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Abstract 
 
In the traditional Cournot model producers influence each other’s decisions through revenue 
earned in the product market. Rosen (1965) introduced the notion of a coupled constraints 
equilibrium which allowed players to affect their rivals’ strategy space as well. Krawczyk 
(2005) applied this idea to the regulation of environmental pollution where a cap on aggregate 
emissions implies a constraint across firms’ activity levels. He solved the model with a 
diagonalization algorithm obtaining linear convergence. We formulate this problem as a 
complementarity problem and apply a Newton algorithm obtaining a quadratic convergence. 
We show that the conditions under which this model has a unique solution and the algorithm 
computes the solution are analogous to those for the traditional Cournot model. 
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1. Introduction 
 
The complementarity problem (CP) and variational inequalities (VI) have long been applied 
for modeling economic equilibria. A variety of algorithmic methods have been suggested and 
employed for computation. Eaves (1978) and Josephy (1979) suggested a Newton process 
which was subsequently used by among others Friesz et.al. (1983), Pang (1984), and Jones 
et.al. (1985). Mathiesen (1985) demonstrated the efficiency of SLCP1 in solving both partial 
and general equilibrium models. 
 
Several researchers have studied the oligopoly of N rivals following a Cournot-Nash behavior 
from a computational perspective (Murphy et.al. 1982, Sherali et.al. 1983, Harker 1984, 
Dafermos and Naguerney 1987, Mathiesen et.al. 1987). The problem involves a collection of 
N interrelated optimization models where profit for agent j depends on his as well as rivals’ 
strategies. In this respect, it is a non-standard mathematical programming problem. Various 
approaches have been suggested for model (re)formulation and computation. 
 
The CP/VI-approach is to solve the combined set of N first order conditions for individual 
profit maximizing volumes. Kolstad and Mathiesen (1991) examined convergence criteria for 
SLCP applied to the Cournot-Nash problem and provided conditions under which the problem 
has a unique solution and SLCP converges locally and globally.  
 
Rosen (1965) contributed to the questions of existence, uniqueness and computation of Nash 
equilibrium for N-person games by introducing more general coupling constraints. An 
economic interpretation is that while Cournot only considered interactions between rivals 
through revenue earned in the product market and thus profits, Rosen allowed players to 
affect each other’s strategy space as well. His model is an instance of what later has become 
known as quasi-variational inequalities (QVI). (See e.g. Harker (1991).) 
 
Krawczyk (2005) applied Rosen’s idea to the regulation of environmental pollution which 
implies constraints on the sum of individual emissions and hence production levels. He used a 
diagonalization algorithm to solve the model.2  
 
The interpretation of the application is that there is an authority with the capability to enforce 
regulation by some means, e.g., issuing individual firm non-tradable or tradable quotas, or 
levying differentiated or uniform taxes. We consider a situation where emitters face a uniform 
price, which may be obtained either through a uniform tax or a market for tradable quotas.  
 
We model the regulatory problem as a CP (VI), show the conditions under which it has a 
unique solution, and show that a Newton algorithm converges locally and at a quadratic rate. 
Finally, we apply these ideas to Krawczyk’s 3-firm example and the non-linear 5-firm model 
of Murphy et.al. (1982) augmented with regulatory constraints. The observation that both 
examples are solved with considerably less effort than Krawczyk reports is unsurprising in 
view of the different convergence rates that these algorithms enjoy.  
 
In the next sections we review the traditional Cournot model and the model extended with 
coupling constraints. Numerical experiments are reported in Section 4.
                                                 
1 SLCP is an acronym for a Newton process solving a Sequence of Linear Complementarity Problems where 
Lemke’s algorithm solves each linear approximation of the typically non-linear models. Rutherford (1995) 
implemented this approach as two modules MCP and MPSGE in the commercial software package GAMS. 
2 Harker (1984) showed how diagonalization decomposed a Cournot model into N one-variable models laying 
the ground for an efficient algorithm. In Harker (1987) he demonstrated how this kind of algorithm with linear 
convergence sometimes in practice suffers from non-convergence. 
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2. The Cournot model as a complementarity problem 
 
Let there be N firms, each with cost Cj(xj) for producing output xj > 0 of a homogeneous 
product. xj is a component of the vector x = (x1,..., xN)T.  The firms face an inverse demand 
function P(X), (X = ∑j xj). Define Xj = X - xj. Profit for the j’th firm is given by 
 
(1) πj(x) = xjP(xj+Xj) - Cj(xj), j=1,...,N. 
 
Traditionally, producer j’s strategy is constrained to xj > 0. Feasible strategies x in (1) are thus 
contained in the set C = {x | x > 0} which is non-empty, closed and convex. 
 
A Cournot-Nash equilibrium is an output-vector x* such that for any firm j, 
  
(2) πj(x*) = max xj { πj(xj +Xj*) | Xj* = ∑k≠j xk*,  (x1*,..., xj, ..., xN*)T in C},    j=1,...,N. 
 
Producer j does his best given the actions (xk*) of his N-1 rivals, k ≠ j. As is well known, (2) is 
not a standard optimization problem. Rather it is a collection of N dependent optimization 
problems3. Because of this interrelationship, several suggestions have been offered for 
(re)formulation and computation of equilibrium.4 
 
Given the Cournot-behavior5, first-order conditions for individual profit maximum are:   
Find xj*, j =1,...,N, such that  
 
(3) ∂πj/∂xj = P(xj*+Xj*) + xj*P’(xj*+Xj*) - C’j(xj*)  < 0,    xj* > 0,    xj*[∂πj/∂xj] = 0.   
 
The first condition states that at equilibrium marginal profits cannot be positive. The last 
implies that for production to occur, output must be a stationary point of the profit function. 
(3) is an instance of a complementarity problem (CP) which can be written 
 
CP(f).   Find  x* such that    f(x*) > 0,    x* > 0,     xTf(x*)  = 0. 
 
The following definition provides the bridge between (3) and CP(f). 
 
(4)    fj(x) ≡ -∂πj/∂xj , j=1,…,N. 
 
Lemma 1. Assume that costs and inverse demand functions are twice continuously differenti-
able. Then any Cournot equilibrium solves CP(f). Further, if profits are pseudo-concave with 
respect to own output, then x* is a Cournot equilibrium if and only if it solves CP(f). 
 
Karamardian (1972) showed that every CP is a variational inequality (VI). Let Y denote a 
non-empty, closed and convex set in Rn and let φ be a mapping from Rn into itself. The VI is  
 
VI(Y, φ)   Find y* in Y such that   (y* - y)Tφ(y*) > 0, for all y in Y. 

                                                 
3 Cf. Scarf (1973). “The determination of prices that simultaneously clear all markets cannot, in general, be 
formulated as a maximization problem in a useful way. Rather than being a single maximization problem, the 
competitive model involves the interaction and mutual consistency of a number of maximization problems 
separately pursued by a variety of economic agents. The problem involves, in a fundamental way, the 
reconciliation of distinct objectives and not the maximization of a single indicator of social preference.”  
4 Samuelson (1952) showed that the fictitious objective of maximizing the sum of consumers’ and producers’ 
surpluses over the feasible production set generated the same (first order) conditions as those for an equilibrium, 
whereby the competitive equilibrium was converted into a (non)linear programming model. In a Cournot model 
the gradient g(x) of individual profit functions may be non-integrable. For the particular case of linear demand 
Slade (1988) constructed a function Γ with the property that ∂Γ(x)/∂x = g(x), whereby the N individual, but 
interrelated optimization problems are consistently described by one optimization model. 
5 Producer j conjectures that rival i does not change volume in reaction to j’s adjustment, i.e., ∂xi/∂xj = 0, i≠j. 
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VI(R+
N, f) has the same solutions as CP(f), if any. Hence, we could as well analyze VI. 

However, because of our focus is on solving a sequence of LCPs we stick to the CP. 
 
CP(f) is about finding a solution on a non-empty, convex and closed set C = {x | x > 0}. As C 
is unbounded, continuity of f is insufficient in order to establish existence. Additional 
conditions on (the growth of) f have been stated, e.g. f being convex or coercive, e.g. Moré 
(1974a), all essentially aimed at securing f > 0 for some x in C. Kolstad and Mathiesen (1991) 
introduced the economically motivated notion of a bound on industry output. 
 
Definition. Industry output is said to be bounded by Q > 0 if output in excess of Q from any 
producer implies negative marginal profits to all firms, and thus f > 0. 
 
Let Π denote the Jacobian matrix of marginal profits with respect to x, i.e., Π = [∂2πi / ∂xi ∂xj]. 
Based on results by Karamardian (1972) and Moré (1974b), Kolstad and Mathiesen (1991) 
established the existence of a unique Cournot equilibrium assuming that   

i)   each firm’s profit πj(x) is twice continuously differentiable and concave in xj,   
ii)  industry output is bounded, and   
iii) Π has a negative dominant diagonal6 for all x > 0.   

 
When Π has a negative dominant diagonal, F = [∂fi /∂xj] has a positive dominant diagonal and 
is positive definite (not necessarily symmetric).7  
 
The SLCP algorithm applied to the function f is to linearize f at some initial point x0 and solve 
the resulting linear complementarity problem (LCP).  f is relinearized at this solution and the 
process is continued until convergence is obtained, i.e., | xj

t fj(xt) | < δ for all j and a tolerance 
δ. The linearization of f at y is a first-order Taylor expansion:  Lf(x|y) = f(y) + F(y)(x-y), and 
the LCP(f|y) is as follows 
 
LCP(f|y):  Find x such that  Lf(x|y) = q + Mx > 0,   x > 0,   xT(q + Mx) = 0, 
where q = [f(y)- F(y)y] and M = F(y).  
 
Let M be a positive definite matrix. Then LCP has a unique complementary solution and 
Lemke’s algorithm will compute it (Cottle and Dantzig, 1968). So, when F has a dominant 
diagonal it is positive definite and we conclude that iterates of SLCP are well-defined. 
 
Based on Pang and Chan (1982), Kolstad and Mathiesen (1991) established local and global 
convergence of SLCP applied to the Cournot model. Local convergence follows by norm-
contraction when the Jacobian F is positive definite. When F is Lipschitz continuous the 
convergence rate is quadratic.  
 
The proof for global convergence was based on the monotone approach and requires the 
following assumptions: Industry output is bounded, marginal profit (-fj) is concave, the 
Jacobian F has a positive, dominant diagonal with unitary scales, and the process is initiated 
at a feasible solution (i.e., x > 0, f(x) > 0). 

                                                 
6 See the Appendix for notation and definitions. 
7 A positive definite and non-symmetric matrix is often called positive quasi-definite. This language becomes too 
cumbersome when we below will study positive semi-definite matrices. 
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3. The Cournot model with coupling constraints 
 
In the Cournot model the strategy space C = {x | x > 0} is the full Cartesian product of the 
individual strategy sets {xj > 0} and reflects that player j cannot affect rivals’ strategy sets. 
Rosen (1965) admitted the more general constraint set {x | h(x) > 0}, where h(x) = (h1(x), ..., 
hK(x)) with each hi(x), i=1,…,K, concave in x. Such a constraint set may generate what has 
become known as quasi-variational inequalities. It is critical to the outcome of the game how 
such interaction is played out. Who, if any, has the authority to enforce these constraints? And 
which incentives do players have to comply? See Harker (1991).  
 
A model of regulation  
We follow Krawczyk’s (2005) application of Rosen’s idea where producer j emits pollution 
(aij) and there is a cap (bi) on aggregate pollution  
 
(5) ∑j aij xj < bi , i=1,...,K. 
 
We will assume aij > 0 and bi > 0 for all i and j. Hence the set  
 
(5’) D = {x | Ax < b, x > 0},  
 
is non-empty, compact, and convex. What kind of game is this pollution regulation? Several 
reasonable assumptions may be made.8 We will assume that there is some agency with the 
undisputed authority to enforce regulation and furthermore that such regulation, e.g. popular 
policies as tradable quotas or uniform taxes, implies that all players face uniform prices 
related to these constraints. Taking quota prices (or taxes) as given, there is no game between 
the Cournot players related to the coupling constraints, and the extended Cournot problem can 
be described as  
 
VI(D, f)   Find  x* in D  such that   (x* - x)Tf(x*) > 0 for all x in D. 
 
When the feasible set is non-empty, compact, and convex, continuity of the mapping f gives 
existence of a solution (Hartman and Stampacchia 1966). When in addition f is strictly 
monotone uniqueness follows. (See below.) Thus, VI(D, f) has a unique solution x*.   
 
A complementarity formulation 
VI(D, f) does not immediately correspond to a CP because D ≠ R+

N. There is, however, a 
closely related CP. Let λ = (λ1,…, λK) denote shadow prices corresponding to the constraints 
(5). The Cournot model with coupled constraints can be cast as the following CP:  
 
Find volumes x* in RN and shadow prices λ* in RK such that 
 
(6.1) gj(x*, λ*)    = -∂πj/∂xj + ∑i aij λi* > 0,   xj* > 0,     xj*[gj(x*, λ*)] = 0,        j =1,...,N, 
(6.2) gi+N(x*, λ*) = bi - ∑j aij xj*           > 0,   λi* > 0,     λi*[gi+N(x*, λ*)] = 0,    i = 1,…,K. 
 
Let z = (x, λ)T. (6) can then be more compactly written as 
 
CP(g):    Find  z* in RN+K such that  g(z*) > 0,    z* > 0,    z*Tg(z*) = 0. 
 
Let n = N+K,  Y = R+

n, and φ=g, whereby CP(g) is equivalent to VI(R+
n, g).

                                                 
8 A regulation with firm specific, non-tradable quotas could easily initiate a lobbying game between firms in 
order to secure for one-self the largest amount of quotas. Furthermore, an allocation of non-tradable quotas 
would in general imply that firms faced different shadow prices for one and the same pollutant. 
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Economic interpretation  
Corresponding to each of the two policy instruments uniform taxes and tradable quotas, there 
is a nice economic interpretation of the term ∑i aij λi* in (6.1). First, let λi denote a tax rate per 
unit pollution of type i. Then the term represents the total taxes producer j has to pay per unit 
of his product. As usual the shadow price λi rations the scarce cap bi in (6.2). When aggregate 
pollution from unregulated production threatens to exceed cap i, the tax λi is levied, thereby 
reducing the profitability of producers so that each of them has an incentive to reduce 
production individually, whereby they all reduce emissions and collectively meet the cap.  
 
Alternatively, assume that regulation takes place by means of tradable quotas issued in 
amounts bi, i=1,...,K. Then λi has the interpretation of the price of a quota of type i, i.e., a 
permit to pollute one unit of i, and (∑i aij λi*) is the expenses of producer j for buying 
necessary permits in order to produce one unit. In both interpretations, the term is a cost to 
producer j and with λi taken as given the term is independent of what rival k does. Hence there 
is no interaction between producers; they play against each other only in the product market 
and the coupling constraints function like they would do in a competitive model. 
 
Existence of a unique solution to (6). 
To learn more about the LCP we analyze (6). Let G denote the Jacobian matrix of g(z). It has 
the following structure 
 
  F(x)   AT 
 G =     -A       0    . 
 
F(x) is the Jacobian of the traditional Cournot model, A originates with coupling constraints, 
and 0 is a KxK matrix of zeroes. G is clearly not positive definite as F is. Hence, the results of 
the previous section on existence and uniqueness of solution, on solving each LCP, and on the 
convergence of SLCP do not apply to CP(g). The constraints and their dual variables converts 
the problem into a CP with an unbounded feasible set (RN+K) whereby we have to conclude as 
above that continuity of g is insufficient for establishing existence. In the traditional Cournot 
model the bound Q on industry output ensured negative marginal profits, that is f > 0. The 
coupling constraints (5) may rule out such a large output, but the dual variables associated 
with these constraints do the job. 
 
Lemma 2. CP(g) as defined as in (6) has interior, feasible solutions, i.e., z > 0 and g(z) > 0. 
 
The proof is obvious and has the following nice economic interpretation. At non-zero 
production x’ with (b - Ax’) > 0 (and zero taxes) marginal profit (∂πj/∂xj, j=1,..., N) may be 
negative or positive. If marginal profit is positive for some j stipulate some tax-rates (λi) 
sufficiently high such that marginal profit after tax is negative for all j, whereby g > 0. 
 
Now we can apply the following result on existence by Moré (1974b; Theorem 3.2). 
 
Lemma 3. Let g be continuous and monotone.  If there is an z > 0 with g(z) > 09, then CP(g) 
has a complementary solution z*.  
 
Monotonicity of g follows from monotonicity of f as the skew-symmetric parts (see G) cancel.  
 
Lemma 4. Assume f is strictly monotone. Then CP(g) as defined in (6) has at most one 
complementary solution. 
                                                 
9 Megiddo (1977) demonstrated the necessity of a strict inequality (g(z) > 0), i.e., a constraint qualification. 
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Assume  z ≠ w are solutions to (6). g strictly monotone means  0 < (z-w)T(g(z)-g(w)) =  
zTg(z) – zTg(w) – wTg(z) – wTg(w) = – zTg(w) – wTg(z) < 0, a contradiction. 
 
Lemmas 1-4 provide existence of a unique solution to the CP-formulation of the Cournot 
model with coupling constraints under largely the same assumptions as the traditional model. 
 
Theorem. Let CP(g) be defined as in (6). Assume that 
 i)   each firm’s profit is twice continuously differentiable and concave in xj,  
 ii)  the constraint set D is non-empty, convex, and compact, and  

iii) the Jacobian Π of marginal profits has a negative dominant diagonal. 
Then CP(g) has a unique complementary solution.  

 
When Π has a negative dominant diagonal F is positive definite whereby f is strictly 
monotone. 
 
 
The LCP 
Turning now to the LCP, we observe the possibility to build matrices being copositive plus 
from smaller matrices having this property (Cottle and Dantzig, 1968). Let the square 
matrices M1 and M2 be copositive plus. Then so is the matrix 
 
                        M1   AT 

(7) M =      -A   M2    ,  
 
where A is a matrix of appropriate dimensions. We observe that   
 
(7’) uTMu = u1

TM1u1 + u2
TM2u2 + u2

TAu1 - u1
TATu2 = u1

TM1u1 + u2
TM2u2,    

 
for all u, where u = (u1, u2)T is partitioned according to the dimensions of M1 and M2. Thus, M 
is positive (semi)definite if both M1 and M2 are positive (semi)definite. 
 
G is structured like (7). So when F is positive definite, G is positive semi-definite. Hence, the 
following results from the literature on LCP are relevant. (See the appendix.) 
 
Lemma 5. Let M be positive semi-definite. The LCP has a complementary solution if it has 
feasible solutions, and Lemke’s algorithm finds the solution, which is unique if it is non-
degenerate. 
 
Degeneracy of LCP-solutions might imply non-uniqueness of iterates and thus jeopardize the 
convergence of the iterative process. Kolstad and Mathiesen (1987) pointed out that the 
Cournot model is regular meaning that it almost surely has non-degenerate solution, and if 
there is a Cournot model with a degenerate solution, the parameters of inverse demand or 
costs may be perturbed without changing the model’s regularity properties (Kehoe, 1985). 
Regularity is thus a generic property, and each LCP will be uniquely solved.  
 
 
An iterative process. 
Finally, consider the Newton process. Results in Pang and Chan (1982), as applied above, are 
essentially based on the assumption that Jacobian of the mapping is positive definite. The sub-
matrix 0 of G invalidates this assumption for (6). Here is where VI(D, f) comes into play.  
 
Motivated by the PIES energy model Eaves (1978) considered the application of a Newton 
process to economic equilibrium models. Framed as a CP these models are:   
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Find z* = (x*, u*, v*)T such that 
 
       c       + ATu*- BTv*       
 H(z*) =  a – Ax*             > 0,     z* > 0,      z*TH(z*) = 0. 
            Bx*     - ζ(v*)                   
 
Here c and a are vectors, A and B are matrices, and ζ(v) is a function. The LCP is  
 

 c  0      AT  -BT      
 q =       a    .   M  =    -A      0      0 ,  
   -e  B      0    -E      
 
e+Ev is the linearization (of demand) where E = [∂ζ/∂v] is the Jacobian assumed to be 
negative definite.10  
 
Recall the definition of a VI. Let Y denote a non-empty, closed and convex set in Rn and let φ 
be a function from Rn into itself. A point y* in Y is defined to be stationary point or a solution 
to the VI(Y, φ) if 
 
VI(Y, φ) (y* - y)Tφ(y*) > 0, for all y in Y. 
 
Eaves considered a special structure where y = (u, v)T, φ(u, v) = (-a, -ζ(v))T, i.e., φ is 
composed of a linear (a) and a non-linear part (ζ(v)), and Y = {(u, v)T | -ATu +BTv < c}. For 
our purposes his results can be summarized as follows. 
 
Lemma 6. Let y* = (u*, v*)T be a solution to VI(Y, φ) with Y and φ defined as above. Assume 
that ζ has negative definite derivatives ζ’ (not necessarily symmetric). If v0 is chosen close to 
v*, the iterates vt generated by the algorithm converge to v* at a super-linear rate. If in 
addition ζ’ is Lipschitz continuous at v* the convergence rate is quadratic. 
 
In our model (6) there are no u’s. (Compare G and H.) The correspondences between VI(Y, φ) 
and VI(D, f) are given by v = x,  ζ = -f, and Y = D = {x | Ax < b, x > 0}.  
 
VI(D, f) is stated above with D defined in (5’). We have essentially assumed that f (defined by 
(4)) is a mapping with positive definite derivatives. Because VI(D, f) has a unique solution x*, 
lemma 6 applies and we conclude that the Newton process convergences to x* when initiated 
at an x0 close to x*. If the derivatives f’=F are Lipschitz continuous a quadratic convergence 
rate follows.  
 

                                                 
10 Mathiesen (1977) formulated this LCP and observed that when the Jacobian of demand is negative definite, M 
is positive semi-definite and Lemke’s algorithm will compute the equilibrium or show that none exists. 
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4. Numerical examples 
 
4.1 The River Basin Pollution game. (Haurie and Krawczyk 1997.) 
Three firms produce a homogeneous product at levels xj, j=1, 2, 3. Cost functions are:   
 

Ci = (c1j + c2i xj) xj,    j=1, 2, 3. 
 
Inverse market demand is 
 
 P(X) = d1 – d2X = 3 – 0.01X,   where  X = ∑j xj, 
 
Firm j’s profit from operating in this market is 
 
(8) πj(x) = xj P(X) - Cj(xj) = (d1 – d2(x1+x2+x3)) xj – (c1j + c2j xj) xj,  j=1, 2, 3. 
 
The firms are located along a river and pollutants may be expelled into to the river, where 
they disperse. Emission (ej) is assumed to be proportional to production level, i.e., ej xj. A 
regulatory authority monitors concentration of pollution at two downstream stations. Decay 
and transportation coefficient of pollution from firm j to control station i is denoted uij. The 
regulator’s constraints are  
 
(9) ∑j uij ej xj < bi,      i=1, 2. 
 
Admissible pollution levels b1 = b2 =100. Parameters c1j, c2j, uij, and ej are shown in Table 1. 
Observe from (9) that only products uij ej matter. Define aij = uij ej, for all i and j, and write 
 
(9’) ∑j aij xj < bi,      i=1, 2.11 
 
Table  1.  Marginal cost, emission, transportation and decay data. 
 
Firm     c1j       c2j        ej        uj1       uj2           a1j          a2j     .    
  1       0.10    0.01    0.50    6.5    4.583      3.25      2.2915 
  2        0.12    0.05    0.25    5.0    6.250      1.25      1.5625 
  3        0.15    0.01    0.75    5.5    3.750      4.125    2.8125 
 
The Cournot model without regulation 
Absent taxes or tradable quotas for pollution, profits are as shown in (8), which is quadratic in 
decision variables. Hence the first order conditions are linear  
 

-∂πj(x)/∂xj = (c1j – d1) + [2(d2+c2j)xj + d2∑k≠j xj] > 0,    xj > 0,    xj [-∂πj(x)/∂xj] = 0, 
 
whereby a model of the unregulated Cournot equilibrium is an LCP with (q, M)  
 
   q1         c11 – d1                2(d2+c21)   d2      d2                   2   1   1           c21  0   0 
(10)   q2     =  c12 – d1   ,   M =    d2     2(d2+c22)   d2          = d2  1   2   1   + 2   0   c22  0   . 
   q3         c13 – d1                  d2           d2    2(d2+c23)           1   1   2           0    0   c23   
 
When either d2 > 0 or c2j > 0 (or both), for all j, i.e., downward sloping demand and increasing 
marginal costs, M in (10) is positive definite whereby (10) has a unique12 solution that 
Lemke’s algorithm computes (Cottle and Dantzig, 1968). 

                                                 
11 Pollution is in this example thought of as one pollutant measured at two control stations. (9’) can alternatively 
be interpreted as constraints across emissions of two pollutants. 
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If qj > 0 for all j, xj* = 0 for all j. This is the case when willingness to pay is insufficient to 
cover the marginal cost of even the most efficient producer, e.g. in a not yet opened market. If 
however, qj < 0 for at least one j, the solution involves positive output. 
 
With the data of Table 1 (and absent any regulation), the activity levels and individual profits 
for the unconstrained case are as shown in the second and third columns of Table 2. Pollutions 
as measured at the stations exceed targets. The solution was obtained by the MCP-solver in 
GAMS in 4 pivots. (Because this model is linear, the solution is found in one iteration.)  
 
Table 2.  Solutions to the River Basin Pollution game#. 
            Unconstrained emissions           Constrained emissions 
       Cournot-Nash             Rosen-Nash       
Firm      Act.levels (x)     Profit               Act.levels (x)     Profit        
   1       67.577          45.666             21.145          8.942          
   2       22.192            4.925  16.028        15.414       
   3       65.077          42.350    2.726          0.149        
Emiss.1       515.81        100.00   0.574            
Emiss.2       372.56          81.16          0.000         
# For all three solutions maxj (|fj(x*)|) is on the order of 10-7 or less. 
 
 
The Cournot model with regulation 
Assume that the regulator can levy a tax λi based on pollution as measured at station i, and 
that the regulator knows the individual coefficients (aij in our notation). Hence, he can infer 
each firm’s contributed pollution and tax accordingly. Finally, it is assumed that each firm 
regards the tax rate λi as exogenous. Profits in (8) are modified as follows 
 
(8’) ψj(x) = πj(x) - ∑i λi aij xj,   j=1, 2, 3. 
  
(8’) is also quadratic in volumes xj, whereby the first order conditions for profit maximum 
within regulatory constraints are linear in decision variables (xj) and dual variables (λi) 
 
(11.1) -∂ψj(x)/∂xj = -∂πj(x)/∂xj + ∑i λi aij  > 0,   xj > 0,   xj [-∂ψj(x)/∂xj]  = 0,      j=1,2,3, 
(11.2)                       bi  - ∑j aij xj              > 0,   λi > 0,   λi [bi -∑j aij xj] = 0,      i=1,2. 
 
Compared to the non-regulated case (10), the LCP in (11), including regulation, has two 
added constraints and corresponding (dual) variables λi, i=1,2. 
     
           q1         c11 – d1                       2(d2+c21)     d2              d2          a11      a21 
           q2         c12 – d1                          d2        2(d2+c22)        d2          a12      a22 
(12)    q3   =    c13 – d1    ,    M  =         d2             d2        2(d2+c23)     a13      a23 
           q4           b1                               -a11           -a12           -a13          0          0 
           q5           b2                              -a21           -a22           -a23          0          0 
 
 
M in (12) is partitioned as in (7) i.e.,  M =    F    AT 
                 -A   0     . 
 
                                                                                                                                                         
12 Observe that M is positive definite even if some or all c2j are slightly negative. Kolstad and Mathiesen (1987) 
proved uniqueness of the equilibrium if the determinant of F is positive at all equilibria. 
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F is assumed to have a positive dominant diagonal implying it is positive definite; the zero 
matrix is positive semi-definite, and by (7’) M in (12) is positive semi-definite. Thus, if we 
can show that (12) has feasible solutions, it follows from lemma 5 that (12) has a comple-
mentary solution which Lemke’s algorithm will compute, and which is unique if it is non-
degenerate. 
 
Above we argued that (6) has (interior) feasible solutions. Similarly, it is obvious that each 
LCP of the iterative process has feasible solutions. Hence, Lemke’s algorithm computes a 
complementary solution. In fact, GAMS computed the solution in 5 pivots. See the Rosen-
Nash solution of Table 2. By inspection, it is non-degenerate and therefore unique.  
 
Comparison of computational effort. 
Krawczyk (2005) programmed his algorithm in MATLAB and reported 20 iterations to solve 
for an approximate Nash-Cournot equilibrium from an initial guess x0 = (0, 0, 0). In each 
iteration a constrained optimization problem of three variables and two constraints is solved. 
The computational effort to solve each such sub-problem amounts to that of solving our 
model (11), which, however, is solved once.  
 
Being a LCP this example may not provide the best benchmark for comparison of the two 
algorithms. Therefore, we construct and solve a non-linear CP that necessarily involves 
several iterations by SLCP. As is well known, a Newton process is the most efficient in the 
neighborhood of the solution as it may converge at a quadratic rate. In the first stages of the 
process it may be less efficient than other iterative schemes, like e.g. the NIRA algorithm.  
 
 
4.2 An oligopoly model with 5 firms. (Murphy et.al. 1982.) 
Consider an oligopoly with five firms producing and selling a homogeneous product 
following the Cournot behavior. The inverse demand for the product is given by  
 

P(X) = (5000/X)e, 
 
where X = ∑j xj  and e = 1/1.1. Firm j has a marginal cost function 
 

C’j = cj +(xj/Lj)bj,  j=1,...,5. 
 
Table 3 lists the parameters of these functions.13  
 
Murphy et.al. (1982), Harker (1984), and Kolstad and Mathiesen (1991) initiated algorithms 
at xj

0 = 10, j=1,...,N.14 Convergence with SLCP was obtained in 6 iterations to the solution x* 
in Table 3. Because of the observation of an indefinite Jacobian at low x-values and in order 

                                                 
13 With non-linear demand and marginal cost functions, the Jacobian F of f has non-constant entries. Does F 
have a dominant digonal as assumed? Let fjk denote the general entry. Differentiating fj (using (3) and (4)), we 
obtain diagonal entries fjj = C”j - 2P’ - P”xj , j=1,...,N, and off-diagonal entries fjk = - P’ - P”xj, k≠j.13 We find that 
P’ < 0 and P” > 0. As P”xj = ((e-1)(xj/X))P’ off-diagonal entries (fjk) are positive. Because C”j is positive, also 
diagonal entries (fjj) are positive. Using these formulas to check for a dominant diagonal seems less helpful. But 
numerical tests at various points x are simple. Stipulate xj = y, j=1,...,N, at values y = 3, 5, 10, and 30, in addition 
to equilibrium values (see Table 3). When y = 3, there is non-dominance and F is indefinite. When y = 5, the 
diagonal is dominant. In fact, F is almost a Hadamard matrix (equal weights). For all larger y-values F is a 
Hadamard matrix and positive definite. 
14 Kolstad and Mathiesen (1991) noted that for j=1, 2, 3, fj  are concave (not convex as assumed for establishing 
global convergence). Furthermore x0 is not feasible; i.e., fj(x0) < 0. Hence global convergence of SLCP is not 
assured for this problem. Our experiments suggest convergence from any x0 > 0; observe that P(X) is not defined 
for x = (0,..., 0)T. 
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to check the robustness of SLCP, the process was also initiated xj
0 = 1, from where it 

converged in 9 iterations. 
 
Table 3. Parameters and (approximate#) solutions of a five-firm Cournot model. 
 
Firm j         cj         Lj           bj              xj*                 a1j          a2j              xj**                
     1  10 5 1/1.2     36.9325           1.5        0.6         27.445 
     2    8 5 1/1.1     41.8182           1.25        0.75       30.805 
     3                  6   5    1     43.7066           1        1          31.031 
     4    4        5 1/0.9        42.6593           0.75        1.25       30.142 
     5    2 5       1/0.8        39.1190           0.6        1.5         27.814     
# Maxj (|fj(x*)|) is on the order of 10-11. The tolerance in GAMS is set to 10-6. 
 
 
A non-linear model with coupling constraints. 
We now combine the previous models by adding emissions and coupling constraints to the 
Murphy model. Let emission (aij) of pollutant i, i=1,2, per unit of activity of firm j be as in 
columns six and seven of Table 3, and let total admissible pollution be 150 of each type.  
 
The solution xj** is shown in the last column of Table 3. At x** both constraints bind and the 
values of the corresponding dual variables are 1.896 respectively 5.823. The solution was 
obtained from xj

0 = 10 (1), j=1,..., N, in 4 (8) iterations.  
 
In private communication, Krawczyk informs that his NIRA algorithm spent 24-26 iterations 
to obtain similar accuracy from the same initial points. It seems fair to state that SLCP 
outperforms NIRA. The reason is obvious. A diagonalization algorithm like NIRA obtains a 
linear convergence rate15 while a Newton process enjoys a quadratic convergence rate when 
functions are Lipschitz continuous, and functions that are used in economic equilibrium 
applications typically have this property.  
 
Initiating the Newton process at x0 far from the equilibrium x* increases the number of 
iterations. In practical use doing analyses of ‘real’ problems, this may imply that it takes some 
effort to obtain a solution at the first run with a model. In subsequent runs, however, the effort 
to perform (sensitivity) analyses, i.e., by changing parameters of demand and cost, will be 
minimal. Thus, it is important to be able to employ a Newton process for solving economic 
equilibrium models. 
    
 
 

                                                 
15 Harker (1987) illustrates the potential drawback of the diagonalization algorithm. Extending the Murphy 
model from five to ten firms causes the standard implementation to spend almost 1000 iterations. This motivates 
an acceleration step that reduces the number of iterations by two orders of magnitude.  
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5. Conclusion 
 
Rosen (1965) introduced the notion of coupled constraint equilibrium of the Cournot model. 
Krawczyk (2005) applied this idea to the regulation of environmental pollution, where a cap 
on aggregate emissions implies a constraint across agents’ activity levels. Considering 
regulatory mechanisms like tradable quotas or uniform taxes where all agents face the same 
price for a given constraint, this paper formulates the model as a complementarity problem 
and demonstrates that conditions for existence and uniqueness of solution are similar to those 
of the traditional Cournot model (without such constraints).  
 
The Newton-process SLCP implemented as module MCP in GAMS outperforms Krawczyk’s 
diagonalization algorithm NIRA when applied to his numerical example and a non-linear 5-
firm model. This follows as a diagonalization algorithm only obtains a linear convergence rate 
while a Newton process enjoys a quadratic convergence rate when functions are Lipschitz 
continuous.  
 
Functions that are employed for the computation of economic equilibria typically have this 
property, and there is a large body of experience of excellent convergence applying Newton 
processes to such models. Fewer results are established in terms of proofs for existence of 
unique solution and (local) convergence of a Newton process applied to these models.  
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Appendix A. Notation and LCP-results. 
 
Notation. 
Let A = [aij] be a real N×N matrix. A is said to have a row dominant diagonal or row 
dominance if there exists N positive scalars di, such that 
 
 di |aii|  > ∑j≠i dj |aij|  for i=1,…,N, 
 
with a similar definition for column dominance. If di = 1 for all i, then A is a Hadamard 
matrix. A matrix with column dominance has row dominance although the vectors of scalars 
may differ between the two. If all diagonal entries are positive (negative) A has positive 
(negative) diagonal dominance. If A has positive row or column diagonal dominance, then it 
is a P-matrix. A is said to be positive quasi-definite if uTAu > 0 for all x ≠ 0. Definiteness is a 
special case when A is symmetric. In fact, the non-symmetric matrix A is positive quasi-
definite when the symmetric matrix (A+AT) is positive definite.16 If a positive scaling vector d 
exists, for which A has both row and column dominance, we say A has a dominant diagonal. If 
A has a positive dominant diagonal, then A is positive definite. 
 
A is called copositive plus when uTAu > 0 for all u > 0 and (A+AT)u = 0 if uTAu = 0 and u > 0. 
(Cottle and Dantzig 1968.) The class of such matrices includes  
i)  all strictly copositive matrices, i.e., those for which uTAu > 0 when 0 ≠ u > 0, 
ii) all positive semi-definite matrices, i.e., those for which uTAu > 0 for all u. 
 
 
Let f be a mapping of a subset D in RN, i.e.,  f: D in RN → RN.  
 
f is called monotone on the set D if  (x1 - x2)T(f(x1) - f(x2)) > 0,   for each x1, x2 in D. 
f is said to be strictly monotone if the inequality is strict.  
 
Let f be defined by f = Mx+q for some matrix M and vector q. Then f is monotone (resp. 
strictly monotone) on D if and only if M is positive semi-definite (resp. positive definite). 
 
f is coercive when ║x║→ ∞ implies that [f(x) - f(x0)] /║x - x0║→ ∞ for some x0 in D. 
 
f is Lipschitz continuous when there exists a constant K > 0 such that for all x1, x2 in D,  
| f(x1) - f(x2)| < K | x1 – x2 |. 
 
 
LCP-results. 
LCP  Find x in RN such that  q + Mx > 0,   x > 0,   xT(q + Mx) = 0. 
 
An x that satisfy q + Mx > 0 and  x > 0 is called feasible.  
    
Lemma 1. Let M be positive definite. Then the LCP has an optimal solution.17  
 
Lemma 2. Let M be positive semi-definite. If LCP has feasible solutions, it has a 
complementary solution. [Cottle 1964]. 
 
                                                 
16 In economic equilibrium applications, like the Cournot model, the Jacobian matrix is typically non-
symmetric. The notation with a quasi-label becomes too cumbersome when we consider semi-definite matrices 
and will be dropped.  
17 Cottle (1964) attributes this result to Dorn. 



17 
 

 

Remark. The relaxation to a semi-definite M requires some additional condition, a constraint 
qualification, i.e., the existence of interior solutions to the constraints. 
 
Lemma 3. Let M be a P-matrix. Then LCP has an optimal solution for all q. [Cottle 1966]. 
 
Lemma 4. If M has positive principal minors Lemke’s algorithm computes the 
complementary solution for any q. [Lemke 1964; Cottle and Dantzig 1968].   
 
Remark. A positive definite matrix has positive principal minors and is thus a P-matrix. The 
converse may not be true when M is non-symmetric.  
 
Lemma 5. If M is copositive plus Lemke’s algorithm terminates with a complementary 
solution or shows that no feasible solution exists. [Cottle and Dantzig 1968]. 
   
Remark. A positive semi-definite matrix is copositive plus. Hence, a complementary solution 
is not guaranteed when M is positive semi-definite. If, however, it can be shown that the LCP 
has a feasible solution, lemma 2 says it has a complementary solution and lemma 5 then 
implies that Lemke’s algorithm finds it.  
 
Lemma 6. If M is positive semi-definite and the LCP has a non-degenerate18 complementary 
solution, then this solution is unique.19  
 
 
 

                                                 
18 If a solution of LCP uses at least N linearly independent columns it is said to be non-degenerate. 
19 Eaves (1971, p. 626) attributes this result to an unpublished paper by Lemke. 
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