
Is mobility of technical personnel
a source of R&D spillovers? ∗

by

Jarle Møen ‡

Department of Economics Discussion Paper 05/01

Abstract: Labor mobility is often considered to be an important source of knowl-
edge externalities, making it difficult for firms to appropriate returns to R&D in-
vestments. In this paper, I argue that inter-firm transfers of knowledge embodied
in people should be analyzed within a human capital framework. Testing such a
framework using a matched employer-employee data set, I find that the technical
staff in R&D-intensive firms pays for the knowledge they accumulate on the job
through lower wages in the beginning of their career. Later they earn a return on
these implicit investments through higher wages. This suggests that the potential
externalities associated with labor mobility, at least to some extent, are internalized
in the labor market.

JEL classification: J24, J31, J62, O32
Keywords: Labor mobility, Compensating differentials, Human capital, R&D-capital,

R&D spillovers, Matched employer-employee data

∗ This is a revised version of NBER Working Paper No. 7834. I am grateful to Zvi Griliches
for suggesting the topic to me, and for inviting me to visit Harvard University and NBER while
working on the project. I have received useful comments from James Adams, Pierre Azoulay, Gilles
Duranton, Torbjørn Hægeland, Adam Jaffe, Lars Mathiesen, Oddbjørn Raaum, Kjell Salvanes,
Scott Stern and seminar participants in Oslo, Bergen, Trondheim, Aarhus and Cambridge. Finally,
I am indebted to Tor Jakob Klette. The paper has benefitted greatly from his continuous advice
and encouragement. Remaining errors and all opinions expressed are the sole responsibility of the
author. The project is financed by the Research Council of Norway.

‡ Norwegian School of Economics and Business Administration, Department of Economics,
Hellevn. 30, 5045 Bergen, Norway; and Statistics Norway, Microeconometric Division. E-mail:
jarle.moen@nhh.no. http://www.nhh.no/sam/cv/moen-jarle.html Tel: +47 55 95 95 49. Fax:
+47 55 95 95 43.



“Don’t let your employees do to you what you did to your former boss.”

The golden rule of protecting trade secrets,
as defined by Intel general counsel Roger
Borovoy (Jackson; 1997)

1 Introduction

Labor mobility is likely to be a very important source of knowledge diffusion. Sur-

veying one hundred founders of companies on the 1989 Inc. ‘500’ list of the fastest

growing companies in the United States, Bhide (1994) finds that 71 percent “repli-

cated or modified an idea encountered through previous employment.” With respect

to technical employees, Almeida and Kogut (1999), demonstrate by an analysis of

patent data from the semiconductor industry that ideas are spread through mobil-

ity of key engineers. Evidence of this kind, however, does not justify the common

proposition that labor mobility is an important source of knowledge spillovers. Such

spillovers (or externalities) are thought to cause underinvestment in private R&D be-

cause workers have incentives to exploit their employers’ research results by setting

up or joining a competitor.

The aim of this paper is three-fold. First, I want to clarify how labor mobility can

affect R&D investments. I will argue that there are market mechanisms that may

internalize the potential externalities involved. Second, I present a framework to

test the existence of such market mechanisms, and third I present empirical findings

suggesting that these mechanisms actually exist.

The link between labor mobility and knowledge spillovers dates back to Arrow’s

(1962) article on the public good aspect of knowledge. Arrow writes that “no amount

of legal protection can make a thoroughly appropriable commodity of something

as intangible as information” and adds that “[m]obility of personnel among firms

provides a way of spreading information” (p. 615). Following Arrow’s seminal work,

a large literature on R&D spillovers has evolved, and economists working in the field

have continued to consider labor mobility an important spillover channel. Geroski

(1995) expresses what appears to be a common view1, writing that “[l]ast but not

least, spillovers occur when a researcher paid by one firm to generate new knowledge

transfers to another firm (or creates a spin-off firm) without compensating his/her

former employer for the full inventory of ideas that travels with him or her.”

1Jaffe (1996) writes that “[k]nowledge spillovers also occur when researchers leave a firm and

take a job at another firm”. Stephan (1996) writes that “[f]uture work should also focus on the

role mobility within the industrial sector plays in facilitating spillovers”. Gersbach and Schmutzler

(1997) write that “[s]pillovers arise because employees who change jobs take with them all their

knowledge, some of which is not specific to their original firm.”
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That workers do not make such compensations seems obvious since they al-

ready possess their employers’ knowledge when they decide to leave. The timing

of events that Geroski implicitly suggest, however, is misleading. To the extent

that research work has a general training element, workers may pay for knowledge

as it is accumulated. Whether labor mobility actually reduces appropriability and

R&D investments, therefore, is an empirical question. The approach I suggest to

answer this question, is to test key implications of models that assume perfect mar-

kets. If using standard methodologies2 for estimating R&D spillovers without first

considering such a ‘benchmark’ case, the results of ordinary market exchange may

mistakenly be interpreted as R&D spillovers, and public policy will be misguided3.

The basic implications of labor mobility follows from classical human capital

theory, cf. Mincer (1958) and Becker (1962, 1964). To the extent that workers in

R&D-intensive firms get access to valuable knowledge on the job, they will expect

higher wages in the future. When holding jobs that give access to such knowledge,

they should therefore be willing to pay for what they learn by accepting wages below

their alternative wage. This hypothesis can be tested by using extended Mincer

(1974) wage regressions, which is the standard approach in the training literature.

Utilizing a large matched employer-employee data set from the Norwegian ma-

chinery and equipment industry, I find that the technical staff in R&D-intensive

firms pay for the knowledge they accumulate on the job through lower wages in

the beginning of their career, and that they later earn a return on these implicit

investments through higher wages. Scientists and engineers have to accept a wage

discount in the order of six percent in their first year after graduation if choosing

an ‘R&D intensive’ career. This should be considered a conservative estimate, due

to a likely ability bias. Towards the end of their career, they receive a wage pre-

mium in the order of seven percent. Similar results apply for workers with secondary

technical education. When estimating the price paid for learning separately from

the return to research experience4, I find that having work experience from R&D

intensive firms is associated with higher wages, while the employers’ current R&D

intensity reduce wages for workers with less than 20 years experience. Furthermore,

as predicted by human capital theory, the youngest workers appear to invest most

heavily in on-the-job learning. These findings suggest that the potential externali-

ties associated with labor mobility, at least to some extent, are internalized in the

labor market5.

2Cf. e.g. Jaffe (1986) and Jaffe, Trajtenberg and Henderson (1993). See the concluding section

for a short discussion of the problem with these methodologies in my contex.
3Zucker, Darby and Armstrong (1998), Klette and Møen (1999) and Klette, Møen and Griliches

(2000) elaborate on this point.
4I will use ‘R&D experience’ as a short term for experience in R&D intensive firms.
5This does not guarantee optimal R&D investments, however, as credit restrictions or risk

averse preferences may reduce workers’ willingness to ‘co-finance’ R&D. I will return to this in

the concluding section.
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With respect to mobility patterns, I find a turnover rate of about 20 percent re-

gardless of the firms’ R&D intensity. Excess labor turnover, however, is less in R&D

intensive firms. This effect is particularly pronounced for workers with secondary

technical education. If changing employer, workers tend to move to a firm with an

R&D intensity similar to their former employer. Consistent with the lower excess

turnover in R&D intensive firms, research experience from the current employer

appears to be more valued than research experience from previous employers.

The rest of the paper is organized as follows: The next section outlines some

relevant theoretical models. Section three discusses the data. Section four derives

empirical results regarding R&D investments and wages. Section five derives empir-

ical results regarding R&D investments and labor mobility. Section six contains my

concluding remarks.

2 R&D investments and human capital theory

Research is a learning process, and R&D investments, therefore, may not only in-

crease a firms’ stock of innovations, but also increase the human capital of research

workers. In the literature, however, R&D capital (Griliches; 1973), and human

capital (e.g. Becker; 1964) are rarely discussed together.

R&D capital is knowledge that can earn a monopoly rent, and this rent is what

motivates investments in R&D. If the results of a research project can be perfectly

protected by patents or other intellectual property right instruments, labor mobility

is not a concern to firms when it comes to appropriating returns. However, often,

the intellectual property rights cannot be effectively protected. The R&D capital

of firms is then to a large extent embodied in the employees. Such knowledge is

what Zucker, Darby and Brewer (1994,1998) have called intellectual human capital6.

Under these circumstances labor mobility is potentially a threat to the firms. Pakes

and Nitzan (1983) analyze the investment incentives of entrepreneurs facing such a

6Intellectual human capital is human capital that can earn a monopoly rent because the knowl-

edge is not publicly available nor perfectly protected. This distinguishes it from ‘ordinary’ human

capital which is widely diffused knowledge that can be acquired at a cost and earns a normal

rate of return on the implied investment. How quickly intellectual human capital depreciates and

becomes ordinary human capital depends both on the complexity and tacitness of the knowledge

and on whether those who posess the knowledge try to keep it secret. Innovations that can be

communicated at no cost represents a limiting case and will not add to anyone’s human capital

once the idea is in the public domain. Zucker, Darby and Brewer (1998) stress that scientific

discoveries that create intellectual human capital is “characterized by natural excludability”, and

that this solves the appropriability problem. From the point of view of an individual scientist,

this is correct, but not from the point of view of an investing firm or entreprenur. Zucker, Darby

and Armstrong (1998) recognize this within their setting, writing that “much of the fruits of the

biotechnological revolution was much more appropriable by the star scientists than by the univer-

sities that (typically) employed them.” They also recognize that universities indirectly appropriate

returns through the wage mechanism, cf. footnote 40.
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situation, and conclude that it is possible to design labor contracts which solve the

problem.

As knowledge diffuses, intellectual human capital will become ‘ordinary’ human

capital that can be acquired through schooling or on-the-job training. On-the-job

training also has relevance for an analysis of labor mobility and R&D investments.

There may be more to learn in firms conducting research because such firms are

likely to use the most up-to date technology and frequently change its products and

production processes. This training may be valuable to other firms. Furthermore,

the distinction between intellectual human capital and on-the-job training does not

constitute a clear dichotomy. Many innovations are incremental product and pro-

cess improvements made at the factory floor, and in the limit they may as well be

considered excellent craftsmanship as innovations. A case where different firms offer

different opportunities for on-the-job training is analyzed by Rosen (1972).

The rest of this section will outline the theoretical models of Pakes and Nitzan

(1983) and Rosen (1972). Although highly relevant for work on R&D-investments,

training and labor turnover, these models have received modest attention in the

literature. The main predictions of the models will be discussed and tested in the

empirical part of the paper.

The Pakes-Nitzan model The point of departure in Pakes and Nitzan (1983) is

Arrow’s (1962) reference to labor mobility as a source of R&D spillover. They argue

that even though mobility of scientific personnel will spread knowledge produced in

industrial laboratories, it need not be a mechanism which reduces the profitability

of research projects and employment in such projects. Both scientists and firms

are aware of the fact that working on a research project gives access to valuable

information7. Once such information is disclosed or developed, scientists, if they

are to stay with the firm, will have to receive a wage increase reflecting their new

market value. Thus, scientists expect that accepting a research position implies

a future wage increase, and consequently they accept an initial wage below their

alternative wage8.

Next, Pakes and Nitzan notice that if the innovation makes the firm a true

monopolist, it will never be profitable for the firm and the scientist to split, since

the sum of rents in a duopolistic market will be less than the monopoly rent9.

7Pakes and Nitzan (1983) explicitly model the uncertainty involved in research. This feature

of the model does not alter the simple intuition given here, however, because they assume that

utility functions are linear in income. Discussing this assumption, they acknowledge that both risk

aversion and a lower bound on wages will affect R&D investments.
8Cf. Anand and Galetovic (2000) for a model where the firm cannot commit ex ante to share

profits with the researcher. In this setting underinvestment in R&D may occur.
9Pakes and Nitzan (1983) model only a situation with one entrepreneur and one scientist. If

several scientists have equal access to the same critical information, this will complicate the analysis

because of potential strategic interaction among the scientists. Cf. Combes and Duraton (2000) for
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Mobility, therefore, should only be observed when it increases the joint profit of the

firm and the scientist. This may happen if the firm cannot avoid that other firms

get access to valuable information and enter the market10. The scientist, by setting

up a rival, will then break into profits which otherwise accrue to third parties, and

since this profit will be part of the scientists alternative wage in ‘period two’, it is

possible for the firm to extract this rent when setting the ‘period one’ wage. Another

situation which may induce the scientist to join or set up a rival is when the research

project create ‘spin-offs’, some of which are better exploited in a separate firm due

to coordination costs11. Summarizing the insight of their model, Pakes and Nitzan

writes that

mobility of scientific personnel is not, in itself, a source of concern to

entrepreneurs. ... [A]n optimizing entrepreneur who is free to choose

among alternative contracts will always choose one which only induces

the scientist to leave and join a rival if the sum of the benefits to the

two agents increases as a result of the scientist’s leaving. Contracts

which specify labor payment in the form of a flat wage and stock option

(or other profit sharing agreement) ought to be able to induce close

approximation to this behavior.

Balkin and Gomez-Mejia (1985) provide empirical evidence in support of Pakes

and Nitzans’ prediction. Surveying 105 companies in the Route 128 region around

Boston, they find that incentive pay programs are far more common in high-tech

firms than in other firms, and that such programs are used for broad levels of

technical employees. In addition, key scientists and engineers who help form the

companies at an early stage, are given long term stock options.

Rosen’s 1972 model The Pakes and Nitzan (1983) model is a two period model

of scientists and entrepreneurs, where scientists get access to valuable information,

a game theoretic model where a continium of workers share the same (exogenously given) strategic

knowledge. They show that the ‘joint proft’ effect driving the result in Pakes and Nitzans’ model

is not robust to this variation. Pakes and Nitzan dismiss the case with a large number of workers

sharing exactly the same strategic knowledge about a firm as being of little relevance. They do

not present strong arguments, but it seems reasonable to assume that if several scientists work on

the same project, their knowledge is more often complimentary than substitutable.
10Note that spillovers at this point enter the story, but mobility will be a consequence of spillovers,

not a source of spillovers. Information can leak out to third parties by reverse engineering, inspec-

tion of patent documents, independent research on the same technological problem, etc. Cf. Levin,

Klevoric, Nelson and Winter (1987) for a survey of the importance of various information channels.

Labor mobility receives a middle score in their study.
11Cf. Franco and Filson (2000) for a model focusing particularly on spin-off firms, but looking

at process innovations in a homogeneous product industry. Franco and Filson get results similar

to Pakes and Nitzan in that knowledge spillovers are internalized in the labor marked, but they

do not endogenize mobility by considering the potential ‘joint profit’ resulting if a spin-off firm is

not established.

5



but don’t increase their generic productivity. Rosen (1972) models on-the-job learn-

ing in a more general human capital context, although one where firms do not have

market power. He uses a compensating differential framework, and turns it into “an

economic theory of occupational mobility”. Rosen thinks of jobs as tied packages

of work and learning. Workers sell the services of their skills and simultaneously

purchase an opportunity to augment those skills. Some jobs provide more learning

opportunities than others. The difference between the maximum market rental of

a worker’s existing skills and the wage that he or she receives in a given job, is the

implicit price the worker pays for learning. Basic human capital theory suggests that

a worker’s incentive to accumulate human capital is largest at young age. As the

worker grows older he or she will have fewer years to collect returns on a given invest-

ment, and obviously workers have no incentives to pay for increasing their human

capital in the last year before retirement. This imply that the “optimal human cap-

ital investment program is implemented by a sequence of job assignments in which

workers systematically move and are promoted across jobs that offer successively

smaller learning opportunities” (Rosen; 1986).

The point of departure in Rosen’s model is a net wage equation

y = ωH − P (k) (1)

where y is income, ω is the unit rental price of human capital and k is an index

measuring potential learning-by-experience on the job, k ∈ [0, k]. P (k) is an implicit
or shadow price function giving the market equalizing wage differential between a job

with no learning potential and a job with learning potential k. The actual amount

of learning by individual i is proportional to k and depends on individual i’s ability,

αi ∈ [0, 1] such that
.

Hit = αik. (2)

The workers problem is then to choose a sequence of jobs, kt, over his or her lifetime,

T , to maximize the present value of income, i.e.

max
kt
V =

Z T

0

[ωHt − P (kt)] e−rtdt (3)

subject to an initial stock of human capital, H0 and
.

Hit = αik. Optimization

requires that at any time, t ∈ [0, T ],
P 0(kt)
αi

=
ω

r

£
1− e−r(T−t)¤ . (4)

The expression on the left hand side is the marginal cost of investing in human

capital, and the expression on the right hand side is the discounted marginal return.

It seems reasonable to assume that P 0(k) > 0 and P 00(k) > 0, i.e. that the marginal
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cost of learning is positive and increasing. Given this, optimality requires kt to be

largest at the time of entry into the labor market and then to decrease monotonically

over time.

Note that the marginal cost of a given real investment in human capital de-

creases with ability. Hence, workers with higher ability will, all else equal, find it

profitable to choose jobs with greater learning potential. In the words of Rosen

(1972): “Economic incentives induce more ‘able’ workers to learn more and to ac-

cumulate knowledge more rapidly than the less ‘able’.” This will give rise to a

potential selection problem (ability bias) in the empirical application of the model.

3 Data

The data used in this study comes from three main sources: Governmental admin-

istrative records prepared by Statistics Norway, the annual manufacturing census of

Statistics Norway, and the biannual R&D survey of Statistics Norway supplemented

with other surveys of immaterial investments and innovation done by the same bu-

reau. The Norwegian data are extraordinary in the sense that the entire working

population can be followed over a number of years, and in the sense that extremely

rich information is available both about the workers and about their employers.

When analyzing wage profiles and labor mobility, the extensive coverage offered by

the Norwegian data is a great advantage.

I have chosen to focus on the technical staff12 in the machinery and equipment

industries as these industries have many high-tech firms and have a fairly complete

coverage in the R&D surveys. The matched employer-employee data set covers

the years 1986 to 1995, and I have only included men employed full time in the

analysis below. Women do not constitute a large share of the labor stock in these

industries, and they are known to have different career patterns and preferences

than men. Roughly speaking, the main sample has annual observations of about

30,000 workers in 750 plants.

Both the (normalized) length of the highest attained education, and the type of

education, is recorded in the data. Occupation, however, is not available. Hence, it is

not possible to look specifically at researchers, and workers’ learning will be proxied

by the employers’ R&D intensity. I measure R&D intensity as R&D man-years per

employee at the three-digit line of business level within firms13. If all workers within

12I define the technical staff as workers with secondary technical education and workers with

higher technical or scientific education. I refer to the latter group as scientists and engineers.
13This means that R&D intensity is measured at a level ‘in between’ the firm and the plant. I

will use the term firm level R&D intensity in what follows. If R&D man-years were not reported,

the value has been imputed based on the firms’ R&D spending. I have censored the R&D in-

tensity variable at 0.8 in order to reduce the influence of outliers. This affects 0.4 percent of the

observations with positive R&D intensity.
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a firm participate equally in the firm’s R&D efforts, R&D man-years per employee

will measure the share of time that each worker uses to perform R&D. Since R&D

work obviously is not shared equally among the employees, R&D intensity is a noisy

proxy for what we want to capture. Measurement errors in the R&D variable add

to this noise.

Further information about the data is given in the data appendix and in Tables

A1-A6.

4 The effect of R&D investments on wages

Pakes and Nitzan (1983) predict lower starting wages and higher wage growth for

workers doing research, and Rosen (1972) predicts the same pattern more generally

for workers having jobs with a high learning potential14. A key assumption behind

both models is that workers mainly acquire general human capital on the job. Test-

ing these models, i.e. testing to what extent different firms offer different learning

opportunities, and to what extent workers pay for their knowledge accumulation, we

would like to estimate equation (1) which is Rosen’s point of departure. In principle

this is possible. Human capital, H, can be decomposed and the price or relative

weight of its various components can be estimated using a standard log-linear he-

donic wage regression. Furthermore, potential learning-by-experience on the job, k,

may be proxied by the employer’s R&D intensity as it seems reasonable to assume

that workers in ‘high-tech’, R&D intensive firms learn more than workers in ‘low-

tech’ firms. However, some problems are immediately evident. Work experience

needs to be decomposed according to the training or research content of the jobs

that workers have had at different stages of their career, but complete information

about the worker’s career histories is not available15. Furthermore, it is far from

obvious how one can summarize what is known about the workers’ experience from

different firms into a good measure of human capital. In what follows, I will suggest

several solutions to these problems.

A first look at the effect of R&D on the earnings profile One way to

get around the missing career data, is to assume that workers career trajectories

are such that the R&D intensity is constant over their career. Table 5 show that

this assumption is valid as an approximation16. We can then utilize the structural

14I will discuss the relationship between the two models more in detail towards the end of this

section.
15Cf. the data appendix for details.
16The correlation coefficient between R&D intensity in year t and t-1 is 0.84. It falls somewhat

when the time intervall is increased, but the coefficient is still 0.57 and highly significant between

year t and t-9. This is the longest observable time span. Note that the correlation coefficients are

downward biased due to measurement errors in R&D intensity.
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relationship between k and H, given in equation (2) together with the optimal

time path for learning investments implicit in (4). Under this assumption the R&D

intensity will at each point of time reveal information both about k and about

the component of H representing accumulated R&D experience. More specifically,

the estimated joint effect will give the returns to R&D experience minus the cost

of learning. Working for a highly R&D intensive employer should cause a large

negative wage premium early in the career, reflecting the implicit price paid for the

R&D experience. At the same time, this experience has not had much time to affect

the stock of human capital. As time goes by, workers’ willingness to pay for human

capital accumulation decrease and approaches zero, but differences in previous R&D

experience will translate into differences in human capital. Workers who are in R&D

intensive firms and have a long R&D intensive career behind them, will therefore

have a large positive wage premium reflecting the human capital accumulated.

Table 1 reports the results of simple OLS wage regressions where cross-terms

between experience and current R&D intensity are added to test the hypothesis

that employees with a career in R&D intensive firms have a steeper experience-

earnings profile than other workers. Additional control variables included are years

of schooling, seven experience dummies17, a quadratic in plant number of employees

and year dummies. In column 1 and 3 the experience dummies are interacted directly

with R&D intensity while column 2 and 4 report the results of interacting the

experience dummies with a dummy which is one if the R&D intensity is above 0.218.

An R&D intensity of 0.2 represents the 97th percentile for workers with secondary

technical education, and the 82th percentile for workers with higher technical or

scientific education. The dummy approach is used as an easy way to assess the

magnitude of the effect of R&D intensity on wages. An alternative illustration is

given in Figure 1, where earnings-experience profiles for workers in firms with no

R&D and in firms with R&D intensity 0.2 is graphed, based on a specification with

a quartic in experience interacted with a quadratic in R&D intensity.

The results support the main theoretical prediction of Pakes and Nitzan (1983)

and Rosen (1972). Early in the career both workers with secondary technical edu-

cation and scientists and engineers accept a significant wage discount when working

for R&D-intensive firms, but over time this discount is changed into a significant

wage premium. Note that both the discounts and the premia are biased towards zero

17I have chosen to use experience dummies rather than a higher order polynomial in the main

specification because the tabulation of cross terms between R&D intensity and a higher order

polynomial is difficult to interpret. A polynomial in experience interacted with R&D intensity also

imply a stronger restriction on the effect of R&D over the career.
18In these regressions, workers in firms with medium R&D intensity have been excluded. Medium

R&D intensity is defined as an R&D intensity between 0.05 and 0.2. The exclusion is done to

facilitate a sharper comparison between workers in firms with high and low R&D intensity. The

results are robust to including workers in firms with medium R&D intensity, and to using the 90th

percentile for each group as a cutoff point instead of 0.2 R&D intensity.
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due to measurement errors in the R&D variable. The pattern strongly suggests that

R&D-investments of firms translate into general human capital, and that workers

both pay and get paid for the knowledge they accumulate.

It is evident from Table 1, columns 2 and 4, using the dummy variable approach,

that the discounts as well as the premia are of economic significance. Scientists

and engineers working in firms with an R&D intensity above 0.2, have on average

6.1 percent lower wages in their first year than scientists and engineers in firms

with R&D intensity below 0.05. Scientists and engineers with more than 35 year

experience and working in a firm with R&D intensity above 0.2, have wages that

on average are 6.8 percent above the wages of scientists and engineers with similar

experience in firms with R&D intensity below 0.05. The magnitudes of the discounts

and premia are similar for workers with secondary technical education in R&D

intensive firms. They have a 5.5 percent wage discount in the beginning of their

career, and an 8.6 percent premium in the end of their career.

One way to check the plausibility of the coefficients is to calculate the internal

rate of return to choosing an R&D intensive career. For a worker with secondary

technical education, the internal rate of return is 5.7 percent, and for workers with

higher technical or scientific education it is 3.6 percent19. These numbers should be

considered rough estimates, but they are in a reasonable range.

Estimates based on earnings growth One major obstacle to identifying com-

pensating differentials, whether associated with training or other job amenities, has

been the potential correlation between job amenities and unobserved individual char-

acteristics. In Rosen’s model, an ability bias arises because highly talented workers

have a lower cost of learning, and absorb more knowledge in a job with a large po-

tential for learning, than less talented workers20. This imply a tendency for talented

workers to self-select into R&D intensive firms, causing the wage discount in the

beginning of the career to be underestimated, and the wage premium in the end of

the career to be overestimated21.

In addition to ability bias and the bias due to measurements errors in R&D

already mentioned, there is another potential bias in Table 1 associated with workers

19The calculation is based on the regressions in Table 1, column 2 and 4. I assume that the

workers are employed in a firm with 100 employees, and that the business cycle is as it were in

1995. Workers with secondary education are assumed to have 12 years of schooling and work for

45 years. Workers with higher education are assumed to have 15 years of schooling and work for

42 years.
20Cf. Autor (2000) for a model with the same feature.
21It is in this respect interesting to note that the estimated coefficients on R&D-intensity become

smaller (more negative) if the share of scientists with post graduate degrees at the plant is included

in the regression, despite this variable being strongly correlated with R&D intensity. One possible

explanation is that the share of post graduate scientists also is correlated with unobserved worker

ability. This would be consistent with the ‘O-ring theory’ of Kremer (1993).
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switching between employment in ‘high-tech’ and ‘low-tech’ firms. Although Table

5 indicates that this kind of behavior is not very common, it clearly does happen.

A bias then arises because the regressions in Table 1 assume that we can compare

experienced workers in R&D intensive firms to experienced workers in less R&D

intensive firms, and learn how much more human capital is accumulated in R&D

intensive firms. Workers who transfer out of R&D intensive firms, however, will

increase the wage level of the ‘comparison group’ in the less R&D intensive firms,

and cause a downward bias on the estimated gain from working in R&D intensive

firms. In the same way, workers who transfer from firms that do not invest much in

R&D to firms that do, have less human capital than those who have been in R&D

intensive firms for their entire career. Hence, they will reduce the average wage level

in R&D intensive firms and add to the bias. The result is that the wage premia

associated with the last periods of a ‘high tech career’ are underestimated, i.e. we

will underestimate the steepness of the experience earnings profile22.

A simple way to avoid the potential ability and ‘switching’ bias, is to estimate

the wage equation in first differences, i.e. investigate how firms’ R&D intensity affect

wage growth directly. This is done in Table 2. The drawback of this specification is

that we do not learn about the effect of R&D on the wage level23. Given that ability

is expected to bias results against finding support for the hypothesis that workers

pay for R&D experience, however, this is not a serious problem.

The broad picture emerging from the upper part of Table 2 is that workers

with technical or scientific education in R&D-intensive firms who do not change

employer, have higher wage growth throughout their career24. This is consistent

with the previous finding that R&D translates into human capital that workers earn

a return on25. Wage growth also appears to level off towards the end of the career,

consistent with workers having less incentive to accumulate human capital when

getting closer to the retirement age.

22By reducing the steepnes of the experience earnings profile for workers with a high-tech career,

this bias could explain why the estimated net return does not become positive untill the workers

have somewhere between 10-20 years experience. The bias is eliminated when current and previous

R&D is included separately in the regression, cf. Table 3 below.
23The wage level is identified if using a fixed effects specification, but such a specification does

not perform well. This may be due to its more restrictive assumption regarding the dynamics of

unobserved worker characteristics.
24Note, however, that wage growth for workers with secondary technical education is negatively

correlated with the employers’ R&D intensity in the first two years of the career. This is also

evident in Table 1, column 1. It may reflect that it takes some time to ‘absorb’ the complexity

of R&D intensive firms, or that workers due to imperfect information about the quality of the

training, are unwilling to pay the full cost of the training at once, but that firms are able to extract

this premium through lower wage growth during the very first years of the workers’ career.
25Cash flow before wage payments per worker, is included to control for the rent sharing effect

of successful innovations found by van Reenen (1996). Such a rent sharing effect is present in the

data, but it does not dominate the effect of R&D.

11



Since the correlation between firms’ R&D intensity and workers’ learning invest-

ments is expected to be strongest for young workers, it should be possible to observe

changes in ‘payment’ associated with transitions between firms with different R&D

intensities. Moving from an R&D-intensive firm to a less R&D-intensive firm early

in the career should induce a wage increase, and transitions the opposite way should

induce a wage decrease. Both types of moves will contribute to a negative relation-

ship between wage growth and change in R&D intensity. For old workers, a change

in R&D intensity should not affect wages as much, since they are not expected to

invest much in human capital. The estimated coefficients do not fully confirm these

hypotheses. For old workers, the coefficients are small and not very significant as

expected, and for young workers with secondary technical education the coefficient

is negative and highly significant, but for young scientists and engineers the coef-

ficient is positive and significant. A problem with the estimates, however, is that

mobility cannot be considered exogenous26.

Estimating the price of learning and the return to R&D experience sep-

arately Table 1 utilize cross sectional information only, and estimates in one co-

efficient the return to previous R&D experience minus the price paid for current

learning opportunities. Utilizing the longitudinal dimension of the data set it is

possible to specify these two components separately. The learning opportunity that

a worker faces depends only on current R&D intensity, while average R&D inten-

sity in previous years reveal information about the workers’ R&D experience. Note,

however, that the stability in R&D intensity over the workers careers, evident in

Table 5 and footnote 16, makes current and previous R&D intensities somewhat

collinear. A high level of precision can therefore not be expected when including

both variables.

Table 3, columns 2 and 4, reports the results of interacting current R&D intensity

and the average of previously observed R&D intensities separately with experience

dummies. The first thing to notice is that the coefficients on the average of previously

observed R&D intensities, i.e. the return to R&D experience, are mostly positive,

while the coefficients on current R&D intensity, i.e. the implicit price paid for

learning opportunities, are mostly negative. Note also that current R&D intensity

has a more negative impact when previous R&D experience is included, cf. column

1 and 3.

The price paid for learning decreases over time as predicted by theory, but the

data do not bring out the expected wage increase over time that should be associated

with R&D experience. Furthermore, the coefficients on current R&D, i.e. learning,

does not go to zero, but becomes positive late in the career. These two features seem

26If e.g. young scientists and engineers who perform well tend to move to more R&D intensive

firms, while young scientists and engineers who do not perform well tend to move to less R&D

intensive firms, this may explain the positive coeffcient.
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connected. The employer’s current R&D intensity appears to be a better proxy for

old workers’ human capital than the average of previously observed R&D intensities.

This could be due to some selection process where workers whose technological

experience has become obsolete, move out of or are displaced from R&D intensive

firms.

In order to assess the importance of learning for the industry on an aggregate

level, I have summarized the estimated wage discount for all R&D firms. This sum

amounts to 0.7 percent of the total wage bill for technical personnel in all R&D

performing firms and 2.6 percent of industry R&D investments. Looking only at

firms with R&D intensity above 0.2, the wage discount represent 3.0 percent of

their total wage bill and 2.5 percent of their R&D investments. These numbers are

not very big, but nor are they negligible.

The value of R&D experience from the current employer vs. previous

employers Lengermann (1996) and Loewenstein and Spletzer (1998, 1999) who

study the effect of formal on-the-job training, find that the return to training received

from previous employers exceed the return to training received from the current

employer. Loewenstein and Spletzer argue that this may reflect that employers

extract some returns to general training, and that workers do not realize the full

returns until they change jobs. If something similar applies to the value of experience

from R&D intensive firms, it would imply that the potential R&D spillovers involved

when workers in R&D intensive firms change employers, is only partially internalized

in the labor market. In order to investigate this possibility, I have for each employee

where sufficient career information is present, calculated the average observed R&D

intensity in previous years when working for the current employer and the average

observed R&D intensity in years working for previous employers.

With a smaller sample size and three R&D measures, an extension of the spec-

ification with experience dummies interacted with R&D-intensities, used in Tables

1 and 3, is not feasible. It is necessary to put more restrictions on the specification

and I have chosen to approximate the price paid for learning opportunities with cur-

rent R&D intensity and its interaction with years of overall work experience. R&D

experience built up with the current employer is proxied with the average observed

R&D intensity in previous years working for this employer times years of tenure

with this employer. R&D experience built up with previous employers is proxied

with the average observed R&D intensity while working for previous employers times

years of experience prior to the current employment relationship. These measures,

resembling sums of R&D intensities, are consistent with equation (2).

Table 4, column 1 and 3, reports the results. Column 2 and 4 report a slightly

less restrictive specification where non-linear interactions with experience and tenure

are allowed. All regressions confirm the previous finding that current R&D intensity

have a significantly negative impact on wages early in the career. The positive
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cross-term with experience also confirm that this negative impact, interpreted to

be the price paid for learning opportunities, diminishes over time. With respect

to the R&D experience built up over the career, both R&D experience from the

current employer and R&D experience from previous employers have a positive and

significant impact on wages. R&D experience from the current employer, however,

seems to be more highly valued. Unfortunately, this result is more suggestive than

conclusive. In order to construct the variables needed, all years working with the

current employer must be included in the sample, while information about previous

employers can be less complete. Hence, the average R&D intensity in years working

for previous employers is measured with greater error than average R&D intensity

in years working for the current employer, and coefficients on variables involving

the former measure will therefore be more biased towards zero27. In addition, the

coefficient on R&D experience with the current employer could be upward biased.

This would happen if recent R&D experience show that knowledge accumulated

earlier in the career has not become obsolete. The results for old workers in Table

3 indicate that this may be the case.

Robustness and econometric issues A number of alternative specifications

have been tried to asses the robustness of the results28. In one specification, more

than 30 additional control variables were included, such as proxies for hours worked29,

27If the sample is restricted to workers whose complete career is known, the return to R&D

experience from previous employers appears to be above the return to R&D experience from the

current employer for workers with higher education, while both coefficients become insignificant for

workers with secondary education. For these workers the coefficient on previous R&D experience

even has a negative sign.
28In addition to trying out different specifications within the sample of workers with technical

education, I have also run the basic regressions on workers with non-technical education. The effect

of R&D experience on workers with non-technical secondary and higher education resembles the

effect on workers with technical education in that they seem to have a steeper experience-earnings

profile if working in R&D-intensive firms. The results are fairly strong for workers with secondary

non-technical education, but less evident for workers with higher non-technical education. It is not

clear why these workers should be affected by the R&D-intensity of their employers, but several

explanations are possible. First, R&D intensive firms may be advanced along many dimensions,

and hence offer valuable work experience also to the non-technical staff. Second, R&D intensive

firms also appear to be intensive in formal training. In years where the dataset includes measures

of both R&D investments and formal training, these measures are significantly, positively corre-

lated. Third, it is possible that not only the technical staff, but also administrative managers in

R&D intensive firms have access to sensitive technological information. Then the Pakes and Nitzan

(1983) model applies to this group as well as to the technical employees, and it is in any case con-

ceivable that R&D intensive firms to a larger extent than other firms use stock options and similar

compensation schemes for their managers, e.g. due to cash constraints. Finally, the Norwegian

economy is strongly unionized. Unions often demand similar earnings plans for all employees in a

firm.
29The following measures are available: Average hours per week worked at the plant, number of

part time jobs and number of months unemployed.
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the capital to labor ratio, the Herfindal index, the market share of the firm, the union

density30 and four-digit industry dummies. This did not change the quantitative re-

sults. The results are also robust to including firm size, years of education and union

density in interaction with experience. Dividing the sample into different time peri-

ods, however, reveals that the effect of R&D on the wage-experience profile is more

pronounced in the 1980s than in the 1990s. This may be related to the severe reces-

sion in the Norwegian economy starting in the late 1980s, causing a restructuring

of, and a decline in, some of the most innovative subindustries31. The decline in the

profitability of high-tech firms is likely to have affected both the returns to previ-

ously accumulated human capital and workers’ willingness to pay for access to new

knowledge.

All regressions reported in Tables 1, 3 and 4 allow for correlated error terms

across observations of the same individual in different years. However, one could

also argue that error terms for workers belonging to the same firm may be correlated.

Allowing for such correlations when computing the standard error of the estimated

coefficients, reduce their significance, but the qualitative results are even robust to

including firm specific fixed effects in the regressions.

Rosen (1972) versus Pakes and Nitzan (1983) It has not been an objec-

tive of this paper to test the two theoretical models that motivated the empirical

specification against each other. It may, however, be worthwhile to reflect on the

conceptual differences between them.

Narrowly interpreted, as a two period model about information, Pakes and

Nitzan predict a wage discount when a scientist enter a research firm and a wage

rise thereafter, regardless of when in the career this happens. The wage profile is

driven by a rent which exists as long as the research results are not completely dif-

fused in the industry. In Rosen’s model, on the other hand, a steeper wage profile

is associated with high-tech or research experience rather than research results.

Since the experience gained by working on a new technology may be of value

after the rent associated with the technology is competed away, the human capital

investments in Rosen’s model is likely to depreciate more slowly than the ‘intellec-

tual’ human capital investments in Pakes and Nitzans’ model. While young workers

thus have a stronger incentive to invest in ordinary human capital than old workers,

workers of different age may have more similar incentives with respect to investing

in access to research results. In principle, the two models could be tested against

each other based on this difference. However, when going beyond stylized versions of

the models, the effects of research experience and research rents are complementary

rather than alternative explanations for finding a steeper wage profile in research

30The union density is only available after 1990. In 1990 and before, I have used the 1991 value,

since union density as a firm characteristic is fairly stable over time.
31Cf. Klette and Møen (1999).
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firms. Clearly, doing research has a training element in addition to giving workers

insight in particular research results, and given that R&D is a cumulative process

where detailed knowledge about the current technology is an important input in the

development of the new technology, it is highly unlikely that an old worker will get

a ‘high-tech’ job without being on a high-tech career track already. Taking account

of this cumulative aspect of R&D, and thinking in terms of a ‘multi period’ Pakes

and Nitzan model, a worker who continuously invests part of his or her wage in rel-

atively short term R&D projects is likely to have a steadily increasing wage profile

over the whole career32. This is because R&D investments on average should have

a higher return than financial savings due to the higher risk, and because workers

may become exposed to more and more valuable research results as they gain general

research experience.

Rather than testing the models of Rosen (1972) and Pakes and Nitzan (1983)

against each other, it seems natural to ask about the relative importance of research

rents versus research experience. A rough decomposition of the difference in ob-

served wages between firms with high and low R&D intensity can be based on the

assumption that early in the career an estimated effect of R&D on wages will reflect

both ordinary human capital and intellectual human capital investments, while late

in the career a wage discount and subsequent wage growth associated with R&D

would primarily reflect intellectual human capital investments. Hence, the effect of

current R&D should not go to zero or become insignificant late in the career as they

seem to do in Tables 2 and 3. There should be a positive effect on wage growth and

a negative effect on the wage level although significantly smaller than the effects

earlier in the career33.

Based on this reasoning, it may seem like the estimated coefficients in my analysis

are driven mostly by the long term value of high-tech experience, i.e. accumulation

of ordinary human capital as modelled by Rosen. Given the broad categories of

technical personnel used and the weak identification of the separate ‘Pakes-Nitzan

effect’, this is perhaps not very surprising. For several reasons, identifying a separate

effect of research rents is more difficult than estimating the training effect of high-

tech experience. First, the importance of intellectual human capital or research rents

for wages vary between workers according to how close they are to the innovative

core of the firm. Since occupational data are unavailable, the estimated results are

average effects within educational groups. If only a modest number of workers are

strongly affected by the effects predicted by Pakes and Nitzan, these average effects

are small. Second, measurement errors present in the R&D data bias the coefficients

towards zero, and the collinearity of current and previous R&D add to the difficulty

32Changes in R&D intensity within a research career will, however, reduce the smoothness of

such a wage-profile.
33Estimating a separate ‘Pakes-Nitzan effect’ based on workers who moved between firms with

different R&D-intensities does not succeed either, cf. the bottom part of Table 2.
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of identifying the effects. In order to make a separate evaluation of the Pakes and

Nitzan model, therefore, I believe detailed survey data on wage contracts for key

scientists is necessary. Gathering and analyzing such data are left for future work.

The significant finding in this study, is that workers seem willing to do intertemporal

wage trade-offs that can internalize potential R&D spillovers.

A comparison with the training literature It may be worthwhile to compare

the overall results of my analysis to similar analyses of ‘on-the-job training’. Al-

though this paper, as far as I know, is the first to look at the effect of R&D on wages,

there exists a large literature on the effect of formal training. In this literature, a

number of authors have found training to be correlated with wage growth, but find-

ing support for a negative effect on starting wages such as human capital theory

predicts, is unusual, cf. e.g. Barron, Black and Loewenstein (1989), Lynch (1992)

or Barron, Berger and Black (1999)34. Common interpretations are that workers

do not pay for general training, or that the implicit price is masked by a positive

ability bias. In this perspective, the strong negative effect of R&D on starting wages

present in this sample, is remarkable. It suggests that firms’ technology levels are

more important to wages than formal on-the-job training. One explanation for this

could be that while most formal training is short term, working in a technologically

challenging environment affects human capital accumulation for the entire duration

of a job.

5 R&D investments and labor mobility.

At first sight, Rosen (1972) and Pakes and Nitzan (1983) seem to have specific

predictions not only with respect to wage profiles, but also with respect to mobility

patterns. A main prediction of Rosen’s model is that workers consistently move to

jobs with less learning opportunities. In my context, that may imply that workers

move from more to less R&D intensive firms, but as pointed out by Rosen himself,

there is heterogeneity with respect to the learning content of jobs not only across,

but also within firms. Hence, a clear prediction cannot be deduced.

Pakes and Nitzan (1983) predict that R&D firms are able to avoid turnover, and

thereby spillovers, by sharing the monopoly rent at stake with the workers. In the

presence of spin-off innovations or sources of spillovers other than labor mobility,

however, they show that mobility actually can be a way of appropriating returns.

The model, therefore, like Rosen’s, fails to give clear predictions with respect to

34One exception is Autor (2000). Studying temporary help firms, he finds that “[w]ages are

lower at firms offering training by a modest, but statistically significant magnitude”. Lynch (1992)

find a negative effect of uncompleted training for workers with less than high school education, but

not for workers with a high school degree or some college education.
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worker mobility between firms. Furthermore, Pakes and Nitzan (1983) do not con-

sider firm specific knowledge. If firms with different levels of R&D intensities differ

with respect to firm specific human capital, this will also influence the relationship

between turnover and R&D investments35.

In lack of strong predictions, empirical mobility patterns cannot be used directly

to test the theories. A descriptive analysis of mobility patterns still has interest,

however, as it will give insight into the outcome of the different forces at play.

The extent to which technically educated workers change employers also illuminate

how important labor mobility may be as a source of knowledge diffusion and hence

indicate the size of the potential externalities involved.

R&D investments and worker flows Based on Rosen’s model, despite the lack

of a clear prediction, one would expect a tendency for workers to move from more

to less R&D intensive firms as a way of reducing their learning in accordance with

an optimal human capital investment plan. To investigate this I have calculated a

transition matrix of job changes for technical employees between plants with known

R&D intensities. The matrix is reported in Table 5. The most striking result is

that workers tend to move between firms with similar levels of R&D intensity. 65.5

percent of workers leaving a firm that does not conduct R&D (within the plant’s line

of business) move to another firm that does not conduct R&D, even though jobs in

such firms account only for 34.6 percent of all jobs. 64.0 percent of workers leaving a

firm with R&D intensity above 0.2 move to another firm with R&D intensity above

0.2, although such firms only account for 5.9 percent of all jobs. The pattern is the

same for workers leaving firms with intermediate levels of R&D intensity.

One explanation for the observed stability in R&D intensity across jobs may

be that there is some specificity associated with a given technology level within

the industry. As workers grow older, they will then prefer jobs with less learning,

within firms at the same level of R&D intensity as those they have previously worked

for. Another explanation may be that workers have preference for work at a given

technology level36.

R&D investments and labor turnover As explained above, Pakes and Nitzan

(1983) investigate the relationship between R&D and labor turnover theoretically

without reaching a firm conclusion. Table 6 reports labor turnover for technical em-

ployees in firms with different levels of R&D intensity in my sample. The turnover

35In the training literature, the effect of training on turnover propensities has been used to assess

whether the human capital built up is general or firm specific, cf. e.g. Loewenstein and Spletzer

(1999) and Parent (1999). For a theoretical model of knowledge diffusion with partly firm specific

human capital, see Fosfuri, Motta and Rønde (2001) who analyse a firm’s decision to invest in

production facilities abroad.
36The work of Almeida and Kogut (1999), Stern (1999) and others suggests that scientists and

technical personnel have preferences regarding the technological environment that they work in.
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rate is about 20 percent, and does not seem to vary much across firms with different

levels of R&D intensity. What seems most relevant to explore, however, is how R&D

investments affect ‘churning’, i.e. hires and quits over and above the level necessary

to accomplish changes in the number of employees. Excess turnover, a measure of

churning37, lies between 5 and 10 percent and seems to decrease with R&D intensity

both for workers with secondary technical education and for workers with higher

technical or scientific education. A descriptive analysis of excess turnover is not suf-

ficient, however, as a closer inspection of the data reveal that there are significant

differences between firms having different levels of R&D intensity, with respect to

other characteristics known to influence turnover such as workers’ experience. In or-

der to isolate the effect of R&D on excess turnover, therefore, a regression framework

is called for.

Table 7 reports regression results for both a tobit and a maximum likelihood

grouped logit estimator38. The estimated relationship is

excess turnover it = f(R&D-int. ∗Dsec. edu., R&D-int. ∗Dhigher edu., X) (5)

The unit of observation is educational groups within plants. Control variables, X,

include a quadratic in the educational group number of workers, a quadratic in their

average experience, a quadratic in plant age and year dummies39.

In the tobit regression I have followed Barth and Dale-Olsen (1999) by excluding

small units, limiting the sample to educational groups that consist of at least five

37Cf. Burgess, Lane and Stevens (1996) and Barth and Dale-Olsen (1999). The excess turnover

rate is half the churning rate. I have calculated the excess turnover rate as separations out of jobs

that continue, divided by the number of continuing jobs.
38Barth and Dale-Olsen (1999) estimate the effect of employers’ wage policies on excess turnover,

and treat the excess turnover rate as a characteristic of the firm. This leads them to use a tobit

estimator. Within such a framework, the observed excess turnover rate must be considered an

estimate of a target rate implicit in the firms’ personnel policy, and Barth and Dale-Olsen (1999)

think in terms of a latent variable censored from below at zero. (One might add to this that

the excess turnover rate is also censored from above at one.) As an estimate for the target rate,

however, the observed rate is heteroscedastic with a variance proportional to the inverse of the

number of employees. Barth and Dale-Olsen (1999) do not explicitly discuss this, but alleviate the

problem by limiting the analysis to large firms. Grouped logit eliminates this heteroscedasticity

problem. Thinking of the data in this way also changes the perspective from the firm unilaterally

deciding an excess turnover rate to individual employer-employee relationships which may or may

not continue, depending on both firm and worker characteristics. I find this to be a preferable

perspective, as individual employer-employee relationships is the true unit of observation, and it

makes sense conceptually to divide observed quits into two groups, those who are replaced, and

those who are not replaced. The first type of quits constitute excess turnover while the second

type of quits are due to job destruction. If we knew which of the workers who separate that belong

to which group, we would no doubt use logit or probit. When we only know the proportion of

workers belonging to each group, we can apply grouped logit or probit, cf. Greene (1997, chapter

19.4.3).
39A complete list is given in the subtext to Table 7.
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workers, cf. footnote 38. Both the tobit and the grouped logit specification show that

excess turnover is lower in R&D intensive firms. The effect is, however, particularly

evident for workers with secondary technical education. One possible explanation is

that human capital accumulated by workers with secondary technical education is

more firm specific than human capital accumulated by workers with higher technical

or scientific education. It may also indicate that the mechanisms related to spin-

off innovations and other spillover channels, modelled in Pakes and Nitzan (1983),

are relevant in the industries investigated. Workers with higher education would

probably be most affected by these mechanisms which increase turnover.

The results in Table 7 is consistent with other findings in the empirical liter-

ature. Pacelli, Rapiti and Revelli (1998) who estimate the probability of worker

firm separations in Italy, find that “more innovative firms cultivate more durable

employer-employee relationships”, and Greenhalgh and Mavrotas (1996) analyzing

the British labor market, find that sectoral R&D is negatively correlated with mobil-

ity. They attribute this only to the presence of firm specific human capital, however,

claiming that “the skills acquired [in R&D intensive sectors] are rather more specific

than average”.

6 Concluding remarks

Labor mobility is often considered to be an important source of knowledge exter-

nalities, making it difficult for firms to appropriate returns to R&D investments.

Pakes and Nitzan (1983), however, analyze the problem formally, and find that la-

bor turnover should not be a problem for R&D firms. Both scientists and firms

are aware of the fact that working on a research project gives access to valuable

information. Once such information is disclosed or developed, scientists, if they

are to stay with the firm, will have to receive a wage increase reflecting their new

market value. Thus, scientists expect that accepting a research position implies a

future wage increase, and consequently they can accept an initial wage below their

alternative wage, without experiencing a welfare loss.

Research firms are likely to use the most up-to date technology and frequently

change their products and production processes. Because of this, one would think

that even workers who don’t have direct access to the results of the R&D projects,

learn more in these firms. Rosen (1972) provides a model where different firms offer

different opportunities for on-the-job learning, and derive implications with respect

to wages that resemble those of Pakes and Nitzan (1983). Rosen thinks of jobs

as tied packages of work and learning. Workers sell the services of their skills and

simultaneously purchase an opportunity to augment those skills.

I have argued in this paper that inter-firm transfers of R&D-results embodied in

people, should be analyzed within a human capital framework similar to the models
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of Pakes and Nitzan (1983) and Rosen (1972). Testing such a framework using

matched employer-employee data from the Norwegian machinery and equipment

industries, I find that the technical staff in R&D-intensive firms indeed pays for

the knowledge they accumulate on the job through lower wages in the beginning of

their career. Later in the career they earn a return on these implicit investments

through higher wages. These results appear despite the existence of several biases

against finding different experience-earnings profiles in R&D intensive and non-

R&D-intensive firms. This suggests that potential externalities associated with labor

mobility out of research firms, at least to some extent, are internalized in the labor

market40.

An alternative explanation for the steeper experience-earnings profile in R&D

intensive firms has been suggested to me. Inspired by e.g. Freeman (1977) one may

imagine that workers and firms are uncertain about the workers’ ability41, and that

high ability workers have higher productivity in research firms than in firms using

well known technologies demanding less problem solving42. All workers are in this

case willing to accept a lower wage in R&D firms because the expected wage growth,

is higher. As information about ability is revealed, ex post high ability workers in

research firms perform well while others, ex post low ability workers, exit having

lost in the ‘lottery’43. Such a model, which does not involve any kind of human

capital accumulation, is consistent with the results in Tables 1 and 2, but not with

the results in Table 3 where previous R&D experience is introduced in addition

to current R&D. In a model like the one sketched above, current R&D should be

associated with a wage premium as soon as the firm and the worker have learned

about the worker’s ability and be stable thereafter, while previous R&D experience

should not affect wages. This is not the case.

An important question that this analysis has not addressed is whether workers

pay for the full value of the knowledge they accumulate in R&D intensive firms. The

conceptual distinction between knowledge diffusion and true externalities motivated

my analysis, but identifying possible true externalities is challenging. Building on

previous methodologies such as Jaffe (1986) one could construct a spillover pool for

40The only related finding I know of in the literature is Zucker, Darby and Armstrong (1998) who

in an academic setting, claim that “competitive university salaries are lower, other things equal,

in areas where faculty expect the possibility of receiving substantial outside income or wealth as a

result of skills developed doing research at the university.”
41Freeman’s point of departure is that “[n]ot all prospective research workers prove equally adept.

Moreover, no individual can be certain in advance just how well he will do. As time passes, his

capabilities become clearer to himself as well as to his employer.”
42An alternative formulation is that there is uncertainty about the quality of the match, cf. e.g.

Jovanovic (1979), and that match quality is more important in research firms than in other firms

with more ‘routine jobs’.
43Freeman (1977) focuses on risk averse workers’ demand for a wage contract with insurance, but

it follows from his model that if workers are not completly risk averse they will accept a beginning

wage below their alternative wage in order to participate in the implicit ‘lottery’.
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each firm based on R&D conducted in other firms which the firm in question has

recruited from. This measure could be inserted in a knowledge production function.

The problem is that it is not possible to know whether the coefficient on such a

spillover pool represents an externality or whether the knowledge is ‘bought’ in the

labor market. Inserting the spillover pool in a profit function will not solve the

problem, either. In equilibrium, labor mobility should affect the profit of all firms,

and only by comparing different equilibria with exogenous variation in the degree

of labor mobility, could an effect of mobility-induced externalities be identified.

This is obviously difficult. I believe the best way to proceed is to model explicit

mechanisms that might cause externalities, and derive testable implication from

such specific models. Case studies of firms that have lost or hired workers with

strategic knowledge would also be valuable.

From a theoretical point of view it is conceivable that labor mobility does cre-

ate some externalities. If firms have limited ability to commit themselves to share

future profits with their employees, or if several workers have access to exactly the

same research results, this may undermine the ‘joint profit’ effect underlying op-

timal R&D investments in Pakes and Nitzans’ model44. Furthermore, information

asymmetries and other barriers to mobility may enhance the firms ability to appro-

priate rents, while at the same time reduce workers’ incentives to pay for knowledge

accumulation45. Mechanisms which induce employers to pay for general human cap-

ital accumulation create a positive externality to the worker’s future employer if

the worker decides to quit or if the firm goes out of business. A complete welfare

analysis must also incorporate that, even if workers pay for all the knowledge they

accumulate, this ‘solution’ to the spillover problem does not guarantee optimal R&D

investments. If workers co-finance R&D through lower wages, and if the value of

the knowledge they accumulate depend on the outcome of the R&D project, they

become exposed to the risk associated with the project. Risk aversion among work-

ers may then become a new source of distortion since human capital investments

cannot be diversified46. Liquidity constraints making workers unwilling to trade off

44Cf. footnote 8 and 9.
45Cf. Acemoglu and Pischke (1999) although these authors do not write with reference to R&D

investments. A particularly important kind of imperfection may be distortions in the wage structure

which makes a wedge between wages and marginal productivity increase with the workers’ human

capital. Firms then have an incentive to invest in R&D producing general human capital because

they get a share of the return. A simple mechanism which could cause such wage compression, is

that firms receive a fraction of the productivity of the workers as profit due to matching, search

costs or other sorts of labor market friction. If the employer receives a fraction of the workers’

productivity, the employers level of profit will increase with the workers’ productivity and therefore

with their human capital. Another possible mechanism is complementarity between firm specific

and general human capital. In this case, the alternative wage for the scientist will increase less

than his or her productivity as he or she receives training.
46Cf. footnote 7.
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current wage for future wage on a large scale, may also create problems47.

47Cf. Fosfuri et al. (2001) for a model emphasizing this in a developing country context.
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Appendix on data issues

Information about individual workers comes from a number of governmental admin-

istrative records, which are prepared by Statistics Norway for research use. Barth

and Dale-Olsen (1999), appendix 2, give some details on the various registers in-

cluded in the data base. I have taken great care to improve the data quality by

checking for consistency across years and across related variables for the same in-

dividual. Missing values are imputed where possible. The available registers cover

the years 1986 to 1995.

Plant level information about employers comes from the annual manufacturing

census of Statistics Norway48. Microdata are available from 197249. Information

about R&D at the line of business level within firms are collected from R&D sur-

veys and other surveys of immaterial investments and innovation. Prior to 1991 the

R&D surveys were conducted by the Royal Norwegian Council for Scientific and

Industrial Research. Thereafter the surveys have been conducted by statistics Nor-

way50. Microdata is available for 1970, biannually 1975-81, annually 1981-85 and

biannually 1985-95. The 1970 survey has been linked to the 1972 manufacturing

census. In the machinery and equipment industries utilized in this study, the R&D

surveys have close to full coverage for firms with more than 20 employees. For years

and firms not covered by the R&D surveys, three other data sets has been utilized.

A survey of immaterial investments was conducted by Statistics Norway in 1988,

covering the years 1986-88, and in 1990 covering the years 1988-9051. Furthermore,

an innovation survey was conducted by statistics Norway in1993 for the year 199252.

I have used the following procedure when constructing the R&D database: First,

I have linked the R&D surveys to the manufacturing census. Next, for firms and

years not included in the R&D surveys I have used R&D information from the

surveys of immaterial investments, and from the innovation survey. For firms and

years were R&D information is still missing, I have used survey information about

48The census is documented in the series Manufacturing statistics, Official Statistics of Norway,

Statistics Norway, Oslo.
49The microdata are documented in a mimeo from 1991 by Halvorsen, Jensen and Foyn in

Statistics Norway.
50The R&D surveys are documented in the series FoU-statistikk Forsknings- og utviklingsar-

beid Utgifter og personale (1970-1991 by Forskningsr̊adenes samarbeidsutvalg and Norges Forskn-

ingsr̊ad); FoU-statistikk og indikatorer (1995 by Utredningsinstituttet for forskning og høyere ut-

dannelse); and Det norske forskningssystemet - statistikk og indikatorer (1997 by Norges forskn-

ingsr̊ad). More details are given in the series FoU virksomhet Utgifter og personale i næringene

industri, bergverksdrift og anleggsvirksomhet, by NTNF and in Report 96/14 from Statistics Norway

by Skorge, Foyn and Frengen. All publications have summaries in English.
51These surveys are documented by Frenger in Interne notater 90/11 and Notater 93/14 from

Statistics Norway.
52This survey is documented in the reports 95/7 and 95/26 from Statistics Norway by Frengen,

Foyn and Ragnarsøn. Report 95/26 is in English.
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planned R&D one and two years ahead, and information about previous R&D. In

the final stage, missing R&D variables were imputed by linear interpolation, and

by extrapolating the first observed R&D intensity backwards in time and the last

observed R&D intensity forward in time, firm by firm. Firms’ R&D investments

are known to be stable over time. Imputing missing information when possible,

therefore, seems preferable to deleting the observations. 80 percent of the worker-

year R&D variables are from surveys, 5 percent are imputed by interpolation and 15

percent are imputed by extrapolation. 65 percent of the imputed R&D intensities

are zero.

Even though the data set is rich, I do not have complete information about the

workers’ careers. First, the individual records start in 1986. Second, despite my

effort to collect R&D information as described above, small firms are not necessarily

covered. Third, the match between the different data sources is not perfect. Due

to the second and third problem, R&D information is missing for approximately 20

percent of the worker-year observations. On the positive side, however, I can extract

some information about workers’ careers prior to 1986, the first year included in the

matched data set. I know when the workers started the job they held in 198653, and

this can be combined with information about the employers’ R&D investments, in

some cases dating as far back as 1970.

Earnings is measured as taxable labor income. I have often referred to this as

the workers’ wage. Experience is measured as real work experience for the youngest

cohorts, years since graduation for older cohorts, and potential work experience

for cohorts graduating before November 1970. Potential work experience is age

minus schooling minus seven. Real work experience is measured as years since

graduation adjusted for pre graduation work experience, part time employment and

unemployment within the sample years 1986-1995. Both experience and tenure are

measured in years (with decimals) completed at the beginning of the calendar year.

Dummy variables for experience are based on the integer of experience.

In the mobility analysis, all observations with complete information are used.

In the wage regressions observations with unreliable earnings measures have been

excluded. Information about trimming procedures is given in Table A1. Trimming

based on earnings reduces the sample by 8 percent. Tables A2-A6 describe the

sample and the main variables.

53Note, however, that for 16 percent of the observations, the starting date is censored at April

30th 1978. I have used a dummy variable to resolve this problem in regressions where tenure is

included.
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Figure 1. Estimated earnings-experience profiles
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The graphs are based on regressions similar to those in Table 4, column (1) and (3) except that experience dummies
interacted with R&D intensity is exchanged with a quartic in experience interacted with a quadratic in R&D intensity. R&D
intensity is measured as R&D man-years per employee at the three-digit line of business level within firms. The sample
consists of men with technical or scientific education employed full time in the machinery and equipment industry in
Norway 1986-1995. The graphs for workers with higher education are based on 15 years of education and a firm with 100
employees. The graphs for workers with secondary education are based on 12 years of education and a firm with 100
employees. Business cycle conditions are assumed to be like 1995.
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Table 1. The effect of R&D on the experience-earnings profile

(1) (2) (3) (4)
Secondary technical

education
Higher technical or scientific

education

R&D
          * less than one year experience -.207*** -.055** -.132*** -.061***

(.049) (.024) (.044) (.014)
          * 1-2 year experience -.297*** -.048** -.097*** -.044***

(.052) (.019) (.025) (.009)
          * 3-5 year experience -.163*** -.029*** -.049** -.025***

(.032) (.011) (.021) (.007)
          * 6-10 year experience -.169*** -.025*** -.012 -.018***

(.026) (.009) (.022) (.007)
          * 11-15 year experience -.083*** .001 .008 -.009

(.032) (.010) (.026) (.009)
          * 16-20 year experience -.065* .023** .025 .001

(.035) (.011) (.032) (.009)
          * 21-35 year experience .088*** .045*** .101*** .031***

(.029) (.009) (.029) (.009)
          * more than 35 year experience .222*** .086*** .229*** .068***

(.048) (.016) (.055) (.019)

R&D measure Intensity dummy intensity dummy
Sample size 244 657 207 776 71 372 50 216
R-squared .20 .20 .28 .26

The dependent variable is ln (real annual earnings). Control variables included in the regression, but not reported are seven
experience dummies, years of schooling, a quadratic in plant number of employees and year dummies. The coefficients are
estimated using ordinary least squares. Standard errors, adjusted for heteroscedasticity and correlated error terms within
individuals, are given in parentheses. R&D intensity is measured as R&D man-years per employee at the three-digit line of
business level within firms. The R&D dummy is one if the R&D intensity is above 0.2. Observations with R&D-intensity
between 0.05 and 0.2 are excluded from the regressions in column (2) and (4). The sample consists of men with technical or
scientific education employed full time in the machinery and equipment industry in Norway 1986-1995.
*** Significant at the 1% level
** Significant at the 5% level
* Significant at the 10% level
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Table 2. The effect of R&D on biannual earnings growth

Secondary technical
education

Higher technical or
scientific education

Stays with same employer from year t-2 to year t
     * 2 year experience * R&D-intensity -.203** .021

(.082) (.040)
     * 3-5 year experience * R&D-intensity .077*** .065***

(.027) (.017)
     * 6-10 year experience * R&D-intensity .079*** .048***

(.016) (.012)
     * 11-15 year experience * R&D-intensity .101*** .039***

(.016) (.014)
     * 16-20 year experience * R&D-intensity .093*** .049***

(.018) (.015)
     * 21-35 year experience * R&D-intensity .063*** .007

(.011) (.011)
     * above 35 year experience * R&D-intensity .047** .008

(.022) (.021)
Separates in year t-1
     * 2-10 year experience * ∆R&D-intensity -.232*** .097***

(.057) (.037)
     * 11-20 year experience * ∆R&D-intensity .044 .037

(.045) (.033)
     * above 21 year experience * ∆R&D-intensity -.076* -.021

(.045) (.040)

Sample size 139 108 42 466
R-squared .09 .13

The dependent variable is the first difference of ln (real annual earnings) between year t and year t-2. Control variables
included in the regression, but not reported are cash flow before wage payments per employee, seven experience dummies,
a dummy for being a separator in year t-1interacted with dummies for the three levels of experience used for separators, a
quadratic in the change in plant size measured by number of employees and year dummies. The coefficients are estimated
using ordinary least squares. Standard errors are given in parentheses. R&D intensity is measured as R&D man-years per
employee at the three-digit line of business level within firms. R&D intensity for stayers is the average over year t, t-1, and
t-2. The sample consists of men with technical or scientific education employed full time in the machinery and equipment
industry in Norway 1986-1995.
*** Significant at the 1% level
** Significant at the 5% level
* Significant at the 10% level
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Table 3. The effect of current R&D and previous R&D experience on earnings

(1) (2) (3) (4)
Secondary technical

education
Higher technical or scientific

education

Current R&D-intensity
          * less than one year experience -.204*** -.204*** -.134*** -.130***

(.050) (.050) (.044) (.044)
          * 1-2 year experience -.314*** -.342*** -.131*** -.266***

(.062) (.073) (.030) (.038)
          * 3-5 year experience -.190*** -.233*** -.058** -.123***

(.031) (.039) (.023) (.027)
          * 6-10 year experience -.177*** -.208*** .010 -.097***

(.028) (.032) (.023) (.025)
          * 11-15 year experience -.080** -.084** .014 -.062**

(.032) (-.037) (.027) (.069)
          * 16-20 year experience -.069* -.079* .031 -.022

(.036) (.041) (.034) (.038)
          * 21-35 year experience .089*** .038 .094*** .039

(.029) (.030) (.030) (.032)
          * more than 35 year experience .234*** .285*** .222*** .265***

(.048) (.053) (.056) (.062)
Average R&D-intensity over previous career
          * 1-2 year experience .055 .261***

(.093) (.051)
          * 3-5 year experience .094 .142***

(.057) (.038)
          * 6-10 year experience .070 .186***

(.055) (.036)
          * 11-15 year experience .010 .167***

(.062) (.038)
          * 16-20 year experience .028 .134***

(.059) (.052)
          * 21-35 year experience .171*** .165***

(.060) (.053)
          * more than 35 year experience -.158** -0.149

(.072) (.103)

Sample size 227 418 227 418 65 422 65 422
R-squared .19 .19 .28 .28

The dependent variable is ln (real annual earnings). Control variables included in the regression, but not reported, are seven
experience dummies, years of schooling, a quadratic in plant number of employees and year dummies. The coefficients are
estimated using ordinary least squares. Standard errors, adjusted for heteroscedasticity and correlated error terms within
individuals, are given in parentheses. R&D intensity is measured as R&D man-years per employee at the three-digit line of
business level within firms. The sample consists of men with technical or scientific education employed full time in the
machinery and equipment industry in Norway 1986-1995. Workers, for whom no R&D information from previous years is
available, have been excluded.
*** Significant at the 1% level
** Significant at the 5% level
* Significant at the 10% level
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Table 4. The effect of current R&D, R&D experience from the current employer and R&D
experience from previous employers

(1) (2) (3) (4)
Secondary technical

education
Higher technical or scientific

education

current R&D intensity -.316*** -.480*** -.104*** -.157***
(.042) (.063) (.034) (.052)

          * experience .017*** .038*** .003 .008
(.002) (.008) (.002) (.007)

          * experience 2 -.001*** -.0001
(.0002) (.0002)

mean R&D intensity in previous years with current
employer
          * tenure .028*** .124*** .032*** .089***

(.008) (.018) (.007) (.014)
          * tenure 2 -.014*** -.008***

(.002) (.002)
mean R&D intensity in years with previous employer(s)
          * (experience – tenure) .008** .005 .005** .013**

(.003) (.008) (.002) (.006)
          * (experience – tenure) 2 .0001 -.0004

(.0003) (.0003)

Sample size 62 243 62 243 17 675 17 675
R-squared .23 .24 .33 .33

The dependent variable is ln (real annual earnings). Control variables included in the regression, but not reported, are years
of schooling, a quadratic in plant number of employees, a quartic in experience, a quadratic in tenure, a dummy for having
changed employer at least once, year dummies and a dummy variable for job relationships whose starting date is censored at
April 30th 1978 together with its interactions with all tenure variables. The coefficients are estimated using ordinary least
squares. Standard errors, adjusted for heteroscedastisity and correlated error terms within individuals, are given in
parentheses. R&D intensity is measured as R&D man-years per employee at the three-digit line of business level within
firms. Mean R&D intensity is calculated over the years where information about the R&D intensity is available. The sample
consists of men with technical or scientific education employed full time in the machinery and equipment industry in
Norway 1986-1995. Workers in firms where R&D information is not available in the sample year and in at least one prior
year, and workers who have had previous employment without R&D intensity being known in at least one year, have been
excluded.
*** Significant at the 1% level
** Significant at the 5% level
* Significant at the 10% level
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Table 5. Worker mobility between plants with known R&D intensity

with
no R&D

with
R&D-

intensity
∈ 〈0,.05]

with
R&D-

intensity
∈ 〈.05,.2]

with
R&D-

intensity
> .2

Total
number
of sepa-
rations

left a non R&D-plant and joined a plant 65.5 27.3 5.7 1.5 3 168
left a plant with R&D-intensity ∈ 〈0,.05] and joined a plant 27.8 61.1 8.9 2.2 3 330
left a plant with R&D-intensity ∈ 〈.05,.2] and joined a plant 11.9 42.6 40.4 5.1 2 841
left a plant with R&D-intensity  > .2 and joined a plant 12.9 9.3 13.9 64.0 497

percentage of jobs in plants 34.6 42.3 17.2 5.9

The numbers are percentage shares of total separations from each category of plants and sum to 100 horizontally. The
sample consists of men with technical or scientific education employed full time in the machinery and equipment industry
in Norway 1986-1995 at a plant where the R&D-intensity is known. Transitions out of the sample have been excluded.
R&D intensity is measured as R&D man-years per employee at the three-digit line of business level within firms.
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Table 6. Labor turnover by education and R&D intensity

Turnover
rate

Excess
turnover

rate

Number of
job-year

observations
Secondary technically educated in a plant
   with no R&D .194 .095 110 091
   with R&D-intensity ∈〈0, .05] .210 .091 84 886
   with R&D-intensity ∈〈.05, .2] .211 .072 37 280
   with R&D-intensity  >0.2 .208 .059 7 246
Higher technically or scientifically educated in a plant
   with no R&D .191 .074 14 806
   with R&D-intensity ∈〈0, .05] .210 .075 20 444
   with R&D-intensity ∈〈.05, .2] .211 .071 20 782
   with R&D-intensity >0.2 .216 .065 11 838

The turnover rate is separations in year t as a share of employment in year t. The excess turnover rate is separations out of
jobs that continue as a share of continuing jobs. R&D intensity is measured as R&D man-years per employee at the three-
digit line of business level within firms. The sample consists of men with technical or scientific education employed full
time in the machinery and equipment industry in Norway 1986-1995.

Table 7. The effect of R&D intensity on excess turnover

R&D-intensity
     * secondary technical education -.119*** -2.041***

(.030) (.416)
     * higher technical or scientific education -.042 -.721*

(.030) (.376)

Estimator Tobit Grouped logit
Sample size 6 904 266 173
Pseudo R-squared .42 .01

The dependent variable is the excess turnover rate within plant educational groups. The excess turnover rate is separations
out of jobs that continue as a share of continuing jobs. Control variables included in the regressions, but not reported are a
dummy for higher technical or scientific education, plant job destruction rate, plant job creation rate, a quadratic in the
educational group number of workers, a quadratic in their average experience, a quadratic in plant age and year dummies.
The sample sizes in the tobit regressions refer to the number of within plant educational groups. Educational groups with
less than five workers have been excluded from the tobit regressions due to the turnover estimates being uncertain when
based on few workers. The sample sizes in the grouped logit regressions refer to the number of workers. Standard errors are
given in parentheses. In the grouped logit regressions, the standard errors are adjusted for heteroscedastisity and correlated
error terms within plants. R&D intensity is measured as R&D man-years per employee at the three-digit line of business
level within firms. The sample consists of men with technical or scientific education employed full time in the machinery
and equipment industry in Norway 1986-1995.
*** Significant at the 1% level
** Significant at the 5% level
* Significant at the 10% level
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Table A1. Sample size and trimming procedures

Total number of observations in the machinery and equipment industries 1986-1995 810 559
  – Women 125 111
  – Part time workers 11 314
  – Workers with unknown education 8 968
  – Workers with primary education 141 216
  – Workers with secondary or higher non-technical/non-scientific education 94 325
Total number of observations of full time working male technical staff 429 625
  – Workers in firms that cannot be matched to the time series files of the manufacturing statistics 39 527
  – Workers in firms where R&D information is not available 46 744
Total number of observations of full time working male technical staff in the matched sample 343 354
  – Workers not working for the whole year because they are entering the labor force 9 982
  – Workers not working for the whole year because they are leaving the labor force 14 044
  – Workers with secondary technical education and earnings below NOK 75.000 (1995 value) 2 723
  – Workers with higher technical or scientific education and earnings below NOK 150.000 (1995 value) 566

Main sample (trimmed) 316 029

Each entry refers to the number of observations deleted among the observations left after the deletions in the rows above
have been conducted. Workers with secondary technical education and earnings below NOK 75.000 (1995 value), and
workers with higher technical or scientific education and earnings below NOK 150.000 (1995 value) have been excluded
because such low earnings suggest that they have not worked full time for an entire year. Tables 5-7 are based on all
observations of full time working male technical staff in the matched sample, whereas the wage regressions in Tables 1-4
are based on the trimmed ‘main sample’.
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Table A2. Observations in main sample by year and education

Number of
workers

Secondary technical
education

Higher technical or
scientific education

1986 29 256 75.0 % 25.0 %
1987 30 329 75.8 % 24.2 %
1988 29 450 76.0 % 24.0 %
1989 29 952 76.2 % 23.8 %
1990 31 576 77.1 % 22.9 %
1991 31 482 79.6 % 20.4 %
1992 33 857 79.2 % 20.8 %
1993 33 261 78.8 % 21.2 %
1994 35 315 78.3 % 21.7 %
1995 31 551 77.4 % 22.6 %
Observations 316 029 77.4 % 22.6 %

Table A3. Observations in the main sample by experience and R&D intensity

 Observations No R&D R&D-intensity
∈ 〈0,.05]

R&D-intensity
∈ 〈.05,.2]

R&D-intensity
>.2

Less than one year experience 7017 36.6 % 42.9 % 16.5 % 4.0 %
1-2 year experience 18446 36.8 % 40.3 % 16.9 % 6.0 %
3-5 year experience 36167 37.7 % 37.7 % 17.6 % 7.0 %
6-10 year experience 57802 42.1 % 32.8 % 17.5 % 7.5 %
11-15 year experience 44545 41.0 % 32.3 % 19.3 % 7.4 %
16-20 year experience 37563 42.9 % 32.0 % 18.6 % 6.4 %
21-35 year experience 86846 40.6 % 33.9 % 19.3 % 6.2 %
More than 35 year experience 27643 41.4 % 35.7 % 17.8 % 5.1 %

316 029 40.6 % 34.4 % 18.4 % 6.6 %

R&D intensity is measured as R&D man-years per employee at the three-digit line of business level within firms.
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Table A4. Worker characteristics by education

Secondary technical
education

Higher technical or
scientific education

Years of education
     mean 11.2 14.5
     st.dev. (.9) (1.7)
     10th percentile 10.0 13.0
     90th percentile 12.0 17.0
Years of experience
     mean 16.8 17.4
     st.dev. (11.9) (11.6)
     10th percentile 3 3
     90th percentile 34 35
Years of tenure‡

     mean 6.3 6.0
     st.dev. (5.6) (5.1)
     10th percentile .9 .9
     90th percentile 13.2 12.5
Wage in 1995 NOK
     mean 245 400 353 500
     st.dev. (71 000) (125 900)
     10th percentile 176 500 240 200
     90th percentile 336 100 479 700
Union membership
     share 44% 27%
Working at R&D performing plant
     share 54% 78%
R&D-intensity if at R&D performing plant
     mean .057 .125
     st.dev. (.085) (.134)
     10th percentile .002 .006
     90th percentile .152 .278

The numbers are based on all worker-year observations in the machinery and equipment industry included in the main
sample, cf. Table A1. An R&D plant is a plant belonging to a firm that conducts some R&D within the plant’s three-digit
ISIC industry. R&D intensity is measured as R&D man-years per employee at the three-digit line of business level within
firms. Wage in 1995 NOK is rounded to the nearest 100.
‡ 16 percent of the observations have the job starting date censored at April 30th 1978.
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Table A5. Plant characteristics by plant size

Number of employees: Less than 50 50-200 more than 200 All plants
Number of employees
     mean 18.3 96.2 483.3 83.3
     st.dev. (12.9) (38.6) (347.7) (169.9)
     10th percentile 4 54 221 6
     90th percentile 39 158 906 185
Average experience of technical staff
     mean 16.9 17.1 17.2 17.0
     st.dev. (6.6) (4.4) (4.4) (5.9)
     10th percentile 9.3 12.0 12.2 10.2
     90th percentile 25.3 23.0 22.5 24.1
Average tenure of technical staff‡

     mean 5.7 6.0 6.1 5.8
     st.dev. (3.3) (3.0) (3.3) (3.2)
     10th percentile 1.9 2.3 2.1 2.0
     90th percentile 10.0 9.8 10.7 10.0
Average education of technical staff
     mean 11.7 11.7 12.0 11.8
     st.dev. (1.1) (0.8) 1.0 (1.1)
     10th percentile 10.7 10.8 11.2 10.8
     90th percentile 13.0 12.9 13.4 13.0
Share of work force with higher technical or
scientific education
     mean 10% 10% 13% 10%
     st.dev. (16) (11) (12) (14)
     10th percentile 0 1% 2% 0
     90th percentile 32% 23% 31% 29%
R&D performing firm
     share 34% 54% 63% 42%
R&D man-years per employee if R&D performing
firm
     Mean .14 .07 .08 .10
     st.dev. (.18) (.09) (.10) (.15)
     10th percentile .007 .005 .003 .006
     90th percentile .39 .17 .21 .26
Capital per employee in 1995 NOK
     Mean 805 800 831 700 977 100 828 900
     st.dev. (1 137 600) (682 300) (746 400) (995 100)
     10th percentile 245 700 268 300 233 700 262 000
     90th percentile 1 359 600 1 575 200 1 838 500 1 472 800
Union density among technical staff
     Mean 23% 33% 41% 27%
     st.dev. (36) (39) (43) (38)
Market share
     Mean 2% 6% 19% 5%
     st.dev. (8) (12) (25) (13)
Part of multi-plant firm
     Share 37% 47% 64% 42%
Plants founded before 1972
     Share 44% 64% 66% 52%

Number of plant-year observations 4 728 2 195 697 7 620

The numbers are based on all plant-year observations in the machinery and equipment industries included in the main
sample, cf. Table A1. An R&D plant is a plant belonging to a firm that conducts some R&D within the plants three-digit
ISIC industry. R&D man-years per employee and R&D sales ratio are measured at the three-digit line of business level
within firms. Market share is measured at the five-digit line of business level for the firm that the plant belongs to. Capital
per employee is rounded to the nearest 100.
‡ 16 percent of the underlying employee observations have the job starting date censored at April 30th 1978.
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Table A6. Aggregate growth from 1986 to 1995 and R&D intensity by sub-industries

Number of plants Number of observations R&D
ISIC 1986 1995 ∆ 1986 1995 ∆   intensity
38210 Engines and turbines 9 11 2 939 856 -9 % .03
38220 Agricultural machinery 52 33 -19 514 597 16 % .04
38230 Metal and wood-working machinery 37 26 -11 200 183 -9 % .04
38241 Oil and gas well machinery and tools 92 104 12 4709 8270 76 % .02
32249 Other industrial machinery 73 104 31 607 878 45 % .06
38250 Computers and office machinery 50 28 -22 1052 334 -68 % .26
38291 Household machinery 11 8 -3 95 92 -3 % .04
38292 Repair of machinery 709 458 -251 480 594 24 % .11
38299 Other machinery 339 351 12 4132 3197 -23 % .09
38310 Electric motors and eq. for el. production 139 153 14 2428 2010 -17 % .07
38320 Radio, TV and communication apparatus 190 135 -55 3335 2858 -14 % .17
38330 Electrical household appliances 32 20 12 251 187 -25 % .12
38391 Insulated cables and wires 12 17 5 689 627 -9 % .12
38399 Other electrical apparatus and equipment 124 100 -24 596 282 -53 % .04
38411 Building of ships 163 188 -25 3738 4350 16 % .01
38412 Building of boats 438 232 -206 535 400 -25 % .04
38413 Ship and boat engines and motors 36 29 -7 557 353 -37 % .04
38414 Components and fixtures for ships/boats 53 55 2 590 981 66 % .02
38421 Railway and tramway equipment 1 1 0 136 178 31 % -
38422 Repair of railway and tramway eq. 18 8 -10 1258 1015 -19 % -
38430 Motor vehicles 174 80 -94 740 1207 63 % .06
38440 Motor cycles and bicycles 1 2 1 114 77 -32 % -
38450 Aircraft 28 20 -8 1167 1173 1 % .01
38490 Other transport equipment 6 12 6 11 52 373 % .02
38510 Professional and scientific instruments 57 109 52 306 749 145 % .11
38520 Photographic and optical goods 10 8 -2 77 51 -34 % .22

382-385 All machinery and equipment industries 2 854 2 292 -562 25 863 30 698 19% .10

The number of plants is taken from the manufacturing census. The number of observations refers to the technical staff in the
main sample, cf. Table A1. The growth in the technical staff does not imply that there has been employment growth in these
industries, but is a result of old workers with primary education not included in the sample, gradually being replaced by
workers with secondary education. R&D-intensity is the weighted average R&D man-years per employee, measured at the
three-digit line of business level within firms, for the plants in the sample over the years 1986-1995.


