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Introduction 

 

In a biological context, Hamilton (1964) defines viscosity as the tendency of 

individuals to have a higher rate of interaction with their close relatives than with 

more distantly related individuals. Myerson, Pollock and Swinkels (1991) formulate 

this idea in terms of a biological game, where an agent has a higher probability of 

meeting any agent sharing his strategy than any agent using a different strategy. 

Taking the limit as the degree of viscosity tends to zero, Myerson et al define a set of 

fluid population equilibria. Since the set of fluid population equilibria consists only of 

Nash equilibria, but not of all Nash equilibria, their model can be viewed as a 

contribution to the refinements literature. Moreover, since all evolutionarily stable 

strategies are contained as a subset in the set of fluid population equilibria, Myerson 

et al have also coined a concept of evolutionary stability which serves as an 

alternative to that of Maynard Smith and Price (1973). 

 

Others have explored the notion of viscosity in ways more or less similar to that of 

Myerson et al. The idea of strategy correlation, that agents using the same strategies 

meet more frequently than agents using different strategies, has been explored by 

Frank (1988) for the prisoner’s dilemma game and by Skyrms (1994, 1996) for a 

larger set of games. Models of local interaction, most notably those of Ellison (1993), 

Blume (1993, 1995) and Anderlini and Ianni (1996), capture a form of viscosity 

where agents have a fixed location and interact only with a limited set of neighbours. 

Oechssler (1997) suggests a model in which a population is divided into groups that 

interact only internally, but where agents can occasionally leave one group for 

another. Finally, viscosity is frequently used as a justification for introducing mutant 

clusters into evolutionary models, such as in Binmore and Samuelson (2001). 

 

Whereas Myerson et al confine themselves to biological games, the aforementioned 

contributions forcefully underscore the potential importance of viscosity in human 

interaction. What is striking, however, is that none of these contributions mention the 

opposite possibility, that similar agents might in certain cases interact less frequently 

than dissimilar agents, a phenomenon we might term dispersion. To appreciate the 

importance of dispersive interaction, we need only think of interactions such as those 

of buyers and sellers, of principals and agents, of professors and students, of males 
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and females, and so on. While it is true that multi-population evolutionary models of 

learning appear to adopt dispersion as a matter of course, they always do so in the 

sense of full dispersion, where similar agents never interact. To name a few, Young 

(1993, 1998), Hahn (2000) and Hehenkamp (2001) all assume that the members of 

different groups take on distinct roles in the games played. This might prove a good 

fit for pure buyer-seller relationships, but once the buyers or sellers start interacting 

among themselves as well, we have a different kind of situation requiring a different 

kind of analysis. Current models thus capture the cases ranging from viscosity to 

fluidity, plus the extreme case of full dispersion. In order to attain ”a framework 

general enough to accomodate all kinds of non-random pairing” (Skyrms, 1996), we 

ought therefore attempt to fill the gap between fluidity and full dispersion. 

 

In this paper, I present an evolutionary model of learning which accomodates the full 

range of interaction of two distinct populations, from viscosity through fluidity 

through dispersion. The basic learning process is similar to that of Kandori, Mailath 

and Rob (1993), as elaborated on by Kandori and Rob (1995), Hahn (2000) and 

Hehenkamp (2001). These models basically either assume that members of a 

population only interact with each other (as in the former two contributions) or only 

interact with members of the other population (as in the latter two contributions). The 

gap between these two extremes is partly filled in one specific sense by the local 

interaction model of Ellison (1993), which employs a learning process similar to that 

of Kandori et al. The below model adopts a more flexible view of non-random 

interaction, and attempts to fill the entire gap between these specific models of 

learning. 

 

The paper proceeds as follows. In the next section, the basic model is presented. Two 

populations of agents play a game of coordination, where agents from different 

populations prefer different equilibria. Every so often, agents are called upon to revise 

their strategies, choosing a best reply to the strategy profile of the preceding period. 

On rare occasions, agents choose a strategy at random. As the probability of such 

random choices approaches zero, we study the long run probabilites of different 

population states. States that have a positive probability of being observed in the very 

long run when noise is virtually absent, we call long run stochastically stable, 

adopting the term used by Ellison (2000). The three subsequent sections establish 
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long run stochastically stable states when interaction is dispersive, fluid and viscous, 

respectively. Interestingly, the results obtained with complete dispersion mirror those 

of Hehenkamp (2001). Similarly, the results obtained with complete viscosity are akin 

to those of Kandori, Mailath and Rob (1993). In a sense, then, the results of 

Hehenkamp and Kandori et al emerge as special cases in the below model. In the case 

of fluid interaction, I prove that a state where different populations use different 

strategies can be long run stochastically stable. This possibility of convention 

coexistence marks a departure from the results of previous models of learning with a 

similar mutation structure, and adds to the literature on coexistence initiated by 

Sugden (1995).1 In a final section, I note that in the evolutionary literature, the debate 

on welfare properties of long run stochastically stable states has largely been limited 

to games of common interests, such as in Bergin and Lipman (1996). This section 

suggests that utilitarian and Rawlsian measures of welfare can be employed in models 

of conflicting interests, and reports some results on how the long run stochastically 

stable states fare when gauged by these measures. 

 

 

The model 

 

In its literal sense, the term viscous is used to describe a liquid that is thick or sticky, 

and thus hard to pour. Viscosity is thus an apt term for interaction where agents 

largely stick to a limited set of partners or opponents. By contrast, the term fluid 

describes a liquid that flows freely or easily. The analogy of fluid interaction thus 

implies that an agent interacts just as easily or frequently with one opponent as with 

another. To expand the dichotomous imagery used by biologists to describe 

interaction, add the term dispersion, which suggest that agents of the same type scatter 

to interact more frequently with agents of a different type. 

 

An interpretation of the above three terms can be made within the confines of a two-

population model. Consider two distinct populations 1 and 2 of finite sizes 1N  and 

                                                 
1 Anderlini and Ianni (1996) assume that errors only occur when agents attempt to use a different 
strategy from that of the preceding period, which implies a non-ergodic dynamic process where in 
some cases coexistence is an absorbing state. 
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2N , respectively. The following figure provides a description of the three different 

modes of interaction. 

 

 

 

 

 

 

 

 Figure 1. Structure of interaction 

 

As the arrows indicate, the members of a population can interact with agents from 

their own population, and/or agents from the other population. If populations only 

interact internally, i.e. members from different populations never meet, interaction is 

completely viscous. In terms of evolutionary models of learning, Kandori, Mailath 

and Rob (1993) in essence adopt this assumption by studying single-population 

interaction. Conversely, if populations only interact externally, i.e. members of the 

same population never meet, interaction is completely dispersive. Young (1993) and 

Hehenkamp (2001) propose multi-population models of learning that exhibit this 

feature. If agents interact as often with any member from one population as from 

another, interaction is fluid, which is analogous to the definition suggested by 

Myerson, Pollock and Swinkels (1991). 

 

Specifically, the notion of a round-robin tournament is used to describe interaction. In 

a round-robin tournament, agents are paired a number of times so that each agent 

meets each other agent exactly once. Tournaments of this kind are an easy way of 

having agents interact with the population average, which simplifies the modelling of 

strategy revision, as discussed below. In the current model, however, we want the 

frequency with which agents interact with members of their own population and 

members of the other population to vary. To this end, we imagine that an agent 

participates in a series of round-robin tournaments with his own and the other 

population. In each period, agents play r rounds of round-robin tournaments with their 

own population, and s rounds of tournaments with the other population. Each agent 

Population 1 Population 2 
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thus interacts with the average of each population, but not necessarily with the 

average across populations. 

 

The quotient s
rp =  captures the frequency with which agents interact with any 

member of their own population relative to any member of the opposite population, 

and p is thus a measure of the degree of viscosity (or dispersion) in interaction. 

Interaction is fluid if an agent plays an equal number of rounds with each population, 

i.e. if 1=p . If he plays more rounds with his own population, i.e. 1>p , interaction is 

viscous, where ∞→p  implies complete viscosity. Fewer rounds played with your 

own population, 1<p , implies dispersive interaction, and complete dispersion as 

0→p . For ∞∈ ,0p , this formulation in principle allows the study of any form of 

interaction from completely dispersed through completely viscous. 

 

Another way of modelling interaction that would also be amenable to the notion that 

agents interact with the population average, is to assume that all agents are paired 

once, and that the probability of meeting any agent from the same population is the 

same, though the probability of meeting agents from different populations may differ. 

The problem with this approach is that populations of different sizes would then 

exhibit different levels of viscosity, and the interaction of the larger population could 

never reach a level of full dispersion. To understand why, assume that 1001 =N  and 

502 =N . With complete dispersion, the probability of meeting a member of the 

opposite population is one, which means that if population 2 exhibits full dispersion, 

all fifty members of that population are paired with members of population 1. To add 

up, this must mean that 50 members of population 1 interact with members of 

population 2, which means that the probability of meeting a member of the opposite 

population is only 2/3 for agents from population 1. Nor can that probability be raised 

above 2/3, since there are no more potential agents from population 2 with whom 

agents from population 1 can be paired. 

 

The chosen way of modelling matching also differs from that of Myerson et al. Their 

basic take on viscosity is to say that with probability β , an agent gets an opponent 

from his own population, whereas with probability )1( β−  his opponent is drawn at 
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random from the overall population, i.e. both his own and the other population. The 

main drawback to this approach is that it only allows the study of the cases ranging 

from fluid interaction ( 0→β ) to completely viscous interaction ( 1→β ). There is no 

natural way in which to expand this framework to the case of dispersive interaction. 

In an appendix, however, I show that for the range covered, matching according to 

Myerson et al yields results similar to those of the round-robin matching regime 

proposed above. 

 

Given the round-robin matching regime, matched agents play a game with two 

strategies A and B. The game is essentially one of coordination, where a player 

prefers to use the same strategy as his opponent. However, we assume that the 

populations differ with respect to which pair of similar strategies is preferable, there is 

thus a conflict of interests between populations. Hence, regardless of the identity of 

his opponent, let an agent from population 1 receive payoffs according to the 

following matrix, where 1>a  

 

     

 

 

(P1) 

 

 

  

 

 

Similarly, the payoffs to an agent from population 2 can be represented as, for 1>b  

 

     

 

 

(P2) 

 

 

Player from 
population 1 

A 

B A 

B 

Opponent 

a 0 

0 1 

Player from 
population 2 

A 

B A 

B 

Opponent 

1 0 

0 b 
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Thus, whenever two members of population 1 are matched, they play a coordination 

game, where they both prefer strategy profile (A,A). 

 

   

 

 

(G1) 

 

 

 

  

 

The coordination game is pure in the sense of Kandori and Rob (1995). Equilibrium 

(A,A) is thus both Pareto dominant and risk dominant.2 

 

Similarly, when two members of population 2 meet, they play a pure coordination 

game where both prefer (B,B) 

 

 

 

 

  (G2) 

 

 

 

 

 

In this game, equilibrium (B,B) is Pareto and risk dominant. 

 

                                                 
2 Harsanyi and Selten (1988) define risk dominance in the following way. Consider any 2x2 game with 
two strict Nash equilibria U and V, where the losses to players 1 and 2 from unilaterally deviating from 
the equilibria are ),( 21 uu  and ),( 21 vv , respectively. U risk dominates V if 2121 vvuu ⋅>⋅ , and V 
risk dominates U if the opposite inequality holds. 
 

Player from 
population 1 

A 

B A 

B 

Player from 
population 1 

a,a 0,0 

0,0 1,1 

Player from 
population 2 

A 

B A 

B 

Player from 
population 2 

1,1 0,0 

0,0 b,b 
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Finally, when members of opposite population interact, they play a battle of the sexes 

game, where the agent from population 1 prefers profile (A,A) and the agent from 

population 2 prefers (B,B) 

 

  

 

 

 (G3) 

 

 

 

  

 

In game (G3), no equilibrium Pareto-dominates the other. Without loss of generality, 

we assume that ba > , which makes equilibrium (A,A) risk dominant in this game.3 

Population 1 thus has a stronger preference for its preferred strategy profile than the 

corresponding preference of population 2. 

 

Denote by tz1  the number of agents playing A in population 1 in period t, and let tz 2  

represent the number of agents playing A in population 2 in period t. The vector 

( )tt zz 21 ,=tz  thus captures the state of the system at time t. The state space O  is 

discrete and finite 

 

{ }2,1,0:),( 21 =≤≤== iNzzz iizO       (1) 

 

To ease subsequent discussion, let ),( 21 NN≡AAz  represent the state in which all 

agents play strategy A, and let ( )0,0≡BBz  capture the state in which all play B. 

Similarly, in state ( )0,1N≡ABz  all members of population 1 play A and all members 

of population 2 play B. Conversely, in state ( )2,0 N≡BAz  B is played by everyone in 

population 1 and A is played by everyone in population 2. 

 

                                                 
3 Cardinal interpersonal comparability of payoffs must be assumed for this statement to be meaningful. 

Player from 
population 1 

A 

B A 

B 

Player from 
population 2 

a,1 0,0 

0,0 1,b 
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The state vector tz  evolves as follows. In-between periods, each agent has a 

probability 1,0∈δ  of being called upon to revise his strategy. If called upon, an 

agent chooses the strategy which maximizes his expected payoffs in the next period, 

given a belief that all other agents will play as they did in the preceding period. We 

thus have a stochastic best-reply learning dynamic, where agents are myopic in only 

heeding the most recent actions of others. Moreover, the dynamic is what Hehenkamp 

(2001) defines as individualistic, since it leaves open the possibility that none or some 

or all agents in a population revise at any given time. 

 

From payoff maximization, it follows that a revising agent from population 1 chooses 

strategy A if the relative frequency with which he expects to encounter A-players 

exceeds 
a+

≡
1

1
1α , where 5.01 <α . An agent from population 1 therefore chooses A 

if 

 

 1
21

21 α>
+⋅
+⋅

NNp
zzp

        (2) 

 

If the opposite relation holds, an agent from population 1 chooses B.  

 

Similarly, a revising agent from population 2 chooses strategy A if the frequency with 

which he meets A-players is above 
b

b
+

≡
12α , where 12 15.0 αα −<< . A revising 

agent from population 2 will thus choose strategy A if 

 

 2
12

12 α>
+⋅
+⋅

NNp
zzp

        (3) 

 

Conversely, B is chosen if the opposite relation holds. In the case where agents are 

indifferent between A and B, i.e. (2) or (3) hold with equality, we may assume a coin 

toss determines the strategy chosen. 
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Inequalities (2) and (3) capture the directions of change in the model. For ease of 

subsequent exposition, rewrite these two inequalities as: 

 

 12112 )( pzNpNz −+> α        (4) 

 

 
p
z

p
NpN

z 1122
2

)(
−

+
>

α
       (5) 

 

By means of these inequalities, we can draw a stability diagram for the system. Figure 

2 provides an illustration of such a diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2. Illustration of stability diagram 

 

The number of A-players in each population, 1z  and 2z , is measured along the 

respective axes. This implies that BBz  lies at the origin, and AAz  at the upper right 

corner of the rectangle formed by the axes and population sizes. Similarly, ABz  is at 

the lower right corner of the rectangle, and BAz  at its upper left corner. The thicker of 

the two sloping lines represents the demarcation line between areas where 1z  

increases (above the line) and decreases (below the line). The thinner of the two lines 

in the same manner demarcates the areas where  2z  increases (above) and decreases 

    1z

1N

2N

2z

12112 )( pzNpNz −+= α

p
z

p
NpN

z 1122
2

)(
−

+
=

α

AAz

BBz
ABz

BAz
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(below). An absorbing state is a state which once reached, the process never leaves. In 

the case depicted in figure 2, there would be three absorbing states, AAz , BBz  and 
ABz . Note that the assumption that agents toss a coin when indifferent implies that 

states along the demarcation lines are not absorbing. 

 

From inequalities (4) and (5) we see that the two lines of demarcation have inverse 

slopes, p  and p
1 , respectively. And as p changes, the two lines pivot around the 

points ( )2111 , NN αα  and ( )2212 , NN αα , respectively. As p increases, the thicker line 

gets steeper, and as ∞→p  it becomes vertical. Remember that an increased p means 

that agents interact more frequently with their own population. From a state in which 

members of population 1 are indifferent between strategy A and B, if the number of 

A-players in population 1 is reduced by one, the number of extra A-players needed in 

population 2 for population 1 to remain indifferent, increases with p. In other words, 

the more frequently you interact with your own population, the larger a change in the 

behaviour of the opposite population is needed to offset a given change of behaviour 

in your own population. Conversely, as p decreases, a given change in the behaviour 

of your own population is offset by smaller changes in the behaviour of the opposite 

population. Hence, the thicker line in figure 2 gets flatter as p decreases, and for 

0→p  it becomes horizontal. A similar line of arguments applied to population 2 tells 

us that the thinner line grows less steep as p increases, grows horizontal for ∞→p , 

and vertical for 0→p . 

 

Finally, to gauge the relative attraction of multiple absorbing states, we introduce 

mutations into the decision making of agents. This takes the form that in each period 

each agent has a small probability ε  of choosing strategies at random from a uniform 

distribution over the two strategies. This random choice then trumps any previous 

choice of strategy. In sum, then, we have a perturbed stochastic process. For a given 

level of viscosity p, let ),( εpP  be the transition matrix implied by the above learning 

process including mutations. In other words, element ij of ),( εpP  is the probability 

of going from state i to state j from one period to the next. For any given p, we can 

then represent the process by a transition matrix ),( εpP  on a state space O , for 

which we use the shorthand formulation )),(,( εpPO . 
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We are interested in where the process )),(,( εpPO  goes in the very long run when 

noise is very small. For given p, we therefore study the probability distribution over 

population states in O , as time goes to infinity and noise ε  to zero. States that have a 

positive probability in this distribution, are what Kandori, Mailath and Rob (1993) 

call long run equilibria, and what Young (1993) calls stochastically stable states. 

Below, the compromise term of long run stochastic stability proposed by Ellison 

(2000) is used to denote such states. Standard methods of computing long run 

stochastically stable states are used in the following analysis of the model, and 

described in more detail in an appendix. 

 

 

Dispersive interaction 

 

Let us start by analyzing the case where interaction is dispersive, in other words when 

interaction with any member of the opposite population is more frequent than with 

any member of your own population. In the limit, when interaction with your own 

population is so rare as to be relatively non-existent ( 0→p ), dispersion is complete. 

The following proposition describes some key properties of the long run behaviour of 

the process in this case. 

 

PROPOSITION 1:  

Consider the process of learning with noise )),(,( εpPO , and suppose 0→p . Then: 

i) For 21 NN =  sufficiently large, AAz  is the unique long run stochastically stable 

state. 

ii) For 1N  sufficiently large, there exists some 12
ˆ NN >  such that for all 22 N̂N > , 

BBz  is the unique long run stochastically stable state. 

 

A formal proof of the proposition is given in an appendix, as are the proofs of later 

propositions. 

 

For 0→p , interaction takes the form of agents from different populations playing 

the battle of the sexes game (G3). Proposition 1i) basically states that if populations 
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are equally large, players conform to the risk dominant equilibrium (A,A) of this 

game in the long run. However, as part ii) of the proposition points out, if the 

population preferring the risk dominated equilibrium (B,B) is sufficiently much larger 

than the other population, the risk dominated equilibrium is played in the long run. 

These results are essentially the same as those captured by proposition 2 in 

Hehenkamp (2001). 

 

The intuitive reason for the above results can be explained as follows. When 0→p , 

inequalities (4) and (5) reduce to: 

 

 212 Nz α>          (6) 

 

 121 Nz α>          (7) 

 

In a stability diagram, this implies that the line demarcating increases and decreases in 

1z  is horizontal, and the corresponding line for 2z  is vertical. As in figure 2, the thick 

line in the below figure represents the former demarcation line, and the thin line the 

latter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. Stability diagram for the case of complete dispersion. 

 

    1z

1N

2N

2z

12Nα

21Nα

AAz

BBz

ABz

BAz
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As the diagram reveals, no matter where we start out, we eventually reach either state 
AAz  or state BBz . This includes starting points on the demarcation lines, since 

indifferent agents tossing a coin can then shift the process off the lines. For 0→p , 

the unperturbed process thus has two absorbing states, AAz  and BBz . As established 

by Young (1993), for perturbed processes of the kind studied here, the long run 

stochastically stable state must be one (or both) of these. In computing the long run 

stochastically stable state, we note that a number of unlikely mutations are needed to 

leave one absorbing state for the other. When the probability of mutations is infinitely 

small, transitions between states that require more mutations are infinitely less likely 

than transitions that require fewer mutations. With two absorbing states, the frequency 

with which we can expect to observe either one of them in the very long run, reflects 

the difficulty with which that state can be left for the other absorbing state. The long 

run stochastically stable state is thus the absorbing state that requires more mutations 

to leave for the other absorbing state, than vice versa. 

 

A closer look at figure 3 tells us that to leave AAz , enough agents must mutate to 

strategy B to bring us to a state on either of the two demarcation lines. One of the 

populations then has B as a best reply, and we might therefore eventually reach BBz . 

If the populations are of equal size, 21 NN = , we can represent this in figure 3 by 

letting the units on both axes be of similar size. Clearly, then, we must move fewer 

units to the left from AAz  to reach the thin demarcation line, compared to the number 

of units we would have to move downwards from AAz  to reach the thick demarcation 

line. The easiest way to leave AAz , i.e. the way requiring the least mutations, is 

horizontally to the left, which takes 12 )1( Nα−  mutations to strategy B in population 

1. Similarly, to leave BBz , we could either move upwards to the thick demarcation 

line or to the right to the thin line. Clearly, with similarly sized units on both axis, 

fewer mutations are needed to move up to the thick line, so to leave BBz  we need a 

minimum of 21Nα  mutations. Since we have assumed that )1( 21 αα −< , it is thus 

easier to leave BBz  for AAz  than vice versa, which means that AAz  is long run 

stochastically stable for equal population sizes. 
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If population 2 is larger than population 1, 12 NN > , we must represent the units in 

figure 3 differently. We can then think of the units on the second axis as being smaller 

than those on the first, agents are in a sense packed more densely on the second axis 

than the first. And if the density with which they are packed on the second axis grows 

sufficiently large, the number of units from BBz  upwards to the thick demarcation 

line, exceeds the number of units from AAz  leftwards to the thin demarcation line. In 

other words, if population 2 is sufficiently much larger than population 1, fewer 

mutations are needed to leave AAz  for BBz  than vice versa. This holds even if 

population 2 becomes so much larger that the easiest way to leave BBz  is rightwards 

to the thin demarcation line, since this always implies a greater number of mutations 

than the transition from AAz  to the thin line. 

 

Incidentally, the reason why the sizes 1N  and 2N  of the two populations must be 

sufficiently large for the above results to hold, is as follows. Imagine that each 

population consisted of only one agent, 121 == NN . In that case, we could leave any 

absorbing state by means of a single mutation, and the criterion of long run stochastic 

stability would therefore not discriminate between absorbing states. By requiring that 

1N  and 2N  be sufficiently large, we are in effect making sure that the units on the 

axes of figure 3 are sufficiently fine-grained for such a distinction between absorbing 

states to be made. 

 

 

Fluid interaction 

 

When an agent interacts as frequently with any agent from his own population, as 

with any agent from the other population, interaction is fluid. In the current model, 

this means that an agent engages in the same number of round-robin tournaments with 

both populations, 1=p . For a revising agent, this means that the actions of all agents 

in the preceding period receive the same weight in determining the optimal strategy. 

Since population sizes may differ, this means that the larger population has a greater 

impact on the decision of a revising agent than the smaller population. For fluid 

interaction, the following proposition holds. 
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PROPOSITION 2: 

Consider the process of learning with noise )),(,( εpPO , and suppose 1=p . Then: 

For 1N  and 2N  sufficiently large, there exists some 2α̂  such that for all 22 α̂α > , 

ABz  is long run stochastically stable. 

 

On the face of it, proposition 2 states that if population 2 prefers strategy profile (B,B) 

sufficiently strongly over (A,A), then the state in which the two populations adhere to 

different convent ions, ABz , is long run stochastically stable. Note, however, that on 

the assumption that ba > , )1( 1α−  is bounded below by 2α , which implies that the 

upper bound of 1α  must decrease as 2α  increases. An implication of proposition 2 is 

therefore that ABz  is long run stochastically stable if 1α  and 2α  are sufficiently far 

apart. In other words, ABz  is observed with certainty in the long run if both 

populations prefer their desired strategy profiles sufficiently strongly. 

 

The intuitive argument underlying the proposition is as follows. With 1=p , 

inequalities (4) and (5) reduce to: 

 

 12112 )( zNNz −+> α        (8) 

 

 11222 )( zNNz −+> α        (9) 

 

The lines demarcating the areas where 1z  increases and decreases, and 2z  increases 

and decreases, are now parallel and have a slope of –1, with the latter line above and 

to the right of the former. In the below diagram, the thick line partitions the areas 

where 1z  increases and decreases, and the thin line the areas where 2z  increases and 

decreases. 
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Figure 4. Sketch of stability diagram with fluid interaction. 

 

In the above figure, there are three absorbing states, AAz , BBz  and ABz . Note that for 

1=p , there need not be more than two absorbing states, AAz  and BBz , since with 

unequal population sizes, )( 211 NN +α  could exceed 1N , or 1212 )( NNN −+α  could 

be negative. However, for given population sizes, we can construct a case in which 

there are three absorbing states by increasing 2α  and hence decreasing the upper 

bound on 1α , which slides the two demarcation lines apart. At some level of 12 <α , 

we thus get lines that cross in the manner of figure 4. 

 

The same argument can be used to explain why ABz  is the long run stochastically 

stable state if 2α  is sufficiently large. As before, the long run stochastically stable 

state must be in the set of absorbing states. For 2α  sufficiently large, there are three 

absorbing states, and a long run stochastically stable one can be characterized as being 

harder to leave for either of the other absorbing states, than it is to reach from the 

absorbing state from which it is hardest to reach. That ABz  can have this property for 

large 2α , we can illustrate by examining the case where 12 →α . This implies that 

01 →α . The demarcation lines then slide as far as they go into opposite corners of the 

above figure. To leave either of the two states AAz  or BBz  for ABz  now requires only 

one mutation. However, to leave ABz  for either of the two other absorbing states 

requires a minimum of { }21 ,min NN  mutations. For large population sizes, this means 

    1z

1N

2N

2z

)( 211 NN +α

2212 )( NNN −+α

1212 )( NNN −+α)( 211 NN +α

AAz

BBz

ABz

BAz
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that it is harder to leave ABz  for either of the other two absorbing states, than it is to 

leave either of the other two for ABz . With fluid interaction, then, the state of 

coexistent conventions ABz  can be long run stochastically stable if populations 

adhere sufficiently strongly to their preferred strategy profiles. This possibility of 

coexistence marks a departure from previous evolutionary models of learning, such as 

those of Kandori, Mailath and Rob (1993), Young (1993) and Hehenkamp (2001), 

whose results do not permit long run convention coexistence. 

 

 

Viscous interaction 

 

When interaction is viscous, an agent meets any member of his own population more 

frequently than any member of the opposite population. In our formulation, more 

rounds of round-robin are played with members of your own population than with the 

other population. In the limit, when interaction with the other population is 

comparatively non-existent, i.e. ∞→p , we have complete viscosity. The following 

proposition captures the evolution of play in this instance. 

 

PROPOSITION 3: 

Consider the process of learning with noise )),(,( εpPO , and suppose ∞→p . Then: 

If and only if 1N  and 2N  are sufficiently large, ABz  is the unique long run 

stochastically stable state. 

 

In other words, when the two populations virtually never interact, each population 

adopts its preferred strategy, regardless of the strength of that preference. This result 

is akin to the main result of Kandori, Mailath and Rob (1993), who find that a single 

population interacting only with itself will end up playing according to the risk 

dominant equilibrium. By implication, according to their model, two separate 

populations having different risk dominant equilibria, will thus play differently in the 

long run. This mirrors the case where ∞→p , since we have two virtually separate 

populations playing games (G1) and (G2), respectively. 
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The procedure of comparing how easily absorbing states are left for and reached from 

other absorbing states is inconclusive in this instance, and proving that ABz  is the 

only long run stochastically stable state is therefore a more complex operation. As 

shown in an appendix, the formal proof relies on a comparison of the ease with which 

an absorbing state can be reached by way of all the other absorbing states. In a sense, 

the absorbing state that can be reached with the least number of mutations in this 

manner, is long run stochastically stable.  

 

It is difficult to illustrate this result by the simple means used in previous sections. 

However, the result mirrors the fact that ABz  has the largest basin of attraction of the 

absorbing states in this case, i.e. there are more states from which we transit to ABz  

with certainty in a finite number of periods, than to any other absorbing state. This we 

can demonstrate graphically. For ∞→p , inequalities (4) and (5) can be rewritten as: 

 

111 Nz α>          (10) 

 

222 Nz α>          (11) 

 

The demarcation line which distinguishes between increases and decreases in 1z  is 

now vertical, and the line which separates increases and decreases in 2z  is horizontal. 

Let a thick and a thin line represent these two demarcation lines. The stability diagram 

then looks as follows. 
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 Figure 5. Stability diagram for the case of complete viscosity. 

 

As the diagram shows, there are four absorbing states, AAz , BBz , ABz  and BAz . The 

size of the basin of attraction of each is the area within which the learning dynamic 

brings us to that state. The four states thus have basins of attraction of sizes 

2211 )1()1( NN αα −⋅− , 2211 NN αα ⋅ , ( ) 22111 NN αα ⋅−  and 2211 )1( NN αα −⋅ , 

respectively. Since )1()1( 1221 αααα −<<−< , state ABz  thus has the larger basin 

of attraction of the four. In a sense, then, ABz  is the absorbing state which is easiest to 

reach by way of the other absorbing states. 

 

 

Welfare properties of the long run stochastically stable states 

 

The welfare properties of long run stochastically stable states in learning models, has 

been the topic of much debate. For the processes studied by Kandori, Mailath and Rob 

(1993) and Young (1993), the long run stochastically stable states in coordination 

games entail play according to the risk dominant equilibria. This is potentially 

troublesome, since a risk dominant equilibrium can be Pareto dominated by another 

equilibrium. However, Bergin and Lipman (1996) show that by allowing mutation 

probabilities to vary between states, the Pareto dominant equilibrium can be selected 

in the very long run. In other evolutionary models such as that of Binmore, Samuelson 

    1z
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2N

2z

22Nα

11Nα
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and Vaughan (1995), the structure of the payoffs determine whether we end up in the 

risk dominant or Pareto dominant equilibrium. 

 

Less has been said about the welfare properties of games of conflicting interest, where 

gains for one player entail losses for another. In such games, the Pareto principle has 

no cutting power, and we need some other criterion by which to evaluate welfare, a 

criterion which weighs the relative payoffs of different populations. One such 

criterion would be a classical utilitarian one, where the better outcome is that which 

produces the highest payoffs summed over all individuals (see e.g. Harsanyi (1977)). 

In the current context, we can gauge the total payoffs in any state z  by the sum of the 

average payoffs )(ziπ  to each population i=1,2, weighted by the size of each 

population iN .4 If we define the relation 'z'z' Uf   as meaning that state z' is 

strictly better than state 'z' from a utilitarian point of view, this relation is 

characterized as follows 

 

)()()()(    iff     22112211
U 'z''z'z'z' 'z'z' ππππ ⋅+⋅>⋅+⋅ NNNNf  (12) 

 

Another criterion is the Rawlsian leximin principle, which claims that the better state 

is the one where the worst off group has the highest payoff, and if the worst off group 

is equally well off in two states, the better state is the one where the second worst off 

group has the highest payoff, and so on (Rawls, 1971). Let us define a relation 

'z'z' Rf   as denoting that state z'  is strictly better from a Rawlsian perspective than 

'z' . If we simplify slightly by equating groups with populations in our model, this 

relation has the following property5 

 

{ } { }
{ } { }

{ } { }])(),(max)(),(max and      
)(),(min)(),(min[or  

])(),(min)(),(min[  if
      

2121

2121

2121

'z''z'z'z'
'z''z'z'z'

'z''z'z'z'
'z' z'

ππππ
ππππ

ππππ

>
=

>

Rf

   (13) 

 

                                                 
4 Average payoffs means average both across encounters within a period and across the members of 
population i. To meaningfully sum these we must assume cardinal interpersonal comparability of 
payoffs. 
5 Ordinal interpersonal comparability of payoffs must be assumed in this case. 
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Let us evaluate the long run stochastically stable states established above according to 

these criteria. In the case of full dispersion, 0→p , the following result holds. 

 

PROPOSITION 4:  

Consider the process of learning with noise )),(,( εpPO , and suppose 0→p . Then: 

For 1N  sufficiently large, there exists some 122
ˆ~ NNN >>  such that for 

222
~

,ˆ NNN ∈ , BBz  is the unique long run stochastically stable state, while 

BBAA zz Uf  and BBAA zz Rf . 

 

The proposition says that there is a range of relative population sizes within which the 

long run stochastically stable state is not the absorbing state producing the maximum 

total payoff, nor is it the state leaving the worst off population better off. In other 

words, for some population sizes, the evolutionary process selects a state which is 

inoptimal from a utilitarian and from a Rawlsian point of view.  

 

A simple way to understand the fact that a state is selected which does not maximize 

total payoff, is to note that utilitarianism and the evolutionary process implicitly 

maximize different things. According to utilitarianism, BBz  is better than AAz  if the 

sum of the payoffs of the two populations is larger in the former state, i.e. if 

 

11 2121 ⋅+⋅>⋅+⋅ NaNbNN       (14) 

 

From the discussion and proof of proposition 1, we know that the evolutionary 

process selects BBz  if 
1

2

1

2 )1(
α

α−
>

N
N

. Using the definitions of 1α  and 2α , we can 

rewrite this inequality as 

 

11 2112 ⋅−⋅>⋅−⋅ NaNNbN       (15) 

 

In other words, the evolutionary process selects BBz  if the difference between the 

total payoffs of the best off population and the worst off population in that state is 

greater than the difference between the best off and worst off population in AAz . 
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Where utilitarianism maximizes the sum of payoffs, the evolutionary process thus 

implicitly maximizes the difference in payoffs between the better and worse off 

population. As a consequence, while utilitarianism is egalitarian in letting everyone 

count for one, the evolutionary process is fiercely inegalitarian in letting the worse off 

agents count negatively.  

 

The reason for the divergence between utilitarianism and the evolutionary process, is 

that the evolutionary process selects the state more robust to mutations, which is not 

necessarily the state that yields the highest total payoff.6 Rewriting (15), we get that 

the evolutionary process selects BBz  if 

 

1
1)1(

1

2

1

2

+
+

=
−

>
b
a

N
N

α
α

       (16) 

 

The degree to which population 2 must be larger than population 1, depends on the 

ease with which population 2 switches to B, compared to the ease with which 

population 1 switches to A. This in turn proves a matter of how large the sum of 

payoffs over the two states AAz  and BBz  is for the two populations. Which state is 

more robust to mutations thus depends on population sizes and total payoffs over the 

states. 

 

By contrast, a version of (14) tells us that utilitarianism prefers BBz  if 

 

1
1

1

2

−
−

>
b
a

N
N

         (17) 

 

Utilitarianism thus focuses on payoff differences between the states AAz  and BBz . 

The degree to which population 2 must be larger, depends on the loss incurred by 

each member of population 1 in moving from AAz  to BBz , compared to the gain to 

each member of population 2 in moving between the two states. The two populations 

differ less in their total payoffs across the two states, than in their payoff differences 

                                                 
6 See Hehenkamp (2001) for a discussion of the relation between selection in this case and risk 
dominance. 
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between the states. By implication, for the lowest population ratios at which BBz  is 

more robust to mutations than AAz , the utilitarian principle prefers AAz  over BBz . 

 

On the Rawlsian leximin principle, BBz  is not preferable to AAz  for any relative 

population sizes. This stems from the fact that the average payoff of the worst off 

population is 1 in both AAz  and BBz , which means that we must compare the payoffs 

of the best off population in each state, which is a in AAz  and b in BBz . Given the 

view the evolutionary process takes of the payoffs of the worst off population, it is not 

very surprising that the process in some cases selects a state which is worse according 

to the leximin principle. 

 

Turning to the case of fluid interaction, 1=p , we can prove the following result. 

 

PROPOSITION 5:  

Consider the process of learning with noise )),(,( εpPO , and suppose 1=p . Then: 

For 21 NN =  sufficiently large, there exists some 2α̂  such that for all 22 α̂α >  , ABz  

is long run stochastically stable, while ABAA zz Uf  and AAAB zz Rf . 

 

Remember from proposition 2 that the state of convention coexistence, ABz , is long 

run stochastically stable when the populations are sufficiently biased in favour of their 

preferred strategy. Proposition 5 states that for equal population sizes, if said bias is 

sufficient for ABz  to be long run stochastically stable, ABz  is worse in terms of total 

payoff than AAz , but better in terms of payoff to the worst off population. 7 Note that 

in state AAz , all encounters entail coordination, which means that population 1 earns 

an average payoff of a, whereas population 2 earns 1. In ABz , on the other hand, there 

is only coordination when members of the same population meet, i.e. in half the 

encounters of each player. Population 1 thus earns on average 2/a  and population 2 

earns 2/b . The proof of proposition 5 shows that for 3>b , ABz  is long run 

stochastically stable. Thus, from the average payoffs we see that the worse off 

population 2 is better off in ABz  than AAz , when ABz  is long run stochastically 

                                                 
7 Indeed, one can show that ABz  is worse in terms of total payoff than BBz  if 2<− ba . 
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stable. However, in going from AAz  to ABz , a member of population 2 improves his 

average payoff by 
2

2−b
. On the other hand, the loss incurred by a member of 

population 1 from such a transition is 2/a . Since by assumption ba > , the loss to 

population 1 is thus greater than the gain to population 2, which implies that AAz  is 

better from a utilitarian perspective than ABz . In the current context, then, 

utilitarianism prefers coordination since it has a favourable impact on total payoffs. 

The result highlights the fact that utilitarianism cares only about the total level of 

utility, and cares not about how that total is distributed among agents.  

 

Though the results so far are mixed, that is not the case when interaction is completely 

viscous. 

 

PROPOSITION 6:  

Consider the process of learning with noise )),(,( εpPO , and suppose ∞→p . Then: 

AAAB zz Uf , BBAB zz Uf and BBAAAB zzz RR ff . 

 

In other words, ABz  is better on both criteria when interaction is completely viscous. 

The simple reason is that with complete viscosity, agents only play their own 

population, and in the absorbing states in question, they always coordinate with their 

opponents. In state ABz , both groups play according to their preferred equilibria, and 

thus get an average payoff of a and b, respectively. In state AAz , only population 1 

gets to play its preferred equilibrium, which makes average payoffs a and 1, 

respectively. In state BBz , only population 2 plays its preferred equilibrium, which 

makes average payoffs 1 and b, respectively. Even a casual glance at these numbers 

reveals that ABz  is better than the other two both in terms of total payoff, and in terms 

of the payoff accruing to the worst off group. With complete viscosity, convention 

coexistence thus has some merit. 
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Concluding remarks 

 

The basic argument of this paper is that in modelling the interaction of several distinct 

populations, we should allow for the possibility that agents might interact more 

frequently, or less frequently, with members of their own population than with 

members of another population. The framework proposed above captures this idea in 

a simple manner, and permits the study of the whole range of two-population 

interaction, from complete dispersion through complete viscosity. Though the round-

robin matching regime could be expanded into a model featuring any number of 

populations, one need not have more than two populations with conflicting interests to 

obtain noteworthy results. Notably, in an evolutionary model of learning based on this 

matching regime, results similar to those of previous evolutionary models emerge in 

the special cases of complete viscosity and complete dispersion. Moreover, a novel 

result from this model is that interacting populations can exhibit different conventions 

in the very long run, there is in other words a possib ility of convention coexistence. 

 

The notion that populations have conflicting interests also facilitates a richer 

understanding of the normative properties of states selected by evolutionary 

dynamics. What makes one state better than another is less of a trivial matter when 

interests diverge, and since different normative principles take different views of this 

matter, we get a more detailed basis on which to evaluate evolutionary selection. As 

noted previously, selection in evolutionary models of learning focus on robustness 

against errors or mutations, and the characteristics that make one state normatively 

preferable to another are only important to the extent that they influence robustness. It 

is therefore not hard to appreciate why evolutionary selection is sometimes at odds 

with what is normatively preferable. For utilitarian and Rawlsian views of what is 

normatively preferable, the results obtained above suggest that whether evolutionary 

selection and normative principles diverge, depends inter alia on the degree of 

viscosity in interaction. 
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Appendix A. Proof of propositions 1 through 3 

 

The process defined by strategy revision and mutations is a discrete time Markov 

process on a finite state space O , since the probability of transiting between two 

states from the current period to the next, depends on the properties of no state other 

than the current. For any 0>ε , there is a positive probability of moving from any 

state in O  to any other state in O  in a finite number of periods, which by definition 

means the process is irreducible. Let µ  be a probability distribution over the states in 

O , and ( )ε,pP  be the matrix of transition probabilities. For an irreducible process, a 

standard result for finite Markov chains states that there exists a unique solution to the 

following equation: 

 

( ) µpµ =ε,P          (A1) 

 

In other words, such a process has a unique stationary distribution, which we term 
εµ . Moreover, the process in question is aperiodic, since we can move from state z  

and back again in any positive number of periods, for any state z  in O .8 Let 

)( 0zztv  be the probability that at time t  we are in state z , when at time 0 we were 

in state 0z . For an aperiodic and irreducible process the following result holds: 

 

)()(lim zzz 0 εµ=
∞→

t

t
v         (A2) 

 

The probability of being in a certain state z  as time goes to infinity, thus converges to 

the probability )(zεµ  awarded that state by the stationary distribution. The 

probability that the process reaches any state after a large number of periods, is thus 

independent of the initial state.  

 

                                                 
8 Young (1998) gives a precise definition of an aperiodic process: For each state O∈z  , "let zN  be 
the set of all integers 1≥n  such that there is a positive probability of moving from z  to z  in exactly n 

periods. The process is aperiodic if for every z , the greatest common divisor of zN  is unity." 
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The stationary distribution εµ  is difficult to compute, so we focus on the case where 

the probability of mutations is arbitrarily small, ε

ε
µ

0
lim

→
. States z  which have the 

property that 0)(lim
0

>
→

zε

ε
µ , we define as long run stochastically stable. A 

fundamental result by Young (1993) establishes that ε

ε
µ

0
lim

→
 exists, and equals a 

stationary distribution of the corresponding process without mutations, 0=ε . Note 

that the process without mutations is not irreducible, which means that it can have 

several stationary distributions. For any such stationary distribution, 0µ , the states z  

that have positive probabilities in this distribution, 0)(0 >zµ , constitute a limit set of 

the process. Young proceeds to prove that the long run stochastically stable states are 

those contained in the limit sets that have minimum stochastic potential. Stated 

differently, ε

ε
µ

0
lim

→
 equals the stationary distribution *0µ  which puts positive 

probability on the limit set having minimum stochastic potential. 

 

To find the long-run stochastically stable states of a process, we thus first find the 

limits sets when mutations are absent, and then compute the stochastic potential of 

these limit sets. The search for limit sets is executed as follows. A state z'  is 

accessible from z , if there is a positive probability of reaching z'  from z  in a finite 

number of periods. Two states communicate if each is accessible from the other. A 

limit set is a set of states such that all states in the set communicate, and no state 

outside the set is accessible from any state inside the set. A limit set is thus a set of 

states which once reached, the process never leaves. An absorbing state is a limit set 

consisting of a singleton state. 

 

To find the limit sets with minimum stochastic potental, i.e. the long run 

stochastically stable states, we can proceed in two ways, one simple yet in some cases 

inconclusive, and the other more complex yet conclusive. The simpler method is due 

to Ellison (2000), who defines two characteristic numbers for each limit set Z , a 

radius )(ZR and a coradius )(ZCR . In the current context of equiprobable mutations, 

the radius )(ZR  of a limit set Z  is the minimum number of mutations needed to 

leave Z  and enter a state from which another limit set is accessible. The radius thus 

provides a measure of how easily Z  can be left for another limit set. To compute the 
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coradius )(ZCR , you take the minimum number of mutations needed to leave each of 

the limit sets different from Z  for a state from which Z  is accessible, and let the 

coradius equal the maximum of these. The coradius thus measures how easily Z  can 

be reached from the other limit sets, specifically from the limit set from which Z  is 

most difficult to reach. Ellison proves that if )()( ZZ CRR > , then the states in Z  are 

long run stochastically stable. This condition is just a sufficient condition for long run 

stochastic stability, there can thus be long run stochastically stable states which 

Ellison's method does not identify. 

 

Which brings us to the more complex method which produces a complete 

characterization of long run stochastically stable states. This is the original method of 

tree surgery devised by Young (1993). For all limit sets, find the minimum number of 

mutations needed to go from one limit set to another. Next, for each limit set, 

construct all possible trees rooted at that set. A tree rooted at limit set Z  has the 

property that from each limit set different from Z  there is a unique sequence of 

directed edges between limit sets leading to Z . As an example, imagine that there are 

three limit sets; A, B and C. There are thus three trees rooted at A : 

 

 

 

 

 

 

Figure A1. Trees rooted at A with three limit sets A, B and C. 

 

Similarly, there are three trees rooted at B, and three trees rooted at C. For all trees 

constructed in this manner, we compute the sum of the mutations associated with each 

directed edge. We then find the tree with the minimum sum of mutations, and the 

limit set rooted at this tree has minimum stochastic potential. In other words, it 

contains the stochastically stable states of the process in question. 

 

 

A
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A
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PROOF OF PROPOSITION 1: 

 

For 0→p , let us first compute the limit sets. For 0=ε , AAz  and BBz  are absorbing 

states of the process. In AAz , everyone plays A, and any revising player thus expects 

to meet only A-players in the next period, which makes A his optimal choice. 

Similarly, in BBz , everyone plays B, and any revising player chooses strategy B. No 

other states are thus accessible from AAz  and BBz , which makes them absorbing 

states. 

 

Note that all members of a specific population have the same best reply to the 

population state of the preceding period. In a given period, there is a positive 

probability that all agents are drawn for strategy revision, in which case all agents 

from each population choose the same strategy if they have a unique best reply to the 

preceding state. If the members of a population are indifferent between strategies A 

and B, i.e. if they have several best replies, they all toss a coin. Since there is a 

positive probability that all coin tosses show the same result, there is a positive 

probability that all members of a population choose the same strategy. The states 
AAz , BBz , ABz  or BAz  are thus accessible from any other state. However, since in 
ABz  a revising player from population 1 expects to meet only B-playing members, he 

would switch to B. And due to the fact that there is a positive probability that all 

population 1 agents are drawn for revision, they might all change to B, which means 

that a transition from ABz  to BBz  has positive probability. Similarly, in state BAz , all 

population 1 agents might be drawn for revision, having A as their optimal choice. 

From BAz  a transition to AAz  thus has positive probability. In sum, this means that 

the absorbing states AAz  or BBz  are accessible from any other state in O , which 

implies that no other state can be contained in a limit set. 

 

With two limit sets, the above two methods of computing the long run stochastically 

stable states are equivalent. The reason is that each limit set is at the root of only one 

tree, and the mutations associated with the single directed edge of this tree equals the 

coradius of this limit set and the radius of the other limit set. For the limit set at the 

root of the tree with the minimum number of mutations, the radius thus exceeds the 

coradius. The radius-coradius method in this way provides a full characterization of 
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long run stochastically stable states in this instance, and we can therefore use it to 

identify the unique long run stochastically stable states of the process. 

 

As figure 3 reveals, the shortest route from AAz  to the a state from which BBz  is 

accessible, is along one of the axes. The minimum number of mutations needed to 

leave AAz  for BBz  is therefore { }1221 )1(,)1(min NN αα −− . In other words: 

 

{ }1221 )1(,)1(min)()( NNCRR αα −−== BBAA zz     (A3) 

 

Similarly, the shortest way from BBz  to AAz  is along either axis, which makes 

 

{ }1221 ,min)()( NNCRR αα== AABB zz      (A4) 

 

Since )1()1( 1221 αααα −<<−< , for 21 NN =  we have 

 

2112 )()1()( NCRNR αα =>−= AAAA zz      (A5) 

 

In other words, for equal population sizes, AAz  is the unique long run stochastically 

stable state. 

 

For 12 NN > , we still have ( ) 121)( NCR α−=BBz . However, for 
1

2

1

2 )1(
α

α−
>

N
N

, we 

get the following relation: 

 

{ } 121221 )1()(,min)( NCRNNR ααα −=>= BBBB zz    

 (A6) 

 

For sufficiently large 
1

2

N
N

, BBz  is thus the unique long run stochastically stable 

state.?  
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PROOF OF PROPOSITION 2: 

 

For 1=p , the following arguments apply. For 0=ε , AAz  and BBz  are still 

absorbing states, for the same reasons as in the proof of proposition 1. Note that in 

state ABz , 11 Nz =  and 02 =z . From inequality (2), we thus see that the frequency 

with which a member of population 1 encounters A-players is 
21

1

NN
N
+

. If this 

frequency exceeds 1α , revising agents from population 1 keep playing A, i.e. if 

 

21

1
1 NN

N
+

<α          (A7) 

 

Similarly, the frequency with which population 2 players meet A-players is 
21

1

NN
N
+

. 

If this frequency does not exceed 2α , revising agents from population 2 keep playing 

B, that is if: 

 

21

1
2 NN

N
+

>α         (A8) 

 

Since )1( 21 αα −< , for ∞∈ ,0, 21 NN  there exists some 12 <α  for which (A7) and 

(A8) hold. For sufficiently large 2α , ABz  is thus an absorbing state. 

 

As before, there is a positive probability that all agents revise simultaneously. As 

agents from the same population have the same optimal strategy, there is thus a 

positive probability that we end up in AAz , BBz , ABz  or BAz  from any state other 

than these four. In BAz , an agent from either population encounters 
21

2

NN
N
+

 A-

players. A revising member of population 1 would continue playing B if 

 

1
21

2 α<
+ NN
N

         (A9) 
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Similarly, a revising population 2 agent would keep playing A if 

 

2
21

2 α>
+ NN
N

         (A10) 

 

However, since 12 αα > , (A9) and (A10) are incompatible. Thus, in state BAz , if all 

agents revise, all members of either or both populations will switch strategies, in 

which case we transit to AAz , BBz  or ABz .  

 

Next, we find the stochastically stable states when there are three absorbing states, 
AAz , BBz  and ABz . As figure 4 reveals, the easiest way to leave one absorbing state 

for another, is along the axes. We want to prove that ABz  can be stochastically stable, 

so let us compute the radius and coradius of this absorbing state. The radius is: 

 

{ }12122111 )(),(min)( NNNNNNR −++−= ααABz    (A11) 

 

And the coradius (when we make use of the fact that )1( 21 αα −< ): 

 

{ } ))(1()(),)(1(max)( 212211212 NNNNNNCR +−=++−= αααABz  (A12) 

 

If the first element in the radius expression is the minimum of the two, then the radius 

exceeds the coradius when: 

 

21

1
122122111 )1())(1()(

NN
N

NNNNN
+

<+−⇔+−>+− αααα  (A13) 

 

If the second element is the minimum, the radius exceeds the coradius when: 
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1
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>−⇔+−>−+ ααα   (A14) 
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Since )1( 21 αα −< , for ∞∈ ,0, 21 NN  there exists some 12 <α  for which (A13) 

and (A14) hold. For sufficiently large 2α , ABz  is thus stochastically stable.?  

 

 

PROOF OF PROPOSITION 3: 

 

For ∞→p , the limit sets are as follows. As above, AAz , BBz , ABz  or BAz  are 

accessible from any other state. For the same reasons as above, AAz  and BBz  are 

absorbing states. With completely viscous interaction, in state ABz  any revising 

player from population 1 expects to meet only A-players from his own population, 

and therefore keeps playing A. Any revising player from population 2 expects to meet 

only B-players from population 2, and hence keeps playing B. ABz  is therefore an 

absorbing state. In BAz , agents from population 1 meet only B-players and keep 

playing B, while agents from population 2 meet only A-players and keep playing A, 

so BAz  is also an absorbing state. 

 

The radius-coradius method does not identify the long run stochastically stable state 

in this case. We therefore use the more elaborate tree surgery method. The following 

matrix reflects the minimum number of mutations needed to transit from the 

absorbing states in the rows to those in the columns, cf. figure 5. 
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      (A15) 

 

With four absorbing states, there are 16 trees rooted at each absorbing state, 64 trees 

in all. I do not recount the total mutations associated with each of them here, but these 

calculations are available upon request. Note, however, the following two trees rooted 

at ABz  
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 Figure A2. Two trees rooted at ABz . 

 

The sum of mutations for the transitions of each tree is 2211 )1(2 NN αα −+  and 

2211 )1(2 NN αα −+ , respectively. A comparison with the total mutations of all other 

trees, reveals that they all have a sum of mutations higher than either of these two 

trees. A ABz -tree thus has the minimum total mutations associated with it, which 

means that ABz  is the unique long run stochastically stable state. Note that this result 

holds if and only if populations sizes are sufficiently large, if for instance each 

population consisted of only one agent, the minimum mutation tree for any absorbing 

state would involve three mutations, which implies that there is no unique long run 

stochastically stable state. ?  

 

 

AAzBBz

ABz

BAz

AAzBBz

ABz

BAz



 37

Appendix B: Proof of propositions 4 through 6 

 

PROOF OF PROPOSITION 4: 

 

Suppose 0→p  and define 2N̂  as follows 

 

b
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a

b
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=
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       (B1) 

 

From proposition 1, we know that if for 22 N̂N > , BBz  is the unique long run 

stochastically stable state. 

 

Since agents only play with the other population, a player from population 1 earns a 

payoff of a from each encounter in AAz , and a payoff of 1 in state BBz . Similarly, a 

player from population 2 earns a payoff of 1 per encounter in AAz  and b in BBz . 

Thus, we know that BBAA zz Uf  if 
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However, for ba >  
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          (B3) 

 

In other words, if we define 2
~N  as follows 
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Then 22
ˆ~ NN > , and for 222

~
,ˆ NNN ∈ , BBz  is long run stochastically stable and 

BBAA zz Uf . 

 

That BBAA zz Rf , is a trivial implication of the average payoffs discussed above. The 

worse off population is equally badly off in both states, whereas the better off 

population is better off in state AAz  than in BBz .?  

 

 

PROOF OF PROPOSITION 5: 

 

Suppose 1=p . For equal population sizes NNN == 21 , (A11) and (A12) become: 

 

{ }NNR )12(,)21(min)( 21 −−= ααABz       (B5) 

 

NCR )1(2)( 2α−=ABz         (B6) 

 

Furthermore, )1( 21 αα −< implies: 

 

NR )12()( 2 −= αABz          (B7) 

 

Consequently, we have: 

 

75.02212)()( 222 >⇔−>−⇔> αααABAB zz CRR     (B8) 

 

If 75.0ˆ 2 =α , then for all 22 α̂α > , ABz  is long run stochastically stable. Note that 

75.02 >α  implies 3>> ba . 

 

Since populations are equally large, an agent plays as many encounters with his own 

population as the opposite one. In state ABz , an agent from population 1 coordinates 

with his own kind for a payoff of a half the time, and miscoordinates with the other 

population for zero payoff half the time, which makes his average payoff in state ABz  
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2/a . The same happens to agents from population 2, except they coordinate with 

their own kind for a payoff of b, which makes their average payoff 2/b . In state AAz , 

there is always coordination, and agents from population 1 earn a from each 

encounter, and agents from population 2 earn 1. In comparing total payoffs in the two 

states, we have ABAA zz Uf  when 

 

2
2

)1( −>⇔⋅
+

>⋅+ baN
ba

Na        (B9) 

 

In other words, since ba > , AAz  is always better in terms of total payoff than ABz , 

which also applies to the cases where ABz  is long run stochastically stable. 

 

Population 2 is worse off than population 1 in both state AAz  and state ABz , and gets 

an average payoff of 2/b  in the former state and 1 in the latter. Thus, for 3>b , ABz  

is the better state according to the leximin principle, AAAB zz Rf . In other words, 

when ABz  is stochastically stable, it is preferable to AAz  on the leximin principle.?  

 

 

PROOF OF PROPOSITION 6: 

 

Suppose ∞→p . The members of a population thus only play against each other. In 

state ABz , both populations coordinate on their preferred equilibria, which makes 

payoffs a in population 1 and b in population 2. In AAz , only population 1 plays 

according to its preferred equilibrium, which makes payoffs a and 1, respectively. In 
BBz , the converse is true, and payoffs are 1 and b, respectively. If we compare the 

total payoffs in these three states we thus get 

 
AAAB zz UNaNbNaN f⇒+>+ 2121      (B10) 

 
BBAB zz UbNNbNaN f⇒+>+ 2121      (B11) 
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In terms of minimal average payoffs in each state, the worst off population is better 

off in state ABz  than in either of the other two. The worst off population is equally 

well off in AAz  and BBz , but the better off population is better off in AAz  than in 
BBz . The ordering of the leximin principle is thus BBAAAB zzz RR ff .?  
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Appendix C: Matching according to Myerson et al. 

 

As mentioned earlier, Myerson, Pollock and Swinkels (1991) model viscosity in a 

different way. In their model, players have a probability β  of being matched with 

someone from their own population, and a probability )1( β−  of being matched at 

random with the total population. Myerson et al defined a population (or kin group) as 

a set of agents sharing the same strategy, but let us explore the analogous idea when 

populations are characterized by different payoffs from interaction as studied above. 

Introducing matching according to Myerson et al into this framework, we get that a 

member of population 1 chooses strategy A if: 
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       (C1) 

 

Similarly, an agent from population 2 chooses strategy A if: 
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      (C2) 

 

These inequalities correspond to (2) and (3) in the main model. Let us rewrite the 

inequalities in the following way: 
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The resulting inequalities correspond to (4) and (5). 

 

Matching according to Myerson et al only makes sense for [ ]1,0∈β , so we cannot 

study the case of dispersion. 
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Fluid interaction in this model occurs when 0→β . Inequalities (C3) and (C4) then 

reduce to  

 

12112 )( zNNz −+> α        (C5) 

 

11222 )( zNNz −+> α        (C6) 

 

These two inequalities match (8) and (9) exactly. Long run stochastically stable states 

would thus be derived in exactly the same way, and proposition 2 holds for this kind 

of matching as well. 

 

Completely viscous interaction means that 1→β . In this case (C3) and (C4) reduce 

to (10) and (11), and the long run stochastically stable states are as in proposition 3. 
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