long at either β < 1 or q > 0. Then, the monopolist’s value
function V2 can be expressed in the following way7:

V2 = c
∗ + β[(1− q)V1 + qV2]. (4)

The monopolist sets the price equal to the reservation price in every period
where the monopolist has at least one unit of water available for production.

The monopoly outcome indicates a higher price in such situations com-
pared to the case where producers compete in setting the price. We should
also note that the actual production of electricity is the same in all states of
total storage level {0, 1, 2}, regardless of the model of competition. This is
due to the fact that demand is equal to one unit in each period and that the
reservation price c∗ is equal across periods. However, if we introduce thermal
production also in the case of a monopoly producer this will change.

2.3 Introducing thermal production

We increase demand in each period to 2 units and introduce thermal produc-
tion from a competitive fringe with a production capacity of one unit. The
competitive fringe will always bid their marginal cost equal to cT . Because
demand has doubled this will not change the monopolist’s value functions for
states where the storage level is either 0 or 1. In the state where the reservoir
is full however, the monopolist now must choose between an undercutting
strategy receiving,

7When c∗ = ep11, the monopoly solution is identical to the collusive solution described
in Garcia et al. (2001). We have that V2

2 = eV1,1, where eV1,1 is defined as one players
collusive value (see Garcia et al. equation (3.2)).
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2cT + β[(1− q)V0 + qV2] (5)

and charging a higher price than the fringe receiving

c∗ + β[(1− q)V1 + qV2]. (6)

The undercutting strategy is preferred only when cT is higher than the
level making the monopolist indifferent between the two strategies:

cT >
c∗ + β(1− q)[V1 − V0]

2
. (7)

If we rearrange this equation and use the fact that V1 − V0 = c∗, we get the
following condition for the monopolist to prefer the undercutting strategy:

cT >
c∗(1 + β(1− q))

2
. (8)

We see that the monopolist would prefer the undercutting strategy as long
as he receives a price for his 2 units sold that is higher than the alternative
value for this volume. The alternative is to receive c∗ for one unit in the
current period and the same price for one additional unit if it does not rain
in the next period.

As shown by Garcia et al. (2001) hydropower will replace thermal pro-
duction in the state (1, 1) in the Bertrand-Nash case if cT > β(1− q)c∗ . We
can now state our proposition 1:

Proposition 1 Assuming that 0 < β < 1, 0 < q < 1 and that the reserva-
tion price c

∗
> 0. Then,

(i) if cT > c∗(1+β(1−q))
2 , hydropower would replace thermal production in both

cases.
(ii) if cT < β(1− q)c∗, hydropower would not replace thermal production in
either cases.
(iii) for intermediate values of cT , c

∗(1+β(1−q))
2 > cT > β(1− q)c∗, thermal

production would only be replaced by hydropower in the case of Bertrand-
Nash competition.

The interesting case is for intermediate values of cT where thermal pro-
duction would only be replaced in the case of Bertrand-Nash competition.
This means that as long as there is no inflow, then the reservoirs in the
Bertrand competition case would be empty in the next period. In the
monopoly case however, there will be enough water left in the reservoirs
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to serve demand. Thus, even though competition may lead to lower prices
on electricity in periods with more than enough water, the downside is that
less water may be available for periods with little or no inflow.

3 Introducing transmission capacity between two
geographic areas

In this section we introduce transmission capacity between two geographic
areas where one hydropower producer is located in each area. The objective
is to analyse how a change in the transmission capacity affect the possibility
of hydropower replacing thermal production of electricity. We continue to
assume that both producers experience inflow with the same probability.
Furthermore, we assume that demand is equal to 1

2 in both regions and
that the maximum allowed price c∗ is the same. Also, there is just one
transmission line with capacity k ∈ (0, 12) between two regions A and B.
Electricity flows to the region with demand surplus (high price) until the
transmission capacity is binding. The transmission line is operated by a grid
operator behaving as a competitive arbitrage agent.

3.1 Bertrand-Nash solution

The restricted transmission capacity implies that we now have a set of new
states of reservoir levels. The four original states where (0, 0), (1, 0), (0, 1)
and (1, 1). Now, if both firms have full reservoirs at the beginning of the
current period producer i could either produce 1

2 + k or
1
2 − k depending

on whether the producer undercuts the rivals price or not. The rival would
in both cases serve the residual demand equal to 1

2 − k or 1
2 + k. In the

following period both producers would have either 12 − k or 12 + k left in the
reservoir if there is no inflow or one unit if inflow occur. Accordingly, we
have the two additional states; (12 + k,

1
2 − k) and (12 − k, 12 + k).

In the state (12 + k,
1
2 − k) total production capacity is equal to total

demand in both regions. In addition, the existing transmission capacity
does not constrain producer i from producing all the available water in its
storage facility. Thus, the dominant strategy for producer i is to set the
reservation price c∗ and sell 12 + k units in the current period. The rival
producer would also set the price c∗ and sell the remaining 1

2 − k in his
reservoir. In the following period both reservoirs would either be empty or
full depending on whether they experience inflow or not8.

8This implies that the states (1, 0) and (0, 1) would not be visited by the producers
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V( 1
2
+k),( 1

2
−k) = c

∗(
1

2
+ k) + β[(1− q)V0,0 + qV1,1]. (9)

In the state (12 − k, 12 + k) producer i’s dominant strategy is to sell 12 − k
at price c∗ and the rival producer sell 12 + k at the same price.

V( 1
2
−k),( 1

2
+k) = c

∗(
1

2
− k) + β[(1− q)V0,0 + qV1,1]. (10)

Thus, the difference in value function between the two states V( 1
2
+k),( 1

2
−k)−

V( 1
2
−k),( 1

2
+k) = c

∗2k. The difference between the two value functions reflects
that when producer i charges a lower price than the rival in a state where
both producers have full reservoirs, he then forsakes the alternative which
is to sell 2k at price c∗ in the following period if there is no inflow.

In the most interesting state (1, 1) where water is plentiful, producer i
faces two alternatives in competition with the other producer. First producer
i may choose to undercut the price set by the other producer in which case
he earns p1,1(12 + k) in the current period. This would leave (

1
2 − k) for

production in future periods. The other producer will only produce (12 − k)
in the current period and have (12+k) left for production in the next period.
Thus, the value function for producer i in the state (1, 1) can be expressed
as follows:

p1,1(
1

2
+ k) + β[(1− q)V( 1

2
−k),( 1

2
+k) + qV1,1]. (11)

The second alternative is to charge a price higher than the rival producer.
This will result in full import to region A where producer i is located. How-
ever, since the transmission line is constrained, there is still positive residual
demand facing producer i. Producer i would then charge the reservation
price on the residual demand in region A in the current period and leave
(12 + k) for production in the next period. The producer located in region
B will only have (12 − k) left for production in the next period. The value
function corresponding to this strategy is:

c∗(
1

2
− k) + β[(1− q)V( 1

2
+k),( 1

2
−k) + qV1,1]. (12)

The two alternatives above, (11) and (12), indicate an equilibrium price
p1,1 = bp1,1 where both producers are indifferent between the undercutting
strategy and charging a higher price than the rival firm.

when both producers are symmetric with respect to inflow. The four new states are (0, 0),
(1, 1), ( 1

2
+ k, 1

2
− k) and ( 1

2
− k, 1

2
+ k).
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bp1,1 = c∗(12 − k) + β(1− q)[V( 1
2
+k),( 1

2
−k) − V( 1

2
−k),( 1

2
+k)]

(12 + k)
. (13)

We observe that the equilibrium price depends on the difference in value
between the states (12 + k,

1
2 − k) and (12 − k, 12 + k) which is equal to c∗2k.

We can now restate the equilibrium price in the state (1, 1) as follows:

bp1,1 = c∗(12 − k) + β(1− q)c∗2k
(12 + k)

. (14)

We note that if k = 1
2 , then the equilibrium price would reduce to the

equilibrium price in the case where all demand and production are located
at the same node.

Proposition 2 Assuming that 0 < β < 1, 0 < q < 1 and k ∈ (0, 12), then
the equilibrium price bp1,1 is decreasing in k.

Proof. We have that ∂bp1,1
∂k = −4 c∗(1−β+βq)

(1+2k)2
. Furthermore, by assump-

tion we have that 0 < β < 1, 0 < q < 1 and k ∈ (0, 12). This implies that
(1−β+βq) > 0 and that k is positive. Accordingly, we have that ∂bp1,1

∂k < 0.

The intuition behind the result in proposition 2 is simple. As the trans-
mission capacity increases, competition between our two producers becomes
increasingly fierce in the current period because the payoff associated with
the strategy of inducing a transmission constraint is reduced. In the extreme
case where k = 1

2 , there will be no additional payoff from such a strategy at
all.

Now, if we look more closely at the condition stated in equation (14) we
can decompose the alternative value in two different components. First we
have the value of selling (12 − k) units of water at the reservation price c∗ in
the current period. This alternative value is equal to

c∗( 1
2
−k)

( 1
2
+k)

. This leaves

us with 1− 1
2 + k units for production in the following period. The second

part of equation (14), β(1−q)c∗2k
( 1
2
+k)

, represents the alternative value of selling

k units in the other market in the next period and reducing import with
the same amount, in total 2k units of water. This leaves us with 1− 1

2 − k
units that are not represented as part of the alternative value. The reason
why this part of the reservoir is not represented in the alternative value
is that this amount of water would have to be sold in the second period
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regardless of whether an undercutting strategy is followed or not. Thus, the
payoff received for this part of the inflow is irrelevant when determining the
equilibrium price. However, if we compare with other alternatives implying
a production of 1 unit we should also account for the last (12 − k) units that
are not accounted for in equation (14).

3.2 Adding thermal production

Again, recognizing the importance of the combination of hydro and thermal
based electricity production in real world electricity markets, we add ther-
mal production by a fringe producer in each market. We consider the case
where both thermal producers offer their capacity of 12 unit each at the same
marginal cost cT . Demand in each market region is increased to 1 unit in
every period.

We look at the state where both hydropower producing firms have 1
unit of water available for production. Now, they can choose to undercut
the price set by the two thermal producers and sell 1 unit of power each in
the current period at a price slightly below cT . The alternative is to charge
a higher price where we know that (12 + k) of the units available have an

alternative value equal to
c∗( 1

2
−k)+β(1−q)c∗2k
( 1
2
+k)

, while the remaining (12 − k)
units in the reservoir are sold in the second period at an alternative value
equal to β(1− q)c∗. The undercutting strategy is preferred if

cT > v = (
1

2
+ k)

c∗(12 − k) + β(1− q)c∗2k
(12 + k)

+ (
1

2
− k)β(1− q)c∗. (15)

Proposition 3 Assuming that 0 < β < 1, 0 < q < 1 and k ∈ (0, 12), then
the alternative value v is decreasing in k.

Proof. We have that ∂v
∂k = c

∗(β− βq− 1). Furthermore, by assumption
we have that 0 < β < 1 and 0 < q < 1. This implies that β − βq − 1 < 0.
Accordingly, we have that ∂v

∂k < 0.
It follows from proposition 3 that the probability of observing a situation

where hydropower replace thermal production increase when transmission
capacity is increased. The intuition behind this result is most easily seen
by looking at the two extreme cases where k = 0 and k = 1

2 . With k =
1
2 ,

we have that undercutting is preferred if cT > β(1 − q)c∗. This is exactly
the same as the condition derived in subsection 2.2 where there is only one
integrated market. At the other extreme when k = 0 we have separate
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markets. In this situation undercutting becomes a strategy when cT >
c∗ 12 +

1
2β(1− q)c∗. This is the same condition as derived for the monopoly

case9 described in subsection 2.3.

4 Rationing

The last public measure we consider in this paper is rationing. If the au-
thorities introduce rationing, demand is set to R, where 0 ≤ R ≤ 1. An
increase in the level of rationing would in the same way as a reduction in
the reservation price c∗ lead to a reduction in profits for the two hydropower
producing firms. However, in contrast to a change in the reservation price
analysed by Garcia et al. (2001), rationing will also affect the producers’
reservoir levels. Also, rationing will only affect profits directly in periods
where such rationing is imposed while a change in the reservation price will
affect profits in all periods.

The level of rationing is set subsequent to the observation of the total
reservoir level s = x + y, where x denotes the reservoir level of producer 1
and y denotes the reservoir level of producer 2.

Authorities have to follow a set of specific rules when they decide on the
level of rationing. We assume no rationing to take place when authorities
observe a total reservoir level s > 1. When they observe a total reservoir
level of s = 1 the situation is considered critical and rationing is introduced.
This is done by disconnecting some consumers from the network. If the
total reservoir level is observed to be below 1 unit, s < 1, the authorities
will impose rationing where demand is reduced to the available amount of
water.

4.1 Bertrand-Nash solution

In the same way as described in the two previous sections, we let Vx,y denote
the value function of producer i = 1, 2 related to the state (x, y), where
x ∈ {0, (1−R), 1} represents the reservoir level of producer i. The rival’s
reservoir level is described by the state variable y ∈ {0, (1−R), 1}. Because
both producers are symmetric with respect to costs and inflow, they will
have identical value functions. Accordingly, it is sufficient to look at the
value functions of only one of the two producers.

9The monopolist’s value functions and alternative value are not affected by the in-
troduction of a possible transmission constraint. Since inflow and demand are evenly
distributed between the two regions, the monopolist is able to charge the reservation price
in every period.
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First, we look at the state where neither of the two producers have water
in their reservoirs, (0, 0). With no water in the reservoirs nothing is produced
in the current period. Both producers will have filled up their reservoirs by
the beginning of the next period with probability q. If so, they will receive
the value V1,1 for the remaining periods of the game. If no inflow occurs
with probability (1− q), then none of the two producers will have water in
their reservoir at the beginning of the next period. The value of this state
is represented by V0,0.

V0,0 = β[(1− q)V0,0 + qV1,1]. (16)

The next state we consider, is where producer i has no water available
while the reservoir of the rival firm is full, (0, 1). In this state the rival firm
will be a monopolist in the current period. If no rationing is introduced, then
the rival firm will produce all the available water in the current period and
receive the reservation price c∗. However, as described above, the authorities
observe that s = 1 and impose rationing where demand is reduced to the
level R . Now, the rival firm will produce R in the current period and receive
c∗ for this production. Firm i produce nothing and receive no income in the
current period. In the next period the rival firm will have 1−R left in the
reservoir if there is no inflow. If inflow occurs both firms will have 1 unit of
water available for production.

V0,1 = β[(1− q)V0,(1−R) + qV1,1]. (17)

We observe that V0,0 − V0,1 = β(1 − q)[V0,0 − V0,1−R]. In the state
(0, 1 − R) the rival firm will be the only producer with water available for
production. Because the total reservoir level is less than 1 unit, rationing
will be imposed. The level of demand is set to the observed reservoir level
s = 1−R. The rival firm will in this state produce the remaining water in
the reservoir at the reservation price c∗.

V0,1−R = β[(1− q)V0,0 + qV1,1]. (18)

If we compare the value functions defined above we find that V0,1−R =
V0,0 = V0,1. As long at firm i’s reservoir is empty the value function is left
unaffected by the rival’s reservoir level.

The opposite situation is where only firm i has water in the reservoir.
In that case the authorities will impose rationing restricting demand to R.
Producer i will then produce R and receive the income Rc∗ in the current
period. If there is no inflow until the next period only firm i will have
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water in its reservoir. If inflow occurs, both firms will have 1 unit in their
reservoirs.

V1,0 = Rc
∗ + β[(1− q)V(1−R),0 + qV1,1]. (19)

In the state (1−R, 0) only producer i has water available for production.
Because s < 1 the authorities impose rationing and set total demand equal
to s = 1 − R. Producer i will produce the remaining water in the current
period, receiving the reservation price. In the next period both producers
will either have empty or full reservoirs.

V(1−R),0 = (1−R)c∗ + β[(1− q)V0,0 + qV1,1]. (20)

By substitution from (16),(17), (18) and (19) we can rewrite the value func-
tion for the state (1−R, 0) as follows:

V1−R,0 = (1−R)c∗ + V0,0 = (1−R)c∗ + V0,1 = (1−R)c∗ + V0,1−R. (21)

Furthermore, by the use of equations (20) and (21) we can now express the
value function V1,0 in the following way:

V1,0 = Rc
∗ + β(1− q)(1−R)c∗ + β[(1− q)V0,0 + qV1,1]. (22)

If the authorities impose rationing, 0 < R < 1, we can now express the
difference between the value functions associated with the two states (1, 0)
and (0, 1) as follows:

V1,0 − V0,1 = Rc∗ + β(1− q)(1−R)c∗. (23)

In state (1, 0) only producer i has water available. When rationing is
imposed producer i receives the reservation price c∗ for the level of rationing
imposed. If there is no inflow with probability 1− q, producer i will receive
the reservation price c∗ for the remaining water in the reservoir 1−R. This
however, is future payoff that has to be discounted by the factor β.

The last state to consider is where both producers have 1 unit of water
available, the state (1, 1). In this state we assume that both producers will
set the same price and serve the entire market with probability 1

2 . We look
at producer i’s optimal response to the price p1,1 set by the rival firm. One
strategy for producer i would now be to slightly undercut the rival and set
the price p1,1−ε. Knowing that no rationing is imposed when the authorities
observe that s > 1 and assuming that ε → 0, we can write the value of an
undercutting strategy as follows:
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p1,1 + β[(1− q)V0,1 + qV1,1]. (24)

In the current period firm i captures the entire market of 1 unit. In the next
period either both firms will have full reservoirs or only the rival firm will
have water available.

The alternative strategy for firm i is to let the rival firm take the whole
market in the current period. This will produce the following value for firm
i:

β[(1− q)V1,0 + qV1,1]. (25)

No rationing is imposed in the current period and the rival firm produces
the entire water stock of 1 unit. If there is no inflow producer i will be the
only producer in the next period. If on the other hand inflow occurs, then
both firms will have full reservoirs at the beginning of the next period.

The discussion above indicates an equilibrium price p1,1 = p1,1 where
both producers will be indifferent between the two strategies.

p1,1 + β[(1− q)V01 + qV11] = β[(1− q)V10 + qV11]. (26)

Knowing that V10 − V01 = Rc∗ + β(1 − q)(1 − R)c∗, we can rewrite the
equilibrium condition as follows:

p1,1 = β(1− q)[Rc∗ + β(1− q)(1−R)c∗] (27)

We can now state the following proposition:

Proposition 4 Assuming that 0 < β < 1, 0 < q < 1, 0 < R < 1 and
that the reservation price c

∗
> 0, then we have that an increased (decreased)

level of rationing given by a reduction (increase) in R will lead to a reduction
(increase) in the equilibrium price p1,1.

Proof. We have that ∂p1,1
∂R = (1 − q)β(c − β(1 − q)c). Furthermore,

by assumption we have that 0 < β < 1 and 0 < q < 1. This implies that
(1− q)β(c− β(1− q)c) > 0. Accordingly, we have that ∂p1,1

∂R > 0.
The intuition here is that the equilibrium price must be equal to the

alternative value of producing in a future period. If the producers face ra-
tioning in the future this will reduce the value of production in the future.
Accordingly, the producers would want to produce more in the current pe-
riod.
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4.2 Thermal production and rationing

We extend the model to include thermal production from a price taking
producer (fringe) with a fixed capacity of 1 unit and marginal cost equal to
cT . Demand is increased to 2 units in every period.

In the situation where both hydropower producers have full reservoirs,
there is an exess capacity equal to 1 unit. We know that the hydropower
producing firm i would want to postpone production if the price received
today is lower than the alternative value represented by β(1−q)[Rc∗+β(1−
q)(1−R)c∗]. Thus, whether the hydropower producing firms choose to store
their water for future production depends among other factors on the level
of rationing imposed in situations where the water resource is considered to
be scarce.

With demand equal to 2 units, the authorities impose rationing if they
observe that the total level of available water resources is less than or equal
to 2 units. If just one of the two hydro producing firms has a full water
reservoir, then total available capacity is equal to 2 units and rationing
is imposed. Demand is set to 1 + R. If the observed available capacity is
observed to be below 2 units, then demand is reduced to match the available
capacity.

We look at the state where both hydro producing firms have full reser-
voirs. With demand equal to 2 units and thermal production present in the
market the hydropower producing firms can choose to undercut the price set
by the thermal producer and deplete their reservoir in the current period.
They will choose to do so if ep∗1,1 < cT . If the equilibrium price ep∗1,1, decided
by the alternative value, is higher than marginal cost in thermal production
then the hydro producing firms will have a higher payoff if they store some
of their water for future periods.

From proposition 4 we have that the equilibrium price is reduced when
rationing is increased (reduction in R). This means that the probability
of hydropower replacing thermal production in the state (1, 1) increases as
the level of rationing is increased. Thus, by imposing rationing in order to
secure water for future periods the authorities might achieve the opposite
result. The intuition here is that rationing reduce the alternative value
faced by hydropower producing firms. Accordingly, they find it relatively
more profitable to produce in the current period when water resources are
plentiful.
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5 Concluding remarks

The starting point of this paper is an oligopoly model developed by Garcia et
al (2001) where 2 hydropower producing firms engage in dynamic Bertrand
competition. The basic features of their model was restated in section 2 of
this paper.

On the basis of the model developed by Garcia et al (2001) we defined
the monopoly outcome in subsection 2.3. We then compared the monopoly
outcome to the Bertrand-Nash outcome as defined in the original model.
We found that hydropower is less likely to replace thermal production in
monopoly case. This result indicates that competition would not necessarily
lead to the result that the water resources are allocated to the periods where
they are most needed.

Furthermore, we extended the Garcia et al (2001) model to include trans-
mission capacity between two price areas and rationing imposed by the
authorities. Both of these extensions we also analyzed in the presence of
thermal production.

With regard to transmission capacity described in section 3, we found
that the Bertrand-Nash equilibrium price is reduced when transmission ca-
pacity is increased. This happens because an increase in the transmission
capacity makes competition more fierce. When we included thermal pro-
duction, we found that an increase in transmission capacity would increase
the probability of hydropower replacing thermal production. This indicates
that increased transmission capacity may not be a good measure if the aim
is to secure enough storage for periods with low inflow.

The same result holds with regard to the extensions made in section
4 where we looked at rationing as a possible measure for securing enough
water in periods with low inflow. We found that an increase in the level
of rationing would reduce the Bertrand-Nash equilibrium price and thus
increase the probability of hydropower replacing thermal production.
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