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Chapter 1

Introduction

In this dissertation, I present an empirical analysis of data from a speci�c

auction: ocean-caught mackerel in Norway. I study the formation of market

prices, test some implied restrictions from auction theory, and make some

policy recommendations. In addition to providing useful information for this

market, I shall document characteristics of the market and market agent�s

behavior that may elicit future theoretical and empirical work.

I adhere to the view expressed eloquently by Vijay Krishna [59, p. IX]:

The use of the pronoun we in the remainder of the text is not meant to

give any associations to royalty, but is used to invite the reader to see the

manuscript as a dialog.

Theoretical framework. An important part of economic theory in re-

cent decades has been devoted to the study of markets with informational

asymmetries where agents behave strategically. A substantial part of this

research program is concerned with auction markets. Two reasons for this

interest are apparent: First, from a theoretical perspective, auctions are inter-

esting because they constitute well-de�ned environments for the application

of game theory. In many market models in industrial organization, the infor-

mation set available to agents, and the order of moves, are not obvious; the

researcher must make more or less plausible assumptions in the modelling

process. At real-world auction markets, on the other hand, the �rules of the

game�are written in the form of legally-binding contracts. Thus, the game

1



2 CHAPTER 1. INTRODUCTION

is well-de�ned, making the modelling more realistic. Second, rich and com-

plete datasets are available from auction markets, making them suitable for

empirical analyses; both positive and normative questions can be addressed.

The theoretical study of auctions� incorporating the strategic aspects of

the markets� began with the seminal paper of Vickrey [107]. The theory ex-

panded especially rapidly after developments in game theory, in particular the

work by Harsanyi [45] and his theory on noncoöperative games of incomplete

information was consequential. Important early contributions, in addition to

Vickrey, were Wilson [109, 110] as well as his student Ortega-Reichert [82].

With the publication of Milgrom and Weber [77], our understanding of the

standard auction models reached maturity.

Positive analyses examine what happens in these markets. How are mar-

ket prices determined? To what extent can prices be explained by observable

product and market characteristics? Although price theory is a core subject

of economics, the determination of market prices is somewhat of a black box

in the traditional theory. Auction theory casts light on the price formation

process by focusing on underlying, unobservable, valuations that determine

market prices. Another important positive question is what the allocational

consequences are in terms of goods and revenues when di¤erent auction for-

mats are employed.

Normative issues are addressed using tools from mechanism design� a

research program pioneered by Myerson [79]� in order to determine opti-

mal ways of conducting auctions. From the seller�s perspective, the issue is

whether the allocation can be changed by the choice of auction format. From

an economist�s perspective, an even more important question is whether al-

locations are e¢ cient.

Empirical methods. The fundamental idea behind auction theory is that

bids� including the winning bid or the market price� are governed by bid-

der�s underlying valuations. Valuations are modelled as random variables

having probability distributions. Two approaches to empirical analysis of

auction data can be distinguished. To test predictable restrictions that fol-

lows from auction theory, we may use a �exible form when modelling bid
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functions. If the restrictions are independent of the functional form of the

probability law of valuations and there is no unobserved heterogeneity across

auctions, the so-called reduced-form approach is justi�able; see Hendricks

and Paarsch [47]. Reduced-form estimation to econometricians means that

we examine implications of the theory without estimating the parameters of

a speci�c economic model that represents the market behavior.

Beginning with Paarsch [83, 84], under a new structural approach it is

assumed that the data can be represented by a given theoretic model. If

this is the case, then unobservable valuations may be deduced. This line of

research opens up a wider array of topics that can be addressed. In particular,

policy recommendations concerning the auction format are possible.

Further discussion of empirical strategies for interpreting auction data is

awkward without our having presented the theory of auctions and its empir-

ical contents in detail. In the next two chapters, we develop these notions.

Market and auction format. Auction formats di¤er in several respects.

For now, we brie�y present the market and auction format we study. A

detailed description is relegated to subsequent chapters. The market under

study concerns the sales of pelagic �sh in Norway. In the �rst-hand market,

the owners of vessels sell the harvest to food-producing plants. By law, an

association is granted monopoly to sell the raw material in the �rst-hand

market.

The association sells the �sh at auction, speci�cally, a discriminatory,

closed, multi-object and simultaneous format with a known reserve price is

used. Several objects� the catches of di¤erent vessels� are sold at the same

auction. The term multi-object refers to objects that are not identical as
opposed to o¤ering several identical objects for sale which often is denoted a

multi-unit auction. In our case, catches di¤er with respect to total quantity

and the average �sh size; they may also to some extent di¤er with respect

to some quality variables. Given several objects for sale, there is a choice

between selling them sequentially or simultaneously; in our case a simulta-
neous procedure is used. The bid process is closed, meaning that bids are
delivered sealed as opposed to the open outcry format. The term discrim-



4 CHAPTER 1. INTRODUCTION

inatory relates to the price paid: each individual winning bid is a price as
opposed to a uniform-price where all winning bidders pay the same price. In

our case, the highest bidder wins the object (with some modi�cations) and

pays his price, thus making it a so-called �rst-price or pay-as-bid auction.

In general, potential buyers have short-term capacity constraints. There-

fore, bidders will want to avoid winning a quantity larger than their capacity

because the �sh have to be processed quickly to avoid quality deterioration.

To encourage competition (as many submitted bids as possible), the auction

rules permit bidders to set quantity limits. If a bidder wins more catches
than he can take, then some catches are allocated to the next highest bidder.

Other aspects of the auction format are that sellers can set a geographical

delivery sector for their catch, and buyers can give priorities to their bids.
All these aspects are explained in detail in subsequent chapters.

Main topics. The brief presentation above suggests that several topics

and strategies for interpreting auction data exist. The range of topics we

can analyse is determined by the characteristics of the market under study.

Even though auction theory has made signi�cant advances, complex markets

may prove to be analytically intractable within a game-theoretic modelling

approach. Any empirical analysis is constrained by the tools available. We

can always analyse auction data by statistical methods. Normally, the use-

fulness of the analysis increases when we can relate the data to a model with

general properties. At the same time, we should avoid forcing the data into

a model that does not represent the data generating process reasonably well.

Given the complexity of our market, we have to be careful to avoid using

too restrictive models. Several predictions of auction theory are, however,

general, but for the main part we shall interpret our statistical results within

an auction-theoretic model world. The determination of prices is a core
subject. At a general level, examining the testable predictions of auction

theory is worthwhile, and we shall do this. From a practical perspective, the

measurement of size e¤ects is even more important. Rather than discussing

just the sign of some variable�s in�uence on prices, we make an e¤ort to

answer the fundamental empirical question: How big is big? To wit, we ask
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what variables have an economically important e¤ect on prices, as opposed to

the exercise of revealing what variables have a statistically signi�cant e¤ect.

The latter question is more a question of how reliable results are in the

presence of sampling error. The market under study is large and important

for a resource-based economy like Norway�s, for market participants, it is

useful to know the average e¤ects that controllable quality variables have on

market prices.

Auctions and bidding are about strategy. The strategic elements of our

market are analysed from three perspectives:

First, we discuss one unique feature of the auction design, the option
of giving priorities to bids. The priority option is closely linked to the
option of setting quantity limits. Bidders can bid on more objects than they

want. We are unaware of other auctions that give bidders this option. A

more frequently used mechanism in the case of simultaneous selling is to ask

bidders for demand schedules. The question we ask is whether bidders use

this option strategically in order to obtain lower prices.

Next, an important empirical topic of auction markets is the vulnerability

to undue coöperation among market agents. Although, we have no indication

that bid cartels exist in our market, it is tempting to utilize our rich dataset

in order to establish that the auction design and market characteristics are

robust against collusion.

The new, structural approach to analysing auction data enables us, in

principle, to analyse the policy question of how to set reserve prices optimally.

We make an e¤ort to answer this. Although the rewards from a successful

application of a structural estimation are great, the route to the goal is

through dangerous territory. More speci�cally, the model to be used may

not capture our data well. We acknowledge that the model we use is not an

exact mapping of the data generating process, but we believe it is a useful

representation. Our approach is based on the fact that potential errors in

using the model are one-sided, and, consequently, that our recommendation

of an optimal reserve price, is not too high.

We adopt a practical approach and use a battery of statistical methods

in order to get the data to speak. Regression analysis, correlation analysis,
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and nonparametric density estimation are the main tools to be used. In

addition, counting, summary statistics and measures of location and scale all

have their merits in empirical work.

Organization. The thesis is organized as follows: In the next two chap-

ters, we provide background on which the empirical analysis rests. In chapter

2, we present fundamental parts of auction theory in order to establish some

important concepts and the framework for subsequent analysis and discus-

sion. The benchmark models are covered in detail, while the more complex

models are discussed at a more general level. In chapter 3, the empirical con-

tents of auction theory is discussed. The main goal is to clarify the problems

facing researchers trying to understand what goes on at auction markets by

use of theoretic models and market data. The remaining chapters are empir-

ically oriented. Chapter 4 is devoted to a description of the speci�c market

under study, a presentation of the auction format in use, and a discussion of

the sales mechanism and assumptions necessary to model the market. The

dataset is described in chapter 5, together with a statistical presentation of

key features of the market. In the next two chapters, we present a study of

prices in detail. In chapter 6, we focus on a partial analysis and analyse the

responsiveness of prices to the most important product and market variables.

This discussion is important background for chapter 7 where we perform a

general multivariate analysis of prices, controlling for several product and

market characteristics. A special property of the auction format is bidders�

option of giving priorities to their bids. The price analysis of preceding

chapters does not capture possible e¤ects of this option. In chapter 8, we

analyse how bidders use the option strategically. An important empirical

topic of auction markets is to consider their vulnerability to undue coöpera-

tion among market agents. In chapter 9, we discuss whether our data reveal

any signs of collusion. In chapter 10, we compare the actual auction format

with a counter-factual format in order to analyse whether the current format

could be improved with respect to reserve price setting. Finally, in chapter

11, the main results are summarized and some policy recommendations are

put forward. The construction of the dataset is relegated to an appendix.



Chapter 2

Auction theory

2.1 Introduction

Many di¤erent goods are sold at auction: Stamps, �sh, spectrum rights, and

drilling rights for oil tracts are but a few examples. It is hard to identify a

common characteristic for all of them except that auctions aid in the price-

discovery process. A stable supply and demand schedule is missing, and the

common price setting strategies may be impossible to use as sales mecha-

nisms. The fundamental problem for the seller is that he does not know

what values the potential buyers assign to the good. If these values were

known, then the seller would maximize his revenue from the sale by a take-

it-or-leave-it o¤er slightly below the highest valuation, given that the value

exceeds the seller�s own valuation. This policy ensures that a buyer �nds it to

his advantage to accept it, and that the seller extracts all rent from the trade.

Because buyers�valuations are private information, the seller is unsure what

to charge for the good, and there is a risk from the seller�s perspective that

the buyer ends up with the good at a price far below his willingness to pay

or that no trade takes place. The popularity of auctions in markets with this

characteristic derives from the fact that this trading mechanism is normally

very successful in eliciting information on buyers�willingness to pay. Auc-

tions induce competition among bidders, which to a large extent undermines

the potential gains private information otherwise might provide the buyer

7
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with. There are, however, many ways to conduct an auction, and the details

of the mechanism are potentially of great importance for the allocation of

the total surplus involved in the trade.

Central questions addressed in the theoretical models are the following.

From the bidders�perspective, given a speci�c auction format, what strategies

(bid rules) should they follow? This question is analysed within a game-

theoretic approach, and is presented in more detail in the next section. After

characterizing the optimal bidding strategies, we are then able to answer

the crucial question from the sellers�perspective: which auction formats will

generate the highest expected price? Two approaches are possible here. For

a given set of common auction formats, when bid rules are determined, it is

relatively straightforward to rank them with respect to the expected revenue

they generate. But a more interesting approach from a theoretic (although

maybe not from a practical) perspective is to analyse what auction rules, of

any conceivable, will produce the highest bids. Drawing on the theory of

mechanism design, it is possible to reduce this to a relatively manageable

problem. Finally, from the economist�s perspective it is important to ask

whether the outcome of the auction is e¢ cient; i.e., does the chosen auction

ensure that the bidder with the highest willingness to pay obtains the object?

In sum, auction theory is concerned with distributional e¤ects and e¢ ciency

considerations.

We shall concentrate on a narrow set of topics in this chapter. This will al-

low us to develop some fundamental results of auction theory at a rather slow

pace. Two auction formats� the �rst-price and second-price auctions� are

discussed within two di¤erent models. First, however, important elements

and assumptions of auctions as games are presented. Next, the independent

private-values model is described. Bid rules and expected revenue are char-

acterized together with an analysis of the e¤ect of introducing an optimal

reserve price. The treatment of the model is concluded with analysing how

relaxing one of the assumptions of this model, namely risk neutral bidders,

a¤ects seller�s expected revenue. Then, we address the same questions in the

more general symmetric model, which allows for interdependent valuations.

Surveys that cover a wider range of topics include McAfee and McMillan
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[68], Klemperer [56], and Wilson [111]. The standard reference in auction

theory is Krishna [59]. We aim at a self-contained treatment of the subject,

and devote space to statistical topics like order statistics and a¢ liated ran-

dom variables, knowledge of which is useful when studying auction theory.

Moreover, the general symmetric model, in particular, is rather complex and

the details become somewhat involved. Therefore, some technical derivations

are included in the appendices.

2.2 Auctions as games

Auctions can be modelled as games, and only auction theory that incorpo-

rates restrictions from game theory is considered in this chapter. Depending

on the detailed description of the selling scheme and bidders�preferences,

information structure and payo¤s, many di¤erent games will emerge. Nev-

ertheless, a unifying theme is present in all models. The seller wants to

maximize revenue while the buyers face a trade o¤ between increasing their

probabilities of winning the auction and their payo¤s if they win.

2.2.1 Players and information

The players have already been introduced: a seller who wants to dispose of a

good and several potential buyers who will make their bid according to the

rules of the auction. Notice that the procurement situation with one buyer

and many sellers is completely analogous, and can be analysed in a similar

way as auctions where the seller is asking for bids; see, for example, Holt [51].

To avoid confusion, we shall only consider the traditional auction institution

with one seller.

The information available to bidders is incomplete in the sense that they

do not know how the other bidders value the good in question; i.e., what

types they are. Neither do they know what strategies they follow, and there

may be uncertainty with respect to the value of the good. Auction theory de-

veloped fast after the necessary tools for analysing these games of incomplete

information was provided by John Harsanyi [45].
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A critical assumption in auction-theoretic models concerns the informa-

tion that bidders have with respect to the value of the good. Two polar mod-

els are named the private-values model and the common-value model. In the

private-values model, bidders know their own valuations and, consequently,

information concerning competing bidders�valuations does not a¤ect their

valuations, although such information may alter bids. A �rm with a known

cost and demand structure bidding for an input resource may be an exam-

ple where this model applies. The common-value model or natural resource

model is characterized by a common, but uncertain value of the object. An

example is bidding for the right to develop an oil tract. The true value of this

resource will not be known exactly. Bidders in this model are assumed to

have received di¤erent signals concerning the value. A signal is construed as

all relevant information a bidder would use when trying to appraise the value

of the object. Information on other bidders�signals is valuable when esti-

mating the value and deciding how much to bid. In practice, most auctions

have private-values and common-value elements. Nevertheless, research has

focused on these two pure models. Clear-cut conclusions from simple mod-

els are de�nitely more satisfactory than ambiguous conclusions from more

realistic models. However, in an in�uential paper, Milgrom and Weber [77]

formulated a more general model where the private-values and common-value

models are special cases.

Another important assumption concerns the modelling of players�prefer-

ences. Most of auction theory models both sellers and bidders as risk neutral,

and this is re�ected in this presentation as well. The assumption of risk neu-

trality does not reduce the bid problem to a trivial and uninteresting one.

It remains interesting because of the two factors that bidders must balance

in their strategy considerations; the probability of winning and the realized

gain if winning. These two elements work in opposite directions; the prob-

ability of winning is maximized when the surplus from obtaining the object

is negative, and the potential gain is at the maximum when the probability

of winning is virtually zero. Introducing risk aversion leads to much more

complicated models, but some issues of it are, nevertheless, covered below.
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2.2.2 The rules of the game

The game is played in two stages. In the �rst stage, the seller is assumed to

have all power in deciding the sale mechanism. Once this auction mechanism

has been chosen, the game in the second stage is played between the bidders.1

Only in the literature on optimal auction design is the seller�s mechanism de-

sign problem analysed in depth. In most auction theory, behavior is analysed

within a restricted set of auction rules; i.e., the auction forms are given. For

a treatment of optimal auction design, see the seminal paper of Myerson [79]

or the rather more accessible paper by Bulow and Roberts [16].

A rich variety of auction formats, or �the rules of the game�, exists.

Cassady [17] has provided a description of many commonly used mechanisms.

The four auction institutions most frequently encountered in the literature

are the open outcry (English) and the oral descending-price (Dutch) auctions

and the closed �rst-price and second-price auctions.

At open outcry auctions, bidders observe to some extent the actions taken

by other bidders. At the English, or open ascending-price auction, oral bids

are shouted out until no one is willing to increase the last bid. The good

is then awarded to the bidder with the highest bid and he pays his bid.

The Dutch auction is characterized by an oral descending-bid process. The

auctioneer begins with an high price and successively lowers it until one of

the bidders accepts the going o¤er. Thus, only one bid is observed. The

distinguishing feature between the two open formats is that possibly valu-

able information about bidders�willingness to pay is revealed during the bid

process at the English auction, while no such information is available at the

Dutch auction. True, one �nally learns about the winning bidder�s strategy,

but this information is received at the moment the game is over.

At the �rst-price, sealed-bid auction, the bidder with the highest bid

wins and pays his bid. A variation of this is the second-price, sealed-bid

auction where the bidder with the highest bid wins, but pays what the second-

1If the rules, however, specify that the seller is free to determine after the bidding
process is completed whether he wants to accept the going o¤er, which is equivalent to
a secret reservation price, then the seller is a player in the second stage as well. This
situation is analyzed in Elyakime et al. [26].
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highest bid amounts to. The format is referred to as a Vickrey auction in

honour of William S. Vickrey who �rst investigated its theoretical properties

in the independent private-values case. It is rarely found in practice, but is

interesting for modelling reasons because it can represent the open-ascending

auction, in one of its versions, and it has a simple dominant strategy as the

equilibrium solution of the bid problem.

2.2.3 Solution concepts

Agents are assumed to construct bid rules that constitute a strategic equi-

librium. Some auction games have weakly dominant bid strategies; in such

cases, strategic equilibria are easily identi�ed. Otherwise, we have to rely on

the somewhat weaker Bayes�Nash equilibrium as our equilibrium solution.

Despite the criticism of the Nash equilibrium concept and its re�nements,

such equilibria can be well justi�ed when applied to auctions. The Nash

equilibrium assumes that strategies actually played are based on that all play-

ers maximize their utility, given their beliefs about other players�strategies,

and that these beliefs are correct. Following Milgrom [74], the maximization

condition is not stronger than the usual rationality assumption in economic

theory. The second condition that beliefs are correct, or that expectations

are rational, is certainly more controversial and subject to criticism, but is

most likely to be a sound modelling approach when analysing long-lived in-

stitutions like auctions where players are likely to have accumulated a lot

of experience to base their beliefs on. In the models to be presented in this

chapter, however, we assume that the game is played only once. Therefore,

it might seem somewhat inconsistent to defend bidders�ability to settle on

the strategic equilibrium by referring to learning through repeated play. If

we were to analyse repeated auctions, then there may be more complicated

strategic considerations involved than our models capture. But even if the

Nash equilibrium can be criticized along this line, we shall see that the pro-

posed solutions are quite compelling.

To be sure, there exists a di¤erent type of literature on auctions than the

game-theoretic one. Beginning with Friedman [31], which generated many



13

contributions in operations research journals, the main concern of this ap-

proach is deriving optimal bid rules. The problem formulation, however,

takes a somewhat naïve view on bidders�behavior; often only one strategic

bidder is assumed. For a review and critique of this literature, see La¤ont

[60]. The game-theoretic approach is certainly more sophisticated and satis-

factory from a theoretic perspective, and it also makes possible an analysis

of other and more interesting problems than just deriving bidding strategies.

2.3 The independent private-values model

The independent private-values model will serve as the benchmark model.

It is the least complicated, and the most frequently analysed model in em-

pirical works. In this section, the strategic equilibrium-bid rule at �rst- and

second-price auctions is derived and the expected revenues which these auc-

tion formats generate are calculated. The e¤ect of competition is discussed,

and the section is concluded by an examination the e¤ect of relaxing the

assumption of risk neutrality.

First, however, we establish that the �rst-price, sealed-bid and the Dutch

auction formats are strategically equivalent under the set of assumptions

which constitute the independent private-values model. Likewise, the closed

second-price auction and the English auction are also strategically equivalent;

i.e., they have the same normal-form game representation.

Begin with the �rst-price auction. A bidder must decide what to bid in

ignorance of what other bidders intend to bid. Nevertheless, it is reason-

able to expect that he tender a bid under the assumption that he might be

the winner. The same line of reasoning applies to the Dutch auction. In

any phase of the bidding process, the fact that no one has submitted a bid

does not reveal any valuable information for the bidders. They will have to

make their bid conditional on being the winner. Therefore, each must decide

beforehand how much to bid. The dynamic aspect of the auction format

is not relevant, so the strategic considerations involved are identical to the

�rst-price, sealed-bid auction.

If bidders at the English auction raise their bids in�nitesimally above the
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going o¤er until they drop out, then the winner will have to pay the price at

which the last remaining of his opponents dropped out. This drop-out level

will be at his valuation. At the closed, second-price auction, the winner pays

the second-highest bid. It is not di¢ cult to prove that bidders�should submit

their valuations as their bids under this auction format. This anticipates the

material in section 2.3.3 and a complete discussion will be provided there.

Given that strategy, however, the winning bidder ends-up paying the second-

highest valuation under this auction format as well. True, the bid process at

the open auction reveals information about bidders�willingness to pay. But

as long as values are independently distributed, this information is irrelevant.

2.3.1 A digression on order statistics

In subsequent sections, we shall need to calculate the probability that a given

bid is the highest. The idea that bids can be modelled as increasing functions

of the underlying valuations, which are random variables, is fundamental. If

we can assign a common probability distribution to these variables, how can

we obtain the distributions of some speci�c values when they are ranked in

decreasing order? A branch of statistics called order statistics is suitable for

gaining insight into this problem. For an extensive treatment of the topic,

see David [22].

Consider a vector of independently and identically-distributed random

variables Z = (Z1; Z2; :::; Zn) having a known cumulative distribution func-

tion FV (�). If the elements of this vector are arranged in increasing order of
magnitude, we obtain the vector of order statistics

�
Z(1); Z(2); :::; Z(n)

�
where

Z(n) is the highest value. A more extensive form of notation is to write the

jth order statistic as Z(j:n) where the sample size of n is stressed. The highest

order statistic from the vector that contains all variables except the ith are

denoted Z(n:�i). The probability density function (pdf) and the cumulative

distribution function (cdf) of Z(j) are denoted respectively f(j) (�) and F(j) (�).
The distribution of values like Z(n) and Z(n�1) is of particular interest. The
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cdf of the largest value, F(n) (�), is easily calculated.

F(n) (z) = Pr
�
Z(n) � z

�
= Pr (Z1 � z; Z2 � z; :::; Zn � z)

=
Yn

i=1
Pr (Zi � z) = [FV (z)]n .

From this expression, the pdf of Z(n) is

f(n) (z) =
dF(n) (z)

dz
= n [FV (z)]

n�1 fV (z) . (2.1)

To calculate the distribution for a general jth order statistic is slightly more

complicated:

F(j) (z) = Pr
�
Z(j) � z

�
= Pr (at least j of Zi � z)

=
nX
i=j

Pr (exactly j of Zi � z)

=

nX
i=j

�
n

i

�
[FV (z)]

i [1� FV (z)]n�i

= n

�
n� 1
j � 1

�Z FV (z)

0

tj�1 (1� t)n�j dt

(2.2)

where we have made use of the fact that the binomial probability that exactly

i of the values are less than or equal to z equals the term in the summand in

the next to last expression. The equivalence of the two last expressions follows

from repeated integration by parts of the last expression, see Dudewicz and

Mishra [24]. Alternatively, they can be proved to be equal by backward
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induction; see Gut [40]. Di¤erentiating equation (2.2) yields

f(j) (z) = n

�
n� 1
j � 1

�
[FV (z)]

j�1 [1� FV (z)]n�j fV (z) .

From this formula the pdf of the second-highest order statistic is easily ob-

tained

f(n�1) (z) = n (n� 1) [FV (z)]n�2 [1� FV (z)] fV (z) . (2.3)

The order statistics are obviously neither identically-distributed nor indepen-

dent, and we turn now to the derivation of the joint distribution of Z(n) and

Z(n�1). In the general case of two order statistics Z(s) and Z(t), where s < t,

the joint cdf F(s;t) is

F(s;t) (v; w)

= Pr (at least s of Zi � v, at least t of Zi � w)

=
nX
j=t

jX
i=s

Pr (exactly i of Zi � v, exactly j of Zi � w)

=
nX
j=t

jX
i=s

n!

i! (j � i)! (n� j)! [FV (v)]
i [FV (w)� FV (v)]j�i [1� FV (w)]n�j .

It follows that the joint pdf f(s;t) is

f(s;t) (v; w) =
n!

(s� 1)! (t� s� 1)! (n� t)!�

[FV (v)]
s�1 fV (v) [FV (w)� FV (v)]t�s�1 fV (w) [1� FV (w)]n�t .

This formula enables us to �nd the joint pdf of the highest and second-highest
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order statistic:

f(n;n�1) (v; w) =

8><>:
n (n� 1) fV (w) fV (v) [FV (w)]n�2 if v � w;

0 otherwise.

(2.4)

We conclude this section with the conditional density of Z(n�1) given a value

of Z(n).

f(n�1jn) (wjv) =
f(n;n�1) (v; w)

f(n) (v)
=
(n� 1) [FV (w)]n�2 fV (w)

[FV (v)]
n�1 . (2.5)

2.3.2 First-price auctions

Assume one good for sale andN risk neutral potential bidders. Each bidder i

has a valuation vi of the object, i = 1; :::;N , and only bidder i knows his own
valuation. Each bidder regards all valuations except his own as independent

random variables with a probability density function fV (�) and a cumulative
distribution function FV (�) with support [v; v]. This probability distribution
is common knowledge in the usual game-theoretic sense.

One consequence of the assumption of independently distributed valua-

tions is that the seller, or any outside observer, cannot learn anything about

the value a speci�c bidder has by observing the values of some other bidders.

Notice that the model assumes no possibilities for pro�table resale of the ob-

ject. Otherwise, the valuation of any bidder would, obviously, be dependent

on other bidders�valuations.

Assume that a symmetric equilibrium consists of bidding strategies bj =

� (vj) ;8j; which are strictly increasing in valuations. De�ne the inverse of
the bid rule to be vj = �

�1 (bj). Now take the perspective of bidder i: We

want to characterize his best response or equilibrium strategy bi = � (vi)

given that all other bidders follow their equilibrium strategies. Therefore,

bidder i seeks to maximize his expected utility, which can be written

Ui (vi; bi) = (vi � bi)
�
FV
�
��1 (bi)

�	N�1
. (2.6)
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The expression (vi � bi) is simply the utility if he wins. Since bids are in-
creasing in valuations, the probability that all bidders tender bids below bi is

equal to the probability that all other bidders have valuations below vi; thus�
FV
�
��1 (bi)

�	N�1
is the probability of winning. Di¤erentiating expression

(2.6) with respect to bi and setting the resulting expression equal to zero, we

obtain the following �rst-order condition:

@ U

@ bi
= (vi � bi) (N � 1)

�
FV
�
��1 (bi)

�	N�2
fV
�
��1 (bi)

� d ��1 (bi)
d bi

�
�
FV
�
��1 (bi)

�	N�1
= 0.

(2.7)

By increasing the bid incrementally, expected utility increases because of

the increased probability of winning. The cost of this action is that the

di¤erence between valuation and bid is decreased. This �rst-order condition

contains two factors which can be interpreted within the familiar framework

of equating marginal gain with marginal cost. The �rst term measures the

bene�t an increased probability of winning entails while the second term is a

measure of the expected loss of reducing the pro�t margin incrementally. In

equilibrium, bidder i must choose the strategy bi = � (vi). Substituting this

into equation (2.7) and after simplifying and rearranging the expression, we

obtain the following �rst-order di¤erential equation with variable coe¢ cient

and constant term:2

�0 (vi) +
(N � 1) fV (vi)

FV (vi)
� (vi) =

(N � 1) fV (vi) vi
FV (vi)

. (2.8)

Assume now that the seller sets a reservation price v0; i.e., only bids at or

above this value are accepted. A bidder with a valuation equal to v0 is,

therefore, excluded from achieving a positive utility from participating in

the bid process. The only way he can have the slightest hope of winning the

object without incurring a loss, is by submitting his valuation as the bid.

2Recall that d �
�1(bi)
d bi

= 1=�
0 �
��1 (bi)

�
= 1=�

0
(vi).
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This gives a boundary condition for equation (2.8) of the form

U (v0) = 0. (2.9)

Solving equation (2.8) together with the condition (2.9) yields

� (vi) = vi �
1

[FV (vi)]
N�1

viZ
v0

[FV (u)]
N�1 du. (2.10)

Bids at a �rst-price auction are set to equal the valuation vi shaved by a

factor depending on this very same valuation, vi; the number of bidders, N ;
the seller�s reservation value, v0; and the distribution function, FV (�). It
turns out that the bid rule is equal to the expectation of the second-highest

valuation, given that the highest valuation is vi.

� (vi) = E
�
V(N�1)jV(N�1) < vi

�
.

This can easily be veri�ed by using the conditional population function given

by equation (2.5). In an equilibrium, no bidder will gain by single-handedly

deviating from the equilibrium solution. What happens if one bidder does

deviate? In the case where he underbids� his bid is less than the equilibrium

bid� his expected pro�t and the seller�s expected revenue will decrease. The

players that bene�t are the bidders following the equilibrium strategy, whose

expected pro�ts will increase since there is a probability that they will win

the object when they in fact have the second-highest valuation. In the case

where a bidder bids more aggressively than his equilibrium strategy, the

e¤ects are di¤erent. The aggressive bidder will again have lower expected

pro�ts (since he is deviating from the optimal strategy), but his action will

also hurt the other bidders. A probability that they will not win the object

with the highest valuation is now introduced. The seller is the one who

bene�ts from aggressive bidding. These e¤ects have practical importance

because the equilibrium strategy is rather demanding to compute.

We now verify that the bid function � (v) is strictly increasing in v as we

assumed. Since the bid function is symmetric for all bidders, we drop the
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subscript i:

�0 (v) = 1�
[FV (v)]

2N�2 � (N � 1) [FV (v)]N�2 fV (v)
Z v

v0

[FV (u)]
N�1 du

[FV (v)]
2N�2

= (v � b) (N � 1) fV (v)
FV (v)

> 0.

At what rate will bid functions increase in valuations? Clearly, we cannot

have increasing growth, since bids will always be below (or equal to) val-

uations. Whether bid functions are increasing concave or increasing and

strictly concave in v is not distribution-free. Normally, with no reserve price,

we expect bid functions to be strictly concave. If valuations, however, are

drawn from the continuous uniform distribution, we get linear increasing bid

functions.

The e¤ect of the number of bidders is easily understood by looking at

the bidding rule given by equation (2.10). The last term on the right-hand

side is a decreasing function of N , and approaches zero in the limit. In other
words, the bid approaches the valuation.

lim
N!1

� (v)! v; 8 v 2 [v0; v] . (2.11)

The consequence of this is that expected revenue will approach the upper

bound v when the number of bidders increases. In �gure 2.1, we have sketched

the bid function of equation (2.10) for di¤erent numbers of potential bidders

N when valuations follow the Weibull distribution with location parameter 2

and scale parameter 1.5. As expected, bid shaving is severe for all valuations

when N = 2. Competition increases substantially when N is as low as

�ve as witnessed by the reduced bid shaving of the drawn bid function.

When N = 20, bids are close to the 45 degree line for low valuations. The

bid functions in the �gure indicate clearly the asymptotic result reported in

expression (2.11).

We have established from expression (2.11) that bid functions are increas-

ing functions of N . To see that they are, in fact, increasing concave functions
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Figure 2.1: The bid function in �rst-price IPV model
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of N , we look at the second derivative of � (v;N ) with respect to N . The
�rst derivative is

d� (v;N )
dN = �

vZ
v0

log

�
FV (u)

FV (v)

� �
FV (u)

FV (v)

�N�1
du > 0. (2.12)

Clearly, the �rst derivative reported in expression (2.12), is positive. The �rst

quotient under the integral is always between 0 and 1, and, consequently, the

logarithm of the quotient is negative. The second derivative is

d2� (v;N )
dN 2

= �
vZ
v0

�
log

�
FV (u)

FV (v)

��2 �
FV (u)

FV (v)

�N�1
du < 0. (2.13)
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In expression (2.13), all terms under the integral is positive, resulting in

a negative second derivative. Thus, by the signs of the �rst and second

derivative, we conclude that bids are increasing and concave in N .
Turn now to the calculation of seller�s expected revenue. The expectation

of sellers revenue, RI , is equal to the expectation of the highest bid. The

highest bid is a function of the �rst order statistic of valuations, whose density

function is given by equation (2.1).

E
�
RI
�
=

Z v

v0

� (v) fV (N ) (v) dv

= N
Z v

v0

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv.

(2.14)

The details of the last expression are provided in the appendix to this chap-

ter. A seller�s expected revenue is a function of the same variables as the

function characterizing the equilibrium-bid rule plus the upper bound on the

distribution function, v.

We saw above that bid functions are increasing concave functions of the

number of bidders. This property will, therefore, apply to the winning bid as

well. The expected revenue or the expected winning bid will be an increasing

concave function of the number of bidders. For the distribution of valuations

used in �gure 2.1, we illustrate the increasing concave property of bids by

plotting the winning bid against the number of bidders in �gure 2.2. We note

that the winning bid as a function of N is not continuous. What we �nd are

the function values for the discrete input N 2 [1; 2; 3; : : :]. Connecting the
discrete function range by a cubic spline interpolation� as we do in �gure

2.2� produces a function that is strictly concave.

2.3.3 Second-price auctions

Bidding at the second-price auctions involves a simpler strategy� in fact, a

dominant strategy� as its solution: bid the valuation at the closed second-

price auction and bid in�nitesimally above the going o¤er up to one�s valua-
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Figure 2.2: Winning bid as a function of the number of bidders
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tion at the open second-price auction. We con�ne attention to the sealed-bid

version in this section. The best bid rule is thus

bi = vi. (2.15)

Notice that a second-price auction implies that the winner pays the minimum

amount he would have to bid and still expect to win the auction. This

may appropriately be denoted a �rst rejected bid payment scheme. Thus,

since expected payment is independent of a bidder�s own bid, the bid rule

may be interpreted as maximizing the probability of winning subject to the

constraint that pro�ts must be non-negative if winning. To establish that

the bid rule (2.15) constitutes a Nash equilibrium, suppose a bidder considers

bidding below his valuation, while all of his opponents follow their dominant
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strategies. Now, if he has the highest valuation, but the second-highest

valuation (and bid) is above his bid, he will su¤er a loss. Instead of making a

positive pro�t, he earns zero. Likewise, if he were to bid above his valuation,

there is a positive probability that he will end up being the winner, and that

the second-highest bid is above his valuation, in which case he will make a

negative pro�t. In all other cases the strategy of bidding above or below the

valuation, will not matter. Thus, if he is to deviate from the optimal strategy,

either by bidding below or by bidding above his valuation, there is a certain

probability of incurring a loss while there is no possibility of gaining.

One appealing feature of the �rst rejected bid payment scheme is that

the degree of sophistication required of bidders is moderate. A dominant,

robust, and easily-understood strategy emerges. This is contrary to the �rst-

price auction where the informational requirements are more demanding.

To compute the equilibrium solution, bidders must know the distribution

of valuations and the number of bidders, and the problem is obviously not

trivial.

Given the optimal bid strategy at the second-price auction, what is the

expected revenue to the seller under this regime? We calculate expected

revenue using the joint density function of the two highest order statistics

given by equation (2.4). Notice that when the second-highest valuation lies

in the interval [v; v0], while the highest valuation is above v0, then the winner

must pay v0. Otherwise, when both valuations are above v0, the winner pays

the second-highest valuation.

E
�
RII
�
=

Z v

v0

Z v0

v

v0f(N ;N�1) (v; u) du dv

+

Z v

v0

Z v

v0

uf(N ;N�1) (v; u) du dv

= N
Z v

v0

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv.

(2.16)

Comparing equations (2.14) and (2.16) reveals the somewhat surprising fact
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that expected revenues at �rst- and second-price auctions are identical. Roughly

explained, the second-price auction format encourages more aggressive bid-

ding than the �rst-price format, and it does so to such an extent that the

expected second-highest bid at the former auction equals the expected high-

est bid at the latter auction. In fact, within the framework of the indepen-

dent private-values model, expected revenue is equal for all four common

auctions; the sealed-bid, �rst- and second-price auctions and the open Eng-

lish and Dutch auctions. This result is known as the Revenue Equivalence

Theorem. Put formally, one can state that: When bidders�values are inde-

pendently distributed and private, bidder�s follow strategies that constitute

a noncoöperative equilibrium, the bidder with the highest valuation wins

the object and bidders with lower valuations pay nothing, then the expected

revenue is equal to the expected second-highest valuation. Notice that it is

expected revenue which is equal; in actual realizations the obtained prices

from �rst-price and second-price auctions may di¤er.

Another aspect of the Revenue Equivalence Theorem is that it relies crit-

ically on its assumptions and does not generalize. If values are dependent

or bidders are risk averse, the various auction mechanisms will di¤er with

respect to expected revenue. The case of dependent values are treated in

section 2.4 while the case of introducing risk aversion in the model is pre-

sented in section 2.3.5.

Under the two auction formats studied thus far, the seller does not extract

all rent from the trade. Because the seller is unable ex ante to distinguish

between the bidders�types, the winner will end up with a so-called informa-

tional rent; i.e., the surplus he obtains from the trade because of his private

information. How large, then, is this informational rent? This is easy to an-

swer since we have established that the seller on average obtains a price equal

to the second-highest valuation. As a matter of de�nition of economic rent,

the winner can expect to receive a surplus equal to the di¤erence between

his own valuation and the second-highest valuation.
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2.3.4 The optimal reserve price

Thus far we have considered seller�s reserve price as exogenous. The bidding

model allows, however, the seller to introduce an optimal reserve price. As-

sume the good is worth v0 to the seller, but he sets a reserve price r: What

level of r will enhance revenues most? The maximization problem at the

�rst-price auction is

max
r
v0 [FV (r)]

N +N
Z v

r

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv. (2.17)

The �rst term is the expected value to the seller if the product is unsold.

The probability that all bidders submit bids below the reserve price is equal

to [FV (r)]
N . The second term is the expected revenue obtained from the

winner, and is taken directly from expression (2.14). The only modi�cation

is that the reserve price is now to be set optimally at r� instead of at seller�s

value v0. The global maximum of the objective function must satisfy the

following �rst-order condition:

v0N [FV (r
�)]N�1 fV (r

�)�N [r�fV (r
�)� 1 + FV (r�)] [FV (r�)]N�1 = 0.

Re-arranging and simplifying this expression yields the following formula for

determining the reserve price.

r� = v0 +
[1� FV (r�)]
fV (r�)

.

The optimal reserve price is independent of the number of bidders, and it

is strictly greater than the reservation value v0: The same formula applies

to the sealed-bid, second-price auction; see La¤ont and Maskin [61] for the

details.

Two possibilities must be considered when raising the reserve price above

the seller�s own valuation. First, there is a risk that no one has a valuation

above the reserve price level, but there is at least one valuation in the interval

[v0; v�]. In that case, the seller will incur a loss. Second, there is a chance that

the reserve price is set in the interval between the two highest bids. Since
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all players submit their bids conditional on being the winner, they must all

take into account the possibility that the reserve price is above the second-

highest valuation. Consequently, bidders will reduce their bids less below

their valuations than in the case of no reserve price since the strategy space

is now narrowed down. To elaborate somewhat on this point, introducing a

reserve price is equivalent to introducing a bidder with a known bid equal to

the reserve price. Thus, competition will be harsher since the bidders who

contemplated bidding below the reserve price before it was announced, are

now forced to revise their bids upwards if they are still to have any hope of

winning the auction: Some of them will �nd it pro�table to submit a bid

above the reserve price. Obviously, a reserve price is of most importance

when competition is weak.

A consequence of introducing a reserve price above the seller�s own valu-

ation is that the auction format may no longer yield e¢ cient outcomes. As

we have seen, there is a certain probability that the bidder with the highest

valuation will not win the object. The seller� like any monopolist� �nds it

to his advantage to deviate from the Pareto optimal allocation that an e¢ -

cient trade mechanism constitutes. Ine¢ ciency is introduced in order to try

to capture some of the informational rent the winner otherwise obtains.

Somewhat surprising is the result that the number of bidders does not

matter when setting the reserve price. The seller wants to set the reserve price

in the interval between the two highest valuations. As N increases, these two

values move towards the upper limit of the distribution. That e¤ect should

warrant the seller to increase his reserve price with N . The interval between
the two highest valuations, however, is reduced, and approaches zero in the

limit when N increases. Thus, the importance of the reserve price is reduced

with the number of bidders. Alternatively, with an increased number of

bidders, it is more di¢ cult to aim the reserve price in the relevant interval,

and the risk of over-shooting; i.e. setting the reserve price above the highest

valuation is imminent if the strategy of making the reserve price depend on

N is pursued.

Let us illustrate some important facts about the e¤ect of the reserve

price by a numerical example. Assume valuations are drawn from the same
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distribution we used for illustrating bid functions in �gure 2.1; i.e., they

follow the Weibull distribution with location parameter � equal to 2 and

scale parameter � equal to 1.5. That is, the pdf is

fV (v) = ��
��v��1 exp

�
�
�
v

�

���
I(0;1) (v) ,

and the cdf is

FV (v) = 1� exp
�
�
�
v

�

���
I(0;1) (v) .

Set the seller�s valuation, v0, to 2. For di¤erent number of bidders, we com-

pute the expected revenue given by expression (2.17)

E [R (r)] = v0 [FV (r)]N +N
Z v

r

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv

for each possible reserve price. We illustrate the expected revenue function

for three di¤erent number of bidders (N 2 [3; 5; 7]) in �gure 2.3.

The optimal reserve price in this example is r� = 3:08. The independence

of the optimal reserve price onN is obvious from the �gure. However, loosely

speaking, the importance of setting the reserve price optimally decreases

with N . The gains can be substantial when the number of bidders is low.
In order to get an idea of the potential bene�ts within a realistic model,

we have computed the percentage increase in expected revenue when going

from r = v0 to r = r�. Denote this di¤erence �RN . When N = 7, expected

revenue increases by 5.6 percent, while for N = 3, the corresponding increase

is 11 percent.

From a practical perspective, it may be impossible to pin-down the op-

timal reserve price. It is, however, somewhat reassuring that there is, in

general, a relatively wide range of r that will increase revenues. The ex-

pected revenue curves in �gure 2.3 approach v0 asymptotically. Looking at

the behavior of the curves for high r, we see the risk of setting the reserve

price too high. For su¢ ciently high r, the expected revenue drops below the

benchmark level given by E [R (r = v0)].



29

Figure 2.3: Expected revenue and the reserve price
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2.3.5 Risk aversion

Risk aversion is a property where an individual prefers to receive a certain

amount to participating in a lottery with the same expected value. How

will expected revenue be a¤ected if risk aversion exists? An important result

shown by Riley and Samuelson [95] is discussed below. Assume bidders have

the same utility function, u (�), representing risk averse preferences. Now,
consider the maximization of expected utility from bidding at the �rst-price

auction when bidders use a bidding function � (x):

max u [vi � � (x)] [FV (x)]N�1 .
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The �rst-order condition can be written as

�0 (v) = (N � 1) fV (v)
FV (v)

u [v � � (v)]
u0 [v � � (v)] . (2.18)

Assume now two di¤erent utility functions uL (�) and uH (�), where the sub-
scripts H and L denote high and low degree of risk aversion respectively.

According to the absolute risk aversion measure, this implies that

u00L (�)
u0L (�)

>
u00H (�)
u0H (�)

� 0. (2.19)

To analyse the e¤ect of risk aversion from the �rst-order condition, the fol-

lowing result derived from the mean-value theorem is useful. Given two func-

tions �H (�) and �L (�), if �H (v) > �L (v) for all v > v, then �0H (v) > �0L (v).
From expression (2.19) it can be deduced that uL (�) =u0L (�) > uH (�) =u0H (�).
Hence, it follows from equation (2.18) that �0H (v) > �0L (v). Consequently,

from the above stated result, �H (v) > �L (v) : In other words, risk aversion

leads to higher bids in the �rst-price independent private-values model than

in the case where bidders are risk neutral. Recall our discussion of the �rst-

order condition (2.7). By reducing the bid below the valuation, the risk of

losing the auction increases while the potential gain if winning also increases.

Risk averse bidders tend to give more weight to the former e¤ect, than risk

neutral bidders. At the second-price auction, however, the equilibrium-bid

strategy is to bid ones own valuation. Risk aversion will not a¤ect valua-

tions. Therefore, bids are una¤ected. Thus, all things being equal, �rst-price

auctions generate higher bids and, consequently, an higher expected revenue

than second-price auctions when bidders are risk averse. This revenue rank-

ing will not, in general, hold when we admit interdependent valuations, as

discussed in the next section.

For a broader treatment of risk aversion at auctions, see Maskin and Riley

[66] and Matthews [67].
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2.4 The general symmetric model

In the private-values model of the preceding section, each bidder�s valuation

is, from the bidder�s perspective, certain. In the more general model of

bidding behavior developed by Milgrom and Weber [77], bidders do not know

the true value of the object, but are assumed to possess some relevant private

information. Denote the vector of these pieces of private information or

signals, which are random variables, by Z = (Z1; :::; ZN ) : In addition, there

are several other variables unknown to bidders which a¤ect the object�s value.

We denote these value determining variables by the vector S = (S1; :::; Sm).

The true value of the object for bidder i, Vi, can thus be represented by a

function

Vi = V
�
S; Zi; (Zj)j 6=i

�
.

Notice that we now represent a bidder�s valuation with Vi indicating that also

bidder i conceives it as a random variable, while in the private-values model

we let vi denote the certain valuation of a bidder. We assume a symmetric

equilibrium; i.e., the function V (�) is identical for all bidders. Furthermore,
the function is assumed continuous and increasing in all its arguments and

to have a �nite expectation. In order to derive at optimal bid rules within

this framework, there are two elements which di¤er from the independent

private-values model. First, since a representative bidder i knows only the

realization of his signal, to evaluate Vi he takes the conditional expectation

of Vi: Second, bidders�signals are allowed to be dependent. In fact, a speci�c

kind of positive dependence called a¢ liation is used.

2.4.1 A¢ liated variables

To understand some of the derivations that follow, it is useful to establish a

few properties of a¢ liated random variables. The appendix of Milgrom and

Weber [77] provides a thorough treatment of this concept, and Naegelen [80]

discusses several aspects and gives references to the primary literature. For

our purposes, it is su¢ cient to understand a¢ liation among two variables,

so the general case is not examined.
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Assume two random variables X and Y having a joint density function

fX;Y (x; y) and where FY jX (yjx) and fY jX (yjx) are, respectively, the condi-
tional cumulative distribution function and the conditional density function

of Y given X = x. A necessary condition for X and Y to be a¢ liated is that

for all x0 � x and y0 � y;

fX;Y (x; y) fX;Y (x
0; y0) � fX;Y (x0; y) fX;Y (x; y0) . (2.20)

We denote this expression the a¢ liation inequality. An interpretation of

it is that if one of the variables is large, it is also more probable that the

other variable is large than small. Milgrom [74] says that �variables are

a¢ liated when they are positively correlated conditional on lying in any

small rectangle.�Thus, an high-valued signal is �good news�about the true

value of the object since it is then likely that other bidders received high

signals also and, consequently, that the true value is in fact �high.�

A useful result we can deduce from this inequality is that for the two a¢ li-

ated variables X and Y , the function FY jX (yjx) =fY jX (yjx) is non-increasing
in x:

The proof of this starts with observing that if x0 � x, then we shall,

according to the a¢ liation inequality (2.20), for any t � y; have:

fX;Y (x; t) fX;Y (x
0; y) � fX;Y (x; y) fX;Y (x0; t) .

Re-arranging, we obtain

fX;Y (x; t)

fX;Y (x; y)
� fX;Y (x

0; t)

fX;Y (x0; y)

or since fX;Y (x; t) = fY jX (tjx) fX (x),

fY jX (tjx) fX (x)
fY jX (yjx) fX (x)

�
fY jX (tjx0) fX (x0)
fY jX (yjx0) fX (x0)

.

This implies
fY jX (tjx)
fY jX (yjx)

�
fY jX (tjx0)
fY jX (yjx0)

. (2.21)
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The conditional density fY jX (�j�) for which the inequality (2.21) holds is
said to have a monotone likelihood ratio; see Milgrom [73]. Integrating with

respect to t over the interval (�1; y) yieldsZ y

�1

fY jX (tjx)
fY jX (yjx)

dt �
Z y

�1

fY jX (tjx0)
fY jX (yjx0)

dt.

Finally,
FY jX (yjx)
fY jX (yjx)

�
FY jX (yjx0)
fY jX (yjx0)

. (2.22)

Next, we want to establish that for the same a¢ liated variables X and Y ,

the conditional distribution function FY jX (yjx) is non-increasing in x. A
preliminary result we need in order to prove this is that the so called hazard

rate of the distribution, fY jX (yjx) =
�
1� FY jX (yjx)

�
, is non-increasing in x.

As before, assume x0 > x; but now we suppose t > y. The inequality sign of

(2.21) is then reversed. Integrating over (y;1) yieldsZ 1

y

fY jX (tjx)
fY jX (yjx)

dt �
Z 1

y

fY jX (tjx0)
fY jX (yjx0)

dt

or
1� FY jX (yjx)
fY jX (yjx)

�
1� FY jX (yjx0)
fY jX (yjx0)

from which it follows that the hazard rate is non-increasing in x. Next, notice

that
FY jX (yjx)�

1� FY jX (yjx)
� = FY jX (yjx)

fY jX (yjx)
�

fY jX (yjx)�
1� FY jX (yjx)

� .
Since both terms on the right-hand side are positive and proved to be non-

increasing, the expression on the left-hand side must be non-increasing. Thus,

it is obvious that also FY jX (yjx) is non-increasing in x (i.e., for all y if x0 > x),
so

FY jX (yjx0) � FY jX (yjx) .

The distribution FY jX (yjx0) stochastically dominates the distribution

FY jX (yjx); see for instance Huang and Litzenberger [52]. From this, it follows
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that if g is an increasing function, then

E [g (Y ) jX = x0] � E [g (Y ) jX = x] . (2.23)

This result will prove useful because it generalizes to several variables; i.e.,

g (�) may be a function of several a¢ liated variables, and the conditioning
may be with respect to several variables. The conditional expectation func-

tion of g (�) is still non-decreasing. For a formal statement and proof of this,
we refer to theorem 5 in Milgrom and Weber [77].

.

2.4.2 First-price auctions

The structure of the maximization problem for a representative bidder i is,

as before, to maximize expected gain; i.e., to maximize the expectation of

the di¤erence between true value and bid. Since the true value is unknown

to bidders, they use the expected value of their true value Vi conditional on

the realized value of their signal and the highest of the opponents�signal.

To save notation, we denote bidder i�s signal Zi = X, and the highest signal

of the other bidders by Z(N :�i) = Y . The realized values of these random

variables are denoted x and y respectively. We assume all bidders but i use

the equilibrium strategy � (�), which is a function of their realized values
of their signals. Speci�cally, the bidder with signal Y = y tenders a bid

� (y). Bidder i seeks to maximize his expected utility E [ui (bi; x)], which is
a function of his bid and his received signal and is written

E [ui (bi; x)] = E [(Vi � bi) jX = x; � (y) < bi] . (2.24)

The important fact of the maximization problem is that bidders should eval-

uate the expectation of the true value Vi less the bid bi not only conditional

on their own signals, but also conditional on winning. This implies that they

should include the information that all other bidders received lower-valued

signals in their calculations. Failing to do this will result in the so-called

winner�s curse. If the expectation of Vi is taken conditional only on one�s
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own signal, then there is an implicit, and erroneous, assumption that the

highest of the other bids can be located anywhere on the support of this

variable. But this cannot be true of winning. According to the result stated

in equation (2.23),

E [(Vi � bi) jX = x; � (y) < bi] < E [(Vi � bi) jX = x] .

Thus, the bid should be reduced by a factor that takes the information � (y) <

bi into account such that the signal x is treated as a �rst order statistic of

the signals rather than as an unbiased estimate of Vi: The winner�s curse or

severe overbidding has been observed at auctions with inexperienced bidders;

see Thaler [106].

To continue with the bid problem, a useful piece of notation is to de�ne

the function

� (x; y) = E (VijX = x; Y = y) . (2.25)

We shall make use of the following identity of conditional expectations in

order to proceed. For two random variables X and Y ,

E (Y jX) = E [E (Y jX;Y ) jX] . (2.26)

It is an extension of the well known property of conditional expectation that

E (Y ) = E [E (Y jX)] : The proof is trivial, but tedious. Using the identity
(2.26), together with the notation de�ned in expression (2.25), we transform

the formulation of a bidder�s expected payo¤ given in equation (2.24) to

E [(Vi � bi) jX = x; � (y) < bi]

= E (E [(Vi � bi) jX = x; Y = y] jX = x; � (y) < bi)

= E ([� (x; y)� bi] jX = x; � (y) < bi) .

(2.27)

After a �nal transformation of (2.27), the optimal bid for bidder i can be
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characterized as the solution to

max
bi

��1(bi)Z
x

[� (x; y)� bi] fY jX (yjx) dy. (2.28)

The �rst-order condition of the maximization problem in (2.28) is then

�
�
x; ��1 (bi)

�
fY jX

�
��1 (bi) jx

� d ��1 (bi)
d bi

�FY jX
�
��1 (bi) jx

�
� bi fY jX

�
��1 (bi) jx

� d ��1 (bi)
d bi

= 0.

(2.29)

Since d ��1 (bi) = dbi = 1=�
0 ���1 (bi)�, equation (2.29) can be rearranged to

yield

d �
�
��1 (bi)

�
d bi

=

�
�
�
x; ��1 (bi)

�
� bi

	
fY jX

�
��1 (bi) jx

�
FY jX

�
��1 (bi) jx

� . (2.30)

Now, if the strategy � (�) is a symmetric strategic equilibrium, one should
expect that bi = � (x) or x = �

�1 (bi). Substituting this into equation (2.30)

yields the following �rst-order di¤erential equation:

�0 (x) +
fY jX (xjx)
FY jX (xjx)

� (x)� � (x; x)
fY jX (xjx)
FY jX (xjx)

= 0. (2.31)

The problem, as we have stated it, will also imply that for all x, � (x; x) �
� (x) � 0. A bidder will not submit a bid which results in a negative expected
payo¤ if he wins. Note also that � (x; x) � � (x) � 0. A bidder cannot

expect a positive expected utility when his realized signal is the in�mum

of the support of X. These two conditions together result in the following

boundary condition for the di¤erential equation (2.31).

� (x) = � (x; x) . (2.32)

Consequently, the solution to the di¤erential equation (see appendix 2.A.2)
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is

� (x) = � (x; x)�
xZ
x

L (�jx) d� (�; �) (2.33)

where

L (�jx) = exp

24� xZ
�

fY jX (sjs)
FY jX (sjs)

ds

35 .
From condition (2.22), it follows that, for all �; L (�jx) is a decreasing func-
tion of x. And since � (x; x) is an increasing function, we can conclude that

� (x) is increasing in the signal x. The bid function was derived from the

necessary conditions given by (2.31) and (2.32). To prove that the bid func-

tion constitutes a best-response, the following second-order considerations

are su¢ cient. Assume a bid � (z) is tendered when signal is x. The expected

pro�t of such a bid takes the form

�(z; x) =

zZ
x

[� (x; y)� � (z)] fY jX (yjx) dy.

Di¤erentiating with respect to z yields

�z = [� (x; z)� � (z)] fY jX (zjx)�
Z z

x

�0 (z) fY jX (yjx) dy

=

�
� (x; z)� � (z)

fY jX (zjx)
FY jX (zjx)

� �0 (z)
�
FY jX (zjx) .

(2.34)

Compare this expression with the left-hand side of equation (2.31) which may

be transformed to a similar expression as equation (2.34). Using equations

(2.22) and (2.23), we can conclude that if z < x, then �z > 0, and if z > x,

then �z < 0. This proves that the bid rule � (z) maximizes expected pro�t

only if z = x.

The bid rule (2.33) of the general symmetric model has a similar structure

as the bid rule (2.10) of the independent private-values model. The condi-

tional expectation of the true value is shaved by a factor depending on the
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number of bidders (fY jX and FY jX are functions of N ). However, while the
bid rule in (2.10) was shown to equal the expectation of the second-highest

valuation given that a bidder�s own valuation is the highest, such an intuitive

interpretation cannot be given to the bid rule in (2.33).

In the independent private-values model, we saw that bids increase with

the number of bidders. The e¤ect of increased competition is not so straight-

forward when there is a common-value element. More bidders make it neces-

sary to increase bids in order to win. But there is also another factor which

works in the opposite direction; the fear of the winner�s curse. The shaving

factor to avoid this phenomenon will increase with N . Or, equivalently, the
expected value conditional on winning will decrease with N . Without a spe-
ci�c structure of the probability distributions involved in equation (2.33), it

is not possible to determine the total e¤ect of increased competition.

2.4.3 Second-price auctions

The maximization problem of a bidder at a second-price auction is a slightly

modi�ed version of the �rst-price problem stated in (2.24). Instead of paying

his bid, the winner pays the second-highest bid. Therefore, the problem is

formulated as

max
bi

E [(Vi � � (y)) jX = x; � (y) < bi] . (2.35)

To proceed, we state the equilibrium solution and assume all other bidders

follow it. The equilibrium point of second-price auctions consists of a vector

of strategies � (zj) = E [VjjZj = zj; Y = zj] = � (zj; zj), where the last equal-
ity follows from the de�nition given in equation (2.25). Bidders submit as

their bid the expectation of their valuation conditional on their signal and

that the highest of other bidders signal equals their own signal. Speci�cally,

the bidder with signal Y = y, will in equilibrium bid � (y) = � (y; y).

We proceed by showing that if all bidders except i follow their equilibrium-

bid strategies, then it is also optimal for i to bid according to the equilibrium

solution. This procedure should now be familiar. Note that the expression
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to be maximized can be transformed to

E ([Vi � � (y)] jX = x; � (y) < bi)

= E [E ([Vi � � (y)] jX = x; Y = y) jX = x; � (y) < bi]

= E [([� (x; y)� � (y; y)]) jX = x; � (y) < bi] .

A �nal transformation of this expression gives the maximization problem

max
bi

��1(bi)Z
x

[� (x; �)� � (�; �)] fY (�jx) dy. (2.36)

The �rst-order condition of the maximization problem (2.36) is

�
�
�
x; ��1 (bi)

�
� �

�
��1 (bi) ; �

�1 (bi)
��
fY jX

�
��1 (bi) jx

� d ��1 (bi)
d bi

= 0.

From this expression, it is clear that if bidder i chooses his bid to be bi = � (x)

or x = ��1 (bi), the �rst-order condition is satis�ed since the expression in

brackets is zero; i.e., � (x; x) � � (x; x) = 0. Therefore, we have shown that
the following strategy should be followed in equilibrium.

� (x) = E (VijX = x; Y = x) . (2.37)

Note the similarity of this strategy and the simple weakly dominant strategy

of second-price auctions under the independent private-values model where

bid is equal to valuation. A similar line of reasoning can help one intuitively

understand the equilibrium solution of expression (2.37). Since it is a second-

price auction, we have already established that it is optimal to bid one�s

valuation if this is certain. In the general symmetric model, bidders have

to take the expected value of the true value. This expectation should of

course be calculated by incorporating the information of their own signals.

But why condition on that the highest signal of opponents are equal to ones

own signal? First, if assuming it was higher, then a bidder conditions on
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that he does not win the auction and this makes no sense. Neither can it be

of advantage to condition on that Y is lower than his own signal. This will

result in a lower bid submitted since the � (�; �) function is increasing in both
its arguments. And such a strategy results in that the probability of winning

is lowered while the net gain if winning is unaltered.

2.4.4 The linkage principle

An important result, which makes revenue comparisons over di¤erent auc-

tions possible, is the so-called Linkage Principle. Milgrom and Weber [77]

introduced it in a non-mathematical form (calling it �a common thread run-

ning through the results�), but in subsequent work, such as Milgrom [74], the

result is given a formal presentation. The principle applies to a general class

of auctions called standard auctions. These are auctions where the bidder

with the highest valuation wins and pays a nonnegative amount, while all

other bidders pay nothing. Both the �rst-price and the second-price auc-

tions described above are examples of standard auctions. We shall now show

how it is possible to rank the revenues generated by two di¤erent standard

auctions.

De�ne the expected payment function of the winning bidder, c; to be a

function of his signal or estimate X = x, and the value ex which he bases his
bid � (ex) on; i.e., he bids as if he received signal ex, so

c = c (x; ex) .
The payment function is strictly increasing in both its arguments, which

have support on the same interval [x; x]. At two di¤erent standard auctions,

denote the auction whose payment function increases most when its �rst

argument is increased incrementally, byA and the other byB; i.e., cA1 (x; ex) >
cB1 (x; ex) where subscripts denote partial di¤erentiation with respect to the
relevant argument and superscripts represent the auction format. The partial

derivative c1 (x; ex) is a measure of the increase in the payment function, or
seller�s expected revenue, when the bidder�s estimate x increases, but his

bidding strategy, which is based on ex, is held constant. Likewise, de�ne p to
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be the probability of winning when bidding � (ex) and estimate is x, so
p (x; ex) = Pr (Y < exjX = x) .

The expected value received conditional on the same events as above are

denoted

� (x; ex) = E (V jX = x; Y < ex) .
The functions p and � are independent of the auction mechanism. The linkage

principle states that given two standard auctions, A and B, the auction A,

which satis�es cA1 (x; x) > c
B
1 (x; x), will yield at least as large expected selling

price as auction B.

To prove this, note that a bidder, say at auction A, will maximize with

respect to ex
� (x; ex)� p (x; ex) cA (x; ex) .

The �rst-order condition for this is

�2 (x; ex)� p2 (x; ex) cA (x; ex)� p (x; ex) cA2 (x; ex) = 0. (2.38)

In equilibrium, a bidder will have nothing to gain by not basing his bid on

the true signal. Substituting in ex = x in (2.38) and re-arranging yields
cA2 (x; x) =

�2 (x; x)

p (x; x)
� p2 (x; x)
p (x; x)

cA (x; x) . (2.39)

A similar expression applies to auction format B, just substitute superscripts

A with B in equation (2.39). Hence, we obtain the di¤erence

cA2 (x; x)� cB2 (x; x) =
�
cA (x; x)� cB (x; x)

� �
�p2 (x; x)
p (x; x)

�
. (2.40)

De�ne the di¤erence of the two payment functions to be 4 (x) = cA (x; x)�
cB (x; x), which is the expression in the �rst brackets on the right-hand side.

Given our assumption, we want to show that 4 (x) � 0. The proof pro-

ceeds by showing that the converse, 4 (x) < 0, cannot be true. Taking the
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derivative of 4 (x) yields

40 (x) = cA1 (x; x)� cB1 (x; x) + cA2 (x; x)� cB2 (x; x) . (2.41)

Substituting from (2.40) in (2.41) yields

40 (x) =
�
cA1 (x; x)� cB1 (x; x)

�
+4 (x)

�
�p2 (x; x)
p (x; x)

�
. (2.42)

The �rst term in equation (2.42) is non-negative according to the funda-

mental hypothesis. Considering equation (2.42), we can conclude that if

4 (x) < 0, then 40 (x) > 0. However, according to the mean-value theo-

rem, if 4 (x) < 0, for some x, then there will be a value of x which satis�es
40 (x) < 0: This contradicts the statement above. Hence, 4 (x) � 0, and

this concludes the proof.

The Linkage Principle is stated in a rather technical form, and its use-

fulness may at this point seem somewhat obscure. The implications are,

however, powerful. As an example of its application, we shall use it to rank

the expected revenue from the �rst-price and second-price auctions in the

general symmetric model.

At a �rst-price auction the expected payment is

c1 (x; ex) = �1 (ex) .
Hence, c11 (x; ex) = 0. At a second-price auction, we have

c2 (x; ex) = E ��2 (Y ) jX = x; Y < ex� ,
so according to the result on a¢ liated random variables stated in expression

(2.23), c2 (x; ex) is an increasing function in both arguments; i.e., c21 (x; ex) � 0.
From this it follows that c21 (x; ex) � c11 (x; ex). Applying the Linkage Principle,
we can conclude directly that expected payment in the second-price auction

is never less than for the �rst-price auction, but it may be larger.

The most important observation for the seller in deciding the auction for-

mat is that the winning bidder�s pro�ts are positively linked to his private
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information. To the extent the seller can undermine this private informa-

tion, he will increase the price obtained on average. This is exactly what

the Linkage Principle states. An auction mechanism that generates a link

between bidders�estimates and other relevant variables, will most success-

fully close the gap between the highest willingness to pay and the winning

bid. By submitting bids at the English auction, bidders are forced to reveal

some private information they have, and this induces bidders to change their

beliefs about other bidders�valuations. Bidders are more con�dent in their

revised than in their original estimates and bid more aggressively. At the

�rst-price, sealed-bid auction, on the other hand, there is no link between

bids and other variables, thus making it possible for the winning bidder to

take full advantage of his private information.

We end the discussion of the general symmetric model with a short com-

ment on the e¤ect of risk aversion on expected revenue. We saw that in

the independent private-values model, risk aversion tends to raise bids at

the �rst-price auction. The same e¤ect is present in the general symmetric

model; i.e., if expected pro�ts are non-negative (as they always are in the in-

dependent private-values model), then risk aversion gives rise to higher bids.

But the common-value element in this model introduces another opposing

e¤ect. In equilibrium, there is a possibility of realizing negative pro�ts, and

this e¤ect promotes bidders to bid more cautiously if they are risk averse.

Thus, the total e¤ect is ambiguous.

2.5 Multi-unit auctions

Thus far we have surveyed auction theory developed for single-unit auctions.

The two main models where valuations are either private and independent or

a¢ liated have been covered, and bid strategies and expected revenues which

emerge from �rst and second-price mechanisms, have been explained.

An important extension of auction theory is to consider multi-unit auc-

tions. This is an extensive topic, but a few comments concerning the special

problems they pose are o¤ered.

At many real-world auctions, several units of the same good are for sale.
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For instance, almost identical lots or units of perishable goods in agriculture

and �sheries that arrive at the market one day are sold by way of auction the

same day. At a single-object auction, the seller must chose, for instance, be-

tween common selling procedures like a �rst- or second-price auction format

and between a closed or open auction format. An extra dimension is added

to the seller�s auction design problem in the case of multi-object auctions;

a choice between selling the goods sequentially or simultaneously must be

made.

At sequential auctions, a dynamic element is introduced in the strategic

considerations. Consider the case where bidders only want one unit. If

bidders use the equilibrium single-shot bid strategy for each good, then those

with high valuations will win the �rst goods at relatively high prices leaving

the last goods to those with lower valuations. In fact, such a declining price

pattern is empirically observed in many auctions, but for other reasons than

the myopic strategy rule mentioned above. Rational bidders will, of course,

anticipate such a declining price pattern and be reluctant to reveal their true

valuations in the �rst periods of the game. Thus, bid strategies become more

complex at multi-unit auctions than at single-shot auctions.

Several empirical analyses on sequential multi-object auctions have ob-

served that prices tend to decline on average. The �rst objects sold achieve

higher prices on average than those o¤ered later; see for instance Ashenfelter

[2] and Lusht [65]. The phenomenon has been termed the afternoon e¤ect

(see for instance Beggs and Graddy [9]) or the declining price anomaly (see

McAfee and Vincent [69]). Apparently, the law of one price is violated if sim-

ilar objects show a decreasing price pattern, since the straightforward game-

theoretic equilibrium suggests that bidders will take any e¤ects of residual

demand into consideration. Ashenfelter suggests that declining prices may

be explained by risk aversion. The intuition is that if bidders are risk averse,

then the prices obtained in the �rst round is equal to the expected price

in the second round plus a risk premium for the associated price uncer-

tainty in the second round. McAfee and Vincent show that Ashenfelter�s

intuition is correct for only a special case of risk averse preferences; the case

of non-decreasing absolute risk aversion. McAfee and Vincent argue that this
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assumption is an unsatisfactory characterization of risk attitudes. Donald,

Paarsch, and Robert [23], on the other hand, observe a rising price pattern,

on average, at a sequential multi-unit auction. Assuming risk neutrality, but

allowing multi-unit demand, their model predicts that the expected price

path is increasing.

The case of simultaneous auctions have been less analysed than sequential

auctions. The main problem of a closed simultaneous auction is that bidders

might be constrained �nancially or in capacity, in which case they risk win-

ning too many units if they tender bids on more units than they want. This

has the unfortunate e¤ect for the seller that it reduces competition on any

lot. By allowing bidders to set a maximum number of units they want, the

problem might be overcome. An interesting example of an open simultaneous

auction format is the selling by the US. government of spectrum rights to

private companies. See McMillan [72] and Milgrom [75] for a description of

this format.

2.A Appendices

2.A.1 Expected revenue at �rst-price auctions

Expected revenue at �rst-price auction given by equation (2.14) are explained

in some detail in this appendix. From equations (2.14), (2.10) and (2.1), we

have

E
�
RI
�
=

Z v

v0

�
v � 1

[FV (v)]
N�1

Z v

v0

[FV (u)]
N�1 du

�
�

N [FV (v)]
N�1 fV (v) dv

= N
Z v

v0

v [FV (v)]
N�1 fV (v) dv

�N
Z v

v0

fV (v)

Z v

v0

[FV (u)]
N�1 du dv.

(2.43)
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Consider now the outer integral in the second term of (2.43) and integrate this

by parts, where fV (v) is one part and
R v
v0
[FV (u)]

N�1 du is the other part.

The derivative of the latter part with respect to v equals [FV (v)]
N�1 , while

the anti-derivative of the �rst part is FV (v). Recall also that FV (v) = 1:We

then haveZ v

v0

fV (v)

Z v

v0

[FV (u)]
N�1 du dv

= FV (v)

Z v

v0

[FV (u)]
N�1 du

����v
v0

�
Z v

v0

FV (v) [FV (v)]
N�1 dv

=

Z v

v0

[FV (u)]
N�1 du�

Z v

v0

[FV (v)]
N dv.

(2.44)

Changing the variable u with v in (2.44) and substituting into (2.43) yields

E
�
RI
�
= N

Z v

v0

v [FV (v)]
N�1 fV (v) dv

�N
Z v

v0

[FV (v)]
N�1 dv +N

Z v

v0

[FV (v)]
N dv

= N
Z v

v0

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv.

2.A.2 Deriving the bid function in the a¢ liated model

The solution of a di¤erential equation like (2.31) with boundary condition

(2.32) is (see for instance Berck and Sydsæter [11]):

� (x) = � (x; x) exp

�
�
Z x

x

fY jX (sjs)
FY jX (sjs)

ds

�

+

Z x

x

� (�; �)
fY jX (�j�)
FY jX (�j�)

exp

�
�
Z x

�

fY jX (sjs)
FY jX (sjs)

ds

�
d�.
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The �rst term vanishes. Notice that from equation (2.22) it is a fact that

fY jX (sjs)
FY jX (sjs)

�
fY jX (sjx)
FY jX (sjx)

.

Using this we can evaluate the exponent of the exponential function in the

�rst term, so

�
Z x

x

fY jX (sjs)
FY jX (sjs)

ds � �
Z x

x

fY jX (sjx)
FY jX (sjx)

ds

= �
Z x

x

1

FY jX (sjx)
dFY jX (sjx)

= � log
h
FY jX (sjx)

��x
x

i

= log

�
FY jX (xjx)
FY jX (xjx)

�

= �1,

(2.45)

since FY jX (xjx) = 0: The solution of the di¤erential equation then reduces
to

� (x) =

xZ
x

� (�; �)
fY jX (�j�)
FY jX (�j�)

exp

24� xZ
�

fY jX (sjs)
FY jX (sjs)

ds

35 d�.

De�ne

L (�jx) = exp

24� xZ
�

fY jX (sjs)
FY jX (sjs)

ds

35 . (2.46)

Now,

dL (�jx) = exp

24� xZ
�

fY jX (sjs)
FY jX (sjs)

ds

35� fY jX (�j�)
FY jX (�j�)

�
d�.
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Indicating that the solution of the di¤erential equation can be expressed as

� (x) =

xZ
x

� (�; �) dL (�jx) ,

which can be integrated by parts to yield the following:

� (x) =

Z x

x

� (�; �) dL (�jx)

= [� (�; �)L (�jx)]xx �
Z x

x

L (�jx) d� (�; �)

= � (x; x)L (xjx)� � (x; x)L (xjx)�
Z x

x

L (�jx) d� (�; �) .

From expression (2.46) it is obvious that L (xjx) = 1; and from the derivation
in (2.45) it follows that L (xjx) = 0. Thus, we �nally obtain

� (x) = � (x; x)�
xZ
x

L (�jx) d� (�; �) .



Chapter 3

The analysis of auction data:
Methodological comments

3.1 Introduction

We have seen that auctions can be modelled as games, and that they have

been studied extensively for some time. What about empirical studies of

auction markets? Econometric analyses in this �eld, as in any �eld, can

measure e¤ects or test hypotheses, as well as estimate structural elements in

order to compare auction formats. Empirical work can also be used to detect

collusion and to evaluate the impact of mergers; see Bajari [4]. Empirical

analyses of auction data have attracted interest because some regard them as

the best test of game theory available; see Sutton [105]. To state the purpose

of empirical (econometric) analysis to be theory appraisal, however, requires

clarifying what we mean by testing.

We begin by referring to another �eld of economic theory that uses game

theory extensively as an analytical tool� oligopoly theory� because this �eld

illustrates the reason for a growing concern among economists that game

theory is unable to produce testable hypotheses. This discussion leads to a

presentation of current tensions in economic methodologically about what

makes a particular theory good science, and to what extent testability is a

part of it. Next, we introduce a speci�c bit of auction theory in more detail in

49
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order to discuss its empirical content and whether it is reasonable to consider

it to be a test case of game theory. In order to appreciate the di¢ culties and

limitations of empirical analyses of auction data, we conclude the chapter by

a presentation of the main empirical strategies used.

3.2 Game theory and empirical analysis

The �eld of industrial organization and, in particular, oligopoly theory has

experienced a transformation of late with the introduction of game-theoretic

models. Oligopoly theory is concerned with markets having only a few

producers� how these producers decide what prices to charge and what quan-

tities to produce. Prior to game theory�s being introduced, the standard

answer to what we might expect to happen in an oligopoly market was that

�anything can happen.�There simply were no analytical tools available that

could be used to analyse markets in which strategically-dependent actors

existed. Enter game theory.

Fisher [29] discussed what we now know about such markets after hav-

ing experienced an explosion in theoretical work. The somewhat depressing

answer is that we still can summarize the �eld with �anything can happen.�

The characteristics of the game (for example, whether oligopolists compete

on price or quantity; or, to take another example from so-called entry deter-

rence models, whether entry is modelled as sequential or simultaneous) that

the researcher is free to specify, are important for the solution. In general,

applying game theory to oligopoly produces a large number of plausible so-

lutions or equilibria. Although many stories have been told about oligopoly

markets, no broad, unifying theory seems available. Such unifying (or gener-

alizing) theories, proceeding from wide assumptions to empirical predictions,

are the strengths of economics. Fisher has argued, however, that opposed to

generalizing theory which tells us what must happen, there is what might be

termed exemplifying theory which tells us what can happen. Typically, mod-

els in this tradition are stripped bare, concentrating on one special feature

and making very simplifying and unrealistic assumptions on other important

phenomena. The use of exemplifying theory is common, particularly in the
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�eld of industrial organization and oligopoly theory. The stories that are

told may be interesting and illuminating, but they lack generality. In his

methodological appraisal of several branches of economics, Blaug [13] was so

unhappy with the current state of economics that he wrote of the �crisis in

economics.�He stressed that the entire �eld of industrial organization has

very few or no de�nite empirical predictions about market behavior.

A similar attack came from Sutton [104]: He noticed that the game-

theoretic approach in its extensive form has made possible many modelling

approaches and speci�cations of relevant details. It may be argued that the

game-theoretic modelling practice has been a success because each model

apparently explains a phenomenon. The trouble is, however, that the results

depend very delicately on small details, thus making robust predictions of

behavior di¢ cult. Moreover, Sutton was concerned that these games all too

often have too many Nash equilibria.

Game theory is concerned with modelling rational behavior in markets

with strategically-dependent participants. While standard economic theory

has little to say about such markets, game theory has a lot to say. However,

game-theoretic models are about concepts like strategies and players�beliefs,

which are typically unobservable. Results are very sensitive to the details:

slight changes in the assumptions will often produce a markedly di¤erent

equilibrium solution. Finally, many possible solutions or equilibria can co-

exist, making it hard to predict the actual outcome. Therefore, critics have

argued that it is a theory that does not generate testable hypotheses.

How do we respond to the criticisms of Fisher and Sutton? Theorists and

empiricists alike with little patience for abstract methodological discussions

are likely to respond: What else is new? The fact that the world is complex

and that game theory con�rms this obvious fact cannot be a criticism of the

very same theory. In fact, the problem may be turned upside down. Is the

call for simple and robust models, a call for over-simpli�cation? Bianchi and

Moulin [12] have put it this way:

[Game theory] is perhaps better thought of as showing the

poverty (degeneration?) of traditional analysis, in that game
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theory is what one gets if one admits strategic interaction into

the analysis of optimizing behavior, yet game theory is unable�

so far, anyway� to generate the testable propositions that most

positivist defenders of the traditional analysis have implied was

there.

3.3 Testing in what sense?

If it is a relevant objection to game theory that it is untestable, then we have

to clarify what we mean by testing. Rather than summarizing what has been

going on in the philosophy of science for the last sixty years, we limit the scope

in this section to presenting an ongoing conversation in economics about these

matters. In particular, we shall comment on the positions associated with

Blaug [13] as well as McCloskey [71, 70].

When discussing the research practice of economists, it is necessary to dis-

tinguish between what they say they do and what they actually do. Although

not many economists are interested in the �ner details of methodological po-

sitions in their �eld, most have been exposed to a textbook chapter devoted

to methodology. The view on methodology thus expressed might be summa-

rized in what McCloskey terms the Ten Commandments of Modernism, of

which the �rst two read: �1. Prediction and control is the point of science.

2. Only the observable implications (or predictions) of a theory matter to

its truth�([71, p. 143]). The method to carry out these dicta is somewhat

vaguely understood by working economists, but the more methodologically

inclined members of the tribe would say that the program of falsi�cation-

ism associated with Karl Popper should form the basis. However, econo-

mists seldom, if ever, adhere to this program. In practice, they do what the

peers of the profession (i.e., the referees of the journals) �nd passable. And

what is passable is sometimes far from the o¢ cial preaching. Now, both

Blaug and McCloskey agree that what is practiced is very di¤erent from the

methodological program mentioned above, but their reactions to this fact

are fundamentally di¤erent. Blaug insists that economics as a science must

take testing seriously by always confronting theories with data. Moreover,
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when actually doing this, we must do it with some risk at stake. That is, we

must formulate hypotheses such that we can answer the ultimate Popperian

question:

What events if they materialised would lead us to reject that

program? A program that cannot meet that question has fallen

short of the highest standards that scienti�c knowledge can attain

([13, p. 248]).

A lot of sloppy practice proclaiming to be empirical testing goes on ac-

cording to Blaug:

But, surely, economists engage massively in empirical research?

Clearly they do but, unfortunately, much of it is like playing ten-

nis with the net down: instead of attempting to refute testable

predictions, modern economists all too frequently are satis�ed

to demonstrate that the real world conforms to their predictions,

thus replacing falsi�cationism, which is di¢ cult, with veri�cation,

which is easy ([13, p. 241]).

The darker side of veri�cation and econometric practice, is portrayed by

Leamer [63] in a paper worth reading not only for its discussion of econometric

practice and suggested remedies, but for the witty formulations as well.1

So why is falsi�cationism di¢ cult? The so-called Duhem�Quine thesis

o¤ers an explanation. It states that no single hypothesis can be falsi�ed

conclusively, because we always test it together with auxiliary statements,

see Cross [21]. Consequently, we do not know whether it is the hypothesis

itself or some of the assumptions that cause a rejection. Now, this fact of

(or problem with) testing should not paralyze us in our empirical e¤orts of

theory appraisal. Since we can always explain an empirical refutation of

theory by referring to the assumptions, and since we often can repair the

same theory so that it conforms with data, we should carefully state what

1How about: �If you torture the data long enough, Nature will confess�(attributed to
Ronald Coase) or �There are two things you are better o¤ not watching in the making:
sausages and econometric estimates.�
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ad hoc auxiliary assumptions (or �immunizing stratagems�which the late

Popper called them) are not allowed to be introduced in this repair job.

McCloskey, on the other hand, does not regret that the o¢ cial method-

ology of economics is not followed by economists. There is a lot more to the

disciplined inquiry into a subject which constitutes a science than any rule

bound methodology can capture. Moreover, believing that philosophers of

science are authorities on the proper scienti�c method in all �elds is some-

what naïve. To judge an academic work in economics solely by the standards

of falsi�cationism is, therefore, highly inadequate. A fundamental part of any

scienti�c e¤ort is to try to persuade fellow economists working in the same

�eld that our contribution is worth while. In so doing, we make use of many

techniques including literary such as an appeal to authority or reasoning by

analogy. In order to understand how economics is done, we should draw on

many di¤erent sources, such as rhetoric (in the classical sense of the word, and

not the common, debased meaning) and literary criticism. Scienti�c work is

an ongoing conversation. To be sure, there are some elements, if present,

which constitute a good conversation, and McCloskey describes some sound

practices; be honest, don�t shout, and pay attention. To encourage high

standards of the cultured conversation, which is what science really is, is

legitimate, but McCloskey resists proposing one, and one only Methodology

(with a capital M) that dictates the proper method for all scienti�c investi-

gations. In particular, if you o¤er the program suggested by Blaug, there is

only one option left for economists on how to proceed, and that is to keep

silent. Nothing can be said that will stand the test of the demanding� if not

impossible� falsi�cationist program.

Paul Feyerabend, with his interest in the history of science, takes the

argument even further. We should acknowledge that scienti�c practice that

is in many senses irrational, nevertheless makes important contributions to

the progress of scienti�c knowledge. So the best rule to adopt might just

as well be the rule: �anything goes.�Although this rule has been ascribed

to Feyerabend as one of his basic rules and, accordingly, been ridiculed, his

intention is rather to convince us that �all methodologies, even the most

obvious ones, have their limits�, [27, p. 231].
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[This rule] does not mean that there are no rational method-

ological principles but only that if we are to have universal method-

ological principles they will have to be as empty and inde�nite

as �anything goes�; �anything goes�does not express any convic-

tion of mine, it is a jocular summary of the predicament of the

rationalist, (Feyerabend [28, p 188]).

Although opinions are highly divided in this discussion, there are a lot

of things on which we can agree. McCloskey encourages the practice of

�confronting theories with data.� In fact, when McCloskey discusses �The

rhetoric of signi�cance tests� [71, ch. 8], several useful pieces of advice on

empirical practice are given. To call an empirical analysis for �testing of

theory�is, however, probably a bit too pompous for McCloskey.

The practice of economic researchers, as evident in the publications in

refereed journals, suggests that falsi�cationism is too strict a program in

economics. Nevertheless, interest in testing empirically meaningful hypothe-

ses prevails.

3.4 Auction theory and its empirical content

Having discussed the di¢ cult task of obtaining empirically meaningful hy-

potheses from oligopoly theory, we want to examine the case of auctions in

more detail. When describing the behavior at real-world auctions, economists

have proposed models that explicitly account for the strategic considerations

involved. Unlike the traditional static optimization by market participants,

on which much of standard economic theory relies, this approach emphasizes

the strategic interactions among the agents and, consequently, the behavior

at auction markets are modelled as games; see chapter 2.

But what is it about auctions that makes auction theory better suited

than oligopoly theory to produce meaningful refutable hypotheses? Sutton

[105] has emphasized that the various auction formats, the �rules of the

game,�tighten the strategy space (the extensive form of the game) to such

an extent that it permits sharp, testable predictions. In oligopoly theory, we



56 CHAPTER 3. METHODOLOGICAL COMMENTS

mentioned that the model builder had to decide, for instance, in what order

the various moves of the game were played, and that several alternative

speci�cations are often reasonable. Not so in auction theory: the legal rules

of the auction format will clearly specify the order of moves. So when we look

at speci�c auction markets, we can potentially test some of the hypotheses

game theory produce conditional on being in a given model world. Let us

take a closer look at the hope expressed by Sutton.

A speci�c model. Several auction formats exist and several sets of as-

sumptions regarding the players might be speci�ed. This gives rise to many

di¤erent games. For now, concentrate on the �rst-price, sealed-bid format

within the symmetric independent private-values model, see section 2.3.2 of

chapter 2.

We brie�y repeat the model results by introducing some compact nota-

tion. Each bidder�s valuation, Vi; i = 1; :::;N ; with support [v; v] � [0;1),
is distributed according to the cumulative distribution function FV (vi) with

density fV (vi) :Bids are modelled as being increasing functions of valuations,

and it turns out that the number of competitors, N , is part of the game-
theoretic equilibrium strategy. In a symmetric equilibrium, we can drop the

subscript i, and in chapter 2, we reported the symmetric bid function of this

model, �, to have a closed form solution equal to:

� (vi;N ; FV ) = vi �
1

[FV (vi)]
N�1

viZ
v

[FV (u)]
N�1 du. (3.1)

The winning bid can be shown to be equal to the expectation of the second-

highest valuation, hence the winning bid takes the form:

max (bi) = E
�
v(2)
�
= N

vZ
v

[vfV (v)� 1 + FV (v)] [FV (v)]N�1 dv. (3.2)

Equations (3.1) and (3.2) tell us something about bidding behavior under a

set of assumptions. The equilibrium-bid strategy is to shave ones valuation
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by a factor depending on the number of bidders as well as the distribution

of values. What empirical predictions can we draw from this?

The empirical predictions. Following La¤ont [60], who reviewed the

distribution-free predictions of the main auction models, we can at least

say that, conditional on being in the independent private-values model, the

following predictions obtain.

First, bid functions are increasing and concave functions of the number of

bidders. An obvious requirement for testing this is that we have observations

on all bids. This is the case for the closed �rst-price auctions, but not for

the open �rst-price format (the Dutch auction) where only the winning bid is

observed. It is, however, not obvious how we can test the prediction. Binding

reserve prices and dynamic e¤ects over time complicate the test procedure.

Second, it follows immediately that winning bids are also increasing and

concave functions of the number of bidders.

Third, bid functions increase when valuations increase in the strong �rst-

order stochastic sense. This seems obvious, but is not that easy to test.

We do not have observations on valuations. Developments in structural es-

timation techniques, pioneered by Paarsch [84, 85], have made it possible

to estimate the structural elements from the winning bids. An important

question is whether the unobserved values can be determined from the ob-

served bids. It turns out that the distribution of values is identi�able under

the independent private-values model and, consequently, that it is possible

to uncover the unobservable strategies bidders use. There is considerable

novelty in this approach, as noted by Sutton ([105]). However, the approach

takes the theory as given, and is not a test of the theory. If we assume that

the bid level is an increasing function of the valuation, and uncover valuations

under this restriction, then we have not proved that bids increase with valu-

ations. La¤ont [60] noted that the prediction is not entirely distribution-free

either.

Finally, the most important prediction is that �rst- and second-price auc-

tions are revenue equivalent. While the revenue equivalence theorem is beau-

tiful and surprising, the proposition is di¢ cult to test. Normally, only one
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auction format is used at a particular market. In those rare instances where

actually both mechanisms have been used in the same market, we must

assume that the auctioneer considers the mechanisms to be identical with

respect to revenue generated. To assume otherwise, would be to violate the

axiom of rational economic agents, on which much of economic theory relies.

Admittedly, this line of reasoning may be pushing the rationality assumption

too far. From a Bayesian learning perspective, an auction house may want

to test a di¤erent format to see whether revenues increase. If the auction

house returns to the old format, then we at least have an indication that the

auction house does not consider the formats to be equivalent with respect to

revenues.

The prediction that bids are increasing in valuations as well as in the

number of bidders (at least in the lower range of N ), have strong a priori
support. It is a prediction that follows from basic economic axioms, and any

tests that reveal the opposite, will question the application of the model to

the market or the quality of the data rather than convince economists that

bidding is irrational.

Above, only one simple auction model was brie�y presented. A survey

of di¤erent models will, however, reveal that slight changes in the assump-

tions will alter important results. Return again to the Revenue Equivalence

Theorem� which is based on the independent private-values model. If we

assume bidders to be risk averse instead of risk neutral, the Revenue Equiv-

alence Theorem breaks down. Expected revenue will in that case be highest

at the �rst-price auction. How to decide on which model world� what set

of assumptions that apply� is, therefore, critical in any empirical analysis.

Risk neutrality versus risk aversion is one critical assumption; another is

whether bidders know the exact number of competitors or perceive this as a

random variable. Perhaps the most fundamental assumption is whether bid-

ders�valuations are independent or correlated. More general auction models

are notoriously complex and have not yet been structurally identi�ed for

empirical analyses.

To return to the view of Sutton, are we able to test auction theory? It is

true that the auction format puts structure on the modelling process; that
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�certain institutional features [...] allow strong constraints to be placed on

the strategy space� [105, p. 317]. But important unobservable variables,

such as risk aversion or the correlation of valuations, have to be assumed

absent or present. Thus, auction modelling has the same inherent problems

as many other �elds of industrial organization economics. The results depend

on the details of the assumptions. It is not the extensive form of the game

that creates the problems, but rather what characterizes agents�information

sets and preferences. The number of reasonable models for any given market

may quickly become intractable when combining di¤erent speci�cations of

risk aversion and correlations of valuations. At this point, we have not even

introduced the problem that endogenous bid participation creates. Thus, in

a sense, we are back to the complaint of Fisher: �Anything can happen.�

Hansen [42], in an early paper on empirical testing of auction theory,

recognized that predictions are not robust across all auction models. His

careful formulation is worth noting [42, p. 156]:

Although much of the empirical work is presented as classical

hypothesis testing, it is then probably better to think about that

work as informal Bayesian learning that is only guided by the

structure common to all auction models.

Experimental economics. To be sure, there is one method of testing

theory while at the same time controlling for the model assumptions: ex-

perimental methods. For surveys of the �eld, see Smith [101, 102]. The

researcher in an experimental setting can assign valuations to participants

that are, for example, private and independent, or private and correlated,

or valuations are determined by an uncertain common value with a given

probability distribution.

A representative work in this tradition is Cox et al. [19]. Subjects in their

experiments were given independent, private values drawn from a uniform

distribution. Monetary valuations were induced by revealing resale values of

the auctioned object. Bidders in the experiment knew the number of bid-

ders and their own monetary valuation, and the distribution of competitors�
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monetary valuations. The observed bid behavior was interpreted within dif-

ferent competing models. They found that a model of constant relative risk

aversion best explained behavior. In fact, they state that the �model, tested

directly by introducing lump-sum payments or charges for winning, is not

falsi�ed by the new experiments.�Thus, the motivation and design of the

experiments were clearly aimed at theory testing.2

We believe that experimental economics provides useful information and,

to some extent, can be taken as tests for di¤erent competing models. But

models are formulated in order to understand what goes on in the real world,

and, sometimes, because we want to make practical use of them. Auction

models are relevant for policy questions and it is, therefore, somewhat un-

satisfactory to only be able to test them unconditionally in experimental

settings. Following Harrison [44], the most obvious problem associated with

many experiments is that the subjects di¤er from what we observe in com-

plex real-world markets. Apart from having less experience, the compensa-

tion may prove too small for inducing optimal behavior. Most important,

probably, is the fact that subjects in experiments are drawn from a non-

representative population, typically from a population of university students.

The population of real-world markets are a selected group in the sense that

they have survived in a competitive market.

3.5 Empirical strategies for analysing auction

data

Empirical work concerning auction data may be classi�ed by what the goals

are or by the methods employed. Of course, the goal will determine the

appropriate methods. In addition, methods, auction formats, and general

market characteristics will give rise to empirical challenges. In this section,

we present all the three topics (goals, methods and challenges) that current

research is occupied with.

2As an aside, the theory was soundly rejected because none of the bids lay exactly on
a bid function that theory would predict. (Thanks to Harry J. Paarsch for pointing this
out.)
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Methods. Let us begin by introducing the two main classes of statisti-

cal analyses that are employed using auction data. So-called reduced-form

econometrics is the traditional method. Typically, bids are considered to be

the dependent variable and regressed on various covariates in order to an-

swer questions like: To what extent do bids increase with competition? Are

bidders symmetric in their cost structure? Are some bidders better informed

than others? In a series of papers, Hendricks and Porter examined the latter

question; see for example [48, 49]. A criticism against testing reduced-form

implications of bidding behavior, is that these tests often have low statistical

power; see Bajari [4].

A recent approach is the structural econometric analysis of auction data.

At least three statistical methods are associated with this approach: Paramet-

ric, semi-parametric, and non-parametric methods. The core of the structural

approach is that there is a seamless mapping between the economic model and

the statistical method used to interpret the data. The structural elements of

the economic model (the unknown parameters of the model) are estimated

directly. In particular, structural auction models allow us to estimate the

conditional distribution of bidders�valuations, given observable covariates,

nonparametrically, and to recover the individual valuations underlying sub-

mitted bids. If it is di¢ cult or impossible to estimate the distribution of

valuations (for example, because of too few observations or heterogeneity in

sold objects), one may want to assume a parametric form for the distribution

of valuations; see Reiss and Wolak [94]. Structural estimation is often con-

cerned with model selection or normative issues like: Can the auction format

be improved upon? What is the optimal reserve price?

In the pioneering work of Paarsch [84], the goal was to determine whether

a speci�c auction market could best be modelled as a private-values or

common-value environment. The distinction between the two environments

(or paradigms as Paarsch called them) is important in order to choose the

best model for addressing important and practical questions regarding auc-

tion design. In La¤ont, Ossard and Vuong [62], a main �nding was that

their structural model failed to describe the behavior of a large bidder. Their

conclusion was that their market was not composed of symmetric bidders.



62 CHAPTER 3. METHODOLOGICAL COMMENTS

Deciding on the optimal reserve price was the topic of Paarsch [85].

Challenges. In general, following Reiss and Wolak [94], a researcher in

auction studies knows: (1) the auction format, (2) the winning bid, and pos-

sibly all bids, (3) item-speci�c information, (4) auction-speci�c information,

and (5) bidder-speci�c information. Under ideal conditions, the economist

has complete information; for example, there are no relevant item-speci�c

or bidder-speci�c information that bidders, but not the econometrician, ob-

serve. In practice, researchers have precise information on the auction format

and the submitted bids. Information on item-, auction-, and bidder-speci�c

information, however, is most likely to be imprecise.

In addition, there are all kinds of challenges to the empiricist. Let us

mention a few. First, there are technical challenges with respect to mod-

elling. Even if we have a clear understanding of the auction format and the

behavioral assumptions about bidders, the resulting model may prove to be

analytically intractable.

Second, a special problem in most modelling situations is whether bid

decisions are exogenous or endogenous. Normally, one assumes a known

number of potential bidders since this simpli�es the modelling. If a low

percentage of bid opportunities actually lead to submitted bids, this questions

the assumption of exogenously determined number of bidders.

Third, do we have a large enough data sample? Even a relatively large

dataset consisting of 200 auctions may be too small for sensible estimation.

Fourth, and related to the dataset size, is the question of possible market

dynamics. The time dimension is an extensive problem in market economics.

How do we de�ne the market not only with respect to geographical space

(which is normally well de�ned at auction markets), but also with respect

to time? Structural changes in bidder behavior can be di¢ cult to discover.

Moreover, if they do occur and are handled by the researcher, they will reduce

the degrees of freedom in an econometric analysis.

Finally, we mention the ideal prerequisite that auction studies should have

relevance to other markets. This brings us back to the criticism of Fisher

outlined in section 3.2. We think the dry remark by Hendricks and Porter
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[49] is the appropriate one:

To economic theorists ... dependence on institutional detail is

less than desireable, but it appears to be the price that must be

paid for relevance.

We have only mentioned a few contributions as examples of the di¤erent

main strategies for analysing auction data. Given the explosion in recent em-

pirical work on auctions, we �nd it advisable not to cover all important contri-

butions. Instead, we refer the interested reader to seek out other sources. For

a short survey of empirical work on auctions; see Hendricks and Paarsch [47].

Paarsch and Hong [86] is the most comprehensive presentation of empirical

studies using a structural approach. In addition to giving a good background

on the multiple technical aspects any researcher in this �eld has to be famil-

iar with, the book presents the di¤erent contributions using a consistent and

clear notation. Reiss and Wolak [94] evaluated several contributions of struc-

tural econometric modelling in industrial organization economics, including

works on auctions. Athey and Haile [3] focused on nonparametric approaches

to auctions.

3.6 Concluding remarks

To what extent economic theories should be subject to empirical testing is

controversial. Most empirically-oriented economists will agree that it is a

good thing to confront theories with data. In the case of auctions, there is

considerable interest in trying to develop testable propositions, but the main

problem is that of deciding among alternative assumptions for a speci�c

auction market.

It might be argued that the formulation of theories is about developing

concepts that should have explanatory power in explaining real-world behav-

ior. But stringent, falsi�cationist testing of the theories may be too ambitious

given the complexity of markets and the preferences of �agents.�In practice,

in work on auction data, theories and testing are used as model selection

tools. Finding the model with associated assumptions that best �t the data,
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is a pragmatic and useful strategy. In turn, this can be used to understand

what goes on at auction markets, and eventually� if we are lucky� we may

be able to o¤er policy recommendations.



Chapter 4

The auction format

4.1 Introduction

At Norwegian mackerel auctions, the object for sale is the total catch cap-

tured by a vessel on a voyage. A catch may consist of several lots according

to �sh species or �sh size. Catches from several vessels are sold simultane-

ously at a �rst-price, sealed-bid auction with a known reserve price. Catches

can di¤er substantially in size, but the �sh are basically homogenous. The

most distinguishing characteristic is �sh size, which is measured by average

weight. However, some quality variables concerning vessel-speci�c harvest-

ing, storage and preservation methods, are reported. Potential buyers may

bid on speci�c catches, and they are free to bid on as many they like.

Bidders are linked to the auction house online, and must place their sealed

bids within one hour from the commencement of the auction. During the

season, up to four auctions are held each day, normally at �xed times: 06:00,

13:00, 18:00 and 22:00. As soon as the catches are allocated at the close of

the auctions, the bid information is made public. Bidders learn immediately

how many bids were submitted on the individual catches and what their

competitors bid.

When bidding on several catches at an auction, bidders can set capacity

limits and give priorities to their bids. We describe these features in detail

below. The auction rules are regulated by the document General business

65
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rules [33] issued by the auction house Norges Sildesalgslag (NSS), which is

located in the city of Bergen, Norway.

4.2 Delivery sectors

The auction is characterized as a distance auction where the captain of a

vessel, which is still at sea, sends a detailed description of the catch to the

auction house. In turn, the auction house provides information to all poten-

tial buyers and solicits bids. Given that the catch is sold, the seller is then

told where his buyer is situated and can set sail directly to the buyer�s loca-

tion, which ensures that little time is lost when bringing the catch to a plant,

thus maximizing the quality of the fresh �sh and minimizing transportation

costs to the seller.

Since the seller covers all costs involved in bringing the �sh to the buyer,

the location of the buyer is important. In fact, the seller sets a preferred
geographical sector of delivery or bid area; i.e., he states a northern and
southern port on the coast line. Only bidders situated inside this area can

submit bids that are legally binding to the seller. Bidders situated outside

the sector are entitled to submit bids, but in case one of them is declared the

winner, his bid is just considered an o¤er to the seller, and it can be refused.

Thus, an asymmetry among bidders is created. It is not an asymmetry

concerning information, but rather a cost advantage for inside bidders. If

an outside bidder is to win, then he must place a bid which is not only

the highest, but it must be su¢ ciently large for the seller to consider it

worthwhile to incur the extra costs involved in accepting it.1 We use the

terms inside and outside bidders to denote bidders that are inside or outside

the delivery sector. Notice that it is the delivery sector for an individual catch

1Obviously, it may turn out to be quite a complicated problem to allocate the lots after
the bidding process is over. A computer algorithm produces the result, but during the
validation, some human interaction is necessary. In particular, in case an outside bidder
has the highest bid, a call must be made to the vessel owner to �nd out if he accepts
the bid. Therefore, the computer validation is halted and then continued after a response
from the involved seller is received. The �nal allocation may take just a few minutes, but
also up to an hour.
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which determines whether a bidder is inside or outside. At a given auction, a

bidder may then be an inside bidder for some catches and an outside bidder

for other catches.

Sometimes, sellers set a wide bid area, while at other times they set a

narrow sector. Attracting as many potential bidders as possible is obviously

a sound strategy for sellers. To obtain that, they should set wide bid sectors.

Why then do sellers sometimes �nd it bene�cial to narrow down the number

of potential bidders? The main reason is the position of the vessel. If the

vessel is distant from the coast, then the di¤erences in travelling distances

to ports in a north-south direction are, generally, relatively small for several

ports. On the other hand, if the vessel is close to the coast, the travelling

time increases to remote ports.

4.3 Revealed product information

Revealed product information is a detailed and an important part of the

distance-auction format. Because buyers cannot visually inspect a catch prior

to bidding, the auction rules require that several pieces of information of the

catch should be made known to potential bidders. This is in accordance

with a well established recommendation from theorists; see Milgrom and

Weber [77]. In particular, sellers should reveal all relevant information, both

positive and negative, about the object for sale in order to maximize long

term revenues. The information should be made public in a consistent way;

i.e., it should be revealed in all circumstances. The importance of being

earnest� apart from what follows from obvious moral reasons and contract

law regulations� is that, at repeated auctions, a seller�s reputation matters.

The gain from a one-shot deal with somewhat imprecise description of a catch

will be more than o¤set by the risk that buyers in the future scale down their

bids to compensate for the risk involved in deals with a particular seller. In

addition, the catch will be inspected by the buyer on arrival. In case of

complaints that are not addressed by the seller, independent controllers can

be called to settle the dispute.

The identity of the seller is reported together with a space and time



68 CHAPTER 4. THE AUCTION FORMAT

variable. The space variable is the catch location, and the time variable is

expected arrival time at the southern and northern port of the delivery sector.

Next, some quantity variables like average �sh weight and the total quantity

of the lots are reported. Finally, several discrete variables concerning the

quality of the catch or lots are described. We refer to the next chapter,

section 5.4, for a detailed description of the variables.

4.4 Bids

Bids consist of a tuple: One or several price quotes, a quantity limit, a vessel

limit, and a ranking. All elements except the price quotes are optional. In this

section, we explain the price quotes while the capacity limits and rankings

are described in the next two sections.

Normally, a catch consists of �sh within a narrow size range. For example,

all �sh of a given catch are between 450 to 500 grams. In this case, only one

bid is submitted, a price in NOK per kilogram (kilo). Occasionally, a catch

may be divided into two or more subgroups or lots determined by signi�cant

di¤erences in average �sh weight. This happens when a catch is gathered by

use of several purse-seine hauls. For example, suppose a catch is naturally

divided in two lots or size classes with average individual �sh weight of 400

and 600 grams, respectively. Note that the entire catch will be sold to one

buyer. Pure logistics, time loss, and transportation costs make it impractical

to deliver the various di¤erent lots to di¤erent buyers. Technically, bidders

in this case submit two price quotes on the catch� a price per kilo of the
large �sh and a price per kilo of the small �sh. The average bid is then easily

calculated by weighting the two bids with the relevant quantity shares.

In principle, buyers could make these calculations themselves and only

report the average bid for the whole catch, but there is a reason for the bid

rule. Because no prior inspection of lots is possible, bidders must rely on

the seller�s information. When the �sh are delivered, it is easy for the buyer

to examine whether the description that has been provided is accurate. If

he objects to the reported total quantity or the share of large �sh in the

catch, then a recalculation of the total price based on the true quantity
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or size grading is necessary. The two submitted bids will then dictate the

new price. This happens once in a while, but is not considered a major

problem; it seems that the sampling routines and the measuring technology

are su¢ ciently sophisticated to get accurate descriptions of the catch. In

general, multiple price determination is useful when the value of a commodity

depends on a quality index, and no prior inspection is possible. From an

econometric perspective, the required bidding procedure is also preferable

since it elicits more information from buyers which is relevant with respect

to buyers�valuations.

4.5 Capacity limits

The optional quantity limit implies that a bidder can state the maximum
quantity of �sh he will accept buying at a given auction.2 Recall that the

auction is a simultaneous, multi-object, �rst-price, sealed-bid auction. At a

sealed-bid simultaneous auction, there is a risk of winning too many objects

for a bidder bidding on several or all of them, causing temporary capacity

problems in subsequent handling, processing, and storage. For most produc-

ers, short-term freezing capacity is the constraining factor. The possibility

of stating a maximum quantity implies that a bidder, bidding on several

catches, can avoid this risk. If he wins more catches than he can handle at

the time, then his quantity limit comes into e¤ect, and the auction house

only allocates catches to the winner up to his limit.

To give an example, suppose a buyer has the highest bid on three catches

of 40, 60, and 100 tons, respectively. If his quantity limit is 100 tons, then

he will be allocated either the two smaller catches or the large catch. A

catch which is not sold to the winning bidder because he is already capacity

constrained is then allocated to the bidder with the second-highest bid, given

that his limit is not binding, in which case the third-highest bid is considered,

2Actually, two quantity limits are used. Bidders may simply state the total maximum
quantity independent of �sh species, or they may specify quantity limits with respect to
the �sh species in case they bid on catches with di¤erent species. In an analysis focusing
on a given �sh species, the relevant quantity limit would be the latter. However, often
bidders report only a total quantity limit, not bothering to specify the �sh species.
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and so on. From the perspective of optimal mechanism design, the option of

setting a quantity limit is a sound way to encourage as many bids as possible.

In addition to a maximum ton limit, bidders may also set a minimum ton

limit; i.e., if they win less quantity than their stated minimum tons, they will

not be allocated any catches. This option is rarely used.

Finally, in addition to the quantity limits, bidders may also set a vessel

limit; i.e., they may state the maximum number of delivering vessels they

want to receive. This is equivalent to stating a maximum number of catches

they want to win. A straightforward explanation for this option is that buyers

may have limited quay capacity� maybe only two vessels can be handled

during a day. Time delays in delivery a¤ect the �sh quality, and sellers are

reluctant to have their vessels delayed in a waiting line. Another aspect of the

option is that it gives the buyers the possibility to avoid winning too many

small catches that will be less cost-e¤ective than winning fewer, but larger

catches. When receiving a delivering vessel, some necessary procedures are

undertaken like controlling the reported average �sh weight. Sta¤ must be

allocated to the job, and some dead time is likely to occur. All in all, it takes

more time to empty two vessels rather than one even if the quantities are the

same. Thus, one delivering vessel is more cost-e¤ective than two.

4.6 Priority of bids

The auction house has to consider a bidder�s priority of bids when he wins
more than one catch and his capacity limit is binding. This element of the

bid tuple simply means that a bidder can rank his j bids from 1 to j. The

lower the ranking number, the higher is the priority. In the example above

with three catches of 40, 60 and 100 tons and a quantity limit of 100 tons,

giving the bid on the 100 ton catch priority 1, would ensure that the winner

was allocated this catch rather than the two smaller catches.

Note that the quantity and vessel constraints described above are binding.

The auction house cannot allocate catches such that these two limits are

exceeded. The bid ranking option, on the other hand, can be overruled by

the auction house if necessary. Most important for the auction house, as
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well as from the economic perspective of e¢ cient use of scarce resources, is

that the market clears. Unsold catches in this market are a concern for two

reasons. First, fresh �sh deteriorate quickly as time passes. An unsold catch

will be put up for sale at the next few auctions, but if it is still unsold, it

will have to be sold for meal production, obtaining a far lower price than in

the market for fresh �sh. In a worst-case scenario, the �sh will be destroyed.

Second, the vessel will be idle and lose harvesting time when the catch has

not been sold and delivered. In addition, a vessel may, in the meantime,

have to go to a speci�c port for various reasons, thus reducing the number

of potential bidders at the upcoming auction.

An unconditional acceptance of priorities can result in unsold catches,

while relaxing this constraint will �nd buyers for them. Suppose, for exam-

ple, a buyer wins two catches, but wants only one. If his �rst priority catch

has received another bid, while his second priority catch has no other bids,

then it is clear that the latter catch goes unsold if priorities rule the allo-

cation. Relaxing the priorities, giving the winner his second priority catch

and his �rst priority catch to the second-highest bidder, can result in �nding

buyers for both catches. The complexity of the auction format is evident

when the number of bidders and catches for sale is increased. Accepting a

particular bidder�s priorities, can produce ine¢ ciencies several steps later in

the validation process.3 In that case, an allocation procedure that has begun

will be terminated and started all over again. Thus, it is common knowledge

among bidders that priorities will be considered to the extent possible, but

will be overruled if they produce ine¢ cient results.

The ranking option helps the buyer to obtain an optimal allocation�

for example, one large catch instead of two small catches. Note, however,

that the same result may be obtained more directly by use of the option of

setting a maximum number of vessels. Why then is this an option available

to buyers? One might argue that if bidders prefer some catches over others,

this should be re�ected in their submitted bids. One possible explanation

concerns the �nal allocation and the leeway given to the auction house in

3By validation process we mean the stepwise allocation of catches based on the auction
results.
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this respect.

Normally, the auctioneer will have di¤erent �nal allocations to chose from

because it is a simultaneous rather than a sequential auction and because of

the reported capacity constraints. For example, assume three buyers, A, B,

and C, and two catches, 1 and 2. Suppose bidder A wins both catches, but he

only wants one, and that the second-highest bid comes from di¤erent bidders

in the following way. Giving A catch number 1 results in that catch number

2 goes to B, while giving A catch 2, will give C catch 1. In the absence of

bid rankings, the auctioneer can, in principle, identify all possible allocations

which respect to the bids, the capacity constraints, and the market clearing

condition. He could then either choose the allocation that minimizes total

costs for buyers, or more likely, the allocation that maximizes total revenues

for sellers. The bid ranking option removes some degrees of freedom for

the auctioneer in the validation process that produces the �nal allocation of

catches. Hence, the option gives more weight to buyers�preferences at the

possible expense of reducing seller�s total revenue.

4.7 Reserve price

The known reserve price is stated as NOK per kilo. The reserve price

depends on the average weight of the �sh. A given interval of average weight

is said to belong to a weight class. At the beginning of the season, a range

of reserve prices are set for di¤erent groups. Prices within a group last for

the entire season. Initially, weight classes are allocated to these groups, but

due to changing market conditions, weight classes may be moved up or down

the reserve price groups. Thus, the reserve price may vary during the season,

but at infrequent time intervals and at with discrete jumps at certain times.

In our market, the ocean segment of the mackerel �shery, it seems that the

reserve prices of the di¤erent weight classes were constant during the season

under study.

An important part of the theoretical analysis of auctions is how the reserve

price may be set to raise expected revenues for the seller. By setting a reserve

price, the seller in fact introduces an additional bidder with a known bid.
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Given information of the distributions of valuations, it has been proved in

the independent private-values models (Riley and Samuelson [95]) that there

is an optimal level of the reserve price that will maximize the expected selling

price. Thus, from an economist�s perspective, the reserve price should be

allowed to vary continuously during the season in order to optimally re�ect

the changing market conditions. An additional option, however, o¤sets to

some degree the possible sub-optimality of the minimum price regime in

use. To wit, recently, a rule giving sellers the right to set the reserve price

individually for each catch as long as it is higher than the standard reserve

price has been introduced. When the gap between the market price and

the reserve price is large, sellers tend to use this option. This will alleviate

the problem if the constant reserve price is too low. But the problem of

an in�exible reserve price during the season remains when the reserve price

is too high in some periods. The result may be ine¢ cient in the form of

unsold catches. In chapter 10, we analyse the reserve price from a normative

perspective; i.e., we analyse how the reserve price may be set optimally from

the seller�s perspective.

4.8 Simultaneous selling

One interesting feature of this auction is that catches are sold simultaneously

instead of sequentially. How is this method di¤erent from the more tradi-

tional method of sequential selling? Can the various catches sold during a

simultaneous auction be modelled as independent auctions or does the simul-

taneity lead to bid strategies that di¤er from the single independent case?

Obviously, the option of setting capacity limits makes it possible to bid on

a catch as if it was a single-object auction. If it turns out that bidding

on individual catches can be regarded as independent, one may rely on the

well-developed theory of competitive bidding at independent auctions. A less

general question is whether the algorithm used for allocating the catches at

this particular auction is optimal.

One reason for selling catches simultaneously may be based on considera-

tions of fairness: The auction house wants to treat individual sellers equally.
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Recall that the auctioneer represents the sellers. Several studies have re-

ported that prices may show a declining or rising behavior during sequential

selling; i.e., prices follow a path which cannot be explained by quality di¤er-

ences, rather it seems that bidding strategies change as the sequential selling

process proceeds. Consequently, the expected selling price of a catch will

di¤er depending on where in the sequence the catch is auctioned; see the

presentation in section 2.5 and the references given there.

Understandably, the auction house wants to treat individual sellers equally

and to avoid the random di¤erences in revenues that the position at a se-

quential auction may result in. Otherwise, to sustain the coöperation on the

seller�s side may prove di¢ cult.

The simultaneous auction raises an interesting problem when combined

with a sealed-bid format. It is obvious that the bidding strategies may be-

come very complex in this setting, at least in theory. In particular, one

can easily imagine that simultaneous auctions have an inherent coördination

problem. A very simple example will best describe this concept. Imagine

two bidders, A and B, and two objects for sale. Suppose bidder A wants to

buy both goods, while B wants only one good. This information is common

knowledge. If bidders cannot set a quantity limit, then it is reasonable to

argue that B bids on only one good, while A places bids on both goods. How-

ever, he would like to bid aggressively on the good which receives another

bid, and he will prefer to bid the reserve price, if any, on the other good. But

how is he to know which good to bid aggressively on? Hence, the expression

coördination problem.

The option of setting constraints (maximum tons, minimum tons, maxi-

mum number of vessels) is an elegant way of avoiding the coördination prob-

lem to some extent. But even with this option, sellers have imperfect infor-

mation about which catches that attract harsh competition and which that

receive few bids.

Another reason for using simultaneous auctioning is a practical one. The

alternative sequential selling procedure may be more time consuming, es-

pecially the use of an open English auction with increasing bids. However,

it is well known that the Dutch auction� frequently used to sell more or
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less identical lots of �owers or agricultural produce� is quite time e¤ective.

A representative of the auction house states that from his observations he

thinks the Dutch auction is too rapid given the huge amounts involved. A

large catch of mackerel can obtain a total selling price above 1 million USD.

A more slow-paced procedure giving buyers time to re�ect on their strate-

gies is, therefore, more appropriate according to the auctioneer. The auction

house has, however, been interested in testing an increasing-bid procedure,

but buyers have opposed a change of auction format.

Simultaneous selling combined with the options of setting capacity lim-

its and priorities push the auction format in the direction of combinatorial

auctions. Combinatorial auctions are auctions where bidders submit bids

on speci�c bundles of items or packages. The analysis of package bidding is

inherently complex and input from several disciplines are useful for analyses.

Crampton, Shoham and Steinberg [20] have noted that the study of combi-

natorial auctions lies at the intersection of economics, operations research,

and computer science.

4.9 Illustration of an auction

We illustrate the auction format using data from a real auction in this mar-

ket. The data are described in detail in the next chapter. For now, we are

interested in looking at a subset of the data in order to see how the bid vec-

tors and �rules of the game�determine the �nal allocation. We chose one

auction, no. 5703, in the dataset which has a small number of catches and a

small number of active bidders.

Consider the description of the catches that are sold simultaneously at the

auction. In table 4.1, we state some of the information presented to potential

bidders. At the auction, four catches are auctioned simultaneously. Three

of the four catches contain just one lot. Catch 21472 contains two lots; the

two lots belong to di¤erent weight classes and, consequently, have di¤erent

reserve prices. Note that the total quantity of catch 21471 is 120 tons (80 +

40). The catch with the narrowest delivery sector is catch 21471; the lower

the numerical port code, the more southerly a location is.
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Table 4.1: Product information given to bidders, example from
auction no. 5703

Southern Northern Reserve

Catch Lot Weight Quantity port port price

21470 1 552 120 16 25 5:25

21471 1 535 85 19 22 5:25

21472 1 570 80 13 25 5:25

21472 2 499 40 13 25 4:75

21473 1 525 230 13 25 5:25

The submitted bid vectors are reported in table 4.2. Bidders called 3,

6, 8, 9, and 12 are active at the auction. Bidders 3 and 9 bid only on

the two lot catch, the other bid on all catches. Bidders 3 and 9 do not

state priorities, since this makes no sense when bidding on only one catch.

The value 99 is typically used for stating no priority or the lowest priority

of a bid vector. Likewise, it is unnecessary to state a capacity limit when

bidding on just one catch. Nevertheless, we notice that bidder 3 states as

his capacity limit the quantity he bids on� i.e., 120 tons. The other bidders

state complete priority vectors. Since the catch is the object for sale, the

two lots of catch 21472 are given equal priorities. Bidder 12 states a capacity

limit saying that he will not take more than 350 tons and not less than 85

tons. Since 85 tons is the lowest possible quantity that can be acquired at

the auction, it is (strictly speaking) unnecessary to state this. In addition to

a maximum and minimum ton limit, bidder 8 states that he does not want to

win more than one catch (Max vessels). Thus, he is uninterested in winning

two small catches, even if this is within his maximum ton limit. Bidder 6 sets

no capacity limits, meaning that he can take the entire quantity auctioned.

Bidder 9 is an outside bidder, since location takes the value 1. Bidder 12 is

an outside bidder for catch 21471. The e¤ect of the delivery sectors is that

outside bidders may not bother to submit bids. Thus, catches with a narrow

sector will, most likely, attract few bids since the number of inside bidders is
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Table 4.2: Example of bid vectors, all active bidders in auction no. 5703

Capacity limits

Max Min Max

Bidder Catch Lot Bid Priority Location ton ton vessels

3 21470 1 120

21471 1

21472 1 6.03 99 0

21472 2 5.55 99 0

21473 1

6 21470 1 6.33 2 0

21471 1 6.73 1 0

21472 1 6.33 4 0

21472 2 6.03 4 0

21473 1 6.23 3 0

8 21470 1 6.26 3 0 230 85 1

21471 1 6.16 4 0

21472 1 6.71 1 0

21472 2 6.11 1 0

21473 1 6.31 2 0

9 21470 1

21471 1

21472 1 6.75 99 1

21472 2 6.45 99 1

21473 1

12 21470 1 7.17 3 0 350 85

21471 1 7.01 4 1

21472 1 7.17 2 0

21472 2 6.75 2 0

21473 1 7.07 1 0
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limited.

The prices and �nal allocation are reported in table 4.3. Bidder 12 has

the highest bid on all catches. Since he has a capacity limit of 350 tons, he

cannot take all. He is allocated two catches, number 21472 and 21473, which

exactly sum up the 350 tons, in accordance with his priorities. The other

two catches are allocated to the bidder with the second-highest bid, bidder

6. The seller�s of these catches receive selling prices of NOK 6.33 and 6.73

per kilo rather than the highest submitted bids of 7.17 and 7.01. We see that

bids, priorities and capacity limits all play a role in determining the �nal

allocation.

Table 4.3: Auction result, auction no. 5703

Max bid Winning bid

Catch Lot N Bid Bidder Bid Bidder Position

21470 1 3 7:17 12 6:33 6 2

21471 1 3 7:01 12 6:73 6 2

21472 1 5 7:17 12 7:17 12 1

21472 2 5 6:75 12 6:75 12 1

21473 1 3 7:07 12 7:07 12 1

4.10 Concluding remarks

In this chapter, we have described the auction format of Norwegian pelagic

�sh auctions and commented in detail on some of the features. The for-

mat has several novel elements: In addition to price, bidders can also set

capacity limits and priorities. These additional elements of the bid vector

are introduced in order to reduce potential coördination problems that the

simultaneous selling procedure would otherwise yield. Geographical space,

both on the seller�s side (the position of the vessel) and on the prospective

buyer�s side (location of plants), a¤ects the market in the sense that delivery
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times and the number of potential inside bidders varies. One main goal of the

auction market is to achieve e¢ cient outcomes; i.e., that the producers with

the highest willingness to pay acquire the raw material, given that this is

cost-e¤ective for the seller as well. Hence, the seller�s option of delivery sec-

tors. Another main goal is to clear the market: Unsold catches entail waste.

Balancing the two main goals lead to a rather complex auction format.

In the remainder of the thesis, we shall study the auction market empir-

ically by analysing a wealth of auction data we have gathered.





Chapter 5

The market and the data

5.1 Introduction

In this chapter, we describe the market under study� the Norwegian whole-

sale market for mackerel. We also present some aggregate measures of the

market. Next, we describe the dataset in some detail by use of summary

statistics and distributions of important variables. In addition to presenting

summary statistics of the variables, we present some statistics concerning

observed behavior by bidders. The dataset for the market to be analysed

covers the entire 2003 season. The mackerel season begins in late summer

or early fall and goes a few weeks into the next year. All tables and �gures

relate to data from the 2003�4 season, except �gure 5.1. The construction of

the dataset is documented in appendix A.

5.2 The �shery

Mackerel (scomber scombrus) is a pelagic �sh valued for its high contents

of Omega 3 fatty acids as well as vitamins B 12 and D. Pelagic �sh live

in the open sea near the surface as opposed to demersal �sh or ground�sh.

Economically important pelagic species, such as mackerel and herring, have

a propensity to school, perhaps in defense against predators. Schools do not

decrease much in size when the total biomass of the stock is reduced, but

81
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the geographic range of schools diminishes. Although schooling contributes

to survival against natural predators, it makes the �sh vulnerable to modern

harvesting techniques. Use of �sh-�nding devices, such as the sonar, means

that mackerel are easy to locate; the use of modern gear, such as purse seine

nets, makes the harvesting relatively e¢ cient� see Neher [81, p. 177].

In Europe, two main stocks exist, one living to the west of the British

Isles, the other living in the North Sea and the Skagerrak. Mackerel landed

in Norway are mostly those who winter o¤ the southwestern coast of Norway.

During this period, nutritional intake is very low, and the average fat content

gets as low as 5 percent. Spawning takes place in April and May. In summer

and fall, the �sh move in huge schools along the coast of Norway and into the

Skagerrak and the North Sea as well as the southern parts of the Norwegian

Sea. In fall, average fat content is around 30 percent. The catch season of

the �shery begins in mid-August, has a peak in October, and normally ends

in January.1 The seasonality of the �shery may be explained by two factors.

First, there is the issue of quality. The quality of the �sh is regarded to be at

its best in the peak season. Second, we cannot rule out that the economics of

harvesting plays a role. When the �sh are close to shore and easily accessible,

it is natural that harvesting reaches a peak.

The location of the mackerel harvest in the Norwegian zone is shown in

�gure 5.1.2 Most �sh are harvested in a sector between the southwestern

Norwegian coast and the Shetland Islands. In addition to the mackerel har-

vested in the Norwegian zone, our dataset contains some catches harvested in

the European Union zone and around the Faroe Islands. Of the 1,405 unique

catches in our dataset, 1,295 (92.17 percent) were from the Norwegian zone,

109 (7.76 percent) from the European Union zone and 1 (0.07 percent) from

the Faroe Islands zone.

In order to maintain a sustainable stock, a total allowable quota (TAQ)

has been negotiated among the involved nations each year. In recent years,

Norway�s annual quota has been in the range of 140 to 160 thousand tons.

1The above description relies on information from the auction house (www.sildelaget.
no).

2Source: Directorate of Fisheries (www.fiskeridir.no)
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Figure 5.1: Location of Norwegian mackerel harvest, 2004

This �gure is known to all market participants, and the remaining quota is

published on a daily basis during the season.

By summing the individual catch quantities o¤ered for sale at a given

time, buyers can easily deduce the total quantity supplied. Future short-term

supply at any point in time is rather unpredictable because of the inherent

uncertainty concerning the success of �sh harvesting, but the annual total

allowable catch quota and the remaining quota are common knowledge.

5.3 The market

We begin by de�ning the market under study precisely by classifying the

market according to vessel type. Next, we describe the sellers and the buyers.

Finally, we examine harvested quantities and the demand and supply over

time.
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5.3.1 Two di¤erent markets

The vessels used in harvesting vary from boats which use nets and trolling

lines along the coast to large, ocean-going seiners. Each vessel group has a

quota, which in turn is allocated to the individual vessels within the group.

Once a vessel has �lled its quota, it withdraws from that particular �shery.

Earlier, the vessels competed for the TAQ; i.e., they were free to �sh as much

as they wanted so long as the total quota had not been reached. This led to

a race among vessels and could involve high costs like overtime pay to crews.

At the same time, competition ensured that the most e¤ective vessels had

an advantage. Now, the total quota is allocated between vessels at the start

of the season.

Ocean-going seiners dominate the �shery and account for most of the

harvest. The distinction between the two vessel types is important because

it gives rise to two di¤erent markets: the market for �coast�mackerel and

the market for �ocean�mackerel. Ocean mackerel are harvested by large,

modern seiners that take the �sh aboard and o¤er the dead �sh immediately

to a wide market. Catches (or lots) are, in general, large as are the individual

�sh weights.

Coast mackerel, on the other hand, are typically smaller than their ocean

cousins. More important for our study is the fact that, in the coast mackerel

market, the �sh are kept alive and stored in a given location. The �sh may

be o¤ered for sale some time period after harvesting. When sold, the seller

ships the �sh live to the buyer. In general, this shipping is expensive, mostly

because quantities are small. The result is that the market for coast mackerel

is far more local than for ocean mackerel, thus attracting fewer potential

buyers than the mackerel delivered by ocean-going seiners or trawlers.

An interesting aspect of the two markets is the following: Ocean harvesters

operate within the short-term characteristics of the market; they have to sell

the �sh immediately and must, thus, accept the given prices established in

the market. Coast harvesters store their �sh alive and have the opportunity

to use a �wait and see�strategy when determining when to sell their product.

In times of a large supply, they can withhold the �sh from the market with
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the prospect of higher prices when supply is low.

In this study, we analyse the ocean market. This is a competitive auction

market, by far the dominant market with respect to quantities harvested and

revenues generated. The coast market is very small in comparison. Since

the quantities, harvesting methods, and sellers and buyers vary considerably

from the ocean �shery, it seems reasonable not to include this �shery in the

analysis of the large-scale ocean �shery.

5.3.2 Sellers

The sellers are the individual vessel owners, who may come from all the

North Sea nations. Norwegian vessel owners are, however, predominant.

Out of the 1,405 unique catches o¤ered in the 2003�4 season, 1,214 (86.41

percent) were from Norwegian vessels, 58 (4.13 percent) from Great Britain,

43 (3.06 percent) from the Faroe Islands, 38 (2.70 percent) from Denmark,

37 (2.63 percent) from Ireland, and 15 (1.07 percent) from Sweden. The

number of sellers is large compared to the number of buyers. In our dataset,

in the 2003�4 season, 303 unique vessel owners sold their catches. Sellers

vary with respect to how frequently they enter the market. The �busiest�

vessel owners sold 14 catches during the season, while others only sold one

catch. On average, owners sold 4.65 catches during the season.

A single catch represents a considerable potential revenue for any seller.

Given the large number of sellers, we can conclude that there is no monopoly

power on the seller�s side that would warrant government regulation. On the

contrary, potential market power exists on the buyer�s side. Historically, a

problem for small-scale �shermen was that they had weak bargaining power

when selling their catch to a buyer with local monopsony. The ocean seiners,

however, have normally the opportunity to o¤er their catch to several buyers

situated at di¤erent locations since they are still at sea when selling their

catch. This notwithstanding, the wholesale market for �sh is regulated by law

in Norway. A coöperative, Norges Sildesalgslag (NSS), is granted a monopoly

of selling mackerel and other pelagic �sh species in the wholesale market.

NSS is organized by the vessel owners, and they sell the catches exclusively
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at auction.

5.3.3 Buyers and export markets

The buyers are food processors or �sh exporters located along the southwest-

ern coastline of Norway. During the 2003�4 season, 25 buyers were active.3

They may be involved in di¤erent lines of food production; mackerel, in the

retail market, is sold fresh, frozen, salted, smoked or canned. But the major-

ity of buyers in this �shery are involved in the following business: They sort

the �sh with respect to weight classes, then freeze the �sh as it is, and ship

it to resale markets abroad where the �sh are processed for end market use.

The main export markets for the Norwegian harvest of pelagic �sh are the

European Union and Eastern Europe as well as Asia. Norwegian mackerel

are regarded as the highest quality available. The product is particularly

popular for use in sashimi in Japan.

Buyers are involved in other �sheries: In addition to mackerel, they pur-

chase other �sh species as well. Their valuations may be in�uenced with

respect to the alternatives of other raw material they have at hand.

5.3.4 The harvest of mackerel

The season spans close to six months� from mid-August to January and Feb-

ruary. The 2003 season stretched over a longer period than normal, starting

11 August 2003 and ending 17 February 2004. Harvesting e¤ort is far from

evenly distributed during this period. Harvesting is most intense during the

�rst two and a half month, where roughly three-quarters of the total quota

is �lled. The peak in harvesting occurs a few weeks into the season. In �gure

5.2a, the harvested quantity in tons per week is shown. In �gure 5.2b, we

have smoothed the data from (a) and transformed them into an empirical

distribution by calculating a kernel density over time. In addition, we have

3In fact, we observed a single bid from three additional bidders in 2003. We included
their bids in the analyses, but found it misleading to say that active bidders are 28 rather
than 25. The three extra bids were likely submitted by mistake since they are located far
from the relevant delivery zone.
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indicated the �rst half of the mass under the density function, and the next

two quartiles of the mass. The peak is in week 41. 50 percent of the quota is

harvested by mid September or only six weeks into the season. Within the

next four weeks, an additional 25 percent of the total harvest is captured.

The last 25 percent of the quota is captured at lower harvest e¤ort over a

prolonged period. Most of the mackerel from the Norwegian zone are har-

vested by November. The last part of the season is dominated by �sh from

the European Union zone, and these �sh are often harvested west of Ireland.

Figure 5.2: Mackerel harvest in 2003�04 season
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Given that vessel owners have a quota, why do they not distribute their

harvesting e¤ort more evenly over the period? Probably the most important

reason is the quality of the �sh. The average fat content of the �sh is high

in the peak season. High fat contents require high prices, and will obviously
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a¤ect harvesting e¤orts. Another reason for the intense harvesting e¤orts

in September and October is to minimize harvesting costs. Because the

�sh move in large schools, harvesting is most cost-e¤ective when the �sh

are close to land and the schools are large. When the �sh move further

away, schools get smaller and catch-costs increase. Thus, Nature and the

rapidly shrinking quantities of available �sh, explain the seasonal harvesting

pattern. In addition, we may add that di¤erent �sheries have similar peaks

in �sh availability. Fishermen have to gear their e¤orts to speci�c species in

given periods. After the peak of the mackerel season, the season of another

important pelagic species, herring, begins. Thus, there is an alternative cost

aspect of harvesting decisions as well. E¤ort is allocated to the most pro�table

�shery at the time.

5.3.5 Supply and demand during the season

Harvest in �gure 5.2 equals market supply per week with one minor modi�-

cation. In a few cases, an o¤ered catch may go unsold at an auction and to

be sold at the next auction, perhaps. When counting the harvests per week,

we have excluded the subsequent o¤ers of the same catch in order to avoid

double counting of catches or lots. On the other hand, when calculating sup-

ply, we �nd it reasonable to include all o¤ered catches since they are part of

supply at a given time. Below, where we present �gures of market demand

and supply, catches o¤ered several times are included in the supply �gures.

The di¤erence between the harvest and supply �gures are, however, small,

since about 95 percent of catches are sold the �rst time they are o¤ered.

Demand is not as easily measured as supply. To begin, there will be a

latent unobservable demand for mackerel when the supply is zero. At times

of positive supply, we have a point observation of demand. To be precise,

what we can identify is the revealed aggregate demand at the submitted bids

when mackerel is o¤ered. Demand from bidders with valuations below the

reserve price is not observed at all.

Bids are formed under strategic considerations. The marginal quantity

demanded is represented by the bidder with the lowest bid. Since bidders do
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not submit demand schedules stating their price for di¤erent quantities, we

cannot infer a demand function for di¤erent price levels. As standard eco-

nomic theory tells us, it is likely that some bidders will reveal larger demand

at a lower bid level than the chosen bid. Consequently, the revealed demand

�gure tells us that real market demand is at least as large as the observed

quantity demanded at the price level that corresponds to the minimum ob-

served bid.

Relevant demand �gures are demand per auction, per day or for any

other time period, such as demand per week. Demand per catch, however, is

not that easy to describe. Aggregate demand is not evenly distributed over

catches. Recall that bidders may bid on as many catches as they like, but

due to limitations in short-term production capacity, may set a maximum ton

number as part of their bid vector. The stated capacity constraint is useful in

determining demand for an auction or time periods like day or week. Demand

for an individual catch is not directly linked to the capacity constraint. For

example, when a bidder bids on two catches, but states through his maximum

ton limit that he can only take one, then we cannot determine a demand for

each individual catch.

We illustrate demand and supply as we did for harvest; i.e., we report it

per week in order to have a measure that is easy to visualize. For bidders

that set no capacity limits at a given auction, we take their demand to

equal the sum of quantities they bid on. For bidders that do set a capacity

limit, we measure their demand to be equal to their capacity limit. In a

few cases, bidders bid on less than their capacity limit, making the capacity

limit unnecessary to state. In these cases, we resort to the method used for

bidders with no stated quantity limits, or in other words, we set demand

equal to the minimum of stated capacity and demanded quantity. In �gure

5.3a, we depict the demand and supply per week in the 2003 season. The

exact numbers the plots are based on, are those in table 5.6 on page 111.

The lower part of each bar in �gure 5.3a shows the supply per week, while

the upper part is how much demand exceeds supply; i.e., the demand-surplus.

Thus, the total height of each bar is equal to demand since demand-surplus

= Demand �Supply. In �gure 5.3b, we have calculated the demand-surplus
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Figure 5.3: Demand and supply in 2003�04 season
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factor de�ned by: demand-surplus factor = Demand/Supply. The mean of

the demand-surplus factor is 4.33, telling us that demand per week is, on av-

erage, 4.33 times higher than supply per week. The minimum and maximum

demand-surplus factors observed in 2003 is 1.57 and 7.83, respectively.

When interpreting these �gures, bear in mind that they are weekly ag-

gregates. Such aggregate measures, although widely used in all realms of

empirical economics, should be interpreted with some caution. In the ex-

treme, each catch with its time, geographical location and quality space

dimension constitutes a single market. Demand for individual catches varies,

not only because of the system of delivery zones, but also because of other

catch-speci�c characteristics. But the reported demand �gures is a measure,

if imperfect, of competition in the market. Based on traditional demand-
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supply analysis, looking in particular at the high average demand-surplus

factor, we may conclude that, in general, competition is high in this market.

We shall, however, analyse this question from another perspective as well.

Moving away from aggregate demand and supply, we shall see that at auction

markets, the number of competitors is a good measure of competition at the

individual lot level.

5.4 Product-speci�c variables

The seller describes his registered catch and lots by several variables. The

identity of the seller is known to bidders and may in�uence the price. Some

sellers may have a better reputation for handling �sh than others, or it may

even be the case that some buyers prefer some sellers due to individual per-

sonal relations. The number of sellers is relatively large, and it seems in-

convenient to incorporate the identity of the seller in the analysis. More

important are probably some quality characteristics that sellers report and

other generally relevant variables, in particular total quantity supplied.

Before we turn to a description of the characteristics of the speci�c lots

or catches that comprise the dataset, recall the distinction between catches

and lots. A catch may consist of several lots for two reasons. Lots may

consist of di¤erent species. This is rarely observed in the mackerel �shery;

for example, only three lots in the dataset are from multi-species catches.

The most obvious reason for several lots in a catch is that the size of the �sh

di¤ers in such a way that it is natural to divide it into two or more lots. In

the dataset, 118 catches consisted of two lots, no catches had three lots and

one catch had four lots. The remaining 1337 catches (91.83 per cent) had

only one lot. We analyse the data for the most part at the lot level since

this is the most detailed level. Some reported variables, like average �sh

weight, are transformed into an average of averages when going from the lot

level to the catch level. When reporting statistical measures of catches, we

shall clearly state that we are looking at catches rather than lots; otherwise,

statistical measures are based on lots.
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5.4.1 Continuous variables

As a practical matter, we may regard reported �sh weight and lot quantity

as continuous variables. Fish weight is measured in grams and lot quantity

in tons.

Figure 5.4: Distribution of average �sh weight
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Average �sh weight. The most important variable is the average �sh

size. Reserve prices are linked to this variable. Large �sh entail less waste

in the production process. Consequently, buyers are willing to pay more for

large �sh than for small �sh. In case a catch consists of several lots, the

average �sh weight is reported for each lot. The relationship between prices

and average �sh weight is analysed in section 6.2, page 127.

In �gure 5.4, we depict the distribution of average �sh weight over lots.
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Average weight ranges from 230 to 650 grams. Very few lots belong to weight

classes below 300 grams. Roughly 66 percent of lots have an average �sh

weight of 500 grams or above. This segment, requiring the highest reserve

price, is obviously the economically most important part of the �shery.

Total vessel quantity. Catch weights range from below 20 to up to 800

tons. The distribution of catch or vessel quantities is shown in �gure 5.5.

Forty-six percent of catches are below 100 tons, 61 percent are below 150

tons, and close to 93 percent of the catches are below 300 tons. Thus, catches

above 300 tons are relatively rare.

Cost considerations mean that a buyer will prefer to obtain his desired

quantity by as few catches as possible. For instance, receiving one large catch

of 100 tons rather than two smaller catches of 50 tons each, will be more cost-

e¤ective for the buyer. Fixed costs and scale economies are associated with

each catch received.

The total quantity of a catch or lot is important because quantity limits

are frequently used by bidders. Quantity will a¤ect the �nal allocation of

catches when capacity constraints are binding. In the case of very large

catches, it will also a¤ect the number of potential bidders, since some buyers

can �nd the catch too large to handle.

5.4.2 Discrete variables

In addition to the obviously interesting quantitative measures of �sh weight

and catch quantity, a catch is described in several other respects. The objec-

tive of most of the required information is to give buyers a good understand-

ing of the quality of the �sh and when it can be delivered. Sellers are obliged

to report the following variables to prospective buyers: (1) �shing gear used;

(2) the number of hauls used to secure a catch; (3) whether the �sh contain

feed; (4) whether the �sh have been constrained to reduce feed level; (5)

preservation method; (6) the number of storage tanks for the catch; (7) the

catch �eld, and (8) estimated arrival time. In table 5.1, we have summarized

the dataset with respect to the reported discrete variables. We present the
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Figure 5.5: Distribution of vessel quantity
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number of records for each category together with the percentage share. The

column entitled Code in the table, is simply the internal code used by the

auction house for the di¤erent categories.

Gear. The dominant �shing method used is the purse seine: 86.7 percent

of lots were caught using this method. In the data base, a distinction is made

between purse seine which relates to the ocean-going seiners, and purse seine

coast which relates to smaller vessels using the very same gear. The other

method used is the trawl. This method is grouped into three sub categories;

bottom-trawl, �oating trawl, and �oating-pair trawl. In general, the purse

seine is preferred because this method is the most gentle; trawling causes

more damage to the �sh.



95

Feed. One characteristic of the harvested �sh is whether they contain feed.

No feed in the �sh is preferred. Feed can ruin the �sh quality if it takes a

long time before the �sh are delivered to the producer and frozen. If the

�sh contain a lot of feed, the harvester may choose to constrain the �sh.

This means that after the �sh are properly secured inside the net, it is left

swimming for a few hours in the sea in order to reduce feed contents. The

procedure is rarely observed; constrain times ranging from one to �ve hours

are reported for only eight lots. The feed contents descriptions are classi�ed

in four groups ranging from no feed to full of feed. Our dataset does not

contain any records classi�ed as full of feed. The intermediary classi�cations

very little feed and some feed are predominant.

Preservation. Seafood is highly perishable and needs to be cooled rapidly

in order to slow spoilage. Bacterial, enzymatic, and chemical processes

quickly reduce the quality of the �sh if they are not handled properly. Imme-

diate chilling of the �sh to a temperature just above freezing point is the best

preservation method. Historically, crushed ice was used in seafood preserva-

tion, and it is still used to some extent. But these days, two more common

methods for seafood chilling and storage are to use either refrigerated sea-

water (RSW) or slurry ice (CSW), which is a mixture of �nely crushed ice

(micro particles of ice with size 0.25�0.50 mm) and water. Using RSW, it

takes relatively long time to bring the temperature of the �sh down to the

desired level. In addition, a concern is that the �sh take up salt from the

seawater. Slurry ice is considered a faster chilling method. Compared to

the alternative of just using crushed ice, slurry ice covers the �sh without

bruising and leaves no air spots. Consequently, slurry ice is the preferred

chilling method.4 Slurry ice is, however, costly which explains its rare use in

the dataset. By far the most common method is to use refrigerated seawater.

Tanks. The number of storage tanks used for a given catch is reported. In

the dataset, the number ranges from one to six. The number of tanks used

depends on how large the catch is. The more tanks used for a �xed quantity,

4Source: Euro�sh (www.eurofish.dk)
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Table 5.1: Distribution of quality variables

Variable Category Code Records Percent

Gear Purse seine coast 10 399 26.71

Purse seine 11 896 59.97

Bottom trawl 51 4 0.27

Floating trawl 53 178 11.91

Floating trawl pair 54 17 1.14

Feed No feed 1 70 4.69

Very little feed 2 1184 79.25

Some feed 3 240 16.06

Preservation Ice 9 153 10.24

RSWa 11 1325 88.69

RSW + ice 18 10 0.67

RFW + acid + ozone 24 1 0.07

CSWb 25 5 0.33

Hauls One haul 1 1318 88.22

Two hauls 2 157 10.51

Three hauls 3 19 1.27
a RSW: Refrigerated seawater
b CSW: Slurry ice
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the better, since the �sh are then less packed, and even more important, they

are chilled faster. Preliminary analysis revealed no e¤ect of this variable on

prices. Consequently, we did not incorporate it in the analysis.

Hauls. Maneuvering the purse seine into the sea is referred to as making

a haul. Typically, the number of hauls is one or two; occasionally, three are

made. One haul is preferred because the �sh are then as fresh as possible. If

two or more hauls are necessary, then part of the catch will have been caught

several hours before the �sh are o¤ered on the market. Like the number of

tanks, the number of hauls does not seem to have any impact on prices.

Delivery time. The catch �eld or sector is reported together with the

delivery sector. The �eld in itself is probably of no particular importance,

but the distance between the vessel and a potential buyer may be of interest.

The vessel reports expected arrival time at the southern and northern ports

in the preferred delivery sector. If a long time passes before arrival at port,

then the quality of the �sh will su¤er. Moreover, a speci�c arrival time can

be considered more or less convenient for a plant�s work �ow schedule.

Data on other reported variables are also available, but they are mostly

relevant when comparing di¤erent �sheries. Since they tend to have the same

value at the mackerel auctions, we do not include them in the analysis.

In �gure 5.6, we depict the distribution of the delivery time of the catches.

For each catch, we have two delivery times, one for the southern and one for

the northern port of the delivery sector. We take the mean of these two

delivery times. (The picture does not change much if we alternatively plot

the southern or northern delivery time.) Two outlier observations with mean

delivery times of 36 and 64 hours are not depicted in the histogram. We

see that most catches have a delivery time between 10 and 20 hours. The

median delivery time is 14 hours.
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Figure 5.6: Distribution of delivery time
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5.4.3 The reserve price

Reserve prices are linked to average �sh weight. Fish belonging to a certain

weight class demand a corresponding reserve price. Five weight classes and

reserve prices were used in 2003. In table 5.2, we present some statistics

of the reserve price in our dataset. The sample size (i.e., the number of

lots for each reserve price) is shown in column 2. In columns 3�5 of the

table, we have calculated some percentage shares of each reserve price class.

First, we present the percentage of the number of lots in each class. In the

next column, we look at the percentage of total supplied quantity in each

class. Finally, we �nd the percentage of total value for each reserve price

class calculated by auction prices. We see that the largest �sh, having a

reserve price equal to 5.25 NOK, are the economically most important class,

accounting for around 68 percent of the total quantity and close to 71 percent

of total value. This explains our emphasis on this reserve price class in the

analysis to follow in the next two chapters. In the last two columns of table

5.2, we show the weight intervals that correspond to the reserve prices. The

minimum observed weight in the dataset is 230 grams, and the maximum

observed weight is 650 grams.

Table 5.2: Reserve price statistics

Percentage shares Weight (g)

Reserve price Records Lots Quantity Value From To

1.50 29 1.94 1:71 1.13 230 349

2.50 58 3.88 3:87 3.07 350 399

3.50 140 9.37 9:69 8.77 400 449

4.75 286 19.14 16:53 16.22 450 499

5.25 981 65.66 68:20 70.81 500 650
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5.5 Market-speci�c variables

The most important market-speci�c variable is the number of bidders. We

have observations on all bids, and hence the number of actual bidders N . We

examine the distribution of actual bidders. Since there is a reserve price, some

bidders with valuations below the reserve price will not bid. The number of

potential bidders is not observable. The distribution between inside and

outside bidders is also described.

5.5.1 Distribution of N

The number of submitted bids varies considerably in the dataset, from 0

to 20. Most of the mass is located below 8 bidders. Two reasons may

explain this: First, the auctions are quite frequent. Also, during the peak

season, large quantities are o¤ered on the market. Buyers who have just

recently acquired raw material by winning a lot (mackerel or other species),

are perhaps less likely to participate at the following auction due to short-

term capacity problems. Typically, a winner which is occupied with freezing

a catch, will be out of a �bid position�for 24 hours. Second, the fact that

sellers set a preferred geographical zone of delivery will to a large extent

determine the number of potential bidders. Although outside bidders are

eligible to bid, they do this relative rarely and win even less often. We return

to this below where we discuss the delivery sectors, see in particular table

5.7.

Using all bids, the distribution of submitted bids is depicted in �gure 5.7.

The exact numbers the �gure is based on is reported in table 5.11 on page 116.

The median number of submitted bids is 6. Since bidders can set capacity

constraints, the number of submitted bids will contain some bids that are not

binding. If we remove those bids that are not binding and concentrate on the

ones that actually competed on a lot (ex post), the distribution of N moves

left as seen in �gure 5.8 on page 117. The median number of submitted bids

then drops to 5. We discuss the distinction between all bids and binding bids

in more detail in chapter 6, section 6.5.

In interpreting the economic impact of N , we may, somewhat roughly,
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Figure 5.7: Distribution of N , all bids
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make a distinction between large N and small N . As we shall see in chapter

6, when N is around 9 or higher, we reach a competitive level, where prices

obtained do not depend on the number of submitted bids. Thus, for large N ,

some worries the seller typically has at an auction market, are of less concern,

for instance, determining the reserve price and guarding against possible

collusion among bidders. For small N , however, all the characteristics and

interesting aspects of an auction market are present.

5.5.2 Delivery sectors and inside bidders

The stated delivery sector of a catch o¤ered for sale de�nes whether a bidder

is an inside or outside bidder. Inside bids are binding for the seller, while

outside bids are an o¤er, which the seller can refuse. In our dataset, 8.22

percent of all bids are from outside bidders. If an outside bid is equal to

an inside bid or just marginally higher, the seller will prefer the inside bid

since the transport and time related costs are lower in this case. Thus, in

order to win the auction, an outside bid should be su¢ ciently higher than

any inside bid to compensate the seller for his extra costs. Looking at all

lots that attracted bids, 8.97 percent of the maximum bids were from outside

bidders. Compared to the share of total outside bids of 8.22 percent, this

indicates that outside bidders tend to bid a bit, but not much, higher than

inside bidders. Most outside bids are, however, rejected by the seller. In only

2.54 percent of the cases (38 lots), was the outside bid accepted by the seller.

In 9 out of these 38 lots, the outside bid was the only binding bid. We have

summarized the percentages in table 5.3.

Table 5.3: Percentage of inside versus outside bids

All bids Max. bid Winning bid

Inside bidders 91:78 91:03 97:46

Outside bidders 8:22 8:97 2:54

Narrow sectors will reduce the number of potential inside bidders. In
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principle, since outside bidders are eligible, we may say that the number

of potential bidders is constant and equal to the number of all bidders. In

practice, however, some catches are unavailable for outside bidders. A catch

only o¤ered to, say, port 25, means that the vessel is probably close to or has

already arrived at this port. In such a case, the vessel will not set course to

a remote destination, such as the southernmost port 12. Costs rule-out this

option as well as the concern that the time loss will reduce the quality of the

�sh.

We shall take a quick look at the distribution of delivery sectors. Recall

that the delivery sector is the sector between a southern and northern port.

In table 5.7 on page 112, we show how many lots fall into a given combination

of a southern and northern port. The numeric code for ports are explained

in appendix A, see page 313. Some sectors appear more frequently than

others. The most common southern ports are Agnefest (12), Egersund (13),

Haugesund (16), Bergen (19), Florø (20), Måløy (22) and Harøysund (25).

The most common northern ports are Bergen, Måløy and Harøysund. We

note that as many as 208 lots are o¤ered to port 25; i.e., Harøysund is both

the southern and northern port of the sector.

5.6 Bidders and bids

In this section, we present bid frequencies and the success rate for the di¤erent

bidders. This will tell us something about asymmetries among bidders. In-

formation analysis and competence in interpreting the information is crucial

for any bidder at an auction market. The buyers are all regarded as expert

bidders. They are professionals, well-experienced in bidding. In addition,

they are, in general, well-informed. In the case of asymmetric information

about a common-value good, a bidder with superior information to that of

its rivals, may obtain informational rents. We shall argue later that bidders�

valuations are predominantly private. It appears that informational rents are

not very relevant in this market.
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5.6.1 Bid frequencies of buyers

Not all potential buyers bid on any catch. The number of actual bidders

varies a lot from catch to catch. An obvious reason for this is the aspect of

delivery sectors. Most bidders do not bother to bid when they are de�ned as

outside bidders. In addition, short-term capacity constraints are important.

A producer will not be at the auction market if he is capacity constrained. A

third reason for not submitting a bid on a catch might be that his valuation

is below the reserve price. Finally, a bidder may refrain from bidding because

he has preferences over sellers.

In table 5.9 on page 114, we present how frequently the 25 buyers bid in

the 2003�4 season. Under the heading o¤ered catches, we report the number

of bid opportunities and make the distinction between inside and outside

catches. Next, we looked at the number of submitted bids for all buyers. We

report the number of total bids, and the number of inside and outside bids.

Finally, we calculated the bid frequencies in percent.

We notice that bidding activity varies among bidders. Some are active and

bid on many catches, while others are infrequent participants at the auctions.

Bidders with a low number of submitted bids may have a location that often

makes them outside bidders. Bidders located at core delivery sectors, will

mostly be inside bidders. Some bidders, in particular bidders 9 and 11,

but also bidders 3, 21 and 23, have locations that are frequently outside

the delivery sector. Di¤erences in bid frequencies are somewhat puzzling.

At least we see that the delivery sectors cannot explain the pattern alone.

Low frequent bidders may be small-scale producers or have a production line

geared to other species than mackerel. Bidders may have valuations below

the reserve price, but this explanation is closely linked to being capacity

constrained. The economics of the trade suggests that when a bidder does not

have free-freezing capacity, his valuation of a catch drops to zero. Otherwise,

when a producer has free capacity, it may be the case that his valuation is

still below the reserve price because better opportunities exist (the season

for herring will overlap the mackerel season).

Apart from di¤erences in bid frequencies and bid opportunities, are bid-
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ders asymmetric in their bid behavior? Let us examine the success rate of

bidders. In table 5.10 on page 115, we repeat the number of submitted bids

from table 5.9. In column 5, we report the number of bids for each bidder

that turned out to be the highest bid. The percentage of highest bids in

terms of submitted bids is reported in column 6 (Score). Since the high-

est bid does not necessarily win the auction� the bid is not binding due to

capacity constraints or an outside location of the bidder� we examined the

number of winning bids as well. In column 7, the number of winning bids

for each bidder is reported, and in the last column the score of winning bids

is reported.

From the scores reported, we may state that some bidders are more ag-

gressive than others. Bidders 6, 7 and 17 have a winning score above 25

percent, while bidder 1 has a score as low as 5 percent. From this alone, we

cannot conclude that bidders are very asymmetric. Asymmetric bidders, in

the auction-theoretic sense, will have di¤erent valuations. To what extent

some bidders systematically have higher valuations than others will have to

be analysed by looking at the market price when controlling for observable

di¤erences between catches. We analyse this in chapter 7. Alternatively, in-

stead of looking just at winning bids, we may analyse di¤erences in bid levels

using information from all bids. An index of bidder di¤erences is reported in

section 9.5.

In �gure 5.9 on page 122, we visualize the bid frequencies of all bidders.

Each subplot in the �gure shows a bar when a bidder bids on a speci�c

catch, and the height of the bar indicates how large the catch is in tons.

Bidder numbers are reported in the upper left of the subplots. In �gure 5.10,

we show the actual quantities the di¤erent bidders won, and how these are

distributed over time.

5.6.2 Capacity di¤erences

Closely related to di¤erences in bid activity are di¤erences in production

capacities. Short-term capacities take the form of stating a maximum ton

limit when bidding on several catches at an auction. Infrequent bidders
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may often have a location outside the delivery sector, but another possible

cause is that they generally have low production capacities. A bidder with

alot of production capacity may have an advantage because he can take

the residual demand after low capacity producers have been allocated their

desired quantities. In principle, he can use his position to acquire catches at

a lower price.

From �gure 5.3 on page 90 and table 5.6 on page 111, we saw, however,

that demand generally exceeds supply. No evidence exists to suggest that

some bidders can act as residual demanders. Nevertheless, we cannot rule

out that large buyers have an advantage. In table 5.13 on page 119, we

report summary statistics of capacity limits; the median together with the

minimum and maximum. To see the di¤erences between �small�and �large�

producers, focus on bidder 14 and 7. For bidder 14, a small-scale producer,

the median submitted capacity limit is 110 tons and the largest submitted

capacity limit is 250 tons. Bidder 7 on the other hand, has a median capacity

limit of 700 tons and his maximum reported capacity is 2,085 tons.

5.6.3 Position of winning bids

The highest bidder does not always win the auctioned lot for two reasons.

First, he might be an outside bidder, and the seller may refuse his bid. Sec-

ond, and most frequently, an high bid may not be binding because of capacity

constraints. In this case, the �rst binding bid may be the second highest or

have a lower position. We might call these two rules exclusion rules. What

e¤ect does this aspect of the auction format have on the realized winning

bids? Let us summarize the position of the winning bid in our dataset, see

table 5.4.

For each auctioned lot, we identi�ed the position of the winning bid; i.e.,

whether the highest, second-highest, or any lower ranking bid was allocated

the object. First, we used all bids, including outside bids, in the calculation.

This gave us the total e¤ect of the two exclusion rules. The relevant numbers

are in columns 2�4 of table 5.4. Roughly 68 percent of lots were allocated to

the highest bid, and 19 percent to the second-highest bid. Thus, 87 percent
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Table 5.4: Position of winning bid at lot level

All bids Inside bids

Position Lots % Cum. % Lots % Cum. %

1st 1022 68:41 68:41 1064 73:08 73:08

2nd 281 18:81 87:22 245 16:83 89:90

3rd 110 7:36 94:58 84 5:77 95:67

4th 50 3:35 97:93 33 2:27 97:94

5th 16 1:07 99:00 18 1:24 99:18

6th 8 0:54 99:53 6 0:41 99:59

7th 2 0:13 99:67 2 0:14 99:73

8th 4 0:27 99:93 3 0:21 99:93

9th 0 0:00 99:93 1 0:07 100:00

10th 1 0:07 100:00 0 0:00 100:00

of the lots were allocated to the highest or second-highest bid.

Second, we examined the position of the winning bid after excluding

outside bids. Recall from table 5.3 that although 8 percent of all bids are

outside bids, only 2.5 percent of outside bids (38 lots) do in fact win. Outside

bids, are therefore considered to have a marginal e¤ect on market prices.

From columns 5�7 in table 5.4, we see that the highest bid now wins in 73

percent of the cases. The total number of lots included when outside bids

are excluded are 38 less than the case using all bids, since there are 38 lots

were an outside bidder won.

A possible cause for noise in the distribution of winning bids at the lot

level is that the average catch bid, in fact, determines the winner. A bidder

may have the second-highest bid on lot one and the highest bid on lot two.

If lot two has the largest quantity, then he will have the highest catch bid.

We examine the distribution of winning bids at the catch level in table 5.8

on page 113. Thirty-six catches had outside winners. Without going into the

details of the table, we can safely conclude that the distribution of winning
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bids do not change much if we summarize it at the catch level rather than

at the lot level. This is to be expected, since close to 92 percent of the

catches consist of only one lot. The most notable di¤erence between tables

5.4 and 5.8 is that the percentage of maximum bids that win an object goes

from 68.41 percent at the lot level to 70.10 percent at the catches level when

including all bids. The corresponding percentages when excluding outside

bids, are 73.08 and 75.45 percent.

5.6.4 Simultaneous selling

An important aspect of the auction format is that lots are sold simulta-

neously. The number of catches varies from auction to auction. At some

auctions, only one catch is o¤ered. The largest number of catches o¤ered

at an auction was 31. The aspect of simultaneous selling is summarized in

table 5.12 on page 118. Column 1 represents the number of catches o¤ered

at a given auction while column 2 is the count of auctions where the event in

column 1 happens. For example, we see from column 2 that the event four

o¤ered catches occurs at 23 auctions or, from column 3, in close to 8 per

cent of all auctions. At around 31 percent of all auctions, only one catch is

o¤ered, while two catches are o¤ered at around 16 percent of the auctions.

One hypothesis with respect to bidding under such simultaneous format

is that bids are spread thin on catches when the number of auctioned catches

is large. The result would be that each catch attracted a low number of bids.

We investigate this in column four to six in table 5.12. In general, there is no

pattern that supports the hypothesis of few bids on catches when the number

of o¤ered catches is large. Looking in particular at column �ve, the largest

median number of bids, in fact, occurs when relatively many catches are

o¤ered simultaneously. If there is a pattern, one might distinguish between

the �rst half of the table where the number of auctioned catches is below 12,

and the lower part of the table. For the �rst half, the median number of bids

varies from 4 to 8. When the number of catches is greater or equal to 12, the

variability of the median number of bids increases. In this case the median

number of bids ranges from 1.5 to 10.
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Two points should be mentioned. First, in construction of table 5.12, we

did not consider the e¤ect of di¤erences in bid sectors for the number of bids

reported. Given the large number of catches o¤ered, we found it likely that

the number of potential inside bidders does not vary much for the di¤erent

entries of catches. Second, the fact that the number of submitted bids on

each individual catch was not lower when the number of catches is high, is

obviously caused by the capacity constraint option. This option ensures that

bidders are free to bid on as many catches they want without the risk of

winning too many. It seems that bidders in fact use the option.

More interesting than the number of bids submitted is the price e¤ect

of simultaneous selling. Do prices tend to be lower when many catches are

o¤ered at the same time? We investigate this in the chapter 7.

5.6.5 Use of capacity constraints and priorities

Two options o¤ered bidders under this simultaneous auction format are to set

capacity constraint as well as priorities to the catches they bid on; see section

4.5 and 4.6 in chapter 4 for a presentation of the options. Setting a capacity

constraint is only relevant for a bidder when bidding on more catches than he

can take. Likewise, setting priorities is, obviously, only relevant when bidding

on two or more catches. How frequently are the options used? To answer, we

identi�ed for every bidder at every auction the cases where a bidder submits

bids on two or more catches. Then we looked at whether he sets an e¤ective

capacity constraint, and whether he sets priorities to the catches he competes

for. A capacity constraint is said to be e¤ective when a bidder bids on catches

with a total quantity superseding his capacity constraint. In table 5.14 on

page 120, we report the results. The percentages reported in column 4 and

6 are simply the percentage of the count of auctions in columns 3 and 5 of

the total number of relevant auctions in column 2.

The use of the maximum ton limit ranges from 23 percent to 100 percent

among bidders. Counting all relevant bid vectors for all bidders, the maxi-

mum ton limit is used in 76.2 percent of the cases. The priority option is used

slightly more frequently, in 82.3 percent of the cases. All bidders use it at 50
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percent or more of the relevant auctions. For di¤erences among bidders, we

refer to table 5.14. We conclude that both the capacity limit and the priority

option are used frequently.

5.A Appendix: Tables and �gures

Table 5.5: Distribution of vessel quantity in tons

From To Cum.

weight weight Count Percent percent Mean Min. Max.

0 50 317 22:59 22:59 27:71 5 48

50 100 329 23:45 46:04 68:81 50 98

100 150 205 14:61 60:66 119:55 100 145

150 200 190 13:54 74:20 166:95 150 195

200 250 153 10:91 85:10 216:60 200 245

250 300 105 7:48 92:59 266:25 250 295

300 350 49 3:49 96:08 314:08 300 340

350 400 21 1:50 97:58 365:95 350 390

400 450 9 0:64 98:22 416:67 400 440

450 500 7 0:50 98:72 472:86 460 490

500 550 5 0:36 99:07 513:00 500 530

550 600 2 0:14 99:22 562:50 550 575

600 650 5 0:36 99:57 604:00 600 620

650 700 1 0:07 99:64 690:00 690 690

700 750 2 0:14 99:79 715:00 700 730

750 800 3 0:21 100:00 773:33 760 790
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Table 5.6: Demand and supply in tons per week

Demand

Demand surplus

Year Week Supply Demand surplus factor

2003 33 415 1171 756 2:82

2003 34 4207 8170 3963 1:94

2003 35 5450 12862 7412 2:36

2003 36 4432 14975 10543 3:38

2003 37 12792 39330 26538 3:07

2003 38 20363 66653 46290 3:27

2003 39 24714 71178 46464 2:88

2003 40 23570 62119 38549 2:64

2003 41 28154 65938 37784 2:34

2003 42 20608 57163 36555 2:77

2003 43 15606 58486 42880 3:75

2003 44 4100 28530 24430 6:96

2003 45 2680 20985 18305 7:83

2003 46 2295 11985 9690 5:22

2003 47 1075 6635 5560 6:17

2003 48 590 2790 2200 4:73

2003 49 3865 20538 16673 5:31

2003 50 2880 13900 11020 4:83

2003 51 4290 14155 9865 3:30

2003 52 0 0 0

2004 1 1100 4220 3120 3:84

2004 2 4725 26050 21325 5:51

2004 3 1930 11450 9520 5:93

2004 4 1240 8840 7600 7:13

2004 5 2105 11930 9825 5:67

2004 6 440 3080 2640 7:00

2004 7 180 850 670 4:72

2004 8 940 1480 540 1:57
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Table 5.7: Delivery zone combinations, all catches

Southern ports

12 13 16 19 20 22 23 24 25

N
or
th
er
n
po
rt
s

13 3 0 0 0 0 0 0 0 0

16 1 10 1 0 0 0 0 0 0

19 19 61 27 8 0 0 0 0 0

20 1 2 2 1 0 0 0 0 0

22 19 73 98 50 25 0 0 0 0

23 0 0 0 0 1 0 0 0 0

24 0 0 0 0 0 1 0 0 0

25 142 227 126 152 117 62 1 8 207

29 0 1 1 0 4 0 0 0 2

30 0 0 0 0 0 1 0 0 0

31 0 0 1 1 0 0 0 0 0
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Table 5.8: Position of winning bid at catch level

All bids Inside bids

Position Catches % Cum. % Catches % Cum. %

1st 957 69:91 69:91 998 74:87 74:87

2nd 251 18:33 88:24 214 16:05 90:92

3rd 97 7:09 95:33 73 5:48 96:40

4th 41 2:99 98:32 26 1:95 98:35

5th 11 0:80 99:12 12 0:90 99:25

6th 5 0:37 99:49 4 0:30 99:55

7th 2 0:15 99:63 2 0:15 99:70

8th 4 0:29 99:93 3 0:23 99:92

9th 0 0:00 99:93 1 0:08 100:00

10th 1 0:07 100:00 0 0:00 100:00
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Table 5.9: Bid frequencies of buyers

O¤ered cathces Submitted bids Bid frequency

Bidder Ina Outb All In Out All In Out All

1 812 644 1456 407 91 498 50.1 14.1 34.2

2 1102 354 1456 141 3 144 12.8 0.8 9.9

3 559 897 1456 239 20 259 42.8 2.2 17.8

4 1102 354 1456 411 0 411 37.3 0.0 28.2

5 1053 403 1456 511 31 542 48.5 7.7 37.2

6 1012 444 1456 376 0 376 37.2 0.0 25.8

7 1053 403 1456 334 0 334 31.7 0.0 22.9

8 1012 444 1456 376 5 381 37.2 1.1 26.2

9 185 1271 1456 57 79 136 30.8 6.2 9.3

10 1053 403 1456 617 62 679 58.6 15.4 46.6

11 2 1454 1456 2 16 18 100.0 1.1 1.2

12 1053 403 1456 832 103 935 79.0 25.6 64.2

13 1053 403 1456 768 78 846 72.9 19.4 58.1

14 1102 354 1456 55 0 55 5.0 0.0 3.8

15 1053 403 1456 574 27 601 54.5 6.7 41.3

16 1053 403 1456 741 46 787 70.4 11.4 54.1

17 1102 354 1456 450 2 452 40.8 0.6 31.0

18 1053 403 1456 92 5 97 8.7 1.2 6.7

19 812 644 1456 324 76 400 39.9 11.8 27.5

20 1012 444 1456 209 8 217 20.7 1.8 14.9

21 559 897 1456 228 24 252 40.8 2.7 17.3

22 1102 354 1456 113 1 114 10.3 0.3 7.8

23 559 897 1456 170 112 282 30.4 12.5 19.4

24 1053 403 1456 459 6 465 43.6 1.5 31.9

25 1053 403 1456 250 4 254 23.7 1.0 17.4
a In: Bidder is located inside delivery sector.
b Out: Bidder is located outside delivery sector.



115

Table 5.10: Bidders�scores

Submitted bids Max. bids Winning bids

Buyer All Inside Outside Count Scorea Count Scoreb

1 498 407 91 20 4:02 25 5:02

2 144 141 3 12 8:33 12 8:33

3 259 239 20 53 20:46 50 19:31

4 411 411 0 24 5:84 31 7:54

5 542 511 31 76 14:02 64 11:81

6 376 376 0 79 21:01 106 28:19

7 334 334 0 72 21:56 99 29:64

8 381 376 5 43 11:29 51 13:39

9 136 57 79 47 34:56 24 17:65

10 679 617 62 102 15:02 91 13:40

11 18 2 16 1 5:56 0 0:00

12 935 832 103 156 16:68 163 17:43

13 846 768 78 133 15:72 106 12:53

14 55 55 0 20 36:36 10 18:18

15 601 574 27 91 15:14 63 10:48

16 787 741 46 80 10:17 65 8:26

17 452 450 2 86 19:03 120 26:55

18 97 92 5 9 9:28 17 17:53

19 400 324 76 30 7:50 37 9:25

20 217 209 8 58 26:73 53 24:42

21 252 228 24 26 10:32 34 13:49

22 114 113 1 14 12:28 14 12:28

23 282 170 112 85 30:14 58 20:57

24 465 459 6 32 6:88 34 7:31

25 254 250 4 57 22:44 42 16:54

a A bidder�s percentage of maximum bids to all his submitted bids.
b A bidder�s percentage of winning bids to all his submitted bids.
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Table 5.11: Distribution of N a

All bidsb Binding bidsc

N Lots Percentage Cum. perc. Lots Percentage Cum. perc.

0 52 3:28 3:28 88 5:56 5:56

1 73 4:61 7:90 153 9:67 15:22

2 89 5:62 13:52 170 10:74 25:96

3 119 7:52 21:04 173 10:93 36:89

4 146 9:22 30:26 186 11:75 48:64

5 183 11:56 41:82 207 13:08 61:72

6 156 9:85 51:67 173 10:93 72:65

7 170 10:74 62:41 128 8:09 80:73

8 154 9:73 72:14 93 5:87 86:61

9 112 7:08 79:22 68 4:30 90:90

10 94 5:94 85:15 66 4:17 95:07

11 76 4:80 89:96 37 2:34 97:41

12 52 3:28 93:24 21 1:33 98:74

13 45 2:84 96:08 13 0:82 99:56

14 25 1:58 97:66 5 0:32 99:87

15 21 1:33 98:99 2 0:13 100:00

16 5 0:32 99:31 0 0:00 100:00

17 8 0:51 99:81 0 0:00 100:00

18 0 0:00 99:81 0 0:00 100:00

19 2 0:13 99:94 0 0:00 100:00

20 1 0:06 100:00 0 0:00 100:00

a N : Number of active bidders.
b Total number of all bids = 10397.
c Total number of binding bids = 7669.
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Figure 5.8: Distribution of N , binding bids
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Table 5.12: Number of catches auctioned
simultaneously

Auctions Number of bids

Catches Count Percent Min Median Max

1 89 30:90 0 5:0 13

2 44 15:28 1 6:0 11

3 27 9:38 0 6:0 14

4 23 7:99 0 6:0 17

5 15 5:21 0 4:0 11

6 10 3:47 0 8:0 15

7 17 5:90 0 6:0 14

8 15 5:21 0 6:0 17

9 7 2:43 1 7:0 17

10 5 1:74 1 7:0 17

11 4 1:39 0 6:5 12

12 3 1:04 0 1:5 12

13 3 1:04 1 6:0 20

14 10 3:47 0 10:0 17

16 1 0:35 1 7:0 12

19 3 1:04 0 5:0 17

20 3 1:04 2 7:0 13

21 1 0:35 0 2:0 7

23 1 0:35 1 5:0 8

24 1 0:35 3 8:0 13

25 3 1:04 0 6:0 14

26 1 0:35 4 8:0 12

27 1 0:35 1 10:0 17

31 1 0:35 1 9:0 13
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Table 5.13: Summary statistics of maximum ton limits

Sorted by bidder (B) Sorted by median (Med.)

B Count Med. Min. Max. B Count Med. Min. Max.

1 115 250 60 770 14 11 110 43 250

2 41 140 35 470 22 41 130 35 310

3 104 220 30 790 2 41 140 35 470

4 108 200 45 440 5 135 150 10 1000

5 135 150 10 1000 11 15 150 50 330

6 39 350 85 1200 18 15 150 55 1000

7 43 700 80 2085 23 87 150 15 600

8 96 220 25 800 25 60 198 75 400

9 30 200 90 220 4 108 200 45 440

10 131 200 18 800 9 30 200 90 220

11 15 150 50 330 10 131 200 18 800

12 185 250 20 800 24 91 200 20 550

13 180 240 30 530 20 102 210 50 800

14 11 110 43 250 3 104 220 30 790

15 152 225 25 950 8 96 220 25 800

16 155 270 70 650 15 152 225 25 950

17 103 426 35 2000 13 180 240 30 530

18 15 150 55 1000 19 118 245 20 770

19 118 245 20 770 1 115 250 60 770

20 102 210 50 800 12 185 250 20 800

21 17 300 100 380 16 155 270 70 650

22 41 130 35 310 21 17 300 100 380

23 87 150 15 600 6 39 350 85 1200

24 91 200 20 550 17 103 426 35 2000

25 60 198 75 400 7 43 700 80 2085
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Table 5.14: Use of capacity limits and priorities

Max. ton option Priority option

Bidder Auctionsa Countb Percent Countc Percent

1 85 66 77:65 49 57:65

2 25 24 96:00 25 100:00

3 57 50 87:72 44 77:19

4 73 72 98:63 48 65:75

5 84 73 86:90 49 58:33

6 68 26 38:24 51 75:00

7 49 24 48:98 45 91:84

8 67 51 76:12 56 83:58

9 32 28 87:50 27 84:38

10 101 71 70:30 93 92:08

11 2 2 100:00 1 50:00

12 138 109 78:99 121 87:68

13 126 105 83:33 121 96:03

14 8 8 100:00 8 100:00

15 104 91 87:50 97 93:27

16 131 112 85:50 96 73:28

17 81 34 41:98 77 95:06

18 15 12 80:00 13 86:67

19 74 53 71:62 70 94:59

20 42 40 95:24 40 95:24

21 64 15 23:44 44 68:75

22 24 19 79:17 17 70:83

23 64 51 79:69 61 95:31

24 72 65 90:28 50 69:44

25 49 45 91:84 43 87:76

a Number of auctions where bidder bids on two or more catches.
b Number of relevant auctions where bidder sets a capacity limit.
c Number of relevant auctions where bidder sets priorities.
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Table 5.15: Demanded and acquired quantities in tons

Total quantity Individual catchesa

Buyer Demanded Acquired Percentb Count Mean Min. Max.

1 31400 2900 9:24 25 116:0 40 250

2 6367 775 12:17 12 64:6 30 245

3 25420 11058 43:50 50 221:2 20 760

4 21365 3805 17:81 31 122:7 30 265

5 22012 3336 15:16 64 52:1 9 200

6 41303 17171 41:57 106 162:0 20 770

7 36595 16227 44:34 99 163:9 14 700

8 23267 6157 26:46 51 120:7 15 800

9 7948 3178 39:98 24 132:4 40 200

10 33601 9280 27:62 91 102:0 5 690

11 2500 0 0:00 0 0:0 0 0

12 49026 19396 39:56 163 119:0 10 550

13 42516 13963 32:84 106 131:7 5 470

14 1868 855 45:77 10 85:5 45 240

15 37727 10073 26:70 63 159:9 25 360

16 46323 11070 23:90 65 170:3 20 360

17 53991 19434 35:99 120 161:9 18 800

18 5612 1932 34:43 17 113:6 25 250

19 34982 5682 16:24 37 153:6 10 790

20 24446 10034 41:05 53 189:3 22 600

21 42186 6466 15:33 34 190:2 45 460

22 5175 1180 22:80 14 84:3 30 170

23 17107 7993 46:72 58 137:8 20 600

24 21043 2822 13:41 34 83:0 8 240

25 11323 4171 36:84 42 99:3 15 255

a Summary statistics of acquired catches.
b The percentage of acquired quantity to demanded quantity.
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Figure 5.9: Catch quantities bid on during the season for each bidder
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Figure 5.10: Catch quantities acquired during the season for each bidder
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Chapter 6

Price formation: Partial
analysis

6.1 Introduction

In this chapter, as an introduction to the relevant variables of a multivariate

analysis, we examine how prices vary partially with some potentially impor-

tant variables. In addition to being a prelude to a multivariate analysis, the

partial approach has the merit of being simple. It may also uncover impor-

tant and stable relationships that do not depend critically on controlling for

all details of a lot.

Two product-speci�c covariates are analysed. We focus �rst on the most

important product-speci�c variable, which is average �sh weight of a lot.

Next, we examine how the delivery times of catches a¤ect winning bids. We

expect a negative relationship between delivery times and prices. Then, we

turn our attention to the e¤ect of market measures. We examine general

market forces at work from two perspectives: We aim �rst at an analysis of

the e¤ect of market supply and demand in quantities. Second, we examine

an alternative measure of competition which is speci�c to auction data, to

wit, how the number of active bidders in�uences obtained prices. Finally, we

present the so-called �money left on the table�measure. This is a measure of

how much the winning bidder overshoots. A traditional analysis of how prices

125
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as the explained variable is determined by several explanatory variables will

be given in the next chapter.

The boundaries of the market. What constitutes the �aggregate

market�? Supply is clearly de�ned to be all catches sold through the auction

house NSS, but can we conclude that this is supplied to a single market? The

characteristics of the auction mechanism introduce several complexities. In

particular, di¤erent delivery zones create several geographical submarkets.

For a couple of reasons, however, it is appropriate to treat the entire market

as a whole. First, although the delivery zones sets a preferred geographical

sector for buyers�locations, recall that outside bidders are permitted, thus

making the entire buyer population potential market participants. Second,

delivery zones are partly overlapping. The price level in any delivery zone will

be in�uenced by common market forces. Moreover, it is unrealistic that the

major submarkets are associated with signi�cant di¤erent price levels. If this

was the case, then sellers would be encouraged to set wider delivery zones.

More importantly, competition from outside bidders would level di¤erences

in prices. The rule stating that outside bidders are eligible to bid e¤ectively

puts a bound on the price di¤erences between a wide and narrow delivery

sector that otherwise could pertain. In a way, our market can be compared to

several retailers selling a product to their local customer bases, which may be

distinct or partly overlapping. Customers will only tolerate small di¤erences

in prices. If this is not the case, then they will make the e¤ort to travel to a

retailer with lower prices.

Another feature of the auction is that capacity constraints can result in

bidders having submitted the second highest, or lower ranking bids, winning

a catch, which adds complexity from an auction-theoretic perspective. From

a traditional market perspective, however, it is the familiar condition that

the marginal buyer determines price.

Competitive regime. To begin any price analysis one must look at

the competitive regime. Is it a competitive or regulated market? Do any

agents on either side of the market have market power? Sellers have or-

ganized a common sales mechanism� a complex auction� with the goal of

obtaining competitive prices by utilizing competition on the buyer�s side of
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the market. The coöperative on the supply side may, in particular through

the minimum price option, exercise market power. Any downright monopo-

listic adjustment� reducing the quantity supplied in order to increase total

pro�ts� is ruled out, however, because the major concern is to clear the

market; all o¤ered catches should �nd buyers.

A limited number of buyers exist in this market. This is explained by

the fact that the product is a natural resource in short supply. An optimal

structure of �sh processing plants, both with respect to total capacity and

with respect to the number and location of plants, is likely to emerge due to

the e¤ects of competition. Su¢ cient competition for the �sh does not, how-

ever, require a very large number of demanders. One important goal of the

analysis is to establish the number of competitors necessary for competitive

prices to emerge.

Since the number of bidders varies a lot from catch to catch, we may

conclude that some catches attracting a large number of bidders are charac-

terized by a competitive price regime. The selling of other catches, attracting

very few bidders, are more subject to the exercise of market power on the

buyers�side. Bids will in this case be formulated to ensure a larger pro�t for

the buyer than a more competitive regime would make possible.

6.2 Price versus weight

The average �sh weight of a lot is probably the most important variable

determining prices. This is emphasized by the construction of the reserve

price scheme. Recall that the reserve price depends on the average �sh weight

as a step function; see table 5.2 on page 99. In order to examine the functional

relation between prices obtained and weight, we divided our sample into 17

weight classes ranging from 225 grams (the minimum observed weight is

230 grams) to the maximum observed weight of 650 with an increment of

25 grams. (The average �sh weight reported to buyers are in grams; it is

not rounded to the nearest 25 or 50 grams.) We then calculated the mean

winning bid within each weight class. The scatter plot of mean winning bids

together with the reserve price is depicted in �gure 6.1.
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Figure 6.1: Price as a function of average �sh weight
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The discrete points of mean winning prices for di¤erent weight classes

depicted in �gure 6.1 exhibit a clear functional pattern� a close to monoton-

ically increasing and concave function� which we describe by a polynomial

curve �t. A polynomial approximation of degree 2 that describes the data

best in a least squares sense, turns out to be su¢ cient. The resulting function

of mean prices �P as a function of average �sh weight, w, is

�P (w) = �6:04 + 0:043w � 0:000036w2.

The �gure reveals quite a good �t; the relative errors are small. Notice

that the plotted domain of �P (w) in the �gure contains the relevant domain.

Average weight below 225 or above 650 is unobserved in our complete dataset.

Thus, we do not have to worry about the properties of the function outside
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the plotted domain. Somewhat surprising is the good �t between points and

function for low values of w since the data sample in this domain is small.

The details of the data for �gure 6.1, together with additional statistics, are

given in table 6.1 in the appendix to this chapter.

Note, for use in the next chapter, that for weights above 500 grams,

the relation between price and weight �attens. The �at section above 500

grams is the source of the non-linear relation of price and weight. Under 500

grams, the relation is quite linear. We conclude that prices de�nitely vary

with weight, but the relationship is consistent with an increasing concave

function. Consequently, weight should enter our multivariate linear analysis

by both w and w2.

6.3 Price versus delivery time

Fish deteriorate in quality with time. In particular, bidders express the view

that if the �sh contain feed, then it is important that the vessel arrives at

port quickly. We have information on the date and time of the harvest and on

the estimated arrival time at the northern and southern port in the delivery

sector. We have computed the time interval in hours from harvest to delivery,

denoted delivery time. We investigated the relationship between prices and

delivery times. A negative correlation is expected ; on average, the longer the

delivery time, the lower the price.

Surprisingly, there is no strong correlation between prices and delivery

times. In fact, contrary to expectations, it turns out to be slightly positive.

For lots with a reserve price of NOK 5.25, the correlation is 0.13 between

prices and delivery time to the northern port. In �gure 6.8 on page 151, we

plot the mean price for lots with reserve price 5.25 against delivery time. In

addition, we illustrate the linear relationship between them. In table 6.5 on

page 150, we report the underlying numbers the �gure is based on.

At �rst sight, the relationship between mean prices and delivery time

seems rather erratic. Dividing the delivery time into three subsamples, how-

ever, revealed some patterns in the data. Up to a delivery time of 15 hours,

mean prices rise with delivery time, contrary to what is expected. One in-
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terpretation of this is that bidders do not distinguish between short delivery

times, and that other factors determine prices on lots with short delivery

times. One such alternative factor is average �sh weight. In table 6.5, we

report the average �sh weight of the di¤erent samples with a given delivery

time. We see that this obvious candidate for explaining the rising pattern

of prices, cannot shed any light on the puzzle. Average �sh weight does not

vary much between the subsamples and it does not increase with delivery

time. Most price records, about 95 percent of observations, have delivery

times between 6 and 24 hours. Thus, small-sample variability cannot explain

the rising prices for short delivery times.

From delivery times roughly between 16 and 28 hours, the expected neg-

ative relationship between prices and delivery time is, however, con�rmed.

For long delivery times� more than 29 hours� we have few observations, and

we note that the high outlier observations for prices of 31 and 37 hours is

based on only two observations and one observation respectively, see table

6.5. Thus, small-sample variability can explain this phenomenon.

Another possible candidate for the high prices of very long delivery times

is the combined e¤ect of catch location and supply. Late in the season,

when supply is low, most catches are harvested to the west of Ireland, a long

distance from buyers located on the Norwegian southwestern coast. The

positive e¤ect that short supply and the end of season period have on prices

may dominate the negative e¤ect of a long delivery time.

We conclude that, at an aggregated level, there is no evidence that high

delivery times lead to signi�cantly lower prices. That is, although there might

be a negative relation between price and delivery time, the e¤ect is so weak

that it is not discovered in a partial analysis. We cannot, however, rule-out

that an high delivery time is highly negative for a few catches. In particular,

some catches with very high delivery time, go unsold.

6.4 Price versus demand and supply

Auction prices vary during the season. Two reasons for price variability over

time are: First, general market conditions may a¤ect prices. The highly
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seasonal pattern of supply is an obvious candidate for price variability. In

periods of massive supply, do the prices tend to fall? Demand, likewise, is

also subject to shifts, probably caused by competition from other seasonal

�sheries and the level of exogenously given output prices. Second, prices

may vary because the �sh quality changes during the season. For mackerel,

average fat content fall late in the season, and this may cause a drop in prices.

Supply and price over time. In order to measure price over time, we

need to determine an appropriate time interval in which to compute mean

prices. We may examine mean prices from each auction, which will give

us a frequency of up to four periods per day. An alternative is to measure

mean prices for each day. Using auction or day intervals, however, results in

samples within intervals that frequently are too small for reliable statistical

measures. We decided on using weekly prices in order to have large enough

samples. Since average �sh weight is such an important explanatory vari-

able, we controlled for this by concentrating on weekly prices for the most

important weight class; i.e., lots with average weight above 500 grams or,

equivalently, lots with a reserve price equal to 5.25.

In �gure 6.2, we plot the total weekly supply as vertical bars. The mean

price of lots with a reserve price equal to 5.25 for each week is shown as a

dotted line. For two weeks, we cannot calculate the mean price. In week 52,

there was no supply at all, and in week 44, there were no lots o¤ered with

relevant reserve prices. We interpolated the mean price for these two weeks

by a piecewise Hermite cubic interpolation; see Judd [53, ch. 6.8]. The data

on supply in �gure 6.2 are from table 5.6, and the price data with additional

statistics on frequency and variability measures are reported in table 6.2 on

page 147.

In order to smooth the underlying price pattern, we have plotted a three-

period moving-average, denoted MA(3), of the mean price as well. Prices

dropped signi�cantly in week 40, which is not easy to explain. Apart from

this, prices rose during the �rst part of the season, well past the period where

supply peaks. Thus, we observed no downward pressure on prices when

supply increased. The steadily-rising mean prices from the beginning of the
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Figure 6.2: Price and supply, weekly data

37:03 42:03 47:03 52:03
0

5

10

15

20

25

30

Week

S
up

pl
y 

in
 1

00
0 

to
ns

Supply

P
ric

e 
pe

r k
ilo

 (N
O

K
)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Mean price
MA(3) of mean price

season to around week 47, may be explained by the quality (fat contents)

of the �sh. The remaining period, with little weekly supply, is characterized

by an erratic price pattern. A slight fall in mean prices at the end of the

year, and a moderate increase in prices at the end of the season is observed.

Weekly samples of lots are largest when the supply is high. Consequently,

a larger variability is associated with mean prices at the beginning and the

end of the season; see also �gure 7.1 on page 162 where we present the price

pattern over time for alternative aggregate measures to weekly average prices.

The demand-surplus factor. Assuming the demand-surplus factor (DSF)

is a better measure of general market forces than supply alone, let us look at

how prices vary with this measure. Although our revealed demand-surplus

(see section 5.3.5) is an imperfect measure of demand, we rely on it in order
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to have an alternative measure of relevant market forces at work. We dis-

regard the time e¤ect now and sort the weekly data by the demand-surplus

factor in increasing order. For a plot of the demand-surplus factor over time,

see �gure 5.3b on page 90.

Will prices tend to increase when the demand-surplus factor increases?

Weekly DSF and mean prices are plotted in �gure 6.3. Mean prices show an

highly-volatile pattern with respect to the DSF level. This happens because

we do not plot the data by time. Thus, the time e¤ect from �gure 6.2 is now

mixed in between the observations in �gure 6.3. The tendency, however, is

clear enough. Looking at the best linear-predictor (BLP) of the mean prices,

we see that prices do tend to rise with the demand-surplus.

It is somewhat reassuring that predictions from general economic demand

and supply analysis, is not without power in this market. But we note the

high price volatility, and must conclude that traditional market analysis�

using the data we have available for such an analysis� have a limited ex-

planatory power of the price formation process at this auction market.

6.5 Price versus the number of bids

The number of submitted bids N is a measure of competition. The more

buyers that are bidding for a catch of �sh, the more likely, ceteris paribus,

the price will be high. This follows from both the general economic theory of

demand and supply and from game theory if valuations are predominantly

private.

From the general demand-supply analysis, the e¤ect of increased N is

straightforward and transparent: At a given time, the supply is �xed. Adding

buyers will shift the demand curve outward, and result in a predicted higher

price. In the traditional model, we do not assume any strategic interactions

between buyers.

In game-theoretic auction models, on the other hand, the players�strate-

gies are considered. Bids are formed by balancing the probability of winning

and the pro�t conditional on winning such that expected pro�t is maximized.

The e¤ect of potential buyers is in these models incorporated in the �prob-
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Figure 6.3: Price and the demand-surplus factor, weekly data
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ability of winning�part of the model in the following way: With increased

number of bidders, the likelihood that some competitors have high private

valuations increases. Hence, a bidder will have to reduce the span between

his bid and his private valuation in order to reduce the possibility that a

competitor sets a bid above his bid but below his valuation.

The case of private values. The exact relation between the number of

bids and winning bid is well understood in the benchmark models of auction

theory. Under the �rst-price, sealed-bid auction format, with independent

and identically-distributed valuations, the number of bidders enters the bid

function as a variable that monotonically increases bids, see equation (2.10)

on page 19. The e¤ect was illustrated in �gure 2.1 on page 21. The theoretical

relationship is valid for a homogenous product. Notice, however, that all
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standard auction formats within the independent private-values paradigm�

open and closed, and �rst-price, second-price, third-price, and so forth� will

have in common that expected revenue to the seller increases by increased

competition.

When a reserve price is present, a distinction between the potential num-

ber of bidders N and the actual number of submitted bids N must be made.

We do not observe N . Although bid strategies such as equation (2.10) states
the e¤ect of N on bids, below we rely on that N will have a similar e¤ect in

expected terms.

Introducing a¢ liated valuations complicates matters. Pinkse and Tan [89]

have shown that the bid function may not be increasing in N at �rst-price,

sealed-bid auctions when valuations are private, but a¢ liated. Although the

competitive e¤ect of increased N monotonically increases bids, they identify

an opposing a¢ liation e¤ect that a¤ects bidders� expectations about the

competitive intensity downwards.

The case of a common value. If bids are predominantly determined

by a common, uncertain value, then the relationship between prices and

competition is more involved. In addition to the two factors� the probability

of winning which increases with bid level, and the utility of winning which

decreases with bid level� a third factor enter bid considerations, the so-called

winner�s curse. We explained this phenomenon in chapter 2, section 2.4.2.

To summarize brie�y, there is an adverse selection problem when bidding for

an object with an uncertain common value since the winning bidder will be

the one with the most optimistic estimate of the value. Therefore, rational

bidding behavior will involve adjusting the bid downward in the presence of

many competitors. As noted by Paarsch [84], the empirical implication is

that bids will not be a monotone function of the number of bids. Instead,

we may have the following scenario: First, bids increase with competition

since bid shaving decreases in line with the private-values model. Ultimately,

however, bids will stop increasing with competition, since failing to adjust

bids downward will expose the winner to the adverse selection e¤ect. A

stronger prediction is that optimal bids eventually decrease with the number
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of bidders. La¤ont [60] noted that there seems to be no general proof available

for this prediction.

Discussion. Is the assumption of a common value realistic in our market?

Production costs are likely to be stable. Firms run production regularly,

although they will have to reduce e¤orts during periods with low supply

of raw material. The one factor that could introduce an uncertain common

value is the end price of mackerel in export markets. From what we know, the

time span between bid decision and realized revenues is relatively short. For

producers involved in the main business of selling whole and frozen mackerel,

it typically takes 3�4 weeks before the acquired �sh are sold in the second-

hand market. Although we do not have data on export prices, it is reasonable

to assume that export prices do not �uctuate a lot in the short interval.

Thus, the uncertainty in future export prices is small. Given this, we expect

private values to best describe the auction market, but we notice that the

empirical relationship between mean winning prices and N will indicate what

model world we are in. Results will, however, have to be interpreted with

caution. Pinkse and Tan have noted that the a¢ liation e¤ect can occur in

both private-values and common-value models. Thus, if bids start to decrease

for large N , we cannot conclude that we are in a common-value world. We

may as well be in a world with private, but a¢ liated values.

Thus, in both model worlds� the traditional economic model of demand

and supply and the auction model with private values� capture the common

sense belief that increased demand or harsher competition on the demand side

will have an e¤ect on realized market prices. If valuations are private, then

we expect prices to be monotonically increasing in N , while prices will drop

for large N if valuations are determined by a common value. But the central

question of how large the e¤ect of competition is must be determined by an

empirical analysis. In this section, we focus narrowly on the relationship by

giving a rough, but revealing, indication of the relationship. A more detailed

numerical relationship is obtained in the next chapter where we control for

several covariates when examining price formation.
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Choice of sample. In our case, we have already established that �sh

weight makes auctioned objects heterogenous, and possible other covariates

may as well introduce diversity. In order to analyse how prices vary with re-

spect to the number of active bidders or equivalently the number of submitted

bids, we partially adjust for the most important covariate; average weight.

To bring in other covariates and to keep them constant, thus satisfying the

ceteris paribus assumptions, is di¢ cult.

We have to keep the number of di¤erent weight classes restricted in order

to have a su¢ cient number of observations. Rather than looking at mean

prices obtained for each N and weight class, we look at the price-N relation

for each group of reserve prices. Recall that the reserve prices are increasing

in average �sh weight. We concentrate on the economically most impor-

tant weight class� average weight above 500 grams� which corresponds to a

reserve price equal to 5.25 NOK.

Measure of N . Two questions emerge at this point. What price measure

should we use? What measure of N is appropriate? As far as the price

is concerned, we have two alternatives. Either we use the maximum bid

observed, or we use the bid that was allocated the lot (the winning bid).

Although the maximum bid reveals interesting information on underlying

valuations and there is some randomness in how lots are allocated to bidders

with capacity constraints making the resulting validated prices random in a

sense also, we dismiss this measure at this point. Since this is an empirical

market analysis, we regard the winning bid as the relevant price variable.

This is the price obtained by the seller and is interpreted as the willingness to

pay for the marginal buyer when buyers with higher bids have their demand

satis�ed by other lots.

Given that we choose to use the winning bid rather than the maximum

bid as a price measure, this has consequences for how we measure N . The

auction format encourages, through the capacity constraint option, buyers

to bid on as many lots they like. When bidders bid on more lots than they

can take, however, the number of submitted bids becomes dubious for our

purpose.
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Fundamental to the analysis is the idea that N is a measure of competi-

tion. The more bids a lot attracts, the more likely it is that an �high�bid

is submitted since competition forces bids upwards. The correct measure of

competition, thus, should measure the real competition a lot is subject to.

In the validation process, it turns out that some bids are refuted because the

bidders have ful�lled their demand elsewhere. Thus, we �nd it reasonable to

adjust the number of submitted bids by subtracting the bids higher than the

winning bid for each lot. We do this by identifying for each lot the position

of the winning bid; i.e., whether it was the highest, second-highest, and so

forth. Then we subtract the number of bids above the winning bid. By

this procedure, we obtain a better measure of N since bids refuted in the

validation process are not counted.

A bid can be refused because the relevant bidder has (1) reached his

maximum ton limit; (2) not obtained his minimum ton limit; or (3) reached

his maximum vessel limit. In addition, (4) the bidder may be a refused

outside bidder. By far, the most common cause for an high bid is being

refused is that the bidder�s maximum ton constraint binds.

Although we can take out all high irrelevant bids, some bids lower than

the winning bids may also turn out to be irrelevant when the agents who

tendered those bids have binding constraints. We can partially adjust for

this. Since we have information on both the maximum ton constraint and

how much quantity a bidder was allocated after validation, we can take out

the bids from bidders with binding maximum ton limits. For each lot and

each bidder that did not win the lot, we compared the allocated quantity with

the maximum quantity limit. If the allocated quantity plus the quantity of

the lot in question exceeds the set limit, then we do not count the bid since

the bidder could not take the lot anyway if winning.

The total e¤ect of this procedure is that 24.35 percent of bids are removed.

An unwanted side e¤ect is that the number of observations for some groups

is small.

Results. We depict in �gure 6.4 the resulting relation of obtained price

per kilo and the number of bidders for lots with a reserve price equal to
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Figure 6.4: Price as a function of N , binding bids
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NOK 5.25. We plot the mean of winning bids for each N , and draw the

least squares line of a polynomial �t of degree 2. A reasonable �t with

small errors is observed for N up to and including 11. The volatility of the

mean prices seems to increase for N > 11. This is probably explained by the

fact that the number of observations is small at this level for N , making the

resulting statistics uncertain. Only 2.74 percent of all lots have a number of

submitted bids above 11. In particular, the observed �outlier�price values

for the maximum values of submitted bids�N equal to 14 and 15� have only

5 and 2 observations respectively.

The illustrated functional relation of the second degree polynomial ap-

proximation of mean winning bids is:

�P (N) = 5:94 + 0:153N � 0:0045N2. (6.1)
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The curvature of �P (N) is low. The relation is close to linear, the correspond-

ing linear approximation is �P (N) = 6:144 + 0:08N . The appealing feature

of a second degree approximation is that it captures the expected e¤ect of

competition. Increasing N from 1 to 2 is a signi�cant increase in competi-

tion, while an extra competitor when N is, say, 12 has a marginal e¤ect on

competition. Competition sets in at a certain level of N in the sense that

additional increases in N do not increase prices.

Admittedly, the problem of adjusting N is an involved one. If we do

think that some information is lost when taking away bidders with binding

constraints ex post, then it is somewhat assuring that the relation between

mean price and N is rather stable anyway. In �gure 6.5, we plot the same

relation as in �gure 6.4, but now using all bids for the classi�cations of

N . This results in less volative mean prices for high values of N since the

number of observations is increased. Note that the competitive e¤ect is

now more pronounced; the mean price tapers o¤ at the upper end. The

functional form of the second degree polynomial least squares �t of �gure 6.5

is: �P (N) = 5:73 + 0:156N � 0:0045N2. The corresponding function when

forcing a linear �t on the data points is: �P (N) = 6:00 + 0:074N . The slope

for N above 8 is close to horizontal. A reasonable interpretation of this is

that (su¢ ciently) competitive prices are obtained at N � 9.
At the risk of being pedantic, we note that the second-order polynomial

approximation function has the unfortunate property of reaching a peak and

then actually take on quickly decreasing values for N larger than we have

in our sample. Although decreasing prices for large N are predicted if we

have a common-value auction, we argued against this above. And even if

assuming a bid generating process of common-value, prices will not fall as

much as predicted by equation (6.1). The predictive properties of equation

6.1 is therefore weak for large N . The easy solution to this is simply to say

that mean prices for large N are expected to be close to the competitive price

level that seems to characterize mean prices when the number of bidders is

between 14 and 17.

We conclude from �gures 6.4 and 6.5 that there is a fairly stable rela-

tion between mean auction prices and the number of submitted bids in our
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Figure 6.5: Price as a function of N , all bids
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dataset. The pattern does not contradict the hypothesis that valuations are

predominantly private. We do not observe a clear drop in prices for large

N . The relatively low price for the last observation (N = 15) in �gure 6.4

is probably the e¤ect of a small sample size rather than an indication of an

adverse selection e¤ect which is predicted by the common-value model.

So far we have worked with mean prices. We computed mean prices for

di¤erent weight classes and for di¤erent samples of N , and for both cases, we

found a reasonable good �t to an increasing concave price function. However,

predicting single-lot prices based on N and average weight is entirely another

matter. A lot of volatility is introduced when moving the analysis from mean

lot prices to single lot prices. The range of prices and measures of volatility

with respect to average �sh weight are reported in table 6.1. A couple of

related tables reporting statistics on the mean prices grouped by the number
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of submitted bids, are tables 6.3 (all bids) and 6.4 (binding bids) on pages

148 and 149.

In order to depict the volatility measures in tables 6.3 and 6.4, we present

some box plots in �gure 6.7. A box plot summarizes e¤ectively some impor-

tant statistics and outliers of a data material. In our case, the box plot

�gures show a box and whisker plot for the variable �Winning bid�grouped

by the variable �Number of submitted bids�; i.e., we group all lots with a re-

serve price equal to NOK 5.25 by the number of bids they received and then

present the statistics of the winning bid for each sub group. The box has

lines at the lower quartile (lower horizontal line), median, and upper quartile

(upper horizontal line) values. The median is preferred over the mean since

it is invariant to extreme values. The whiskers are lines extending from each

end of the box to show the extent of the rest of the data that are within

1.5 times the interquartile range from the ends of the box. Outliers are data

with values beyond the ends of the whiskers and are represented by a plus. If

there is no data outside the whisker, a dot is placed at the bottom whisker.

The notches of each box around the medians represent a robust estimate of

the uncertainty about the medians for box-to-box comparison. Boxes whose

notches do not overlap, indicate that the medians of the two groups di¤er at

the 5 percent signi�cance level.1

Although �gures 6.4 and 6.5 show a nice relationship between mean win-

ning bids and the number of submitted bids, we see from �gure 6.7 that

the relationship between all winning bids and N is characterized by severe

volatility. We can conclude from the notches around the medians in the box

plots, that the medians di¤er between the lowest and the highest values of

N . Apart from that, the main message of �gure 6.7 is that the volatility of

mean or median prices warrants a multivariate analysis in order to gain an

understanding of what determines prices in this market.

1The description of the box plot is based on the source: <http://www.matworks.com/
access/helpdesk/help/toolbox/stats/> Web accessed: April 30, 2008.
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6.6 Money left on the table

We end this chapter by examining an alternative concept of competition, the

so-called money left on the table (MLOT) measure. This is de�ned to be the

di¤erence between the winning bid and the closest non-winning bid. In our

case, where bids are per kilo and quantities of lots or catches di¤er, we may

express the money left on the table for a single catch in NOK or in percent.

Due the variability in prices between di¤erent weight classes, we prefer to

measure it in terms of percent. If there is only one bid, we measure MLOT

as the di¤erence between the winning bid and the reserve price.

In a common-value model, the measure may indicate something about

the uncertainty associated with the value of the object. In a private-values

model, the interpretation is di¤erent; the �money left on the table�is in some

sense a measure of competition.

In �gure 6.6, we have plotted the empirical distribution function of MLOT

for all catches. 60.7 percent of the catches leave less than 2.5 percent on the

table. The percentage of catches leaving less than 10 percent is 92.2 percent.

The 2.5 percent of catches with MLOT larger than 20 percent are not plotted

in �gure 6.6 (for purely visual reasons; it would extend the x-axis too much).

Most of these outliers are characterized by having a low reserve price that

does not re�ect the market price and only one submitted bid. A mere 11

out of 1144 catches have a MLOT measure above 40 percent. Four catches

leave more than 100 percent of the table. The maximum percentage left is

188 percent.

The MLOT �gures indicate that this is a fairly competitive market. Bid-

ders are experienced, and leave little money on the table. Alternatively,

the �gures tell us that there is not much evidence of the winner�s curse or

�trembling hand�mistakes.
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Figure 6.6: Empirical cumulative distribution function of �Money left on
the table�in percent
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6.A Appendix: Tables and �gures

Table 6.1: Price as a function of weight

From To Lot Mean Std. Min. Max. Reserve

weight weight count price price price price price

225 249 2 2:19 0:85 1:59 2:79 1:50

250 274 4 2:70 1:06 1:50 4:07 1:50

275 299 1 2:99 0:00 2:99 2:99 1:50

300 324 7 4:08 1:28 1:52 5:80 1:50

325 349 15 4:20 0:79 2:55 5:09 1:50

350 374 17 4:97 0:73 3:55 6:21 2:50

375 399 41 5:23 0:84 3:50 6:51 2:50

400 424 55 5:41 1:01 3:50 7:06 3:50

425 449 85 5:95 0:93 3:50 7:14 3:50

450 474 87 5:94 0:85 4:75 7:61 4:75

475 499 199 6:26 0:79 4:75 7:59 4:75

500 524 165 6:41 0:74 5:25 7:81 5:25

525 549 184 6:68 0:68 5:25 7:69 5:25

550 574 272 6:67 0:69 5:28 7:86 5:25

575 599 225 6:70 0:59 5:29 7:70 5:25

600 624 108 6:59 0:55 5:44 7:77 5:25

625 650 27 6:75 0:76 5:53 7:99 5:25
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Figure 6.7: Box plot of winning bids versus the number of submitted bids
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Table 6.2: Price per week

Std. MA(3)

Count Mean Max. Min. Std. mean mean

Year Week lots price price price price price pricea

2003 33 11 5.71 6.02 5.28 0.26 0.08 5.71

2003 34 66 5.60 6.02 5.25 0.18 0.02 5.68

2003 35 90 5.73 6.16 5.29 0.22 0.02 5.94

2003 36 45 6.22 6.91 5.44 0.33 0.05 6.26

2003 37 100 6.36 6.93 5.25 0.40 0.04 6.38

2003 38 145 6.86 7.27 5.61 0.30 0.03 6.58

2003 39 146 7.04 7.70 5.30 0.47 0.04 6.69

2003 40 101 6.50 7.63 5.25 0.72 0.07 6.77

2003 41 105 7.09 7.64 5.31 0.46 0.04 6.91

2003 42 101 6.98 7.66 5.88 0.41 0.04 6.97

2003 43 17 7.14 7.69 5.81 0.55 0.13 7.04

2003 44 0b 7.15 na na na na 7.18

2003 45 5 7.16 7.41 6.89 0.20 0.09 7.32

2003 46 6 7.17 7.45 6.82 0.21 0.09 7.40

2003 47 4 7.88 7.94 7.77 0.08 0.04 7.53

2003 48 3 7.80 7.99 7.61 0.19 0.11 7.36

2003 49 12 7.42 7.55 7.23 0.11 0.03 7.17

2003 50 5 7.68 7.89 7.41 0.22 0.10 7.02

2003 51 11 6.38 7.15 6.06 0.38 0.11 6.83

2003 52 0b 6.44 na na na na 6.82

2004 1 1 6.58 6.58 6.58 0.00 0.00 6.90

2004 2 2 6.88 7.12 6.63 0.35 0.25 6.95

2004 3 1 6.79 6.79 6.79 0.00 0.00 7.04

2004 4 4 7.37 7.55 7.16 0.17 0.09 7.37
a MA(3): Three-period moving average.
b Mean price is interpolated.
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Table 6.3: Summary statistics of winning and maximum bids grouped by the
number of all submitted bids

Winning bids Maximum bids

N Count Mean Std. Min. Max. Count Mean Std. Min. Max.

1 31 5.89 0.66 5.25 7.41 40 5.75 0.64 5.25 7.41

2 44 6.04 0.59 5.25 7.33 48 6.05 0.57 5.28 7.33

3 70 6.24 0.66 5.25 7.49 76 6.28 0.66 5.25 7.49

4 89 6.51 0.64 5.25 7.61 91 6.55 0.64 5.26 7.61

5 121 6.40 0.72 5.31 7.81 121 6.47 0.69 5.42 7.81

6 99 6.64 0.69 5.37 7.86 99 6.72 0.67 5.52 7.86

7 100 6.83 0.55 5.49 7.94 100 6.92 0.55 5.56 7.94

8 100 6.57 0.63 5.56 7.89 100 6.66 0.62 5.69 7.89

9 77 6.79 0.55 5.56 7.70 77 6.87 0.54 5.59 7.70

10 65 7.00 0.43 5.91 7.99 65 7.07 0.40 6.07 7.99

11 59 6.96 0.52 5.58 7.93 59 7.08 0.44 6.07 7.93

12 38 6.91 0.56 5.59 7.57 39 7.02 0.51 5.59 7.59

13 36 6.92 0.49 5.77 7.57 36 7.02 0.48 5.77 7.57

14 20 7.01 0.51 6.13 7.64 20 7.11 0.41 6.33 7.64

15 18 7.05 0.41 6.17 7.57 18 7.09 0.42 6.17 7.57

16 4 7.19 0.24 6.86 7.36 4 7.21 0.25 6.87 7.41

17 7 7.10 0.11 6.98 7.25 7 7.22 0.17 6.99 7.42

19 2 6.78 0.16 6.67 6.89 2 6.91 0.04 6.88 6.94

20 1 6.86 0.00 6.86 6.86 1 6.88 0.00 6.88 6.88
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Table 6.4: Summary statistics of winning and maximum bids grouped by the
number of binding (ex post) submitted bids

Winning bids Maximum bids

N Count Mean Std. Min. Max. Count Mean Std. Min. Max.

1 98 6.02 0.60 5.25 7.41 98 6.15 0.65 5.25 7.41

2 123 6.35 0.70 5.25 7.70 123 6.49 0.72 5.26 7.70

3 106 6.46 0.70 5.25 7.59 106 6.53 0.69 5.25 7.59

4 126 6.69 0.59 5.38 7.64 126 6.78 0.58 5.42 7.64

5 136 6.62 0.65 5.42 7.86 136 6.69 0.65 5.42 7.86

6 108 6.78 0.56 5.61 7.53 108 6.83 0.56 5.61 7.54

7 77 6.80 0.56 5.71 7.94 77 6.85 0.58 5.71 7.94

8 56 6.80 0.62 5.56 7.89 56 6.85 0.59 5.59 7.89

9 46 7.02 0.43 5.96 7.70 46 7.07 0.42 6.16 7.70

10 48 7.08 0.37 6.13 7.99 48 7.14 0.32 6.48 7.99

11 26 7.13 0.53 5.59 7.93 26 7.15 0.53 5.59 7.93

12 17 6.89 0.63 5.77 7.57 17 6.92 0.63 5.77 7.57

13 10 7.21 0.41 6.43 7.64 10 7.21 0.41 6.43 7.64

14 2 7.57 0.00 7.57 7.57 2 7.57 0.00 7.57 7.57

15 2 7.04 0.06 6.99 7.08 2 7.04 0.06 6.99 7.08



150 CHAPTER 6. PRICE FORMATION: PARTIAL ANALYSIS

Table 6.5: Summary statistics of prices grouped by
delivery time. Lots with reserve price 5.25

Price per kilo

Timea Count Mean Std. Min. Max. Weightb

3 5 6:03 0:64 5:44 7:11 540

4 5 6:60 0:75 5:67 7:34 555

5 7 6:32 0:69 5:57 7:34 581

6 14 6:00 0:68 5:36 7:36 559

7 12 6:38 0:75 5:49 7:31 567

8 7 6:89 0:54 5:79 7:49 546

9 25 6:48 0:69 5:31 7:44 545

10 70 6:21 0:69 5:36 7:51 556

11 59 6:44 0:75 5:25 7:57 555

12 58 6:73 0:77 5:25 7:86 554

13 65 6:83 0:62 5:36 7:70 558

14 126 6:53 0:73 5:28 7:89 562

15 95 6:69 0:64 5:28 7:64 566

16 98 6:86 0:57 5:32 7:99 562

17 79 6:79 0:47 5:53 7:81 564

18 47 6:77 0:56 5:25 7:94 572

19 79 6:69 0:60 5:40 7:64 561

20 40 6:68 0:62 5:25 7:52 563

21 26 6:89 0:42 5:78 7:51 553

22 16 6:55 0:70 5:55 7:49 570

23 11 6:58 0:64 5:43 7:40 545

24 12 6:54 0:61 5:50 7:31 567

25 5 6:71 0:48 6:35 7:33 549

26 7 5:96 0:57 5:25 6:81 552

27 5 6:35 0:67 5:50 7:16 542

28 4 5:95 0:43 5:31 6:23 570

30 2 7:50 0:06 7:46 7:55 555

31 1 6:63 0:00 6:63 6:63 550

37 1 7:12 0:00 7:12 7:12 560

a Delivery time in hours.
b Mean �sh weight in grams.
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Figure 6.8: Mean price versus delivery time. Lots with reserve price 5.25
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Chapter 7

Price formation: Multivariate
analysis

7.1 Introduction

In this market, with relatively few agents on the buyer�s side, prices are deter-

mined by three main factors: product-speci�c characteristics, market-speci�c

characteristics in a broad sense, and �rm-speci�c characteristics. Product-

speci�c characteristics are common to all buyers, market-speci�c characteris-

tics are also relatively common given that the majority of buyers are engaged

in the same export business of selling unprocessed frozen �sh. Firm-speci�c

factors, in particular cost structure and capacity, are by nature more diverse.

Quality of data. The dataset presented in chapter 5 and in appendix A
is rich and detailed. In fact, it represents an entire season and all information

concerning auctioned objects given to potential bidders is available. Data

on �nal prices and quantities are available for each market transaction as

well. This puts us in a position where we can analyse price formation in a

market with very detailed micro data. Contrast this to the far more usual

situation in economics: When analysing the market of a speci�c product, a

researcher often does not even have a good measure of price, not to mention

the underlying variables determining prices. For example, in many areas of

industrial organization, prices that enter the analyses are traditionally based

153



154 CHAPTER 7. PRICE FORMATION: MULTIVARIATE ANALYSIS

on broad aggregates, both with respect to time (monthly data at best, often

quarterly or yearly data is used) and with respect to quality of products. A

common approach to analysing �sh price elasticities to export markets is to

obtain prices by simply calculating so-called unit prices by dividing the total

export value of a product within a time period by the relevant total export

quantity. Obviously, such aggregated measures of price introduce a lot of

noise into any empirical price analysis.

Empirical approach. One fundamental market factor is the derived-
demand and supply conditions as well as prices obtained in second-hand

(export) markets. Obviously, the prices of all kinds of end-products put

a ceiling on the prices in the wholesale market. Retail prices are formed

under a complex set of constraints where demographics, the more or less

erratic change of consumer tastes and substitute products are but a few

of the explanatory variables. Clearly, trying to incorporate these general

market variables, quickly becomes very complex, if not impossible. The

e¤ort is not worthwhile since data noise and lack of relevant information

make the results suspicious. The beauty of auction data is that, in principle,

bids reveal all relevant information available to the price formation process.

Buyers form their bids based on underlying valuations which are formed

under rational expectations about all relevant market variables. To uncover

the valuations, we have to resort to a structural approach. A structural

approach requires us to commit to a speci�c auction-theoretic model that

explains winning bids. Given the complexities of the aggregate market, we

do not set up a structural auction-theoretic model for explaining bids in

this chapter. Instead, we utilize the dataset to determine the e¤ects that

several variables with potential explanatory power have on realized market

prices. However, since we perform reduced-form estimation, we have to avoid

drawing strict causal inferences. Potential omitted-variables bias can lead to

estimates that are larger than the causal e¤ect.

The next factor in price formation, �rm-speci�c characteristics, may be

revealed to a certain degree by gathering information from individual �rms.

Public accounting information and information on capacities, and so forth

can be of use in this context. Although we have some �rm-speci�c informa-
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tion at hand, we use a direct approach that summarizes any asymmetries

on the buyers�side e¤ectively: We test whether the identity of the winning

bidder has any e¤ect on prices.

The task then is to regress prices on several covariates. We are mainly

interested in analysing the e¤ect of directly observable covariates like weight

and other quality variables. To pin-down the e¤ect of these with best preci-

sion, we need to control for several other covariates. In particular, we should

control for short-termmarket conditions. This implies that we include several

regression variables that empirically turn out to have explanatory power.

7.2 Regression model and interpretation of

coe¢ cients

The explained variable in our model is the winning bid for each lot, which

we denote by Pt for lot t. For now, denote the j binary variables (dummy

variables) by Dj and the i other discrete and continuous variables by Xi. We

propose a regression model of the general form:

Pt = exp

"
�0 +

X
i

�
�iXit + iX

2
it

�
+ Ut

#
�
Y
j

(1 + dj)
Djt (7.1)

where Ut is a residual. We suppress the observation-speci�c subscript t in the

remainder. Equation (7.1) may be transformed to a left-side semi-logarithmic

(log-linear) functional form:

logP = �0 +
P

i (�iXi + iX
2
i ) +

P
j log (1 + dj)Dj + U

= �0 +
P

i (�iXi + iX
2
i ) +

P
j �jDj + U .

(7.2)

Note that we have set �j � log (1 + dj) above. Only a couple of squared

terms of covariates will be considered incorporated in the regression equa-

tion. We have argued that N (submitted bids) and average �sh weight are

reasonable candidates since they exhibit a concave increasing relationship to
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mean prices. The motive for using a semi-logarithmic functional form is that

interpretations of estimated coe¢ cients are intuitive with respect to elastici-

ties. The semi-logarithmic form is common to use when some covariates are

binary since the alternative log-log form (which also gives easily interpretable

coe¢ cients) is inappropriate in that case. The price elasticity of a continuous

variable, EP;Xi, i.e., the percentage e¤ect on the expected price of a given

percentage increase in Xi, will then take the form:

EP;Xi �
@P

@Xi

Xi

P
= P � (�i + 2iXi)

Xi

P
= �iXi + 2iX

2
i .

In order to �nd the percentage e¤ect on the expected price due to the presence

of a dummy variable, a bit more care must be exercised since the derivative of

a binary variable does not exist. Let Pj0 and Pj1 be the values of the depen-

dent price variable when binary variable Dj is equal to 0 and 1 respectively.

The percentage e¤ect on expected P when the dummy e¤ect is present is

then, using equation (7.2), equal to

100� Pj1 � Pj0
Pj0

= 100dj.

The naïve� but not uncommon� interpretation of 100�j as the percentage

e¤ect on the dependent variable is not correct, as noted by Halvorsen and

Palmquist [41]. Estimating equation (7.2) gives us �j while we are interested

in dj for purposes of interpretation. Since �j = log (1 + dj), we have that

dj = exp (�j)� 1, or equivalently that the percentage e¤ect on P when Dj is

present, is:

100� Pj1 � Pj0
Pj0

= 100 [exp (�j)� 1] . (7.3)

Kennedy [54] has noted that estimating dj by [exp(�̂j)�1] produces a biased
estimator. Assuming errors to be lognormally distributed, and relying on a

result from Goldberger [36], Kennedy has proposed the following estimator:

d̂j = exp
h
�̂j � 0:5V̂

�
�̂j

�i
� 1 (7.4)
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where V̂
�
�̂j

�
is the usual unbiased estimator of the variance of �̂j. Although

this estimator is still biased, it is less biased than [exp(�̂j)�1]. The estimated
elasticity is then equal to 100d̂j. Giles [34] showed that Kennedy�s estimator

yields interpretations of dummy variables that di¤er negligibly from those

that would result from using the minimum variance unbiased estimator.

Finally, it is desirable to have an estimate of the corresponding uncer-

tainty of the estimated dummy variable elasticity. Notice that d̂j is a non-

linear function of the parameter estimate �̂j. Garderen and Shah [32] have

claimed that the traditional approach of obtaining the variance of a non-

linear function of parameter estimates� the Delta method� will lead to over-

estimation of the variance in the present context. Instead, they propose a

simple approximation to the exact minimum variance unbiased estimator of

the variance which works well in practice. Expressed in terms of the standard

deviation of d̂j, their estimator� which we shall rely on� is:

bse�d̂j� = h1002 exp�2�̂j�nexp h�V̂ ��̂j�i� exp h�2V̂ ��̂j�ioi0:5 . (7.5)
7.3 Estimation method

We have formulated a linear regression model in equation (7.2). Let n be

the number of observations and p the number of explanatory variables or

covariates (including a constant term). The linear regression model is ex-

pressed as Y = X� + U where Y and U are (n� 1) vectors of explained
variables and residuals respectively, X is an (n� p) matrix of explanatory
variables (the design matrix), and � is the (p� 1) vector of coe¢ cients to
be estimated. A single observation i of the explained variable is denoted Yi
while the corresponding (1� p) vector of covariates for observation i is xi.
Typically, characteristics of the residual vector are important for the

choice of estimation method. If the errors have the same distribution what-

ever the realizations of X, then the work horse of linear regression mod-

els, ordinary least squares (LS), will give us the conditional mean function

E [Y jX] = X�; i.e., how the mean of Y changes with the covariates. How-
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ever, the prevalence of some outliers� in particular, some extra high prices

from time to time, and some prices at the minimum price� suggests that we

estimate our relationship by a robust regression technique as well. By robust

we mean that the estimator is una¤ected by outliers. Relying on the same

assumptions for the errors as above, the least absolute deviations (LAD)

estimator is an estimate of the conditional median function; i.e., how the

expected median of Y changes with the covariates. In the same way as the

median (rather than the mean) is a robust location parameter of an empirical

distribution, is LAD robust compared to LS. For large samples, the need for

a robust estimator is less critical.

The standard assumption of ordinary least squares that errors are spher-

ical (the twin assumptions of homoskedasticity and nonautocorrelation) im-

plies that X only a¤ects the location of the conditional distribution of Y .

Covariates may, however, a¤ect other aspects of the distributional shape of

the conditional distribution of Y . Going from the assumption of homoskedas-

tic to heteroskedastic errors, is just one of the many ways that a¤ects the

stochastic relationship between variables.

Quantile regression, �rst introduced by Koenker and Bassett [58], is an

estimation method that potentially may provide a more informative empiri-

cal analysis than least squares alone. The quantile regression estimates the

conditional quantile of the dependent variable. In general, the �th quantile

regression (0 < � < 1) solves (see Buchinsky [15]):

min
�

( X
i:Yi�xi�

� jYi � xi�j+
X

i:Yi<xi�

(1� �) jYi � xi�j
)
. (7.6)

The LAD estimator is a special case of the optimization problem (7.6) as

it is the solution of (7.6) when � = 0:5. Following Buchinsky [15], some

attractive features of quantile regression are: (1) the regression model can

be used to characterize the entire conditional distribution of Y given X;

(2) because the quantile regression objective function is a weighted sum of

absolute deviations, the estimator is robust to outlier observations on Y ;

(3) quantile regression estimators may be more e¢ cient than least squares
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estimators if errors are non-normal.

The problem in (7.6) can be solved by linear programming. Portnoy and

Koenker [92] (see also Koenker [57, section 6.4.2]) have described an interior

point algorithm, denoted the Frisch�Newton method, that is e¤ective for

large-scale computations. We relied on an implementation of this algorithm

in the computations.

Standard errors of the quantile estimates may either be estimated from

the asymptotic covariance matrix or computed by Efron�s [25] bootstrap.

We prefer to make no particular assumptions on the distribution of errors.

We assume only that errors are independent. The so-called design matrix

bootstrapping estimator, analysed and recommended by Buchinsky [15], is

common. Samples of size n of pairs (Yi;xi) are drawn at random from the

original dataset with replacement. For each sample, we compute the para-

meter estimate. After resampling R times, we use the empirical distributions

of the samples of bootstrapped parameters to compute standard errors or

con�dence intervals.

For the LAD estimator, we chose to compute the asymptotic standard

errors as well. Greene [38] reports a sample estimator for the asymptotic

covariance matrix of the LAD estimator equal to:�
0:5

f (0)

�2 �
X>X

��1
where f (0) is the density of the disturbances evaluated at 0. A convenient

estimator of f (0), again according to Greene, is

f̂ (0) =
1

n

nX
i=1

1

h
�
�"i
h

�
where "i is the residual for observation i, � (�) is a kernel function, and h is
the bandwidth.
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7.4 Explanatory variables and expected sign

Our purpose is to identify the determinants of winning bids. Three di¤erent

categories of variables will be considered. First, we have the product-speci�c

variables presented to buyers before the auction, see section 5.4 for a descrip-

tion. The product-speci�c variables relate to commonly agreed upon quality

characteristics of the product and are public information. Next, we have

what we term market-speci�c variables, which come in two forms. We have

general market-speci�c variables that capture unobservable market changes

over time or information speci�c to an auction. In addition, we have market

characteristics of lots that are revealed ex post. An example, is the number

of submitted bids a lot attracted. Finally, we do not want to restrict our

model� i.e., equation (7.2)� by imposing symmetry on the potential buyers.

7.4.1 Product-speci�c covariates

The partial analysis in the preceding chapter suggests that weight is an im-

portant variable in explaining prices. Weight in linear form will obviously

be expected to have a positive sign. This follows from the economics of the

food processing trade; large �sh are associated with less waste. In addition,

although related to the �less waste�argument, large �sh are normally more

valuable in end-markets. The structure of the minimum price scheme clearly

indicates that the market acknowledges the positive relation. However, since

the partial analysis also indicates that weight is an increasing concave func-

tion of price, we introduce weight squared (Weight2) as well, and expect the

estimated coe¢ cient sign to be negative.

Vessel quantity (VesQ) is also expected to increase with price, at least

up to a certain level. Handling one large lot, rather than two smaller lots, is

more cost-e¤ective due to administrative costs. In addition, it simply takes

more time to empty two vessels rather than one. It might be argued that

very large catches can induce less competition since not all potential buyers

can handle a very large catch. In that case, the linearity of the covariate

VesQ is questionable. We expect the e¤ect of VesQ to be small, but positive.

The variable gear was presented in section 5.4.2, see in particular table
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5.1. For parsimony, we divide gears into three groups. The �rst gear group

is purse seine. This is the gear used by the ocean going seiners, and the

one most frequently used. The next gear group is coastal purse seine. In

the �nal group, we bundle all trawl gear. We made three dummy variables

for the three gear groups, and since we have a constant in our model, we

incorporate two of the dummies; i.e., we do not incorporate the purse seine

dummy. The expected sign of the coastal purse seine (GearPSC) and trawl

(GearT) dummy variables is not obvious. The predominant use of purse

seine may be based on cost considerations. However, one hypothesis is that

purse seine is the most careful harvesting method which damages the �sh the

least. Consequently, it will give the best price on average. In that case, the

estimated sign on GearT will be negative.

Feed is constructed as a dummy variable. The benchmark is no feed or

very little feed. The included dummy variable is then some feed, and �sh

with this characteristic are expected to achieve a lower price than �sh with

no feed or very little feed. The estimated feed coe¢ cient is expected to be

negative.

The last product-speci�c binary variable we include is preservation or

cooling method. We group the preferred cooling methods refrigerated seawa-

ter (RSW) and slurry ice (CSW) together since we have just a few records

with CSW and use the resulting variable as benchmark. Our included dummy

variable is Ice, which we expect to have a negative sign.

Although we have information on the number of hauls, preliminary analy-

sis showed no e¤ect of the number of hauls on prices. We did not include

this variable.

7.4.2 Market-speci�c variables

Market forces and constraints in�uencing the bid process can take several

forms. We included several covariates that control for di¤erent characteris-

tics of the market at a given time or time interval; three of them are not

linked to the speci�c lot, but rather measure market forces in di¤erent ways.

The simultaneous selling of catches at auctions together with the associated
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option of setting capacity constraints, is a central aspect of the market. In the

preliminary analysis, we examined the e¤ect of simultaneity by introducing

the number of simultaneously auctioned lots as a covariate.

Figure 7.1: Price over time, lots with reserve price 5.25 NOK

5

6

7

8

Centered moving average price, five periods

P
ric

e 
pe

r k
ilo

Lots ordered by auction and date

 a)

5

6

7

8

Mean price per auction

P
ric

e 
pe

r k
ilo

Auctions ordered by time and date

 b)

5

6

7

8

Mean price per day

P
ric

e 
pe

r k
ilo

Days ordered by date

 c)

General market variables. At the most general level, we include vari-

ables measuring structural changes in prices during the season. Next, we

want a measure of demand and supply conditions for a given time interval

which should neither be too frequent nor too wide. And �nally with re-

spect to general variables, we include a variable that measures supply at the
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auction level.

Are there any structural changes in price formation during the season to

consider? Figure 6.2 depicts average weekly prices and suggests that prices

seems to rise some time into the season. Let us look at price development

over time in more detail. Prices at lot level are very volatile; some smoothing

is useful at this point when presenting prices over time. In �gure 7.1, we plot

price measures of di¤erent frequency for lots with a reserve equal to 5.25 NOK

as the solid lines while the linear dotted lines represent the mean trend. In

�gure 7.1a, we plot a centered �ve-period moving-average of prices for all

lots in the sample. Any missing values� a missing value occurs at auctions

where no lots with reserve price 5.25 were sold� are interpolated. Note that

the price line cannot be interpreted as a pure time series since some lots are

sold simultaneously at the same auction. In �gure 7.1b and c, we depict the

mean prices obtained per auction and per day for the same lots with reserve

price 5.25. Thus, we have three pictures of how prices develop over time

with di¤erent degrees of frequency. The price lines all tell the same story.

The beginning of the season is characterized by lower prices than later in the

season. A period of increasing prices follows, and then a clear fall in prices

appear. The last part of the season, where supply is low, is quite volatile in

the price pattern. The low prices in the beginning of the season are explained

by �sh quality. It is common knowledge that �sh harvested in the beginning

of the season have a lower quality (lower average fat content) than �sh in the

peak season.

The pattern indicates that there is a potential for explaining prices by

suitable parameters for structural changes, some piecewise regression parame-

ters for both intercept and slope should be considered. Preliminary analysis,

where we tried to estimate the increasing prices and sharp fall in prices that

appear into the season by use of a reasonable number of piecewise regressions,

was, however, unsuccessful. We conclude that the volatility at the lot level

in prices is too high for estimating statistically reliable piecewise structural

parameters.

Mean prices are just part of the picture. Let us look at all prices. To see

all data points of winning bids, we refer to �gure 7.2. The prices and their
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distribution over time, and in particular within weeks, are plotted in �gure

7.2a. Although all data points are plotted, notice that since we use date on

the x-axis, identical prices on the same day will overlap exactly. Thus, some

data points are �hidden�in �gure 7.2a. The number of sold lots each week

together with the weekly volume; i.e., the total quantities sold are reported in

�gure 7.2b. Since the lot quantities di¤er, the week with the highest volume

does not necessarily entail that the number of sold lots is the highest in this

week as well. For example, the week of peak volume is week 41 where 149

lots are sold, while week 39 has the highest number of sold lots. Obviously,

the average lot quantity is higher in week 41 than in week 39.

Figure 7.2a depicts the distribution of prices within weeks for all lots.

Breaking this overall picture down by reserve price is useful. In �gures 7.3

to 7.7 on pages 193�197, we depict all prices of the relevant reserve price

category in part a of the �gure, and in part b we depict the mean prices and

price range. We learn that price distribution over time is similar for several

classes. To focus on the two most important classes� lots with a reserve price

of 5.25 and 4.75 NOK� we see in �gures 7.3 to 7.4 that the patterns have a

lot in common. Notice, in particular, the wide price range that occurs in the

transition from week 39 to week 40. One conclusion to be drawn from this

observation is that large price ranges within weeks are not explained by the

reserve price classes.

One hypothesis is that in weeks with large price ranges, lots with very

di¤erent weight were o¤ered. This hypothesis is refuted. Both lots with

reserve price 5.25 and lots with reserve price 4.75 exhibit large price ranges

in the weeks 39 and 40. Similarly, low prices at the beginning of the season are

not explained by a domination of lots with small average �sh weight being

o¤ered in this period. On the contrary, most lots o¤ered in the �rst two

weeks belong to the two largest weight classes, and all reserve price classes

are characterized by low prices in the �rst weeks of the season. This is easily

seen from �gures 7.3 to 7.7.

How do we account for the varying prices over time? We suggest to in-

corporate weekly time dummies. Using week as time period has the bene�t

of being a su¢ ciently narrow time span in order to capture otherwise unex-
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Figure 7.2: All individual lot prices, volume and number of sold lots in each
week
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plained market characteristics. At the same time, it adds a limited number

of explanatory variables to our regression matrix. Using narrower time dum-

mies might expand the regression matrix by too much, resulting in singularity

problems when estimating.

Recall that we ran two regressions; in the �rst, we used all observations,

while in the second we sampled only lots with a reserve price of 5.25 NOK. In

the �rst regression, we used the �rst week of the season� week 33 in 2003� as

the benchmark dummy. Each week in the main part of the season acts as a

dummy; i.e., weeks 34�45. The subsequent weeks have far less observations,

and in order to avoid singularity problems in estimation, we bundled some

weeks.1 The weeks 46�49 are bundled into one dummy as are weeks 50�51,

1�2, and 3�8. Thus, we included in total 16 time-speci�c dummy variables.

In the second regression, we used week 33 in 2003 as the benchmark

dummy as well. The weeks 34�43 represent individual dummy variables,

while we bundled weeks 44�50 and 51�04; in total this resulted in 12 time-

speci�c dummy variables.

Next, we turn our attention to a traditional measure of supply and de-

mand within a given time period. To measure the e¤ect of quantities supplied

and demanded, we used the demand-surplus factor per day (DayDSF). Re-

call that in chapter 5 we de�ned the demand-surplus factor as the revealed

demanded quantity divided by the supplied quantity within a given time pe-

riod. Demand-surplus factor per auction is quite volatile, and will introduce

too much noise as an explanatory variable. Since we already have intro-

duced weekly time dummies, we did not use demand-surplus per week as a

variable. Presumably, a weekly demand-surplus factor would add little in-

formation which is not already provided by the week dummies. We believe a

per day measure better captures a general underlying tendency of the supply

and demand conditions within a short, but not too short, time interval. The

higher the demand-surplus factor is, the higher will competition be. Thus,

we expect a positive sign for this variable.

1Singularity problems are, in particular, likely to occur under bootstrapping. If a
dummy variable has few positive observations, drawing samples with replacement may
result in some dummy variable vectors where all records are zero.



167

Given that supply at the auction level is too volatile, we have to seek

an alternative measure for controlling for what goes on at the auction level.

In addition, a central aspect at the auction level is the fact that catches

are sold simultaneously. A simple measure of the degree of simultaneity is

how many lots are sold simultaneously at the same auction. We included

this as a covariate, denoting it Lots. Will the number of catches o¤ered

simultaneously, have any impact on prices? One hypothesis is that when

many catches are put up for sale, the strategy space for bidders increases.

They can by setting capacity constraints and rankings try to acquire catches

at a lower price than when supply is low. On the other hand, it might turn

out that many lots are o¤ered when prices are high. We have earlier argued

that supply is to a large extent driven by the characteristics of the �shery.

Although market prices to some extent will determine activity and supply, the

availability of the �sh and their quality at a given time are also important�

perhaps dominant� inputs to harvesting decisions. If prices are high when

the quality of the �sh and the supply is high, then we shall not necessarily

observe a negative relation between prices and the number of o¤ered lots.

Note that the variable Lots will also, in some sense, be a measure of supply

at auction level.

To conclude this section, we may view the three variables introduced to

represent market forces of three di¤erent frequencies: per week, per day and

per auction. At the most general level, we used weekly time dummies to

capture all unexplained market forces within a relatively long time interval.

Market forces at work in the somewhat shorter run are captured by the

demand-surplus per day. Finally, at the shortest run possible, we used the

number of o¤ered lots per auction. Preliminary analysis revealed that the

variable Lots did not have any impact on prices. Consequently, we omitted

the variable in the �nal regression model to be reported below.

Lot-speci�c market variables. At the lot level, an obvious candidate for

explaining the price is the number of active bidders, N . We described the

e¤ect in some detail in section 6.5. We could model the number of active

bidders as dummy variables. Given the low number of observations for high
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N , we chose to model it as a discrete variable. The number of active bidders

on a lot has a similar e¤ect on price as weight. Prices are increasing in N

but at a decreasing rate. We therefore introduce in the model both a linear

N , which is expected to be positive, and N squared which is expected to

be negative. Note that if we do not introduce N squared, we shall impose

the same e¤ect on prices when N increase from one to two and when N

increase from, say, ten to eleven. In the case where the relevant variable is

an ordered qualitative variable, this will normally be a mistake (see Kennedy

[55, p. 403]). The variable N2 is an e¤ective way of measuring the decreasing

competitive e¤ect of increased N . A disadvantage, however, may be that

estimated coe¢ cients give counter-intuitive elasticity measures for large N ;

i.e., elasticities may not go to zero as we expect when N is large, but can

actually take on negative values.

We have stated several times that the number of active bidders, or equiv-

alently, the number of submitted bids, is a measure of competition. We

know that observed N varies quite a lot. The underlying reasons for this�

and whose e¤ects to some extent will be captured by N as an explanatory

variable� are the changing delivery sectors and changes in available capa-

cities. When N is large, then the delivery sector is probably wide, and in

addition, many buyers have available capacities.

We return at this point to the question of what e¤ect the simultaneous

selling has on prices. We have already introduced the number of lots o¤ered

simultaneously as an explanatory variable. For the individual lot or catch,

the details of bidders�capacity constraints (see section 4.5) and bid rankings

(see section 4.6) will determine the winner and, thus, the price. One way

of measuring the potential e¤ect of simultaneous selling and capacity con-

straints is to bring in the winning bid�s position among all submitted bids

for a lot. Recall that winning bids� the market price� is our explained vari-

able, not the highest bid. We showed in table 5.8 on page 113 that 31.59

percent of winning bids are not equal to the highest bid. Therefore, we in-

troduced the position of the winning bid as a covariate. In principle, we can

introduce the position of the winning bid, which ranges from 1 to 10, as a

slope parameter, or we can use dummy variables for all positions in order
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to measure di¤erent intercepts associated with the position of the winning

bid. Because the number of records decreases sharply for each lower position

of the winning bid, we found it reasonable to represent the e¤ect by simply

using two dummies. We used the case where the winning bid is equal to the

highest bid as the benchmark dummy which is excluded from the regression

matrix. One included dummy variable, denoted WinBid2nd, represents the

case where the winning bid is the second-highest bid. The other, denoted

WinBid3rd, takes care of the case where the winning bid is the third-highest

or lower. The coe¢ cients are both expected to be negative; WinBid3rd even

more than WinBid2nd.

Table 7.1: Description of covariates

Short Data Econ.

Name name Description typea typeb

Weight W Average �sh weight in grams c P

Weight2 W2 Weight squared c P

VesQ VesQ Vessel quantity in tons c P

GearPSC GPSC Gear is purse seine coast b P

GearT GT Gear is trawl b P

Feed Feed Fish contain some feed b P

Ice Ice Fish are kept in ice b P

N N Number of submitted bids d M

N2 N2 N squared d M

WinBid2nd P2 Winning bid is 2nd-highest b M

WinBid3rd P3+ Winn. bid lower than 2nd-high. b M

DayDSF DDSF Demand surplus factor per day c M
a b = binary, c = continuous, d = discrete.
b P = product-speci�c variable, M = market-speci�c variable.
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7.4.3 Buyer-speci�c variables, asymmetries

Does the buyer�s identity matter with respect to realized prices? Do some

buyers bid aggressively and end up paying more than other buyers? A simple

(and naïve) competitive model of the demand side, will lead us to conclude

that competition ensures that buyers do not di¤er much with respect to

cost structure and capacities. Plants with a cost disadvantage are driven

out of competition in such a model world. Looking at all the buyers, they

do, however, di¤er with respect to total capacity, and bid activity in the

mackerel market. We saw in tables 5.9 and 5.10 on pages 114 and 115 that

the activity of buyers di¤ers as does the winning score of buyers. One obvious

reason is that location matters. Moreover, from table 5.13 on page 119,

we learn that the median reported capacity limit di¤ers somewhat between

buyers. Processing capacity is largest for producers located within the most

frequently observed delivery sectors.

From this alone, we cannot conclude that prices are a¤ected signi�cantly

due to asymmetric buyer strategies. Because we know the identity of bidders

and winners, we can e¤ectively control for any buyer-speci�c variables that

a¤ect prices. Given that we have a large dataset (1,494 lot records) and 25

bidders, we can incorporate buyer identities as dummy covariates in order to

measure the possible e¤ect of asymmetric buyers. Buyer number 11 never

wins, and was removed, one additional buyer should be removed to avoid the

dummy-variable trap because we have a constant coe¢ cient in our model.

This leaves us with 23 dummy variables representing the winning buyer. This

way of structuring buyers as covariates will shift the intercept associated

with each buyer. We chose the buyer with the median average winning price,

number 14, as our benchmark that is omitted from the regression.

7.4.4 Summary of covariates

We summarize the covariates included in the regression in table 7.1. We

state the data type� whether the variable is continuous, discrete or binary�

since this is of importance in interpreting coe¢ cients. Continuous variables

(weight, vessel quantity, and weekly demand-surplus factor) in this setting are
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variables with a large number of di¤erent values, while the discrete variables

have a limited number of observed integer values. The traditional elasticity

of a continuous variable is straightforward: it measures the percentage in-

crease in price when the continuous covariate increases by one percent. For

discrete variables, the e¤ect of a small change in the covariate is not that

meaningful. More interesting is the question of how much price increases

when, for instance, the number of bidders increases from two to four. An

empirical elasticity measure for the di¤erent values is, consequently, more

appropriate. The interpretation of dummy variables in our semi-logarithmic

model follows from equation (7.3).

We summarize the discussion of variables and expected sign in table 7.2.

Table 7.2: Expected sign on coe¢ cients

Expected

Covariate sign Explanation

Weight + P0(Weight) > 0

Weight2 � P00(Weight) < 0

VesQ + P0(VesQ) > 0

GearPSC � P(purse seine coast) < P(purse seine)

GearT � P(trawl) < P(purse seine)

Feed � P(some feed) < P(little feed)

Ice � P(ice) < P(RSW/CSW)

N + P0(N) > 0

N2 � P00(N) < 0

WinBid2nd � P(2nd) < P(1st)

WinBid3rd � P(3rd) < P(1st)

DayDSF + P0(DayDSF) > 0

See table 7.1 for explanation of covariate names.

In the appendix to this chapter, several tables are gathered. Descriptive

statistics of discrete and continuous variables are in table 7.15. Frequencies
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of dummy variables are in table 7.5. See table 7.7 for the matrix of correla-

tion coe¢ cients of the regression variables and the corresponding p-values of

correlation coe¢ cients.

7.5 Results: All lots

We choose to run two main regressions. In the �rst, we included all lots. In

the second, we sampled only lots with a reserve price equal to 5.25 NOK. The

motivation for analysing this weight class� apart from being the economically

most important weight class� is that we then neutralize to a large extent the

most important covariate: weight. It is interesting to see whether coe¢ cients

remain stable between the two regressions.

For each main regression, we run two regressions, one without considering

buyer asymmetries, and one where we speci�cally incorporate the possibility

that the level of the winning bid depends on the buyer. Results were stable

between the two regressions (with and without bidder dummy variables).

We do not report the results from the regression without bidder dummy

variables.

In addition to the least squares estimate, we ran 19 quantile regressions;

� 2 [0:05; 0:10; : : : ; 0:95]. The LAD estimate is the quantile estimate where
� = 0:5. For inference purposes, we performed a bootstrap with 500 repli-

cations for each quantile regression. We also estimated asymptotic standard

errors for the LAD estimator by using the logistic density function as the

kernel and bandwidth h = 0:9�̂n�1=5 where �̂ is the standard error of the

sample of size n.

In this section, we concentrate on the regression of all lots where �sh

weight is expected to dominate while the next section covers the results of

the regression of lots with a reserve price equal to 5.25 NOK. Our regression

variables are suitably divided into three categories; (1) the covariates summa-

rized in table 7.1, (2) the bidder dummies, and (3) the weekly time dummies.

Results concerning the covariates and the bidder dummies are reported and

discussed below. The weekly time dummies are important for controlling the

whole regression, but estimated coe¢ cients are of less interest. The week
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dummies hardly generalize, and represent to a large extent the unexplained

part of the price level. We do not report them.

7.5.1 Product and market-speci�c variables

The result of the regression of logarithmic prices on covariates are reported in

table 7.3. We report both the LS and the LAD estimates. All coe¢ cients have

the same sign in the two estimates. Di¤erences in levels are discussed below

when we investigate the quantile regression results. For the LAD estimate,

we report t- and p-values based on two di¤erent estimates; asymptotic and

bootstrapped standard errors. Di¤erences between the two measures are, in

general, small.

The LS estimate is a useful reference and produces some interesting statis-

tics like adjusted R-square. Adjusted R-square is 0.8431 for the LS estimate.

The unadjusted R-square of 0.8485 is just slightly higher, indicating that we

have not populated our regression matrix with unnecessary variables� i.e.,

variables with little explanatory power. Thus, roughly 85 percent of the to-

tal variation in logarithmic prices can be explained by the variability in the

explanatory variables. The standard error of regression s is 0.0044.

All in all, was the robust estimation necessary? Robust estimation makes

sense when it turns out that a few outlier values change the estimate sig-

ni�cantly. In general, as noted by Anscombe [1], �we are happier if the

regression relation seems to permeate all the observations�rather than being

in�uenced much by a few. In order to determine the in�uence of outliers,

we may look at the leverage values hii; i.e., the diagonal elements of the

hat matrix H = X
�
X>X

��1
X>. The further away from the mean of the

regression matrix a particular observation is, the larger is the leverage of

that observation. A rule of thumb according to Goodall [35] is to consider

leverage values to be high if hii > 2 (p+ 1) =n where p is the number of covari-

ates and n is the number of observations. It turns out that 88 out of 1,494

observations� or 5.9 percent of the observations� have leverage values ex-

ceeding this (somewhat arbitrary) critical value. We think this is su¢ ciently

many �outliers�to warrant a robust estimation in order to understand the ef-
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fect of the bulk of observations. The most noteworthy di¤erence between the

LS and the LAD estimate is perhaps the coe¢ cient Feed; the LAD estimate

is considerably smaller than the LS estimate.

In �gure 7.8, on page 198, we report the LS and the quantile regression

estimates. In the 12 panels, we depict the same variables as in table 7.3

except for the intercept. The quantiles � ranging from 0.05 to 0.95 are on the

horizontal axis while the estimated coe¢ cient values are on the vertical axis.

The 19 quantile regressions coe¢ cients are depicted as the solid curves (rather

than depicting the 19 distinct points, we draw the line between them.) The

shaded gray area represents a 90 percent con�dence interval for the quantile

regression estimates. The con�dence intervals were computed by taking the

empirical 5 and 95 percent quantiles of the bootstrapped sample estimates.

The dashed (horizontal) line in each panel is the LS estimate while the two

dotted lines represent conventional 90 percent con�dence intervals for the

least squares estimate.

When interpreting the quantile regressions, it is useful to imagine how

they would look like under standard least squares assumptions. If we have a

correct linear regression model (no speci�cation error) and spherical distur-

bances, all the quantile regression coe¢ cients would, in principle, coincide

with the respective LS coe¢ cients; the only exception would be the intercept

term which typically rises with the quantile.

The quantile estimates of the variables Weight and N and their squared

cousins di¤er clearly from the LS estimate. Notice how most of the quantile

estimates for these four variables� including the LAD estimates� are outside

the least squares 90 percent con�dence band.

The quantile estimates for Feed and Ice are consistently above the LS

estimates. Since the coe¢ cients are negative, the quantile estimates mean

that the impact on prices is less than that predicted by the LS estimate.

The impact of vessel quantity (VesQ) is reduced for the highest quantiles

compared to the least squares prediction; otherwise the quantile estimates

for VesQ are close to the LS estimate.

For most quantiles, trawlers (GearT) obtain lower prices than the LS

estimate indicates. The di¤erence to the LS estimate is, in particular, marked
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at the left tail of the distribution. For GearPSC and DayDSF, the results

are mixed, but for most quantiles the estimates are within the 90 percent LS

con�dence band.

The e¤ect on price when the second-highest or lower bids win is repre-

sented by P2 and P3+ respectively. Apart from some low estimates for the

lower quantiles, the variables have a quite uniform e¤ect over the entire range

of the distribution. The estimates are close to the LS estimates. The two

variables stand out as variables that have a pure location shift e¤ect on the

conditional distribution.

Table 7.3: Determinants of winning bids, all lots

LS LAD

Asymptotic Bootstrap

Coe¢ cient Est. t-val. p-val. Est. t-val. p-val. t-val. p-val.

Constant -0.9110 -12.34 0.000 -0.3842 -5.27 0.000 -2.94 0.003

Weight 0.0092 32.01 0.000 0.0071 25.18 0.000 14.84 0.000

Weight2 -0.0000 -26.18 0.000 -0.0000 -19.91 0.000 -12.67 0.000

VesQ 0.0002 8.74 0.000 0.0002 8.35 0.000 8.10 0.000

GearPSC -0.0456 -6.86 0.000 -0.0530 -8.07 0.000 -6.32 0.000

GearTrawl -0.1021 -11.55 0.000 -0.1221 -13.98 0.000 -8.51 0.000

Feed -0.0199 -3.32 0.001 -0.0072 -1.22 0.222 -1.63 0.103

Ice -0.0405 -5.61 0.000 -0.0349 -4.90 0.000 -4.92 0.000

N 0.0294 12.77 0.000 0.0207 9.10 0.000 9.55 0.000

N2 -0.0016 -9.34 0.000 -0.0012 -6.67 0.000 -7.89 0.000

WinBid2nd -0.0161 -3.48 0.001 -0.0155 -3.40 0.001 -4.35 0.000

WinBid3rd -0.0237 -4.29 0.000 -0.0238 -4.35 0.000 -5.04 0.000

DayDSF 0.0109 5.74 0.000 0.0136 7.29 0.000 5.06 0.000

Dependent variable: Logarithm of winning bid.
The regression model includes a set of 23 buyer and 16 week-speci�c dummy variables.
Number of observations: 1494. Degrees of freedom: 1442.
LS estimation: R-squared = 0.8485. Adjusted R-squared = 0.8431.
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The remainder of this section is concerned with interpretation of the size

of coe¢ cients or how in�uential covariates are for price determination. The

discussion refers to the robust LAD estimates.

Economic signi�cance. In table 7.3, we have estimated the empirical

price equation on all lots. Signs on coe¢ cients are as expected. Given the

mix of covariate types (continuous, discrete, binary), it is not obvious what

covariates are most economically in�uential by looking at the size of coef-

�cients. A more meaningful analysis is to make the e¤ects independent of

scale and interpret coe¢ cients in terms of elasticities. We do so below for

the variable weight and all binary variables. For now, a couple of ways to

evaluate better how economically signi�cant covariates are, is to look at the

standardized coe¢ cients and coe¢ cients multiplied by the mean of the rele-

vant covariate. We compute these statistics in table 7.9.

For covariate k, let �̂k be the estimated coe¢ cient, �Xk the mean and sXk
the standard deviation of the covariate. The standard deviation of the ex-

plained variable log(P ) is denoted sY . The standardized coe¢ cients reported

in column 2 and 5 in table 7.9, can be obtained by regression on standardized

variables or, in the least squares case, simply by multiplying the unstandard-

ized coe¢ cients by sXk=sY . While the unstandardized coe¢ cients show the

net e¤ect in logarithmic price which follows from a unit change in the co-

variate, the standardized coe¢ cients show how many standard deviations

the explained variable changes when the covariate changes by one standard

deviation. Thus, we have a measure that is independent of the units that

covariates are measured by.

The net e¤ect of weight is around 0.7 (3:67� 3:01 = 0:66), i.e., when
weight change by one standard deviation, the logarithmic price changes by

0.7 standard deviation. The other continuous or integer variables give more

moderate responses in prices.

For interpretation of binary variables, we prefer to look at elasticities.

Although interpretations are eased by looking at standardized coe¢ cients,

probably a better way to examine how in�uential the covariates are, is to

multiply the coe¢ cient by the mean of the relevant covariate. This will show
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the individual e¤ects of the covariates in explaining the mean of the explained

variable. This is a numerical property of the least squares estimate, the re-

lationship is not exact for LAD estimation. Looking at column 3 and 6 in

table 7.9, we see that the by far most important variable is weight. Com-

pared to weight, all other covariates have a moderate economic signi�cance

in explaining prices.

In the lower part of table 7.9, in the row named Sum covariates, we

sum columns 3 and 6. Then we add to this in the row named Sum bidders

the combined e¤ect of bidders� i.e.,
P

b �b
�Db from the regression equation

(7.2) where b denotes the subset of dummy variables that represents bidder

dummies. Likewise, in the row named Sum weeks, we add the combined e¤ect

of weekly time dummies� i.e.,
P

w �w
�Dw from the regression equation where

w denotes the subset of dummy variables that represents week dummies.

Finally, in Sum total, we have the total sum of all estimated coe¢ cients

multiplied by the mean of the variables. We see that the total sum in the

LS case equals the mean of the explained variable. Again, weight is the

predominant variable that explains prices.

E¤ect of binary variables on average price. Elasticities of dummy

variables are reported in table 7.13 on page 192. Elasticities reported in the

second column are calculated by the transformation (7.4) multiplied by 100,

and the standard deviations of elasticities shown in the third column are cal-

culated by use of equation (7.5). Conditional on that we have appropriately

controlled for relevant covariates that explain prices, we may interpret the

estimation results for included dummy variables. Coastal vessels using purse

seine obtain prices that are on average around 5 percent lower than when

purse seine is used. Correspondingly, trawlers obtain on average 11.5 per-

cent lower prices than purse seiners. Feed in the �sh seems to have a small

impact on prices. Fish containing some feed obtain only 0.72 percent lower

prices than the case where the �sh contain no or very little feed. Preserva-

tion method, on the other hand, a¤ects prices. The inferior cooling method

by use of ice gives lot prices that are 3.4 percent lower than for lots where

refrigerated sea water (RSW) or slurry ice (CSW) are used. We note that
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lots that were won by the second-highest bidder, on average had 1.5 percent

lower prices than lots won by the highest bidder. Finally, lots won by the

third or lower highest bidder obtained on average prices 2.4 percent lower

than the benchmark high bid lots.

As expected, elasticities of some dummy variables are relatively large,

since dummy variables represent a signi�cant shift in �treatment.�We notice

from the low standard deviations of elasticities that estimated elasticities are

rather precise.

The price elasticity of weight. Weight is so important as an explanatory

variable that it warrants a table of the elasticities. In �gure 6.1, we depicted

the relation between prices and weight based on the empirical mean prices of

the weight classes. In the multivariate analysis, we have controlled for several

covariates and can present the estimated price elasticities of weight, see table

7.4. In column 1, we show the weight range with appropriate intervals, and

in column 2 the relevant estimated mean prices of the given weights are

calculated. The point elasticities in column 3 show the percentage e¤ect on

price when weight increases by 1 percent. More interesting, from a practical

perspective, is probably the percentage e¤ect on price when weight increases

by some discrete jump like 25 grams. In column 4, the interval elasticities are

calculated using the midpoint rule. We see that mean price is estimated to

increase by 11 percent when average weight increase from 225 to 250 grams

(or more precisely from 237.5 to 262.5 grams since we used the mid point

rule). The elasticities for the higher weight classes decline, but are still of

signi�cant size up to 500 grams. From 525 to 575 grams, price elasticities

are moderate. For lots with average �sh weights above 575 grams, prices do

not change much.

Elasticities exhibit a declining pattern that is in accordance with the price

path we illustrated in �gure 6.1 on page 128; the price responds more when

the weight increases from a low level than from an high level. The fact that

price elasticities are small but negative for the highest weight classes is prob-

ably caused by our modelling approach where the squared term dominates

the linear term for large weights, see �gure 6.1.
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Table 7.4: Price elasticity of weight, all lots

Estimated Point Discrete

Weight pricea elasticityb elasticityc

225 2:78 1:02

250 3:11 1:07 11:00

275 3:44 1:09 10:28

300 3:79 1:11 9:57

325 4:14 1:10 8:85

350 4:49 1:09 8:14

375 4:84 1:06 7:42

400 5:18 1:02 6:70

425 5:49 0:96 5:99

450 5:79 0:88 5:27

475 6:06 0:80 4:55

500 6:30 0:70 3:83

525 6:50 0:58 3:12

550 6:66 0:45 2:40

575 6:77 0:30 1:68

600 6:83 0:15 0:96

625 6:85 �0:03 0:25

650 6:82 �0:22 �0:47
a Price in NOK per kilo. Other variables than
weight are evaluated at their means in the price
equation.

b Percentage e¤ect on price when weight (measured
in grams) increases by one percent.

c Percentage e¤ect on price when going from one
weight class to the next.
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7.5.2 Firm-speci�c variables: Bidder asymmetries

An important question remains: Are bidders asymmetric in the sense that

some, due to �rm-speci�c characteristics, tend to bid higher on average than

others? We have established that bidders are di¤erent with respect to bid

activity, see table 5.9 on page 114, and with respect to average reported

capacities, see table 5.13 on page 119. Both tables reveal that bidders may be

categorized into the groups: small, medium and large bidders. The delivery

sectors will partly explain why some bidders more frequently submit bids

than others. On the other hand, when examining whether winning bids

di¤er amongst bidders, we �nd no signi�cant di¤erences, neither in terms

of economic signi�cance (which is the important measure) nor in terms of

statistical signi�cance.

We have summarized our results in table 7.11 on page 190. Columns two

to four give statistics on winning bids; i.e., the number, the mean and stan-

dard deviation of winning bids for each bidder. In column �ve we compute

the percentage di¤erence in mean price from bidder 14. We use bidder 14 as

the benchmark bidder since he has the median mean winning bid. Di¤erences

in mean bids range from �8.58 percent (bidder 5) to 8.67 percent (bidder 7).
The mean winning bid di¤ers from bidder 14 by more than 2 percent for 16

bidders. A naïve interpretation of these di¤erences in mean prices would be

that bidders are asymmetric.

However, when examining whether the identity of the winning bidder

has any e¤ect on prices, we cannot simply compare mean winning prices for

each bidder. Rather, we have to control for the product- and market-speci�c

variables. When we control for theses variables by running equation (7.2)

with the variables reported in table 7.3 and dummy variables for all winning

bidders (but one), the picture changes dramatically.

Estimated di¤erences in mean prices are calculated by transforming the

estimated coe¢ cient by use of equation (7.4). First, we note that the sign

of percentage di¤erence in price changes for several bidders when going from

the uncontrolled to the controlled case. Consider, for instance, bidder 23

whose mean price is 3.59 percent lower than bidder 14. Controlling for other
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variables, we estimate that his mean price is in fact 1.17 percent higher than

bidder 14�s. Second, and more important, the controlled di¤erences in mean

prices in column six are small. Only three bidders now have mean winning

bids that di¤er from bidder 14 by more than 2 percent. Bidder 22 has a

mean winning bid which is 5.35 percent lower than bidder 14�s. Bidder 1�s

mean winning bid is 3.02 percent lower while bidder 6�s mean winning bid

is 2.49 percent lower than bidder 14�s. Column seven reports the standard

deviation associated with estimated di¤erences in mean prices from column

6. In computing standard deviations, we used equation (7.5).

A traditional approach would suggest that comparisons by pairs of the

winning bids do not reveal asymmetries. A standard formulation would be

that standard deviations indicate that we cannot reject the hypothesis that

bidders�mean winning bids are equal, and consequently that bidders are

symmetric in valuations. However, assuming that we are dealing with the

population of winning bids, rather than a sample, we conclude that winning

bids show some� but small� di¤erences amongst bidders.

An alternative procedure for analysing asymmetries between buyers would

be to use a multiple comparison procedure, see Hochberg and Tamhane [50]

and Searle, Speed, and Milliken [96], on the mean bids. The procedure is,

however, less useful in our case because the problem with controlling for co-

variates remains. We dismiss this popular method, and rely on the regression

approach that e¤ectively controls for other variables. In chapter 9, we shall

analyse asymmetries between bidders based on all submitted bids rather than

only winning bids, which is the topic of this chapter.

7.6 Results: Lots with reserve price 5.25

All tables for the case where we estimate prices for lots with reserve price

5.25 are relegated to the appendix of this chapter. Summary statistics of

continuous variables are in table 7.16. The corresponding table for binary

variables is table 7.6. Correlation coe¢ cients for regression variables are in

table 7.8. The discussion below will concentrate on the di¤erences to the

previous regression on all lots.
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Turning to the regression results, we report the estimated coe¢ cients in

table 7.17. For interpretation of the e¤ect of the variables, we refer to table

7.10 as well. The signs on coe¢ cients are the same as in the previous regres-

sion on all lots. The variability in the explained variable� the logarithm of

winning bids� is reduced in this regression where we sample more homoge-

nous lots. The e¤ect on estimated coe¢ cients compared to the estimate on

all lots can roughly be summarized as follows: Some variables have stable

coe¢ cients. These include VesQ, GearTrawl, WinBid2nd, WinBid3rd, and

DayDSF. The other variables have less e¤ect on prices� either positive or

negative� than the estimation of all lots identi�ed. As expected, the weight

coe¢ cients are now considerably smaller. Weight, being the dominant ex-

planatory variable in the case where we used all lots, now turns out to have

a more moderate impact on prices. To see this, compare table 7.10 with 7.9.

The e¤ect of GearPSC, Feed, Ice, and N is reduced. Since most variable co-

e¢ cients are stable or have smaller absolute values, the constant term picks

up the main e¤ect. Elasticities of dummy variables are in table 7.14.

The quantile regressions are depicted in �gure 7.9 on page 199. The

weight coe¢ cients are now within the least squares 90 percent con�dence

band. Coe¢ cients and di¤erences among quantiles are small. Notice that

the increasing pattern from �gure 7.8 panel (a) and the decreasing pattern

from panel (b) are now actually reversed. The Feed coe¢ cients in panel

(f) of �gure 7.9 are close to zero and actually above zero for low quantiles.

Other quantile estimates, and in particular the coe¢ cients for N and N2,

are quite similar to estimated coe¢ cients reported in �gure 7.8. Thus, most

coe¢ cients are stable between the two main regressions.

Considering again the question of any asymmetries between bidders, we

report in table 7.12 the estimated price di¤erences among bidders. Only four

bidders have an estimated price di¤erence from the benchmark bidder 14 of

more than two percent. The largest controlled percentage di¤erence from

bidder 14 is �3:9. We cannot conclude that bidders are asymmetric with
respect to the level of winning bids.
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7.7 Concluding remarks

We have investigated the empirical relationship between prices and covari-

ates. We included bidder dummies and time dummies that capture otherwise

unobserved, but relevant, variables. Our discussion has focused on the robust

least absolute deviations estimator. In the absence of a structural estima-

tion, we cannot conclude on the causal e¤ects. Some empirical regularities

are, however, evident. Weight is the dominant variable that explains prices.

Next, the number of bidders is important. The quantile regressions make a

case for not relying solely on models for the conditional mean or median in

empirical analyses.
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7.A Appendix: Tables and �gures

Table 7.5: Summary of dummy variables, all lots

Variable Dummy Status* Records Percent

Gear Purse seine B 896 59.97

Purse seine coast I 399 26.71

Trawl I 199 13.32

1494 100.00

Feed No/little feed B 1254 83.94

Some feed I 240 16.06

1494 100.00

Preservation RSW/CSW B 1341 89.76

Ice I 153 10.24

1494 100.00

Winning bid Highest bid won B 1022 68.41

2nd-highest bid won I 281 18.81

3rd-high. or lower won I 191 12.78

1494 100.00
* B: Benchmark dummy variable, not included in the regression.
I : Dummy variable is included in the regression.
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Table 7.6: Summary of dummy variables, lots with reserve price 5.25

Variable Dummy Status* Records Percent

Gear Purse seine B 654 66.67

Purse seine coast I 260 26.50

Trawl I 67 6.83

981 100.00

Feed No/little feed B 827 84.30

Some feed I 154 15.70

981 100.00

Preservation RSW/CSW B 900 91.74

Ice I 81 8.26

981 100.00

Winning bid Highest bid won B 640 65.24

2nd-highest bid won I 196 19.98

3rd-high. or lower won I 145 14.78

981 100.00
* B: Benchmark dummy variable, not included in the regression.
I : Dummy variable is included in the regression.
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Table 7.9: Importance of covariates, all lots

LS LAD

�̂k
a �̂ksXk=sY

b �̂k �Xk
c �̂k �̂ksXk=sY �̂k �Xk

Constant �0:9110 0:0000 �0:9110 �0:3842 0:0000 �0:3842
Weight 0:0092 3:6596 4:7830 0:0071 2:8438 3:7168

Weight2 �0:0000 �3:0056 �2:1107 �0:0000 �2:2577 �1:5854
VesQ 0:0002 0:1260 0:0263 0:0002 0:1189 0:0248

GearPSC �0:0456 �0:1200 �0:0122 �0:0530 �0:1394 �0:0141
GearTrawl �0:1021 �0:2064 �0:0136 �0:1221 �0:2468 �0:0163
Feed �0:0199 �0:0434 �0:0032 �0:0072 �0:0158 �0:0012
Ice �0:0405 �0:0731 �0:0041 �0:0349 �0:0630 �0:0036
N 0:0294 0:5136 0:1508 0:0207 0:3618 0:1063

N2 �0:0016 �0:3594 �0:0573 �0:0012 �0:2535 �0:0404
WinBid2nd �0:0161 �0:0374 �0:0030 �0:0155 �0:0361 �0:0029
WinBid3rd �0:0237 �0:0471 �0:0030 �0:0238 �0:0472 �0:0030
DayDSF 0:0109 0:1024 0:0349 0:0136 0:1284 0:0438

Sum covariates 1:8769 1:8405

Sum bidders �0:0048 �0:0085
Sum weeks �0:0371 0:0095

Sum total 1:8349 1:8414

Mean of log (P ) 1:8349 1:8349

a �̂k is the estimated coe¢ cient for variable k.
b �̂ksXk

=sY is the standardized coe¢ cient. sXk
is the standard deviation of variable Xk, and

sY is the standard deviation of the dependent variable.
c �̂k �Xk is the coe¢ cient multiplied by the mean of variable k, �Xk.
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Table 7.10: Importance of covariates, lots with reserve price 5.25 NOK

LS LAD

�̂k
a �̂ksXk=sY

b �̂k �Xk
c �̂k �̂ksXk=sY �̂k �Xk

Constant 1:0455 0:0000 1:0455 1:0260 0:0000 1:0260

Weight 0:0019 0:5974 1:0733 0:0020 0:6238 1:1207

Weight2 �0:0000 �0:4367 �0:3915 �0:0000 �0:4715 �0:4227
VesQ 0:0001 0:1328 0:0191 0:0001 0:1418 0:0205

GearPSC �0:0440 �0:1869 �0:0117 �0:0376 �0:1600 �0:0100
GearTrawl �0:1227 �0:2981 �0:0084 �0:1338 �0:3251 �0:0091
Feed �0:0043 �0:0149 �0:0007 �0:0031 �0:0107 �0:0005
Ice �0:0125 �0:0331 �0:0010 �0:0115 �0:0306 �0:0010
N 0:0185 0:5335 0:0951 0:0158 0:4560 0:0813

N2 �0:0010 �0:3574 �0:0346 �0:0008 �0:3011 �0:0292
WinBid2nd �0:0163 �0:0628 �0:0033 �0:0138 �0:0530 �0:0027
WinBid3rd �0:0286 �0:0978 �0:0042 �0:0253 �0:0863 �0:0037
DayDSF 0:0121 0:1495 0:0348 0:0153 0:1895 0:0441

Sum covariates 1:8124 1:8137

Sum bidders 0:0089 0:0038

Sum weeks 0:0649 0:0737

Sum total 1:8862 1:8912

Mean of log (P ) 1:8862 1:8862

a �̂k is the estimated coe¢ cient for variable k.
b �̂ksXk

=sY is the standardized coe¢ cient. sXk
is the standard deviation of variable Xk, and

sY is the standard deviation of the dependent variable.
c �̂k �Xk is the coe¢ cient multiplied by the mean of variable k, �Xk.
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Table 7.11: Price di¤erences among bidders, all lots

Winning bids Price di¤erencesa

Uncon- Cont-

Bidder Count Mean Std. trolled trolled Std.b

1 26 6.08 0.76 �3.24 �3.02 3.56

2 12 5.77 0.44 �8.20 �1.93 5.15

3 61 6.52 0.82 3.67 �0.43 3.18

4 32 6.81 0.48 8.42 �0.02 3.35

5 66 5.75 0.83 �8.58 �1.09 3.52

6 126 6.36 0.73 1.25 �2.49 3.11

7 108 6.83 0.62 8.67 �0.89 3.10

8 55 6.42 0.80 2.18 �0.32 3.62

9 24 6.64 0.67 5.71 �0.15 5.18

10 98 5.79 1.17 �7.96 �1.60 3.05

12 175 6.16 0.97 �1.98 �0.53 2.88

13 119 6.27 0.95 �0.18 �0.94 2.78

14 11 6.29 0.17 0.00 0.00 0.00

15 70 6.50 0.92 3.37 �0.66 2.97

16 69 6.65 0.82 5.72 �1.04 3.19

17 127 6.52 0.71 3.76 �1.23 2.95

18 18 6.35 0.84 1.00 �1.29 3.07

19 40 6.36 1.23 1.13 �0.25 3.83

20 60 6.82 0.64 8.48 0.97 4.01

21 43 6.57 0.62 4.51 0.29 3.92

22 14 6.33 0.70 0.72 �5.35 3.90

23 62 6.06 1.19 �3.59 1.17 3.59

24 35 5.82 1.26 �7.47 �1.06 3.71

25 43 6.34 0.71 0.93 �0.38 3.07
a Percentage di¤erence in mean price compared to bidder 14.
b Std. = standard deviation of controlled di¤erence in mean
price.
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Table 7.12: Price di¤erences among bidders, lots with
reserve price 5.25 NOK

Winning bids Price di¤erencesa

Uncon- Cont-

Bidder Count Mean Std. trolled trolled Std.b

1 19 6.39 0.58 2.22 �2.55 2.43

2 8 5.77 0.29 �7.73 �3.39 14.05

3 33 6.86 0.61 9.71 1.25 1.92

4 28 6.85 0.51 9.54 1.13 1.97

5 37 6.05 0.58 �3.20 0.33 2.32

6 72 6.56 0.66 4.91 �0.93 1.96

7 90 6.88 0.57 10.10 0.27 1.78

8 34 6.69 0.50 7.04 �0.85 2.37

9 15 6.94 0.41 10.96 1.10 3.91

10 53 6.25 0.78 0.02 �0.11 1.82

12 99 6.53 0.71 4.42 0.33 1.69

13 78 6.46 0.83 3.33 0.08 1.64

14 9 6.25 0.17 0.00 0.00 0.00

15 42 6.90 0.58 10.28 0.79 2.03

16 57 6.73 0.72 7.67 0.80 1.87

17 102 6.68 0.60 6.86 0.95 1.56

18 15 6.56 0.76 4.86 0.70 1.79

19 27 6.92 0.47 10.58 1.33 2.28

20 39 6.96 0.52 11.32 0.89 2.07

21 23 6.93 0.43 10.75 3.05 3.41

22 14 6.33 0.70 1.24 �3.90 3.77

23 34 6.69 0.63 6.99 1.68 2.83

24 24 6.42 0.54 2.67 0.98 2.03

25 29 6.56 0.56 4.96 1.04 1.95
a Percentage di¤erence in mean price compared to bidder 14.
b Std. = standard deviation of controlled di¤erence in mean
price.
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Table 7.13: Price e¤ect of some dummy variables, all lots

Dummy Std. of Benchmark

variable Elasticity elasticity dummy

Gear: Purse seine coast �5:16 0:63 Purse seine

Gear: Trawl �11:50 1:61 Purse seine

Feed: Some feed �0:72 0:19 Little or no feed

Preservation: Ice �3:44 0:47 RSW or CSW

2nd-highest bid won �1:54 0:12 Highest bid won

3rd-high. or lower won �2:35 0:21 Highest bid won

Interpretation: When the given factor is present, the elasticity is the
percentage change in estimated price compared to the case where the
benchmark dummy variable is present.

Table 7.14: Price e¤ect of some dummy variables, lots with reserve

price 5.25 NOK

Dummy Std. of Benchmark

variable Elasticity elasticity dummy

Gear: Purse seine coast �3:70 0:74 Purse seine

Gear: Trawl �12:55 4:34 Purse seine

Feed: Some feed �0:31 0:19 Little or no feed

Preservation: Ice �1:15 0:37 RSW or CSW

2nd-highest bid won �1:37 0:14 Highest bid won

3rd-high. or lower won �2:50 0:18 Highest bid won
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Figure 7.3: Individual prices and mean prices and ranges for lots with
reserve price 5.25
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Figure 7.4: Individual prices and mean prices and ranges for lots with
reserve price 4.75
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Figure 7.5: Individual prices and mean prices and ranges for lots with
reserve price 3.50
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Figure 7.6: Individual prices and mean prices and ranges for lots with
reserve price 2.50
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Figure 7.7: Individual prices and mean prices and ranges for lots with
reserve price 1.50
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Figure 7.8: Least squares and quantile regression estimates, all lots
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Figure 7.9: Least squares and quantile regression estimates, lots with
reserve price 5.25 NOK
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Table 7.15: Summary statistics of continuous and discrete variables, all

lots (sample size = 1494)

P log (P ) Weight VesQ N DDSF

Minimum 1.50 0.41 230 5 1 1.00

25th percentile 5.76 1.75 483 55 3 2.34

50th percentile 6.54 1.88 535 125 5 3.03

75th percentile 7.05 1.95 570 200 7 3.58

Maximum 7.99 2.08 650 800 15 13.00

Mean 6.34 1.83 521.2 146.9 5.1 3.22

Standard deviation 0.92 0.17 67.05 118.41 2.94 1.58

Skewness �1.10 �2.36 �0.91 1.74 0.60 1.74

Kurtosis 4.89 14.82 3.91 8.03 2.84 7.17

Table 7.16: Summary statistics of continuous and discrete variables,

lots with reserve price 5.25 NOK (sample size = 981)

P log (P ) Weight VesQ N DDSF

Minimum 5.25 1.66 500 5 1 1.00

25th percentile 6.04 1.80 535 60 3 2.19

50th percentile 6.76 1.91 560 130 5 2.92

75th percentile 7.17 1.97 585 206 7 3.28

Maximum 7.99 2.08 650 800 15 13.00

Mean 6.63 1.89 560.4 146.0 5.2 2.88

Standard deviation 0.67 0.10 32.41 105.23 3.00 1.29

Skewness �0.38 �0.51 0.17 1.60 0.63 2.22

Kurtosis 1.97 2.08 2.29 8.82 2.79 12.77
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Table 7.17: Determinants of winning bids, lots with reserve price 5.25 NOK

LS LAD

Asymptotic Bootstrap

Coe¢ cient Est. t-val. p-val. Est. t-val. p-val. t-val. p-val.

Constant 1.0455 2.60 0.010 1.0260 2.27 0.024 2.45 0.015

Weight 0.0019 1.33 0.182 0.0020 1.24 0.215 1.34 0.179

Weight2 -0.0000 -0.98 0.329 -0.0000 -0.94 0.348 -1.03 0.304

VesQ 0.0001 7.08 0.000 0.0001 6.73 0.000 5.28 0.000

GearPSC -0.0440 -8.15 0.000 -0.0376 -6.21 0.000 -4.23 0.000

GearTrawl -0.1227 -9.25 0.000 -0.1338 -8.98 0.000 -5.62 0.000

Feed -0.0043 -0.93 0.353 -0.0031 -0.60 0.552 -0.69 0.488

Ice -0.0125 -1.94 0.052 -0.0115 -1.60 0.110 -1.88 0.060

N 0.0185 10.04 0.000 0.0158 7.64 0.000 6.42 0.000

N2 -0.0010 -6.99 0.000 -0.0008 -5.24 0.000 -4.78 0.000

WinBid2nd -0.0163 -4.40 0.000 -0.0138 -3.30 0.001 -3.62 0.000

WinBid3rd -0.0286 -6.72 0.000 -0.0253 -5.28 0.000 -5.75 0.000

DayDSF 0.0121 7.60 0.000 0.0153 8.57 0.000 5.29 0.000

Dependent variable: Logarithm of winning bid.
The regression model includes a set of 23 buyer dummies and 12 week-speci�c dummies.
Number of observations: 981. Degrees of freedom: 933.
LS estimation: R-squared = 0.8327. Adjusted R-squared = 0.8241.





Chapter 8

Strategic bidding: Bids and
priorities

8.1 Introduction

Bidding is about strategy. In the two previous chapters, we have examined

how prices are determined by observable market and product characteristics.

In addition, because our dataset is large, we were able to examine asym-

metries between bidders. We concluded that, although bid frequencies vary

between bidders, there is no evidence that bidders tend to be asymmetric in

the sense that their winning bids di¤er much. In this and the next chapter,

we tie-up a couple of loose ends by analysing whether bidders use the priority

option strategically and whether the data reveal any signs of collusion among

bidders.

In this chapter, we study an interesting strategic option that bidders have,

the option of setting priorities to their bids. The option of priorities is closely

linked to the option of setting quantity limits. To illustrate, suppose a bidder

has the highest bid on two catches, say, 40 and 60 tons, and he sets a capacity

limit equal to 70 tons. He will then only be allocated one of them, and the

remaining catch will go to the bidder with the second-highest bid. If the

bidder in this example, gives the 40-ton lot higher priority than the 60-ton

lot, then he will be allocated the smaller lot should he win both auctions.

203
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We �rst discuss why the option is part of the auction mechanism. Then,

we discuss whether the priority option might be used strategically in order to

increase pro�ts. We do this by �rst proposing a strategy, and then setting-up

and solving a model of equilibrium bidding relevant to our market. Finally,

we examine empirically how the option is used by bidders and interpret our

�ndings.

8.2 Rationale of the priority option

One reason for the priority rule is to give buyers an opportunity to optimize

their bundles. Given the nature of supply, most notably the di¤erent delivery

sectors of individual sellers, bundling catches before o¤ering them on the

market is impractical.1 But buyers do have preferences over bundles. Since

catches di¤er in size, not all bundle combinations are equally attractive. For

a given bidder at a given time, winning one large and one small lot may

be better than winning two small or two large lots. In general, bidders

will probably prefer to obtain total quantities as close to their capacities as

possible.

Another rationale for the priority option is that it gives structure to the

potentially complex program of allocating the objects after the end of the

bidding process. With no priorities, some discretion is left to the auctioneer

with respect to the order of solving for capacity constraints. In principle, this

could be used for the purpose of maximizing revenues at the cost of reduced

utility for buyers.

To give an example, suppose a bidder A has the highest bid of 7 on two

lots, but his stated capacity is to take only one. Now, if the second-highest

bids are 6 and 5 on lots 1 and 2, respectively, then the auctioneer, in order

to maximize revenues, would give lot 2 to A and sell lot 1 for 6. In so

doing, he would realize 13 in revenue rather than 12. In turn, we might

suspect that such discretion, if left to the auction house, would in�uence

1Chakraborty [18] analyses whether auctioneers should bundle di¤erent objects before
selling them. Under the standard auction formats, he �nds that when the number of
bidders is above a critical level, the seller prefers unbundled sales.
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bidding behavior. Bidders would take into account the risk of ending-up with

suboptimal bundles. In most cases, with priorities, however, the allocation

will be obvious. Thus, the option of setting priorities, as argued in the case

of the capacity constraints, frees bidders from basing their bids on strategic

considerations with respect to obtaining optimal bundles. Note, however,

that buyers bid on each lot independently. The priority option is an imperfect

instrument in order to get the preferred bundle. This, in turn, provides

incentives to bid more aggressively on the preferred lot.

8.3 Strategic aspects of the priority option

We have seen that the priorities make the allocation mechanism transparent,

and remove a strategic instrument from the seller. Given preferences over

bundles, the priority option seems to be an instrument that helps to solve a

complex allocation process, and helps bidders to acquire optimal quantities

or bundles of catches.

Assume now that preferences over bundles of catches are unimportant. A

natural question under this assumption is whether bidders can use priorities

strategically; i.e., can they use priorities to obtain catches at a lower price

than without this option? At a sealed-bid auction, imperfect information

concerning competitors and their bids are important. In fact, the equilib-

rium �rst-price, sealed-bid function with independent valuations requires a

rather di¢ cult calculation and a precise information set in order to arrive at

an equilibrium-bid strategy. Dropping the assumption of independent valua-

tions, bid strategies do not get simpler. Although the theoretical bid function

is the solution to an economic model, and not a blue-print of reality, it is

safe to say that the informational requirements are demanding under our

auction mechanism. It seems that the priority option can be used to reduce

the uncertainty.

Recall that at an open, second-price auction because bidding one�s valu-

ation is a dominant strategy, the winning bid is equal to the second-highest

valuation. Similarly, at a �rst-price auction the highest bid is equal to the

expected second-highest valuation. Thus, the equilibrium solution is that
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winning bids will be above the second-highest bid, but equal to the second-

highest valuation. This makes intuitive sense, but the argument to prove it

is somewhat elaborate; see Krishna [59, section 2.3]. In the case of �rst-price

auctions, bidders are not assumed to predict perfectly the second-highest

valuation; after all, we model the situation as draws from a probability dis-

tribution. A bidder is assumed to know the distribution of competitors�

valuations; he does not know the individual valuations. For winning bids to

equal the expected value, they will necessarily from one auction to another

fail on either side of the target. Sometimes, the winning bid will be below

the second-highest valuation and sometimes above.2

Now, to the point, the bid ranking option enables bidders to hit the

target of bidding slightly above the second-highest bid. Typically, bidders

will only want some catches, not all o¤ered for sale. During peak season,

no one has the capacity to handle the entire quantity for sale. With this in

mind, and recalling that bidders can bid on as many catches they like and set

capacity limits, the bid-ranking option provides bidders the opportunity to

test di¤erent bid levels. More precisely, bidders may diversify their bids over

seemingly-equal lots, and then rank their bids, giving highest priority to their

low bids. In that case, the result is a positive correlation between bids and

priorities because an high priority is a low number. This strategy, combined

with setting a quantity limit, will have the e¤ect that of all winning bids a

bidder submits, he is certain of being allocated the catch corresponding to

his lowest winning bid because this will have higher priority than his even

higher bids.3

Let us illustrate the argument by an example. Consider a bidder who

wants two of four objects. One way of using the priorities strategically is

the following: First, set a capacity limit for two catches. Next, submit four

di¤erent bids, say, in descending order, so that object one has the highest

bid and object four the lowest bid. Finally, set priorities in reverse order of

2It can be shown that the variance of the winning bid is larger at open, second-price
auctions than at closed, �rst-price auctions. With increased number of bidders the di¤er-
ence between the two variances will be reduced.

3The expression �certain� should be somewhat modi�ed since the auction house can
over-rule priorities if necessary in order to clear the market.
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bid levels; i.e., give priority one to the lowest bid and priority four to the

highest bid. If all four objects are won, then a bidder will obtain the two

lots assigned the lowest bids. The high bid may be interpreted as the best

estimate of the equilibrium bid. Given the uncertainty about competitors

valuations and bids, our bidder tests whether lower bids are winning as well.

Table 8.1: Use of priorities, numerical example

Strategy S1 Strategy S2

Catch Quantitya Bidb Priority TCc Priority TC

1 150 6:1 1 915 4

2 150 6:3 2 945 3

3 150 6:5 3 2 975

4 150 6:7 4 1 1005

Sum: 1860 1980

a Quantity in tons
b Bid in NOK per kilo
c TC: Total cost in 1000 NOK

To make the idea clear, we provide a simple numerical example of the

situation by setting actual quantities and bids for a given bidder and examine

the e¤ect of two di¤erent priority rankings, denote them S1 and S2. The

�gures of our example is reported in table 8.1. To focus on the e¤ect of

priorities, we set the quantity of the catches to be equal. Recall that our

bidder has the highest bid on all lots.

Under priority strategy S1, the bidder is allocated catch 1 and 2, while he

wins catches 3 and 4 under strategy S2. Using strategy S2 will increase the

average price by 6.45 percent or involve a total cost 120,000 NOK higher than

if strategy S1 was used. Consequently, under ideal conditions, the priority

option can be used strategically by a bidder to reduce the price paid. The

way he obtains this is by testing di¤erent bid levels in order to reduce the

di¤erence between his winning bid and the second-highest bid. One condition
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is that the bidder is indi¤erent between the catches with respect to all factors

but price. Given this prerequisite, he will have to hope that the bid process

gives the result that he is the winner of the catches with low bids.

To a certain degree, however, some factors will reduce the possible impact

of the bid ranking option. First, if catches are heterogenous, then using

the bid ranking option in the way described above becomes less attractive,

because other aspects of the catches will dominate the bid priorities. Second,

systematic bid ranking strategies are most valuable when there is a su¢ cient

number of catches o¤ered on the market. The opportunity to test di¤erent

bid levels is weakened when there are only a few comparable catches available.

In this case, a bidder may want all catches. Note that it only takes two

catches o¤ered in order to implement the strategy of correlating priorities

with the bid levels.

8.4 An auction model with priorities

We have pointed out a potential bidding strategy for increasing expected prof-

its: Bidders may vary bids and give the lowest bid the highest priority. One

might object that a dominant bid strategy in the single-object case should

be repeated at the multi-object auction since bids in a sense are independent

due to the option of setting a capacity limit. In terms of optimization, the

problem of maximizing total pro�ts is obviously equivalent to the problem

of maximizing the independent parts that constitute the whole. An optimal

bid in the single-object case is based on balancing the probability of winning

with the pro�t margin if winning. If a bidder does not follow this optimal

rule for all bids, but instead strategically varies bids over a given range, then

he deviates from the strategy of maximizing the individual parts.

However, the optimality of the dominant bid strategy rests on the infor-

mation set available to bidders. With the bid ranking option, the bidding

procedure is, to some extent, equivalent to the following two stage process.

First, bidders are invited to bid on some or all catches, and then they are

ex post given the opportunity to decide what winning bids are binding. It is

clear that the information set in this case di¤ers from the case with no bid
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ranking option.

Can a strategy where bid levels are correlated with priorities be an equi-

librium solution of the game? We analysed this by formulating a model where

the allocation depends on the priorities. Although we consider the simplest

possible model that captures the characteristics of our auction market, the

model is too complex to analyse analytically, so we chose to solve for the

equilibrium numerically.

Benchmark model. As a benchmark, consider �rst a traditional discrim-

inatory, simultaneous auction model: Three bidders� denoted A, B and C�

with single-unit demand compete for two identical units. Each bidder draws

a value independently from the same distribution FV . Each bidder submits

only one bid, and the two highest bidders obtain a unit each.

The equilibrium bid is to bid the expected second-highest value of the

competitors conditional on that the bidder itself has drawn the highest value.

In general, according to Krishna [59, p. 195], with N bidders and K < N
units, the equilibrium strategy, � (v), is

� (v) = E
�
Y(K:N�1)jY(K:N�1) < v

�
(8.1)

where Y(K:N�1) is the Kth-highest order statistic of (N � 1) draws from the

distribution function FV . In the case of three bidders and two units, we see

that equation (8.1) tells us to bid the second-highest, equivalently, the lowest

order statistic from two draws from FV conditional on that one�s own value

v is higher:

� (v) = E
�
Y(2:2)jY(2:2) < v

�
. (8.2)

The population density function of the second-highest order statistic, f(2) (v),

is from equation (2.3):

f(2) (v) = 2 [1� FV (v)] fV (v) .

The cumulative distribution function of the second-highest order statistic,
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F(2) (v), is from equation (2.2):

F(2) (v) = FV (v) [2� FV (v)] .

Since the conditional expectation of a random variable V with pdf fV and

cdf FV given that V < v is

E [V jV < v] = 1

FV (v)

vZ
0

ufV (u) du,

we �nd that the equilibrium-bid function in equation (8.2), can be expressed

in closed-form as

� (v) =
1

FV (v) [2� FV (v)]

vZ
0

2u [1� FV (u)] fV (u) du. (8.3)

Below, we refer to equations (8.2) or (8.3) as the benchmark bid.

Model with two submitted bids and priorities. We now extend the

benchmark model by changing the following characteristics: Bidders compete

separately on each object. They still have single-unit demand. Thus, they

are allowed to set a capacity limit equal to one unit, and to give priorities to

their bids. We see that the auction format resembles our empirical auction

market. In principle, it is possible to have this situation in our real-world

market. For most auctions, however, the number of potential bidders will

vary and so will their capacity limits.

The allocation mechanism is then as it is at our real-world auction market:

If the same bidder has the highest bid on both objects, then he is allocated

his preferred object, and the other object goes to the second-highest bidder

on that good. On the other hand, if di¤erent bidders have the highest bids,

then they are allocated their respective objects. Notice that priorities do not

play any role in the latter case. Priorities only come into consideration when

the same bidder wins both objects. Let a bid vector for representative bidder
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i be de�ned to be a tuple of four:

bi = fB1; B2; P1; P2g

where Bj is the bid and Pj is the priority for object j: In this model, there

is no reason to bid on only one unit. The probability of winning cannot

decrease if bidding on both. Moreover, as long as one submits bids equal to

the equilibrium bid from the benchmark model, this is equivalent to bidding

in the benchmark model. Thus, bidders will submit tenders for both units.

What will equilibrium bidding look like under this format? If bidders use

the benchmark strategy of equation (8.2) on both objects, then the outcome

will be the same as in the benchmark model. Expected pro�ts and the

seller�s revenue will not change. Bidding lower than the benchmark bid on

both objects cannot constitute an equilibrium. A bidder will then �nd it

pro�table to deviate by scaling his bid upwards towards the equilibrium bid.

We propose that an equilibrium might be to bid the benchmark strategy

on the low priority object and to scale down the benchmark bid by a factor

on the high-priority object. The two high value bidders will then ensure that

they obtain a unit for at most the benchmark bids, and the auction remains

e¢ cient. However, if submitted priorities are favorable, then the high-value

bidder may obtain a unit for a lesser price than the benchmark bid.

We proceed by looking for an equilibrium when a constant scaling factor

is used; i.e., the scaling factor is not a function of valuations. Let � represent

a number between 0 and 1. Thus, we propose to examine the following

completely mixed bidding strategy:4

bi =

8><>:
f� (v) ; �� (v) ; 0; 1g , with probability 1

2
;

f�� (v) ; � (v) ; 1; 0g , with probability 1
2
.

(8.4)

Bidders do not know the priorities of their competitors. Thus, we analyse

a game where coördination is a strategic problem. We assume each bidder

4A mixed strategy maps each of a player�s possible information sets to a probability
distribution over actions. A completely mixed strategy puts positive probability on every
action; see Rasmusen [93, pp. 66�67].
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chooses his high-priority unit� the one with a scaled down bid� at random

(by the �ip of a coin). A bidder�s priority of a unit is equal to 1 if he prefers

the unit, and 0 if he prefers the other unit. Denote the submitted priorities

on unit 1 by a vector
�
PA1 ; P

B
1 ; P

C
1

�
; i.e., PA1 is bidder A�s priority for unit 1,

and so forth. Denote the set of possible priority vectors by Prij for object j.

For each auction t, we then have eight possible priority vectors for the �rst

unit:

Pri1 = f(111) ; (110) ; (101) ; (011) ; (100) ; (010) ; (001) ; (000)g.

The priority vector (111) signi�es that all bidders prefer unit 1, while the

vector (010) represents the case where only bidder B prefers unit 1. Pri2, the

possible priorities for the second unit, equals the complement of Pri1.

What potential gains might there be to using the strategy stated in equa-

tion (8.4)? Denote the benchmark bid from the bidder with the Kth-highest

valuation by �
�
v(K)

�
. For the bidder with the highest valuation, there is no

risk in using the strategy. He will always win one unit. In case all bidders have

identical priorities, which happen with probability (1=4), he will certainly ob-

tain the unit at the scaled down bid. In the remaining cases, whether the

high-value bidder obtains a unit at the scaled down bid ��
�
v(1)
�
depends

on the scaling factor. For moderate scaling factors, we can safely assume

that the high-value bidder will have the highest bid on both objects, regard-

less of how competitors choose their priorities and corresponding high bids.

The bidder with the second-highest valuation has, however, some worries. If

he has the same priority as the high-value bidder, but opposite priority from

the third-highest-value bidder, then he may miss winning a unit if the scaling

factor is su¢ ciently high. To be speci�c, for priority vectors {(110),(001)}

which happen with probability (1=4), there is a risk of losing the unit for

the second-highest valuation bidder. This happens only if the scaled bid of

the second-highest valuation bidder is less than the equilibrium bid of the

third-highest valuation bidder; i.e., ��
�
v(2)
�
< �

�
v(3)
�
.

To summarize the strategic considerations of the model, we note: Bidders

are assumed to compute the benchmark bid � (v) of equation (8.3). Next,
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what object to prioritize is determined randomly. Finally, the percentage

� which determines the high-priority bid is the important strategic element

that we solve the model for.

If we want to solve the model analytically, then we shall have to set-up the

expected pro�t function. We quickly realize that the di¤erent probabilities of

winning make the model messy and probably impossible to solve for a closed

form equilibrium bid. Thus, we opt for a numerical analysis of the model.

Solving the model numerically. We examine the large-sample proper-

ties of the model by simulating T auctions. We �rst draw T priority vectors

from the eight possible combinations in Pri1 with equal probability. We en-

sure that the drawn priority vectors are represented exactly the same number

of times; each vector is represented in (1=8) of the T draws.

In a second, independent simulation, we draw (T � 3) values from the uni-
form distribution on [0,1]. For each bidder and valuation, we compute the two

bids � (v) and �� (v) for a reasonable set of combinations of � and allocate

the two bids to the correct objects according to the priorities. In principle,

we should test all possible strategy combinations where � 2 [0; 1]. Given the
continuous strategy space, we have to settle for a discrete approximation of

the strategy space in a numerical analysis. Obviously, using � = 0 cannot

be part of an equilibrium since an � in�nitesimal above 0 is a pro�table

deviation. We examine 20 di¤erent strategies for � 2 [0:05; 0:10; 0:15; : : : ; 1]
for each bidder in the numerical analysis and rely on that the response func-

tions are smooth and continuous for the strategies not tested. The result is

a game in normal form with 8,000 strategy combinations since each of the

three bidders has 20 strategies to choose between.

Next, we allocate the objects to the winning bidders according to the

allocation mechanism described above. After setting up the allocation table,

we map the strategies into payo¤s (expected pro�ts).

In the simulation, we used T = 100; 000. The (T � 3) valuations and
priority vectors are drawn once, and the (T � 3) low priority bids � (v) are
computed once. The (T � 3) high-priority bids �� (v), however, are cal-
culated 8,000 times; i.e., they are calculated over again for each strategy
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combination of scaling factors. The numerical simulation and the identi�ca-

tion of the Nash equilibrium is documented by the script written inMatlab

which is in appendix B.5

Searching the strategic form of expected pro�ts for Nash equilibria results

in a unique symmetric equilibrium where bidders use � = 0:80. In �gure 8.1,

we plot the payo¤ surfaces for bidders.

The pro�t surface of bidder 3 is the surface with light squares in the grid,

while the surface with �lled squares represents bidder 1 and 2. The latter

case is constructed by taking the mean expected pro�t of bidder 1 and 2

when they use the same (symmetric strategy) �. In �gure 8.1a, we notice

that when all bidders use � = 1 (no scaling of prioritized bid), the expected

pro�t is 0.25 for all. This is the same as expected pro�t in the benchmark

model. If bidder 3 maintains the strategy � = 1, then the two other bidders

will pro�t from reducing their �, but only up to a point. For su¢ ciently low

�, however, we see that their payo¤ falls well below the benchmark pro�t of

0.25. To be precise, when � = 1 for bidder 3 and � = 0:05 for bidders 1 and

2, expected pro�ts are roughly 0.27 and 0.23 respectively. Obviously, when

a bidder uses a very low �, he will almost never win his prioritized object.

The unique symmetric Nash equilibrium is illustrated in both �gure 8.1a

and 8.1b. In 8.1b, we show the equilibrium pro�t which equals 0.266. The

pro�t surfaces at the Nash equilibrium is sloping downward in the relevant

directions. To see this, �x � at 0.8 for bidder 3 and look at the pro�t for

bidders 1 and 2 for di¤erent values of �. The maximum pro�t along the

surface where bidder 3�s � is 0.8 is at � = 0:8. A similar argument shows

that bidder 3 reaches an optimum at the Nash solution when bidder 1 and

2�s � is �xed at 0.8. No bidder has an incentive to deviate from the proposed

solution if the other players do not deviate.

5Matlab is a registered trademark of The Mathworks, Inc.
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Figure 8.1: Payo¤ surfaces and Nash equilibrium
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A clearer picture of the Nash equilibrium is obtained by the two dimen-

sional �gure 8.2 on page 223. Here, we �x bidder 1�s and 2�s � at 0.8, and

show bidder 2�s pro�t for di¤erent strategies of bidder 3. Bidder 1 will have

a similar pro�t function like that depicted for bidder 2. Likewise, we plot

the pro�t function for bidder 3 for di¤erent choices of scaling factor. The

maximum pro�t for bidder 3 is clearly at � = 0:8. The Nash equilibrium is

robust in the sense that whatever strategy bidder 3 chooses, bidder 1 and 2

will obtain an higher pro�t than the benchmark pro�t of 0.25.

The seller�s revenue su¤ers in this model compared to the benchmark

model, where it can be shown that the expected revenue is equal to 0.5.

In the equilibrium, the sellers expected revenue is 0.45; i.e., a 10 percent

decrease from the benchmark model.

Concluding remarks on the model. We stated in section 8.3 that bid-

ders might use a strategy where bids are correlated to priorities, but it was far

from obvious that down-scaling high-priority bids would constitute an equi-

librium. In this section, we have shown that a unique symmetric equilibrium

exists for the case of three bidders competing for two identical objects when

valuations are drawn independently from the standard uniform distribution.6

The equilibrium is characterized by bidding lower on the high-priority bid.

An � equal to 0.8 as the equilibrium strategy is obviously a result of the cho-

sen distribution of values. The important result is that bidders di¤erentiate

the two submitted bids and scale down the bid on the high-priority object.

We have not shown that this result is distribution-free. We conjecture, how-

ever, that it generalizes to other distributions. The driving force of the model

is that the options of setting capacity constraints and priorities open up a

possibility of testing di¤erent bid levels.

6To be precise, what we proved was that single-handedly deviating from the symmetric
strategy � = 0:8 by discrete jumps of 0.05 in either direction is suboptimal for all players.
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8.5 Correlations of bids and priorities

Anecdotal evidence from representatives of the auction house suggests that

they sometimes, but not frequently, observe bidders using the strategy of

systematically linking low bids to high priorities, or �trying to be smart�as

they call it. We now turn to an empirical examination of the use of prior-

ities using some statistical measures. If bidders use priorities strategically

as described in the example above, then high priorities will correspond to

low bids. In order to examine this hypothesis, we propose to examine the

correlation between bids and priorities. Note that an high priority in our

case corresponds to a low number; the preferred catch is given priority 1

and less preferred catches will have priorities 2, 3, and so forth. Correlation

coe¢ cients will, consequently, be positive when high priorities (low priority

numbers) correspond to low bids. Correspondingly, high bids accompanied

by high priorities result in a negative correlation coe¢ cient.

Correlation measures. Di¤erent measures of correlation exist; see, for ex-

ample, Myers and Well [78]. In our case, a natural candidate for a correlation

coe¢ cient measure is Spearman�s rank correlation. Spearman�s rank correla-

tion is a non-parametric measure of correlation; no assumptions concerning

the frequency distribution of the variables are required. The correlation mea-

sure is between ranks of the variables. In our case, the priorities are already

ranked. Bids will have to be transformed to a ranking. Given a bid vector

[5.25 6.10 5.35] for three catches, the ranking vector of bids is [1 3 2], indi-

cating that the �rst bid is the lowest, the second bid is the highest and the

third bid is the medium bid.

The formula of Spearman�s rank correlation is

� = 1� 6
P
d2i

n(n2 � 1)

where di is the di¤erence between each rank of corresponding values of X and

Y , and n is the number of pairs of values. In the data, however, we sometimes

have ties both between bids and between priorities. With respect to priorities,
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a bidder may give priorities [1 2 2] indicating that he prefers the �rst catch,

but is indi¤erent between catch 2 and 3. Likewise, the bid vector [6.10 5.35

6.10] produces the ranking [2 1 2]. The simple formula of Spearman�s rank

correlation coe¢ cient is inappropriate to use when ties between values occur.

We can, however, always obtain the Spearman�s rank correlation by using

the formula of the classic Pearson product-moment correlation coe¢ cient to

the ranked data:

� =
n
X

xiyi �
X

xi
X

yir
n
X

x2i �
�X

xi

�2 r
n
X

y2i �
�X

yi

�2 . (8.5)

Spearman�s correlation coe¢ cients are equivalent to computing the Pearson

correlation coe¢ cient using rank vectors as input; again see Myers and Well

[78, p. 508].

For every bidder and every relevant auction in the dataset, we computed

the correlation coe¢ cient between ranked bids and priorities. By relevant

auction, we mean that correlation coe¢ cients are only appropriate to com-

pute when the bid vector is su¢ ciently large. Obviously, a bidder has to bid

on at least two catches for the procedure to be meaningful.

Given the high number of statistics thus generated, we need to summarize

our results appropriately. We chose to report for each bidder the number

of correlation coe¢ cients that falls into the following seven categories: (1)

perfect negative, � = �1, (2) large negative, � 2 (�1;�0:5), (3) moderate
negative, � 2 [�0:5; 0), (4) no correlation, � = 0, (5) moderate positive,

� 2 (0; 0:5], (6) large positive, � 2 (0:5; 1), and (7) perfect positive, � = 1.
Since most bid vectors are short, computed correlations will typically

have high p-values; correlation coe¢ cients are statistically insigni�cant for

standard levels of signi�cance. We see no point in reporting the p-values.

Dismissing all �insigni�cant�correlations will simply take away a lot of valu-

able data points. If a bidder consistently has a perfect positive correlation

between bids and priorities when his bid vector has length 3, this pattern

is interesting, but we shall be unable to conclude that this pattern actually

reveals a strategy if we dismiss all insigni�cant correlations. The suggested
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summary of the distribution of correlations for every bidder will, however,

reveal any underlying tendency of correlations.

Discussion of correlation tables. All tables are relegated to an appendix

of this chapter. In table 8.2 on page 224, we report the results when we

take all relevant catches and auctions where a bidder submits two or more

bids.7 The case no correlation (� = 0) between bids and priorities appears

frequently. Four reasons exist for a zero correlation to appear for a given

vector of bids and priorities: (1) all priorities and all bids are equal; (2)

all priorities are equal, but some or all bids are unequal; (3) priorities are

unequal but all bids are equal; and (4) priorities and bids are both unequal.

Note that equal priorities will normally mean that no priorities are set. Only

case (4) is a true zero correlation. This case can only appear when the bid

vector has an odd length above or equal to 5. The remaining cases are set to

zero, since if we apply the formula of equation (8.5), we end up with a zero

standard deviation of one of the variables.

Of the 440 zero correlations reported in table 8.2, case (1) accounts for

12.7 percent, case (2) 53.0 percent, case (3) 30.0 percent, and case (1) 4.3

percent. A true zero correlation is rare. The most frequent cause of a zero

correlation is simply that bidders bid the same for two catches, and the

second important explanation for a zero correlation is that no priorities were

set. Looking at the distribution of negative versus positive correlations, we

see that the distribution is left skewed; far more correlations are negative

than positive meaning that bidders prefer catches they bid high on. Let us

analyse this table in depth.

Before proceeding, we shall discuss one possible explanation for negative

correlations. If bidders prefer catches with high average �sh weight, then

they will tend to prefer the high bids since realized prices increase with �sh

weight. Therefore, in the following, we shall compute correlations for bid

vectors that exclusively relate to catches with reserve price 5.25 as well. This

will partly control for the e¤ect of average �sh weight on priorities. Note

that the procedure will, in some instances, change the length of bid vectors.

7Length of a bid vector is shortened ` in the list of tables.
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In many cases, however, bidders bid on only large weight catches, and the

correlations will be the same as when we sample all catches. In the cases

where a bidder bids on two catches with reserve price 5.25 and one catch

with reserve price 4.75, his bid vector used for computing the correlation

changes from length three to two. In table 8.3 on page 225, we report the

correlations when we sample all bid vectors larger than two but with reserve

price 5.25.

A striking fact is the high number of perfect negative correlations; 16.5

percent in table 8.2 and 15.5 percent in table 8.3. This is the result of

calculating correlations for bid vectors with length equal to two. For bid

vectors with few bids� two or three bids� only a few values of Spearman�s

rank correlations are possible. When a bidder bids on only two catches

at an auction, and gives di¤erent priorities to them, then the correlation

coe¢ cient will take only two values. The only possible outcomes are a perfect

negative correlation or a perfect positive correlation; correlations will either

take the value �1 or 1. In table 8.4 on page 226, we show the distribution of
correlations when we examine bid vectors of length two. The most common

choice is not to give priorities at all, resulting in � = 0, but when bidders

do, they tend to end up with a negative correlation. This is the case where

we sample all relevant catches, but also when we sample only catches with

reserve price 5.25. Comparing table 8.2 with table 8.4, we conclude that

perfect correlations are predominantly explained by bid vectors with length

two. In total, we have 270 perfect negative correlations (table 8.2). Bid

vectors of length 2 account for 201 (table 8.4), and bid vectors of length 3

account for 53 of them (table 8.5).

When the bid vector has length three, we have four possible outcomes if

there are no ties between bids or between priorities: (�1;�0:5; 0:5; 1). In the
presence of ties, correlations can take the values (�0:87; 0; 0:87). In tables 8.5
and 8.6 on pages 227�228, we have summarized the number of correlations

for the two samples� all catches and catches with reserve price 5.25� when

bid vectors have length three. Roughly a third of the correlations are zero,

the remaining correlations are predominantly negative.

Given the few possible value outcomes of correlation coe¢ cients when
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only two or three bids are submitted, we examine correlations for bid vectors

of length four or higher. The results are reported in tables 8.7 and 8.8 on

pages 229 and 230. Again, we �nd that correlations are left skewed. A rare

case of a perfectly positive correlation is observed for bidder 16 in table 8.8,

while quite a few of the bidders have some correlations that are perfectly

negative.

To summarize our results, note that many correlations are zero. This

is explained for the most part by bids or priorities (or both) being equal.

Dismissing zero correlations and looking at the percentage of negative corre-

lations versus positive correlations, we report the percentages for each bidder

in table 8.9. All bid vectors discussed above are reported. Some di¤erences

between bidders exist. For bidders 3 and 16, we observe the percentage of

negative correlations dropping below 50 percent when three bids are sub-

mitted at an auction. All in all, the evidence of predominantly negative

correlations are �rm.

So why are so few positive correlations observed? Why do bidders tend

to give high priorities to their high bids? This is somewhat counter-intuitive;

at least in the light of the reduced cost the strategy explained in the exam-

ple of table 8.1 can lead to. One possible explanation is that priorities are

determined by average �sh weight of catches rather than the bids. Given the

signi�cant correlation between bids and weight, we expect the correlations

between average �sh weight and priorities to show a similar pattern as the

tables reporting the correlations between bids and priorities. For the case

of bid vector larger than 1 and all catches, we report correlations between

weight and priorities in table 8.10 on page 232. Our hypothesis is con�rmed.

Bidders do tend to give high priorities to catches with high average �sh

weight. Priorities act as an energizer to the bids; in addition to submitting

an high bid on a catch, the bidder gives the catch an high priority as well.

The reason is, however, somewhat puzzling. In chapter 6, we found that

the e¤ect on prices when weight increases, is weak for weights above 500

grams, see in particular the regression results of table 7.17. Given that

prices do not rise much when weight increases from an high level, why does

the percentage of negative correlations not decrease when we sample only
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catches with reserve price equal to 5.25? The best explanation is probably

that priorities are used strategically to get preferred bundles of lots. When

bidders prefer their high bid catches, it indicates that preferences are re�ected

in the bids. This again indicates that heterogeneity of catches determines

di¤erences in bids. If we observed positive correlations between priorities

and bids� the case where bidders preferred their low bid catches� then it

could indicate that uncertainty about the value of the catch was a dominant

factor, and, consequently, that there was room for the randomizing strategy

discussed above.

8.6 Concluding remarks

We have found little evidence supporting the hypothesis that bidders use the

priority option strategically in order to reduce the winning bid. Our �ndings

are consistent with the hypothesis that bidders use priorities to obtain op-

timal bundles of catches in order to reduce total costs. Thus, it seems that

priorities are used the way they are meant to be used. If priorities were used

strategically, as in the model of section 8.4, then ine¢ ciencies would have

been introduced. In some cases, the bidder with the highest market-clearing

willingness-to-pay would not win the object. From an economic perspective,

it is reassuring that ine¢ ciencies do not seem to be introduced by the auction

format.
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8.A Appendix: Tables and �gures

Figure 8.2: Nash equilibrium illustrated
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Table 8.2: Correlation of bids and priorities. All catches, bid vectors
larger than 1

Number of � 2

Bidder [�1] (�1;�:5) [�:5; 0) [0] (0; :5] (:5; 1) [1] Count

1 11 31 3 38 1 0 1 85

2 6 15 2 2 0 0 0 25

3 8 8 8 18 5 5 5 57

4 15 25 4 26 1 0 2 73

5 7 20 11 39 3 1 3 84

6 13 31 2 19 1 0 2 68

7 4 27 6 7 0 4 1 49

8 14 19 12 12 7 0 3 67

9 7 5 6 7 3 2 2 32

10 16 21 19 26 7 8 4 101

11 1 0 0 1 0 0 0 2

12 22 60 18 29 5 3 1 138

13 27 55 18 15 6 0 5 126

14 0 7 0 1 0 0 0 8

15 17 23 16 24 11 5 8 104

16 13 33 14 46 11 11 3 131

17 15 46 6 12 0 0 2 81

18 1 8 1 4 0 1 0 15

19 23 26 4 15 1 1 4 74

20 14 12 6 5 2 1 2 42

21 7 12 8 24 4 3 6 64

22 2 8 1 11 0 2 0 24

23 10 11 12 15 5 5 6 64

24 7 12 7 30 6 5 5 72

25 10 17 2 14 2 3 1 49

Sum: 270 532 186 440 81 60 66 1635

Percent: 16.5 32.5 11.4 26.9 5.0 3.7 4.0 100
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Table 8.3: Correlation of bids and priorities. Lots with reserve price 5.25,
bid vectors larger than 1

Number of � 2

Bidder [�1] (�1;�:5) [�:5; 0) [0] (0; :5] (:5; 1) [1] Count

1 9 24 0 23 1 0 2 59

2 3 9 2 3 0 0 0 17

3 6 9 5 7 4 4 4 39

4 12 19 3 16 1 0 3 54

5 2 18 9 19 2 1 3 54

6 6 16 1 14 2 0 0 39

7 6 24 5 7 0 1 1 44

8 9 16 9 6 2 0 3 45

9 3 4 3 6 2 2 2 22

10 5 14 9 31 3 2 1 65

11 0 0 0 0 0 0 0 0

12 18 41 14 25 3 3 1 105

13 18 41 13 11 3 2 7 95

14 0 6 0 1 0 0 0 7

15 12 17 9 18 9 4 4 73

16 13 29 7 29 4 9 10 101

17 11 32 5 13 0 0 2 63

18 1 7 1 4 0 1 0 14

19 13 21 0 8 1 1 1 45

20 10 8 3 5 1 0 3 30

21 5 11 4 13 0 4 1 38

22 1 8 0 6 0 2 0 17

23 6 9 6 11 3 3 2 40

24 4 6 7 25 3 6 4 55

25 7 10 1 14 2 3 1 38

Sum: 180 399 116 315 46 48 55 1159

Percent: 15.5 34.4 10.0 27.2 4.0 4.1 4.7 100
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Table 8.4: Correlation of bids and priorities. Bid vectors of length 2

All catches Catches with r = 5:25

Bidder � = �1 � = 0 � = 1 Count � = �1 � = 0 � = 1 Count

1 8 17 1 26 7 10 2 19

2 5 2 0 7 2 2 0 4

3 7 14 2 23 5 5 1 11

4 11 6 2 19 7 2 3 12

5 7 18 3 28 2 8 3 13

6 9 9 2 20 5 9 0 14

7 2 4 1 7 4 3 1 8

8 6 10 3 19 7 5 3 15

9 4 5 2 11 2 2 2 6

10 13 11 4 28 5 11 1 17

11 0 1 0 1 0 0 0 0

12 12 16 1 29 14 14 1 29

13 20 6 5 31 14 6 7 27

14 0 0 0 0 0 0 0 0

15 15 12 7 34 11 9 4 24

16 9 17 2 28 10 13 6 29

17 12 6 1 19 8 4 1 13

18 1 2 0 3 1 2 0 3

19 17 8 4 29 11 4 1 16

20 11 3 2 16 9 2 3 14

21 6 14 5 25 4 4 1 9

22 2 7 0 9 1 3 0 4

23 9 10 5 24 4 5 2 11

24 7 10 5 22 3 11 4 18

25 8 5 1 14 7 4 1 12

Sum: 201 213 58 472 143 138 47 328

Percent: 43 45 12 100 44 42 14 100
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Table 8.5: Correlation of bids and priorities. All catches, bid
vectors of length 3

Number of � equal to

Bidder �1 �0:87 �0:5 0 0:5 :87 1 Count

1 2 3 3 9 0 0 0 17

2 0 3 0 0 0 0 0 3

3 1 1 1 4 0 2 3 12

4 2 1 1 4 1 0 0 9

5 0 4 0 8 1 0 0 13

6 3 5 0 4 0 0 0 12

7 1 1 0 1 0 0 0 3

8 7 2 3 1 1 0 0 14

9 2 1 2 0 2 0 0 7

10 3 3 3 7 0 4 0 20

11 1 0 0 0 0 0 0 1

12 8 3 0 6 1 2 0 20

13 3 6 4 4 0 0 0 17

14 0 4 0 0 0 0 0 4

15 2 3 0 6 2 2 1 16

16 3 2 1 14 2 1 1 24

17 3 3 1 4 0 0 1 12

18 0 2 0 1 0 0 0 3

19 5 4 1 5 0 1 0 16

20 3 1 2 2 0 0 0 8

21 1 1 4 6 2 0 1 15

22 0 3 0 0 0 1 0 4

23 1 2 5 2 0 1 1 12

24 0 0 1 8 0 0 0 9

25 2 3 2 1 0 0 0 8

Sum: 53 61 34 97 12 14 8 279

Percent: 19.0 21.9 12.2 34.8 4.3 5.0 2.9 100
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Table 8.6: Correlation of bids and priorities. Lots with reserve
price 5.25, bid vectors of length 3

Number of � equal to

Bidder �1 �0:87 �0:5 0 0:5 :87 1 Count

1 2 1 0 3 0 0 0 6

2 0 3 0 0 0 0 0 3

3 1 2 0 2 2 3 3 13

4 4 1 1 3 1 0 0 10

5 0 3 1 4 1 0 0 9

6 1 3 0 3 0 0 0 7

7 1 2 0 2 0 0 0 5

8 2 1 2 0 0 0 0 5

9 0 1 1 4 2 0 0 8

10 0 2 0 5 0 2 0 9

11 0 0 0 0 0 0 0 0

12 3 2 1 3 0 2 0 11

13 2 4 4 2 0 1 0 13

14 0 3 0 0 0 0 0 3

15 1 2 1 3 1 1 0 9

16 2 2 0 7 1 1 3 16

17 3 4 0 4 0 0 1 12

18 0 1 0 1 0 0 0 2

19 1 1 0 3 0 1 0 6

20 1 1 0 3 0 0 0 5

21 1 1 1 5 0 0 0 8

22 0 2 0 0 0 1 0 3

23 2 2 0 4 1 1 0 10

24 1 0 0 4 0 0 0 5

25 0 1 1 2 0 0 0 4

Sum: 28 45 13 67 9 13 7 182

Percent: 15.4 24.7 7.1 36.8 4.9 7.1 3.8 100
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Table 8.7: Correlation of bids and priorities. All catches, bid vectors
larger than 3

Number of � 2

Bidder [�1] (�1;�:5) [�:5; 0) [0] (0; :5] (:5; 1) [1] Count

1 1 28 0 12 1 0 0 42

2 1 12 2 0 0 0 0 15

3 0 7 7 0 5 3 0 22

4 2 24 3 16 0 0 0 45

5 0 16 11 13 2 1 0 43

6 1 26 2 6 1 0 0 36

7 1 26 6 2 0 4 0 39

8 1 17 9 1 6 0 0 34

9 1 4 4 2 1 2 0 14

10 0 18 16 8 7 4 0 53

11 0 0 0 0 0 0 0 0

12 2 57 18 7 4 1 0 89

13 4 49 14 5 6 0 0 78

14 0 3 0 1 0 0 0 4

15 0 20 16 6 9 3 0 54

16 1 31 13 15 9 10 0 79

17 0 43 5 2 0 0 0 50

18 0 6 1 1 0 1 0 9

19 1 22 3 2 1 0 0 29

20 0 11 4 0 2 1 0 18

21 0 11 4 4 2 3 0 24

22 0 5 1 4 0 1 0 11

23 0 9 7 3 5 4 0 28

24 0 12 6 12 6 5 0 41

25 0 14 0 8 2 3 0 27

Sum: 16 471 152 130 69 46 0 884

Percent: 1.8 53.3 17.2 14.7 7.8 5.2 0.0 100
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Table 8.8: Correlation of bids and priorities. Lots with reserve price 5.25,
bid vectors larger than 3

Number of � 2

Bidder [�1] (�1;�:5) [�:5; 0) [0] (0; :5] (:5; 1) [1] Count

1 0 23 0 10 1 0 0 34

2 1 6 2 1 0 0 0 10

3 0 7 5 0 2 1 0 15

4 1 18 2 11 0 0 0 32

5 0 15 8 7 1 1 0 32

6 0 13 1 2 2 0 0 18

7 1 22 5 2 0 1 0 31

8 0 15 7 1 2 0 0 25

9 1 3 2 0 0 2 0 8

10 0 12 9 15 3 0 0 39

11 0 0 0 0 0 0 0 0

12 1 39 13 8 3 1 0 65

13 2 37 9 3 3 1 0 55

14 0 3 0 1 0 0 0 4

15 0 15 8 6 8 3 0 40

16 1 27 7 9 3 8 1 56

17 0 28 5 5 0 0 0 38

18 0 6 1 1 0 1 0 9

19 1 20 0 1 1 0 0 23

20 0 7 3 0 1 0 0 11

21 0 10 3 4 0 4 0 21

22 0 6 0 3 0 1 0 10

23 0 7 6 2 2 2 0 19

24 0 6 7 10 3 6 0 32

25 0 9 0 8 2 3 0 22

Sum: 9 354 103 110 37 35 1 649

Percent: 1.4 54.5 15.9 16.9 5.7 5.4 0.2 100



231

Table 8.9: Percentage of negative correlations. Zero
correlations not counted

All catches Catches with r = 5:25

Bidder > 1 = 2 = 3 > 3 > 1 = 2 = 3 > 3

1 96 89 100 97 92 78 100 96

2 100 100 100 100 100 100 100 100

3 62 78 38 64 63 83 27 80

4 94 85 80 100 89 70 86 100

5 84 70 80 90 83 40 80 92

6 94 82 100 97 92 100 100 88

7 88 67 100 89 95 80 100 97

8 82 67 92 82 87 70 100 92

9 72 67 71 75 63 50 50 75

10 75 76 69 76 82 83 50 88

11 100 na 100 na na na na na

12 92 92 79 94 91 93 75 93

13 90 80 100 92 86 67 91 92

14 100 na 100 100 100 100 100

15 70 68 50 75 69 73 67 68

16 71 82 60 70 68 63 44 74

17 97 92 88 100 96 89 88 100

18 91 100 100 88 90 100 100 88

19 90 81 91 96 92 92 67 95

20 86 85 100 83 84 75 100 91

21 68 55 67 75 80 80 100 76

22 85 100 75 86 82 100 67 86

23 67 64 80 64 72 67 67 76

24 62 58 100 62 57 43 100 59

25 83 89 100 74 75 88 100 64
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Table 8.10: Correlation of average weight and priorities. All catches
and bid vectors larger than 1

Number of � 2

Bidder [�1] (�1;�:5) [�:5; 0) [0] (0; :5] (:5; 1) [1] Count

1 12 21 14 36 1 0 1 85

2 9 9 3 2 1 0 1 25

3 8 2 14 14 10 2 7 57

4 13 8 19 26 3 2 2 73

5 9 14 13 36 5 1 6 84

6 13 18 10 18 4 0 5 68

7 6 14 9 5 8 5 2 49

8 10 7 16 14 13 4 3 67

9 6 5 5 5 5 2 4 32

10 16 16 31 12 15 2 9 101

11 1 0 0 1 0 0 0 2

12 20 27 44 19 16 5 7 138

13 30 40 30 9 8 1 8 126

14 3 4 1 0 0 0 0 8

15 19 17 27 11 14 5 11 104

16 15 36 17 39 11 6 7 131

17 15 27 22 6 4 1 6 81

18 2 3 4 3 1 2 0 15

19 32 20 8 6 3 0 5 74

20 12 5 7 4 9 1 4 42

21 9 6 9 24 7 1 8 64

22 8 3 1 8 4 0 0 24

23 10 6 17 6 5 4 16 64

24 14 11 8 22 10 3 4 72

25 16 11 9 7 1 3 2 49



Chapter 9

An examination of possible
collusion

9.1 Introduction

Collusion at auctions, or bid rigging, is like price �xing; it involves the auc-

tion participants�forming a ring whose members agree not to bid against one

another, either by avoiding the auction or by placing phony bids; see Shor

[98]. Possible collusion among bidders is a major concern at many auctions

and, in general, at most oligopoly markets; see Pesendorfer [87]. The topic

is di¢ cult to analyse, because of the wide range of ways in which to collude.

Collusion may take the form of downright illegal contracts between bidders.

In our market, we can imagine bidders following bid rotating schemes to allo-

cate catches. Another common way of colluding is the use of side payments,

but this seems less likely in our case. A third method of collusion involves

dividing the market into geographical territories, but this is hardly an option

in our case; this form of collusion is more relevant at procurement auctions.

Markets with repeated auctions are also vulnerable to tacit agreements

among bidders. Although it may be seen as the outcome of a game-theoretic

equilibrium, the e¤ect can be identical to explicit collusion. Is tacit collusion

illegal? The answer is yes, at least for most European countries. According

to Articles 85 and 86 of the Treaty of Rome, which many national legislations

233
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have incorporated, tacit collusion (or what the treaty text calls �concerted

practices�) is illegal because it is a form of abuse of a dominant position; see

Phlips [88] for a further discussion of the legal framework.

We have no indications that collusion has taken place in the mackerel

market. Given our rich dataset, however, we �nd it reasonable to examine the

possibility. If collusion exists, then it is important to detect it because it has

associated costs and victims. The relevant costs are the market ine¢ ciencies

and social loss that result from deviations from a competitive equilibrium.

In the present market, with a �xed supply that is shipped to buyers, we have

no distortions of sold quantities. Moreover, ine¢ ciencies on the producers�

side may not be that serious, since a successful ring at least must win against

bidders outside the ring. Nevertheless, collusion may slow down necessary

restructuring of the industry. The most obvious e¤ect of collusion is that the

revenues of sellers are reduced.

In the remainder of the chapter, we �rst review some of the factors that

facilitate or inhibit collusive schemes. Then, we discuss suggested ways to de-

tect it. Finally, we examine our dataset and perform some tests for collusion.

An important by-product of the analysis is that we estimate a bid function

using all bids and create a buyer index showing each individual buyer�s bid

level compared to the average bid level.

9.2 Likelihood of collusion

Although collusion or bid rigging is a potential problem, the central question

is whether it is likely that bid rigging is prevalent at our auction market. We

start the discussion by reviewing three problems experienced by colluders.

In particular, our discussion draws on Porter [90].

First, collusion can be detected by antitrust authorities or the victims. To

our knowledge, Norwegian antitrust authorities (Konkurransetilsynet) have

not paid any attention to this market. This is understandable since there

have been no complaints from sellers, or any dissident ring member. Rep-

resentatives of the auction house state outright that they do not believe

collusion is a problem at the pelagic �sh auctions. In general, competition is
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considered so strong that collusion would be hard to sustain.

A measure of competition is the number of active bidders. We reported

in section 5.5.1 that the median number of active bidders is 6 when counting

all bids, and 5 when counting only binding bids. Several catches will have

a number of submitted bids close to what we regard as a competitive level,

around 8 or 9 bids. The more bidders, the more di¢ cult for a bidding ring to

achieve any advantages from conspiracy. From the median number of bidders

and from �gure 5.7 on page 101, we see that for around 50 percent of the

catches, there are six or fewer active bidders. The potential for successful

collusion increases under such circumstances. The distribution of submitted

bids shows that competition is not necessarily very strong all the time and,

consequently, the competition argument alone cannot rule out the collusion

risk in the market.

Second, all collusive schemes face the problem of unilateral defection. The

motivation for cheating on the agreement can be so strong that the bid ring

breaks down. Typically, defection will be punished by other ring members.

At open, second-price auctions, it is easy to sustain collusion because de-

fection can be immediately detected and punished. In our case, we have a

closed, �rst-price auction, making a one-shot defection easy and tempting.

But the frequency of auctions� giving rise to a repeated-game format� makes

it easy to respond to defection at subsequent auctions. Similarly, the gains

from a one-shot defection are probably small compared to the gains that a

prolonged period as a ring member bring. We notice again, as in the case of

the competition argument, that our market may be vulnerable to collusion

because ring members can e¤ectively respond to defection.

Third, Porter has noted that a successful ring may be characterized by

higher pro�ts than normal. High pro�ts will attract new producers and e¤ec-

tively undermine the bidding ring. Fish processing plants and buyers have,

loosely speaking, not experienced high pro�ts in recent years; see Bendiksen

[10]. Although extraordinary pro�ts might indicate that something �shy is

going on, the opposite� low pro�ts� cannot be taken as evidence that there

is no collusion among bidders. We do regard the observed low pro�ts on the

buyer�s side as weak evidence that collusion is not a large problem, but we
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also note that in a market characterized by low pro�ts, and where restruc-

turing may be wanted, the motivation for collusion is high. In sum, the �sh

processing industry, like most industries, may have motives for collusion or

a �conspiracy against the public.�

9.3 Tests for collusion

No test for collusion is infallible. In general, markets di¤er so much that

we have to consider the characteristics of the market in detail in order to

examine potential collusion. The main idea, familiar from studies of market

power, is to identify the observable implications of competitive and collusive

behavior and test for di¤erences; see Porter and Zona [91].

In the Porter and Zona [91] study of highway construction contracts,

collusion took the form of placing phoney bids. Ring members determined

who should win the object, and the higher phoney bids were submitted in

order to give an air of competition. Their procedure for detecting the practice

was based on an analysis of observed bid levels and on the ranking of bids.

Estimated bid levels, controlling for auction-speci�c and other relevant public

information, were used for detecting abnormalities in behavior. In particular,

tests of di¤erences among cartel and non-cartel members in coe¢ cients of

the bid functions, could suggest collusion. However, Porter and Zona noted

that detecting collusive schemes directly from bid data is not easy and, in

any case, inconclusive evidence. Di¤erences in bidding behavior across �rms

may be explained by insu¢ cient control for auction-speci�c or �rm-speci�c

characteristics.

They noted that analysing bid rankings among cartel and non-cartel

members may be a more direct and less quali�ed test. Phoney bids are

placed in order to hide the collusive agreement. The key point is that the

ordering of cartel member bids will not necessarily re�ect observable cost

di¤erences while this is to be expected from competitive bids. The analysis

of Porter and Zona, like that of Pesendorfer [87], was made easy by the fact

that it was legally proven that collusion took place, and the identities of

cartel members were known.
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A more general approach was taken by Bajari and Ye [5, 6, 7] in their

analysis of procurement auctions. Their approach is general, in the sense

that it can be applied to all auction markets within a certain model world.

The limitation is that the auction market under study actually has to �t

the model; outside the model, results will not necessarily be robust. In their

benchmark competitive model, the following is assumed: (1) the auction has a

�rst-price, sealed-bid format; (2) bidders have private information about their

costs, but costs are asymmetric and this is common knowledge; (3) bidding

strategies follow a Bayes�Nash equilibrium. Given these assumptions, Bajari

and Ye showed that two conditions, termed conditional independence and
exchangeability, are both necessary and su¢ cient for bids to be considered
competitive.

Conditional independence implies that bids should be uncorrelated after

adjusting for auction- and �rm-speci�c public information. If, however, �rms

coördinate their bids, then their bids will normally be correlated in a way

that can be detected. Bid levels will typically be correlated, unless we are

in a model of independent private values. Hence, the need to adjust bids for

auction- and �rm-speci�c characteristics before looking at correlations.

Exchangeability between bids means that bidders behave identically when

facing the same cost structure. The requirement rests on� what is typically

observed in many procurement projects� that characteristics of the project,

in particular location a¤ect the costs of �rms in an asymmetric way. A �rm

located close to the project will have lower costs than more distant �rms

and tend to submit a low bid. Bidders should, however, respond to project

characteristics in a consistent way under competition; if �rms exchange costs,

they should exchange bids. On the other hand, if bidding is collusive, then

the exchangeability between costs and bids breaks down. A low-cost �rm for

the relevant project will place an high-cost bid if the bid is phoney, with the

purpose to let another cartel member win. Both conditional independence

and bidder exchangeability can be examined by reduced-form estimation of

bid functions.

In principle, a clever cartel can submit bids that pass both the test for

conditional independence and that for bidder exchangeability. Bajari and
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Summers [8, p. 145] state, however, that

... in all case studies of collusion of which we are aware, fail-

ures of conditional independence or exchangeability accompanied

collusion.

From a practical perspective, a more serious objection of using the two

tests for collusion is that the tests may incorrectly reject the hypothesis that

bids are conditionally-independent and exchangeable. Two reasons for this to

occur are either the competitive model is not su¢ ciently general to nail down

the determinants of bidder behavior or the necessary process of adjusting bids

for relevant public information is imprecise.

Since the two tests may be inconclusive, Bajari and Ye [6] supplemented

them with a third test, a simulation that identi�es whether the model of

competition explains the data better than alternative collusive models. A

necessary �rst step for the simulation is to set-up more detailed structural

models that explain bids. A key feature of the modelling approach is to elicit

distributions of unobservable private markups and costs from industry ex-

perts. The traditional approach in much of economics is to let the data speak

and we hope the data will reveal information about important unobservable

variables. The advantages of relying on information from �combat proven�

experts� their survival in unforgiving competitive markets is an indication

of sound judgement� is that it may give superior small-sample properties as

opposed to basing the analysis on asymptotic approximations. The simu-

lation test is based on that the two former tests have identi�ed a collusion

cartel. For a further discussion of the approach, see Bajari and Ye [7] as well

as Bajari and Summers [8].

9.4 Potential collusion in the market

From the de�nition of collusion given in the introduction of this chapter, we

see that collusion might take two forms. Either some colluding bidders, as

part of a bid rotating scheme, are inactive, or they are active but place phoney

bids. Inactive colluding bidders cannot be detected by the tests described in
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the previous section. We propose to look at bid patterns between bidders to

investigate the potential practice of agreeing not to bid against each other.

When examining the possibility of phony bids, however, we draw on the

work by Bajari and Ye. This raises the question of whether their model and,

consequently, the two conditions of conditional independence and bidder ex-

changeability, is appropriate to use for our market. Recall that their auction

model has a �rst-price, sealed-bid format with asymmetric private-values dis-

tributions that are common knowledge, and that bid strategies constitute a

Bayes�Nash equilibrium. How do these assumptions �t our auction market?

First, we have to assume a Bayes�Nash equilibrium; we cannot test for this

directly. Responses to important parameters of the bid function, like the

number of submitted bids, at least do not contradict the assumption. Sec-

ond, we have a �rst-price, sealed-bid format, with the modi�cations that the

capacity and priority options introduce. Costs are private, but whether they

are symmetric or asymmetric is unclear. A bidder index based on all sub-

mitted bids� to be reported at the end of the chapter� indicates that these

are fairly symmetric, so, we have some evidence of symmetric costs.

As we see it, the test for conditional independence does not rest critically

on asymmetric costs. The usefulness of testing for bidder exchangeability,

on the other hand, is based on the assumptions that bids can in part be ex-

plained by observable cost di¤erences, and that this distribution is common

knowledge. We have no obvious variable in the dataset that can reveal asym-

metric costs. Although distance from the vessel to prospective buyers di¤er,

catches are brought to the buyer�s destination at the seller�s cost. Other

variables prove to have too little variability or do not make any economic

sense to incorporate. We elaborate on this point when discussing the esti-

mated bid function below. Thus, we cannot test for bidder exchangeability.

The suggested third test, running a simulation, will not be incorporated. We

regard the information necessary for this test to be too demanding to gather

in our market.
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9.4.1 Testing for phoney bids: Conditional indepen-

dence

Recall the de�nition of conditional independence: Bids should be uncorre-

lated after adjusting for public information. We examine conditional inde-

pendence by looking at the �tted residuals of estimated bids. Let us, however,

begin by looking at correlations of unadjusted (the actual) bids in order to

be able to measure the e¤ect on correlations when going from unadjusted to

adjusted bids.

Correlations of bids. If underlying valuations are drawn independently

from the same distribution, then correlations of bids will tend to be dis-

tributed symmetrically around zero. This is the case of pure private values.

However, we identi�ed in chapter 7, that some covariates have an in�uence

on prices, in particular weight. When all bids are positively dependent on

weight, a common factor is introduced which will tend to make bid correla-

tions positive.

In the upper triangular part of table 9.7, on pages 258 and 259, we report

the correlation coe¢ cient, r (i; j), of bids for every pair of bidders i and j.

Only complete bid vectors are used� i.e., catches where both bidders submit

bids are sampled. In table 9.8, on pages 260 and 261, the numbers of pair of

bids that correlations are based on, are reported.

We computed p-values, p (i; j), of correlation coe¢ cients for testing the

hypothesis of no correlation. Each p-value is the probability of getting a

correlation at least as large as the observed value by random chance, when

the true correlation is zero. When p (i; j) is small, say less than a standard

signi�cance level of 0.05, then the correlation coe¢ cient r (i; j) is signi�cant.

The p-values are computed by transforming the correlation r to create a t-

statistic, t = r
p
(k � 2) = (k � r2) , with k � 2 degrees of freedom where k

is the number of observations. Two-tailed p-values in the lower triangular

part of table 9.7 on pages 258 and 259 are then calculated by the standard

formula using Student�s t cumulative distribution function. The two-tailed

p-values are computed by doubling the most signi�cant of the two one-tailed
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p-values. Thus, in the case where the right-tailed p-value is more signi�cant

than the left-tailed p-value, the two-tailed p-value is:

p = 2�
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�
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where � is the gamma function

� (�) =

1Z
0

t��1 exp (�t) dt

and � are the degrees of freedom. We note that p-values are exact if bids

are normal, a questionable assumption, but the test procedure is probably

relatively robust for non-normal variables.

Typically, high absolute correlations are insigni�cant if the number of

observations is low. Correlations coe¢ cients close to zero, say between �0:2
and 0:2 will turn out to be insigni�cant even if the number of observations

is relatively high.1

Bid vectors are complete in the sense that we used all observed bids. This

raises again the question of how to interpret statistical inference measures

like p-values. Some way or another, we have to take account of the possibility

that realized correlations are not governed by an underlying law, but rather

are random outcomes. The length of bid vectors is obviously important in

this respect. With only two or three bids to compute correlations from,

there will be a strong correlation one way or the other, whether bids are

governed by the same considerations or are purely random. We could exclude

bid vectors with a length, say below four. However, we chose to report all

correlations, but report the length of bid vectors in a separate table. In

the tables summarizing the distribution of correlation coe¢ cients, we report

all correlations and only signi�cant correlations. Thus, p-values will, in the

cases with short bid vectors, reveal whether we can conclude that bids are,

indeed, correlated and not just random realizations.

1For instance, for an observed correlation of 0.25 with 20 observations, we get a p-value
of 0.29.
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Tables 9.7�9.8 contain a lot of information. We need some summary of

the data in order to understand to what extent bids are correlated. With

25 bidders, we have potentially 300 correlations of bids. It turns out that in

nine cases, there is no match of bids by pairs. For example, bidder 11 is an

infrequent bidder and never bids against bidder 2, 7, 9, 14, 18, 22 and 25.

This leaves us with 291 correlation coe¢ cients to examine. We report the

distribution of correlations in table 9.5 on page 256.

Looking at all pairwise bid correlations, we see that all but three corre-

lations are positive. The small samples that some correlation coe¢ cients are

based on make the distribution of all correlations dubious. For instance, for

two bidder pairs we have a perfect positive correlation� between bidders 11

and 3, and between bidders 11 and 17� see table 9.7. From table 9.8, we ob-

serve that the length of those bid vectors is only two. Thus, the distribution

of signi�cant correlations gives a more reliable picture. Ninety percent of all

correlations are above 0.50. If we count only signi�cant correlations, then all

of them are well into the positive realm. There are no negative correlations

and 93 percent of them exceed 0.50. Thus, correlations of bids are positive,

suggesting that covariates have an in�uence on prices, which we already know

from the analysis of chapter 7.

Correlations of residuals of bid functions. The test of conditional

independence requires us to control bids for observable public information,

to clean the bid data for the e¤ect of covariates. The procedure is to set up

a common bid function and to estimate it for all bids from all bidders. If

bids are conditionally independent after controlling for covariates, then the

residuals, which can be interpreted as unobservable private cost shocks, will

be uncorrelated. In chapter 7, we set up a bid function for winning bids using

covariates with explanatory power and ex post observable variables like the

position of the winning bid as explanatory variables. What we now need is

a bid function for all bids.

Using all bids, we suggest that bids may be explained by the product

of a constant term, a bidder-speci�c term and a catch-speci�c term. Thus,

given the fact that we have observations on all bids, we can disregard the



243

observable covariates, and need not worry about the e¤ect of unobservable

public information about catches that a¤ect bids. We have N bidders and

T catches in the dataset. For bidder i, let Bi be a binary variable that takes

the value 1 if the bid belongs to i. Likewise, for each catch t, let the binary

variable Ct be equal to one if the catch is t. Thus, we propose the bid for

bidder i and catch t, Yit, to be estimated by:

Yit = a�
Y
i

(1 + bi)
Bi �

Y
t

(1 + ct)
Ct � exp (Uit) (9.1)

where a, bi, and ct are the (1 +N + T ) parameters to be estimated, and Uit
is an error term. Introducing a full set of bidder and catch dummy variables,

exploits e¢ ciently the structure of the bid data and will capture both observ-

able and unobservable bidder- and catch-speci�c characteristics. Including

particular catch-speci�c covariates like weight and the number of bidders is,

hence, not necessary from an economic perspective, since such variables do

not add to the information captured by the catch-speci�c dummy variables.

More seriously, from an econometric perspective, with no variability between

covariates and the catch dummy variables, including both set of variables

would lead to singularity.

Ideally, in order to increase the explanatory power, we would want to in-

clude buyer-speci�c information that varies over time. We have few variables

in the dataset of such a nature. In principle, we could include whether the

buyer is inside or outside. Because some buyers have no variability in this

variable, we cannot use it. Capacity limits or quantity bid at an auction is

another variable to entertain in this respect. Since the purpose of capacity

limits is to free bids from the constraints in the production process, we do

not �nd it useful to introduce it.

In order to have a linear relation between bids and explanatory variables,

we take the logarithm of the model in (9.1), and obtain:

log Yit = log a+
X
i

log (1 + bi)Bi +
X
t

log (1 + ct)Ct + Uit

or
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log Yit = �+
X
i

�iBi +
X
t

tCt + Uit (9.2)

where � = log a, �i = log (1 + bi) and t = log (1 + ct).

Given the large number of catches and, hence, the large number of catch

dummy variables, estimating relation (9.2) by any estimator but least squares

is not advisable. Thus, equation (9.2) is a least squares dummy variable

model; see Greene [38, p. 287]. Instead of showing the structure of the

general regressor matrix, which would involve some cumbersome notation, it

is probably more informative to use a small example. Suppose we have three

active bidders and four catches o¤ered. Recall that Yit is bidder i�s bid on

catch t. Bidders do not bid on all catches. In the example below, we have a

total of seven bids on the four catches. We then have an unbalanced panel

data where the setup of the regressor matrix looks like:

log
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When estimating the coe¢ cients of equation (9.2), we omit one dummy vari-

able in B and one dummy variable in C to avoid a singular regressor matrix.

In our actual regressor matrix, we have 24 bidder dummy variables, 1,368

catch dummy variables, and 9,443 bids.

Results. After regressing the pooled bid function for all 25 bidders, we

saved the estimated residuals which we denote "it. Next, we calculated the

correlation coe¢ cients of residuals between bidders. Correlation coe¢ cients

and the corresponding p-values are reported in table 9.9 on pages 262 and

263. As we did in the case of bid correlations, we summarize the distribution
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of the correlation coe¢ cients in a table, see table 9.6.

In principle, both negative and positive correlations; i.e., deviations from

the predicted zero correlations of our model, can be interpreted as signs of

collusion. High positive correlations indicate that bidders coördinate their

bids to be equal. It is, however, not obvious why bidders are interested in such

a strategy. The more obvious reason for observing positive correlations is that

we have insu¢ ciently corrected the bids for important public information.

A negative correlation has the most intuitive explanation. If some bidders

tend to have negative correlations, it can indicate that bids are arranged in

the sense that when one bidder bids �high�, the other agrees to bid �low�;

a typical example of placing phoney bids. Thus, given a competitive regime,

large and signi�cant negative correlations are puzzling.

Looking at table 9.6, we note: Correlation coe¢ cients of residuals are

distributed over a larger range than the correlation coe¢ cients of bids. The

di¤erence from the numbers reported in table 9.5 is striking. Apparently, the

adjustment for public information seems to have had a considerable e¤ect.

If the hypothesis of conditional independence is correct, we would expect

zero correlations, or at least a distribution of correlations around zero. The

distribution of all correlations seems to be distributed reasonable symmetric

on either side of zero, with most of the mass close to zero. A slight left skewed

pattern is observed, i.e., correlations are symmetric around �0:1 rather than
around zero. Focusing on distribution of signi�cant correlations in table 9.6,

we see that just a few of correlations are positive. Most correlations are

moderately negative; 83.1 percent of the correlations are larger than �0:40.
We observe no correlations that are less than �0:70. Although the tendency
of moderately negative correlations is a bit surprising� we would expect a

more symmetric distribution around zero� the distribution does not lend

support to the hypothesis of arranged bids between any bidders.

We conclude that, although the modelling of bid functions could be im-

proved, the testing for conditional independence does not suggest that any

pair of bidders place phoney bids.
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9.4.2 Testing for absent bids: Bid patterns

If collusion takes the form of agreeing not to bid against one another, then bid

correlations is of no use in detecting it. We suggest examining bid patterns

between bidders. In particular, we shall look at how many times bidders bid

against one another compared to when only one bid. If the number of cases

where both bidders submit bids is small when compared to the case when

there is only one bid, then this could be an indication of collusion.

Several reasons exist for not bidding on a particular catch. The most

obvious reasons are: The bidder may be an outside bidder, in which case

most bidders, most of the time, do not consider it worthwhile bidding. In

addition, the bidder may not be in the market at all, his capacity is fully

used. Even if a bidder has free capacity, a particular catch may be too large

for his capacity. Finally, the reserve price of the catch may exceed a bidder�s

willingness to pay. We cannot rule out other reasons. Labor costs may play

a role; allocating manpower to follow the auction market and submitting

bids is a cost-bene�t question� for example, a single small catch is o¤ered

at an inconvenient time of the day. It may not be worthwhile for a small

factory to pay employee-overtime to be ready for submitting bids on that

catch. Bidders may also be uncertain about a speci�c seller and choose not

to bid.

The most important reason for no bid is the delivery sector. To avoid

the problem of missing bids from outside bidders, we concentrate on bidders

located at the major port� i.e., port 25. There is less reason to examine

collusion between bidders located far from each other, since often they will

not both be eligible bidders. We sample only catches that are o¤ered to port

25. This gives us ten bidders and their bid vectors to work with. All ten

bidders will be inside bidders for all sampled catches. To adjust the sample

for bidders having full capacity or a capacity smaller than the vessel quantity

of a given catch is not possible. In principle, we could sample only catches

from auctions where a bidder is active. This would indicate that he has free

capacity. However, such a sampling procedure is arbitrary. We do not know

why a bidder is not active at an auction. In general, the number of auctions
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and catches a bidder does not bid on is simply too large to be explained

by capacity limits alone. Next, taking away catches that exceed a stated

quantity limit is possible, but again we only partially correct for the reason

for not bidding. At the auctions where a bidder is not active, he will not state

a capacity limit; we have no data on capacities in these cases. Consequently,

we prefer to count all catches o¤ered to port 25, but observe that a non-bid

can be explained by several factors.

For each pair of ten bidders we sample catches that meet the requirement

that both bidders are inside bidders for the relevant catch. With a sample

of 10 bidders, this gives us 45 samples to examine (9� 10=2). For each

sample we count the number of catches that falls into one of the following

categories: (1) Both bidders submit bids, (2) just one bidder submits a bid,

and (3) neither bidder submits a bid.

In table 9.10, on page 264, we report the results. In the upper part of

the table, part (a), we show the case where both bidders bid. Note that the

diagonal elements give the total number of bids for the given bidder, given

the sampling scheme we have used. For example, bidder 5 submits 510 bids

on catches (not lots) when he is an inside bidder. The corresponding number

for bidder 7 is 257. Comparing bidder 5 to bidder 7, we see that they compete

on 102 catches. Look now at the middle part, part (b), of table 9.10 where we

count the number of catches where only one bidder submits a bid, although

both are eligible to bid. Read row-wise, the table shows the number of catches

where the �row�bidder, but not the �column�bidder, bids. Likewise, the

columns show the number of catches where the column bidder does not bid,

but the row bidder bids. Thus, bidder 5 submits 408 bids where bidder 7

does not bid, and bidder 7 submits bids on 155 catches where bidder 5 is

not bidding. Finally, in the lower part of table 9.10, part (c), we show the

number of catches where no bidder submits a bid.

The cases where both bid and neither bids result in symmetrical tables,

while the case where just one bid is asymmetrical, since we have to distinguish

the case where bidder i but not j bids and the case where bidder j but not i

bids. All catches where two bidders can submit bids are found by summing

one of the numbers in part (a) and (c) and the two numbers in the part (b)
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of the table. The table reveals that we have 1053 catches o¤ered to port 25.

Are bid frequencies independent? Before discussing and interpreting

the bid patterns reported in table 9.10, we discuss the bid frequencies from

another perspective. The question we ask is whether bid participation is

independent events from one bidder to another. If capacity limits or other

individual characteristics governed the decision whether to bid or not on a

given catch, we would expect bid frequencies to be independent. However, if

characteristics of the object for sale partly govern the decision� and bidders

value these characteristics in a more or less consistent way� then a bidder�s

decision to bid on a given catch is not independent from another bidders�bid

decision.

The question of independent bid frequencies can be analysed by a tra-

ditional test for independent events. For each pair of bid vectors we create

(2� 2) contingency tables and count the actual number of catches that fall
into the four events: both bidders bid (a11), just one bid (a12 and a21), and

neither bid (a22). The tables will then have the structure shown in table 9.1.

Table 9.1: Count of bids: Actual outcomes

Bid from j No bid from j

Bid from i: a11 a12

No bid from i: a21 a22

Given the observed individual bid frequencies, we then create (2� 2)
contingency tables of the expected number of bids (eij) that fall into the

four categories if events are independent. The formula for computing the

expected outcomes are shown in table 9.2.

The null hypothesis is that the relative proportions of bids and non-bids

for one bidder are independent of the second bidder. In order to test for

independence, we compute the familiar test statistic where we look at the

sum of squared di¤erences between actual and expected outcomes. The test
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Table 9.2: Count of bids: Expected outcomes if independence

Bid j No bid j

Bid i: e11 =
P

j a1j
P

i ai1=
P

i

P
j aij e12 =

P
j a1j

P
i ai2=

P
i

P
j aij

No bid i: e21 =
P

j a2j
P

i ai1=
P

i

P
j aij e22 =

P
j a2j

P
i ai2=

P
i

P
j aij

is equal to the �2 goodness-of-�t test:

�2 =
X
i

X
j

(aij � eij)2

eij
.

The test statistic is distributed as a �2 variable with one degree of freedom

because we have two outcomes for each variable. The test for independence

is a right-tail test. We compute p-values for the test statistic:

p =

1Z
�2

t(��2)=2e�t=2

2�=2�
�
�
2

� dt

where � is the Gamma function and � are the degrees of freedom. If the

p-value is low, say below 0.05, then we conclude that the probability of

observing the test statistic; i.e., the di¤erence between actual and expected

frequencies, (or a more extreme value) under the null hypothesis is low.

Consequently, we cannot accept the null hypothesis of independence.

The test for independence of bid frequencies is reported in table 9.3. Bid

frequencies are, in general, not independent for the chosen bidders, although

they are all inside bidders for the sampled catches. Out of 45 sampled pairs

of bidders, only six pairs of bidders have independent bid frequencies if we

set the signi�cance level to 0.05. This is the following pairs: {(5; 12), (5; 15),

(5; 16), (7; 18), (7; 24), (10; 16)}.
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Why are bid frequencies not independent? If we examine the relationship

between actual and expected number of bids for the four events, we �nd that

the events where (1) both bid and (2) neither bids are consistently too low

for expected outcomes. The exact �gures are reported in table 9.4. Of

the 45 samples, 42 of the samples have a positive di¤erence between the

number of actual and expected catches where both or neither bid. The mean

di¤erence is +32 catches. The other two events� just one bidder bids�

are underestimated by 32; i.e., the mean di¤erence is �32. The symmetry
between the the two mean di¤erences follows from the structure of table 9.2.

Some catches are popular and attract a large number of bids, while other

catches are unpopular attracting few bids. Looking at the 45 samples and

the three events and then calculating the mean number of submitted bids,

we �nd: The mean number of submitted bids over the 45 samples in the

event �Both bid�is 10.1, in the event �Just one bid�is 7.4, and in the event

�Neither bid� is as low as 4.4. The mean number of submitted bids are

calculated by using all bids from all bidders. Although we are concentrating

on the ten bidders and the catches where they are all inside bidders, making

the sample size of eligible catches equal for all ten, other bidders will for

some of the catches be inside as well. When we calculated the mean number

of submitted bids �N counting only the bids from the ten bidders at port 25,

it was 6.8 for �Both bid�, 4.9 for �Just one bid�, and 2.8 for �Neither bids.�

We already know from chapter 5 that the variability of the number of

submitted bids is large, see �gure 5.7 on page 101. The variability could

possibly be explained by the delivery sectors; setting a narrow delivery sector

implies few potential buyers. Capacity limits of individual buyers, on the

other hand, are not expected to systematically a¤ect the number of submitted

bids. We have now established that even for catches o¤ered to the same

location, the variability of the number of submitted bids is relatively large.

The reason seems to be that some catches attracts more competition than

others. Whether this was caused by quality characteristics of the catches or

by other factors (catches that attract few bids are o¤ered at an inconvenient

time, and so forth) remains an open question.
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Discussion of bid patterns. Returning now to table 9.10, in order to in-

terpret the numbers better, we tabulate the same information as percentages

in table 9.11 on page 265. From the diagonal of part (a) of the table, we see

that bidder 18 has the lowest bid frequency, he bids on only 8.7 percent of

the catches o¤ered to port 25. Bidder 12, on the other hand, is active and

bids on 79 percent of the catches.

In case of agreements between bidders to abstain from bidding against

one another, we may expect a balanced agreement where bidders divide their

catches between them in a roughly equal number. We �nd no pair of combi-

nations in part (b) where both the numbers of just one bidding are high and

the numbers are roughly equal. On the contrary, an high percentage in part

(b) for two bidders, is accompanied by a low percentage for the complement

event. For example, bidder 12 bids on 70.9 percent of the catches where

bidder 18 does not bid. Bidder 18, however, bids on a mere 0.7 percent of

the catches bidder 12 does not bid on. The reason is obvious, bidder 18 has

a low bid frequency in general, and the pattern cannot be taken as evidence

to refrain from bidding against one another.

Based on the statistics introduced, we cannot conclude that agreements

on not bidding against one another are prevalent. The high number of poten-

tial bidders makes it di¢ cult to secure any advantages of mutual agreements

among ring members.

9.5 The bidder index

An interesting by-product of the regression equation (9.2)� we were primarily

interested in the residuals of the regression� is that we are able to estimate a

bidder index. The interpretation of the estimated �̂i of equation (9.2) is that

it� when multiplied by 100� roughly equals the percentage di¤erence in bid-

der i�s bid compared to the omitted bidder. A slightly more precise measure

of the percentage di¤erence is 100 times Kennedy�s estimator in equation

(7.4) on page 156. Expressing bidders�responses as a ratio to the omitted

bidder is obtained by computing the (N � 1) values of exp(�̂i). Again, tak-
ing into consideration that exp

�
�̂i

�
is a biased estimator of exp (�i), a better
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estimator of the ratio is exp[(�̂i � 0:5V̂(�̂i)]; see Kennedy [54].

A more interesting measure (than the percentage di¤erence from or the

ratio to the omitted bidder) is the percentage di¤erence of bidders� bids

compared to the average. For a given catch, the constant term adjusted for

the e¤ect of the catch-speci�c dummy variable, will represent the average

bid for that catch. Individual bid levels are distributed around this average.

If bidders are more or less symmetric in their costs and risk attitude, their

bids will be distributed narrowly around the average. In order to deduce

how individual bidders deviate from the average, we create an index that

measures each bidder�s deviation from the average bid level. The average

of such an index should be 1. Notice that we now introduce the e¤ect the

omitted bidder has in the data generating process as well. In the estimation,

the coe¢ cient of the omitted bidder is contained in the constant term �. We

now want to clean the constant term � of the e¤ect of the omitted bidder

and catch dummy, and instead report an index of all bidder e¤ects.

The procedure for constructing a bidder index, suggested by Suits [103],

is to add a constant k1 to each �̂i and force the average to be 1. We extend

the procedure of Suits; instead of using �̂i, we use the less biased estimator

of Kennedy de�ned on page 156. Thus, we want a set of indexes such thatX
i

exp
h
�̂i � 0:5V̂

�
�̂i

�
+ k1

i
= N . (9.3)

Solving for the constant k1, we have:

k1 = log

 
N =

X
i

exp
h
�̂i � 0:5V̂

�
�̂i

�i!
. (9.4)

Index values (1 + bi) are then estimated by:�
1 + b̂i

�
= exp

h
�̂i � 0:5V̂

�
�̂i

�
+ k1

i
. (9.5)

A similar procedure may be used for the set of catch dummy variables. Thus,
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we compute:

k2 = log

 
T =

X
t

exp
h
̂t � 0:5V̂ (̂t)

i!
.

The index for catches is not that interesting in itself. For adjusting the

constant term, however, we need k2 as well, since we recover an estimate of

the constant term a in equation (9.1) by:

â = exp (�̂� k1 � k2) .

The estimated bidder dummy variables and the bidder index are reported

in table 9.12. Bidder index values range from 0.947 (bidder 16) to 1.049

(bidder 9). This corresponds to average percentage deviations in bid levels

from the average bid (of individual catches) of �5:3 percent and+4:9 percent
respectively. 21 of 25 bidders have index values that is less than 2.7 percent

away from the average bid level. We conclude that asymmetries in bid levels,

are moderate.

9.6 Concluding remarks

We have examined the dataset for possible evidence of collusion. Two ap-

proaches were used. In order to test for phoney bids, we examined the so-

called requirement of conditional independence. To test for agreements on

not bidding at all against one another, we looked at the bid patterns between

bidders.

Our procedure is not suited for detecting �small-scale�collusion. If some

bidders collude sometime, then a suspicious pattern will not be revealed by

our procedure since the majority of non-colluding bids will dominate the re-

ported statistics. For the individual seller, with just a few catches delivered

during the season, the e¤ect of collusion may be annoying, but at an aggre-

gated level, we may safely conclude that collusion is not a large problem.

Since the topic of this chapter is somewhat delicate� merely suggesting to

investigate for collusion may o¤end honorable professionals� we state our

clear conclusion: We have found no evidence of collusion.
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An interesting result of the analysis of bid patterns was that bid frequen-

cies are not independent. This may indicate that the number of competitors

should be modelled as an endogenous variable rather than considered ex-

ogenously given. Finally, the creation of the bidder index revealed that any

asymmetries between bidders are moderate.

9.A Appendix: Tables

Table 9.3: Test of independence of bid frequencies

Bidder

5 7 10 12 13 15 16 18 24 25

B
id
de
r

5 1.4 63.9 .4 34.0 2.8 3.5 24.0 23.2 28.6

7 .001 12.1 49.5 14.5 15.3 59.6 .8 2.1 17.7

10 .000 .001 15.5 14.9 31.9 1.6 1.6 33.6 21.3

12 .541 .000 .000 108.6 45.5 148.5 1.9 5.0 39.8

13 .000 .000 .000 .000 87.0 9.3 19.3 55.4 57.9

15 .097 .000 .000 .000 .000 74.2 6.1 117.6 86.3

16 .061 .000 .202 .000 .000 .000 4.9 29.6 4.4

18 .000 .368 .001 .001 .000 .013 .027 8.1 13.2

24 .000 .149 .000 .000 .000 .000 .000 .005 21.9

25 .000 .000 .000 .000 .000 .000 .000 .000 .000

Chi-square statistics are in the upper triangular part of the table.

p-values are in the lower triangular part of the table.
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Table 9.4: Independence of bid frequencies: Di¤erences between actual
and expected outcomes

Bidder

5 7 10 12 13 15 16 18 24 25

B
id
de
r

5 �22 64 4 42 13 �14 22 39 37

7 22 �24 40 24 27 49 4 10 25

10 �64 24 26 27 45 9 15 46 31

12 �4 �40 �26 61 44 74 12 46 35

13 �42 �24 �27 �61 67 63 18 53 47

15 �13 �27 �45 �44 �67 64 11 87 64

16 14 �49 �9 �74 �63 �64 9 40 40

18 �22 �4 �15 �12 �18 �11 �9 13 14

24 �39 �10 �46 �46 �53 �87 �40 �13 32

25 �37 �25 �31 �35 �47 �64 �40 �14 �32
Upper triangular part of the table: Di¤erences in the cases Both bid and Neither
bid. Lower triangular part of the table: Di¤erences in the case Just one bid.
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Table 9.5: Distribution of correlation coe¢ cients of pairwise bids

All correlations Signi�cant* correlations

From To Count % Cum. % Count % Cum. %

0:90 1:00 43 14:8 14:8 22 9:1 9:1

0:80 0:90 87 29:9 44:7 81 33:6 42:7

0:70 0:80 65 22:3 67:0 59 24:5 67:2

0:60 0:70 45 15:5 82:5 42 17:4 84:6

0:50 0:60 24 8:2 90:7 20 8:3 92:9

0:40 0:50 15 5:2 95:9 14 5:8 98:8

0:30 0:40 4 1:4 97:3 3 1:2 100:0

0:20 0:30 2 0:7 97:9 0 0:0 100:0

0:10 0:20 3 1:0 99:0 0 0:0 100:0

0:00 0:10 0 0:0 99:0 0 0:0 100:0

�0:10 0:00 1 0:3 99:3 0 0:0 100:0

�0:20 �0:10 2 0:7 100:0 0 0:0 100:0

�0:30 �0:20 0 0:0 100:0 0 0:0 100:0

�0:40 �0:30 0 0:0 100:0 0 0:0 100:0

�0:50 �0:40 0 0:0 100:0 0 0:0 100:0

�0:60 �0:50 0 0:0 100:0 0 0:0 100:0

�0:70 �0:60 0 0:0 100:0 0 0:0 100:0

�0:80 �0:70 0 0:0 100:0 0 0:0 100:0

�0:90 �0:80 0 0:0 100:0 0 0:0 100:0

�1:00 �0:90 0 0:0 100:0 0 0:0 100:0

* Signi�cance level 0.05. Bid vectors less than 30 not counted.
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Table 9.6: Distribution of correlation coe¢ cients of estimated
residuals

All correlations Signi�cant* correlations

From To Count % Cum. % Count % Cum. %

0:90 1:00 6 2:1 2:1 0 0:0 0:0

0:80 0:90 1 0:3 2:4 0 0:0 0:0

0:70 0:80 1 0:3 2:7 0 0:0 0:0

0:60 0:70 3 1:0 3:8 0 0:0 0:0

0:50 0:60 1 0:3 4:1 1 0:8 0:8

0:40 0:50 3 1:0 5:2 2 1:7 2:5

0:30 0:40 7 2:4 7:6 5 4:2 6:8

0:20 0:30 15 5:2 12:7 7 5:9 12:7

0:10 0:20 19 6:5 19:2 2 1:7 14:4

0:00 0:10 38 13:1 32:3 0 0:0 14:4

�0:10 0:00 46 15:8 48:1 0 0:0 14:4

�0:20 �0:10 35 12:0 60:1 13 11:0 25:4

�0:30 �0:20 39 13:4 73:5 29 24:6 50:0

�0:40 �0:30 43 14:8 88:3 39 33:1 83:1

�0:50 �0:40 14 4:8 93:1 11 9:3 92:4

�0:60 �0:50 9 3:1 96:2 6 5:1 97:5

�0:70 �0:60 8 2:7 99:0 3 2:5 100:0

�0:80 �0:70 2 0:7 99:7 0 0:0 100:0

�0:90 �0:80 0 0:0 99:7 0 0:0 100:0

�1:00 �0:90 1 0:3 100:0 0 0:0 100:0

* Signi�cance level 0.05. Bid vectors less than 30 not counted.
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Table 9.7: Correlation coe¢ cientsa and p-valuesb of bids on catches

1 2 3 4 5 6 7 8 9 10 11 12

1 .82 .78 .81 .68 .77 .69 .82 .79 .77 .90 .68

2 .00 .90 .88 .73 .79 .99 .96 .76 .81 na .76

3 .00 .00 .83 .75 .75 .68 .85 .66 .68 1.00 .58

4 .00 .00 .00 .81 .77 .62 .87 .42 .62 na .61

5 .00 .00 .00 .00 .88 .85 .89 .72 .91 .86 .91

6 .00 .00 .00 .00 .00 .79 .81 .82 .81 .94 .84

7 .00 .00 .00 .00 .00 .00 .88 .45 .86 na .82

8 .00 .00 .00 .00 .00 .00 .00 .50 .90 .98 .75

9 .00 .00 .00 .00 .00 .00 .00 .00 .36 na .37

10 .00 .00 .00 .00 .00 .00 .00 .00 .01 .98 .86

11 .00 na na na .00 .00 na .00 na .00 1.00

12 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

14 .02 .00 .70 .00 .00 .00 .00 .00 .07 .00 na .00

15 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00

17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 na .00

18 .02 .00 .04 .00 .00 .02 .00 .32 .09 .00 na .00

19 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

21 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .00

22 .00 .00 .99 .00 .00 .00 .00 .00 .25 .00 na .00

23 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .34 .00

24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00

25 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 na .00
a Correlation coe¢ cients are in the upper triangular part of the table.
b p-values are in the lower triangular part of the table.
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Table 9.7: Correlation coe¢ cients and p-values of bids on catches (cont.)

13 14 15 16 17 18 19 20 21 22 23 24 25

.82 .55 .57 .68 .59 .45 .81 .70 .85 .83 .81 .63 .80

.85 .92 .77 .74 .79 .82 .85 .65 .83 .83 .83 .80 .78

.70 -.15 .62 .64 .68 .66 .86 .82 .81 -.00 .91 .71 .60

.70 .75 .68 .74 .59 .73 .56 .42 .75 .89 .86 .86 .85

.91 .89 .90 .83 .77 .93 .82 .67 .79 .86 .87 .93 .90

.87 .94 .85 .75 .84 .93 .73 .67 .67 .89 .81 .83 .81

.86 .99 .76 .73 .67 .73 .60 .56 .81 .47 .59 .75 .74

.88 .90 .81 .76 .41 .20 .91 .76 .83 .45 .83 .91 .79

.73 .63 .44 .48 .53 .51 .66 .57 .67 .24 .73 .42 .48

.91 .87 .85 .76 .55 .94 .75 .67 .66 .59 .68 .85 .89

.99 na .90 .90 1.00 na .93 .98 1.00 na .86 .99 na

.90 .85 .83 .76 .55 .96 .63 .34 .64 .52 .57 .87 .85

.90 .87 .81 .57 .93 .71 .71 .81 .78 .72 .84 .87

.00 .72 .79 .73 .31 -.11 1.00 .99 na .15 .92 .79

.00 .00 .73 .58 .92 .55 .50 .60 .53 .45 .81 .79

.00 .00 .00 .64 .91 .66 .63 .69 .69 .74 .84 .81

.00 .00 .00 .00 .97 .62 .51 .43 .40 .70 .62 .85

.00 .54 .00 .00 .00 .75 .95 .85 .72 .22 .91 .96

.00 .68 .00 .00 .00 .00 .71 .80 .64 .86 .79 .76

.00 na .00 .00 .00 .00 .00 .71 .20 .70 .63 .78

.00 .00 .00 .00 .00 .00 .00 .00 .71 .69 .83 .62

.00 na .00 .00 .01 .11 .00 .40 .00 .87 .78 .74

.00 .68 .00 .00 .00 .47 .00 .00 .00 .00 .79 .82

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .85

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
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Table 9.8: Number of pairwise bids between bidders

1 2 3 4 5 6 7 8 9 10 11 12

1 494 71 155 195 161 108 156 233 84 195 8 305

2 71 144 45 76 79 47 37 63 16 96 0 116

3 155 45 258 104 77 69 81 112 79 104 2 158

4 195 76 104 411 142 114 153 151 65 227 1 320

5 161 79 77 142 527 160 101 126 60 369 9 405

6 108 47 69 114 160 375 50 87 33 212 12 273

7 156 37 81 153 101 50 331 127 42 132 0 263

8 233 63 112 151 126 87 127 377 77 174 9 244

9 84 16 79 65 60 33 42 77 136 52 0 95

10 195 96 104 227 369 212 132 174 52 670 10 545

11 8 0 2 1 9 12 0 9 0 10 18 4

12 305 116 158 320 405 273 263 244 95 545 4 921

13 306 115 134 286 417 265 228 232 90 490 11 693

14 18 31 9 30 45 18 7 13 9 50 0 54

15 254 100 126 255 287 194 173 192 83 383 12 506

16 274 101 138 301 348 249 237 199 85 455 7 680

17 210 69 80 196 164 48 66 149 60 229 2 358

18 27 13 10 29 67 5 28 27 12 70 0 86

19 245 52 138 173 152 122 105 182 64 190 15 225

20 106 22 45 95 62 62 66 107 29 90 5 123

21 125 37 105 94 56 68 81 100 62 94 3 158

22 72 17 24 54 43 31 43 52 25 23 0 77

23 159 37 98 108 66 58 72 133 50 107 3 132

24 182 77 83 167 261 143 120 127 51 319 4 406

25 111 49 60 112 156 96 86 96 40 180 0 236



261

Table 9.8: Number of pairwise bids between bidders (cont.)

13 14 15 16 17 18 19 20 21 22 23 24 25

306 18 254 274 210 27 245 106 125 72 159 182 111

115 31 100 101 69 13 52 22 37 17 37 77 49

134 9 126 138 80 10 138 45 105 24 98 83 60

286 30 255 301 196 29 173 95 94 54 108 167 112

417 45 287 348 164 67 152 62 56 43 66 261 156

265 18 194 249 48 5 122 62 68 31 58 143 96

228 7 173 237 66 28 105 66 81 43 72 120 86

232 13 192 199 149 27 182 107 100 52 133 127 96

90 9 83 85 60 12 64 29 62 25 50 51 40

490 50 383 455 229 70 190 90 94 23 107 319 180

11 0 12 7 2 0 15 5 3 0 3 4 0

693 54 506 680 358 86 225 123 158 77 132 406 236

835 46 494 619 295 89 226 135 154 77 126 387 228

46 55 47 44 42 6 17 2 8 2 10 48 31

494 47 595 473 239 63 204 109 120 56 82 333 198

619 44 473 781 317 75 215 112 147 56 116 364 215

295 42 239 317 450 16 144 63 89 42 97 190 88

89 6 63 75 16 97 27 7 10 6 13 53 36

226 17 204 215 144 27 399 100 103 50 136 143 77

135 2 109 112 63 7 100 217 59 20 59 63 43

154 8 120 147 89 10 103 59 252 20 84 74 51

77 2 56 56 42 6 50 20 20 111 37 49 30

126 10 82 116 97 13 136 59 84 37 277 65 36

387 48 333 364 190 53 143 63 74 49 65 461 140

228 31 198 215 88 36 77 43 51 30 36 140 251
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Table 9.9: Correlation coe¢ cientsa and p-valuesb of residuals

1 2 3 4 5 6 7 8 9 10 11 12

1 -.66 -.39 .19 -.35 -.33 -.22 -.32 -.01 -.08 .45 -.54

2 .00 .32 -.35 -.41 -.02 .18 .18 .69 -.45 na -.07

3 .00 .03 .15 -.28 -.15 -.00 .10 -.06 -.13 1.00 -.05

4 .01 .00 .14 -.22 -.19 -.25 .12 -.19 -.49 na -.33

5 .00 .00 .01 .01 -.19 -.31 .16 .20 -.03 -.37 -.17

6 .00 .87 .23 .05 .02 .57 -.23 .26 -.39 .21 .01

7 .01 .28 .99 .00 .00 .00 .06 .02 .25 na -.17

8 .00 .15 .29 .14 .07 .03 .50 -.01 .09 -.36 -.18

9 .91 .00 .57 .13 .12 .14 .91 .91 -.36 na -.09

10 .29 .00 .21 .00 .55 .00 .00 .23 .01 -.10 -.01

11 .26 na na na .32 .51 na .34 na .78 -.99

12 .00 .47 .57 .00 .00 .88 .00 .00 .39 .80 .01

13 .00 .45 .00 .00 .53 .34 .66 .07 .03 .00 .02 .00

14 .01 .67 .02 .00 .19 .13 .00 .00 .07 .26 na .19

15 .00 .83 .84 .02 .62 .90 .13 .89 .05 .56 .03 .32

16 .00 .19 .00 .12 .00 .01 .00 .00 .00 .00 .68 .00

17 .00 .77 .07 .01 .00 .03 .09 .07 .66 .00 na .00

18 1.00 .01 .44 .92 .06 .27 .00 .00 .89 .84 na .08

19 .06 .00 .17 .00 .23 .00 .05 .00 .58 .33 .46 .01

20 .39 .82 .00 .00 .12 .69 .06 .59 .30 .98 .02 .00

21 .28 .02 .95 .15 .44 .26 .39 .85 .56 .78 .42 .46

22 .02 .01 .02 .02 .71 .21 .00 .01 .60 .06 na .00

23 .22 .89 .00 .00 .99 .00 .00 .48 .50 .00 1.00 .00

24 .00 .00 .84 .00 .74 .02 .01 .74 .89 .00 .26 .02

25 .19 .59 .00 .55 .11 .00 .01 .00 .90 .00 na .00
a Correlation coe¢ cients are in the upper triangular part of the table.
b p-values are in the lower triangular part of the table.
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Table 9.9: Correlation coe¢ cients and p-values of residuals (cont.)

13 14 15 16 17 18 19 20 21 22 23 24 25

-.26 -.58 -.33 -.20 -.33 -.00 .12 .08 -.10 .28 -.10 -.35 .12

.07 -.08 .02 -.13 -.04 -.70 .39 -.05 -.38 -.60 -.02 -.42 -.08

-.28 -.75 -.02 -.38 -.21 -.28 .12 -.49 -.01 -.49 .42 -.02 -.59

-.51 -.62 -.14 .09 -.18 .02 -.27 -.31 -.15 .31 .27 .33 .06

-.03 .20 -.03 -.21 -.26 -.23 -.10 -.20 -.11 -.06 .00 .02 .13

-.06 .37 .01 -.18 -.31 -.61 -.25 -.05 -.14 .23 -.42 -.20 -.39

.03 .93 .11 -.22 -.21 -.54 -.19 -.23 -.10 -.54 -.39 -.23 -.30

.12 .84 .01 -.23 -.15 -.57 -.26 -.05 -.02 -.36 .06 .03 -.40

.22 -.64 -.21 -.38 -.06 -.05 .07 .20 .08 -.11 .10 .02 -.02

.29 -.16 .03 -.35 -.27 -.02 -.07 -.00 -.03 -.40 -.32 -.26 .22

.68 na -.63 -.19 1.00 na -.21 .94 .79 na .00 -.74 na

.27 -.18 .04 -.34 -.17 .19 -.17 -.43 -.06 -.52 -.38 -.12 -.32

.10 .14 -.28 -.31 -.29 -.28 -.08 .10 -.40 -.56 -.33 -.06

.52 -.13 -.40 -.28 .19 -.18 1.00 .99 -1.00 -.44 .22 -.08

.00 .39 -.29 .00 -.25 -.30 -.34 -.18 -.60 -.33 -.35 -.23

.00 .01 .00 -.08 -.12 -.36 -.32 -.26 .23 -.37 .03 -.29

.00 .07 .95 .17 .34 -.40 -.09 -.18 -.13 .01 -.11 .08

.01 .73 .05 .30 .19 .08 .60 -.44 -.03 -.34 -.47 .03

.00 .49 .00 .00 .00 .69 .08 -.36 .06 -.13 .00 .02

.37 na .00 .00 .46 .15 .43 -.33 -.26 .08 -.30 .34

.21 .00 .04 .00 .09 .20 .00 .01 .06 -.29 .20 -.37

.00 na .00 .09 .41 .95 .67 .27 .80 .21 -.01 .46

.00 .21 .00 .00 .90 .26 .14 .53 .01 .22 .08 -.25

.00 .14 .00 .51 .12 .00 .97 .02 .08 .95 .50 -.29

.40 .67 .00 .00 .49 .87 .88 .03 .01 .01 .14 .00
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Table 9.10: Pairwise comparison of bid patterns: Count

Bidders

5 7 10 12 13 15 16 18 24 25

P
ar
t
(a
):
B
ot
h
bi
d

5 510 102 365 407 414 289 345 67 261 158

7 102 257 128 243 211 166 230 26 122 86

10 365 128 622 517 481 381 447 69 317 179

12 407 243 517 832 668 494 659 85 409 233

13 414 211 481 668 768 482 603 85 388 229

15 289 166 381 494 482 569 464 61 335 199

16 345 230 447 659 603 464 741 74 363 216

18 67 26 69 85 85 61 74 92 53 36

24 261 122 317 409 388 335 363 53 459 141

25 158 86 179 233 229 199 216 36 141 250

P
ar
t
(b
):
O
nl
y
on
e
bi
d

5 0 408 145 103 96 221 165 443 249 352

7 155 0 129 14 46 91 27 231 135 171

10 257 494 0 105 141 241 175 553 305 443

12 425 589 315 0 164 338 173 747 423 599

13 354 557 287 100 0 286 165 683 380 539

15 280 403 188 75 87 0 105 508 234 370

16 396 511 294 82 138 277 0 667 378 525

18 25 66 23 7 7 31 18 0 39 56

24 198 337 142 50 71 124 96 406 0 318

25 92 164 71 17 21 51 34 214 109 0

P
ar
t
(c
):
N
ei
th
er
bi
d

5 543 388 286 118 189 263 147 518 345 451

7 388 796 302 207 239 393 285 730 459 632

10 286 302 431 116 144 243 137 408 289 360

12 118 207 116 221 121 146 139 214 171 204

13 189 239 144 121 285 198 147 278 214 264

15 263 393 243 146 198 484 207 453 360 433

16 147 285 137 139 147 207 312 294 216 278

18 518 730 408 214 278 453 294 961 555 747

24 345 459 289 171 214 360 216 555 594 485

25 451 632 360 204 264 433 278 747 485 803
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Table 9.11: Pairwise comparison of bid patterns: Percentages

Bidders

5 7 10 12 13 15 16 18 24 25

P
ar
t
(a
):
B
ot
h
bi
d

5 48.4 9.7 34.7 38.7 39.3 27.4 32.8 6.4 24.8 15.0

7 9.7 24.4 12.2 23.1 20.0 15.8 21.8 2.5 11.6 8.2

10 34.7 12.2 59.1 49.1 45.7 36.2 42.5 6.6 30.1 17.0

12 38.7 23.1 49.1 79.0 63.4 46.9 62.6 8.1 38.8 22.1

13 39.3 20.0 45.7 63.4 72.9 45.8 57.3 8.1 36.8 21.7

15 27.4 15.8 36.2 46.9 45.8 54.0 44.1 5.8 31.8 18.9

16 32.8 21.8 42.5 62.6 57.3 44.1 70.4 7.0 34.5 20.5

18 6.4 2.5 6.6 8.1 8.1 5.8 7.0 8.7 5.0 3.4

24 24.8 11.6 30.1 38.8 36.8 31.8 34.5 5.0 43.6 13.4

25 15.0 8.2 17.0 22.1 21.7 18.9 20.5 3.4 13.4 23.7

P
ar
t
(b
):
O
nl
y
on
e
bi
d

5 0.0 38.7 13.8 9.8 9.1 21.0 15.7 42.1 23.6 33.4

7 14.7 0.0 12.3 1.3 4.4 8.6 2.6 21.9 12.8 16.2

10 24.4 46.9 0.0 10.0 13.4 22.9 16.6 52.5 29.0 42.1

12 40.4 55.9 29.9 0.0 15.6 32.1 16.4 70.9 40.2 56.9

13 33.6 52.9 27.3 9.5 0.0 27.2 15.7 64.9 36.1 51.2

15 26.6 38.3 17.9 7.1 8.3 0.0 10.0 48.2 22.2 35.1

16 37.6 48.5 27.9 7.8 13.1 26.3 0.0 63.3 35.9 49.9

18 2.4 6.3 2.2 0.7 0.7 2.9 1.7 0.0 3.7 5.3

24 18.8 32.0 13.5 4.7 6.7 11.8 9.1 38.6 0.0 30.2

25 8.7 15.6 6.7 1.6 2.0 4.8 3.2 20.3 10.4 0.0

P
ar
t
(c
):
N
ei
th
er
bi
d

5 51.6 36.8 27.2 11.2 17.9 25.0 14.0 49.2 32.8 42.8

7 36.8 75.6 28.7 19.7 22.7 37.3 27.1 69.3 43.6 60.0

10 27.2 28.7 40.9 11.0 13.7 23.1 13.0 38.7 27.4 34.2

12 11.2 19.7 11.0 21.0 11.5 13.9 13.2 20.3 16.2 19.4

13 17.9 22.7 13.7 11.5 27.1 18.8 14.0 26.4 20.3 25.1

15 25.0 37.3 23.1 13.9 18.8 46.0 19.7 43.0 34.2 41.1

16 14.0 27.1 13.0 13.2 14.0 19.7 29.6 27.9 20.5 26.4

18 49.2 69.3 38.7 20.3 26.4 43.0 27.9 91.3 52.7 70.9

24 32.8 43.6 27.4 16.2 20.3 34.2 20.5 52.7 56.4 46.1

25 42.8 60.0 34.2 19.4 25.1 41.1 26.4 70.9 46.1 76.3
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Table 9.12: Estimate of bids on bidder dummies

Estimatea Elasticityb

Bidder Coef. Std. Coef. Std. Bids Indexc

1 �0.0803 0.0061 �7.72 0.3215 494 0.951

2 �0.0189 0.0082 �1.88 0.6529 144 1.012

3 �0.0165 0.0071 �1.64 0.4854 258 1.014

4 �0.0554 0.0063 �5.39 0.3556 411 0.976

5 �0.0372 0.0060 �3.65 0.3375 527 0.993

6 �0.0217 0.0065 �2.15 0.3996 375 1.009

7 �0.0255 0.0066 �2.52 0.4201 331 1.005

8 �0.0171 0.0065 �1.69 0.4032 377 1.014

9 0.0168 0.0085 1.69 0.7432 136 1.049

10 �0.0352 0.0058 �3.46 0.3145 670 0.995

11 �0.0473 0.0198 �4.64 3.5705 18 0.983

12 �0.0273 0.0056 �2.69 0.2932 921 1.003

13 �0.0120 0.0056 �1.20 0.3080 835 1.019

14 �0.0055 0.0117 �0.55 1.3488 55 1.025

15 �0.0296 0.0059 �2.91 0.3234 595 1.001

16 �0.0848 0.0057 �8.13 0.2704 781 0.947

17 �0.0318 0.0062 �3.13 0.3659 450 0.999

18 �0.0341 0.0095 �3.36 0.8471 97 0.996

19 �0.0522 0.0064 �5.09 0.3706 399 0.979

20 �0.0097 0.0075 �0.97 0.5443 217 1.021

21 �0.0357 0.0071 �3.51 0.4731 252 0.995

22 �0.0568 0.0091 �5.52 0.7409 111 0.974

23 �0.0038 0.0071 �0.38 0.4980 277 1.027

24 �0.0507 0.0061 �4.95 0.3396 461 0.980

25 na na na na 251 1.031
a Dependent variable: Logarithm of catch bid. The regression includes a constant
and 1369 catch dummies. Dfe = 8050. Adj. R-square = 0.8162.

b Coef. represents the percentage di¤erence in mean bid compared to bidder 25,
see equation (7.4). Std. is the standard error of the elasticity, calculated by use
of equation (7.5).

c Index shows the level of a bidder�s mean bid compared to the average bidder
whose index value is 1, see equation (9.5).



Chapter 10

The optimal reserve price

Models are to be used, not believed.

Henri Theil

10.1 Introduction

Empirical analyses of auctions draw on the theory of games of incomplete

information. In the case of �rst-price, sealed-bid auctions, Riley and Samuel-

son [95] showed that there is a closed-form Bayes�Nash equilibrium solution

of bidder�s strategies under the assumptions that buyers have independent

and identically-distributed private values (symmetric IPV) and are risk neu-

tral. The symmetric equilibrium strategy characterized the bid function as a

monotonically increasing function of bidders�private valuations of the object

for sale. In this chapter, we assume that the Riley and Samuelson model of

independent private values is, as an approximation, a reasonable theoreti-

cal framework for an analysis of a carefully chosen sample of the Norwegian

mackerel market. This makes it possible to analyse the auction market from

the perspective of optimal mechanism design.

A central question is how the seller should design his auction format in

order to garner the most revenues. We restrict our analysis to the auction

format that is being used currently. Only improvements in the closed dis-

criminatory auction are considered. At closed, discriminatory auctions, the

267
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only mechanism the seller has control over is the reserve price. Myerson

[79] and Riley and Samuelson [95] derived an implicit relation from which

the optimal reserve price can be obtained in the symmetric IPV model. Our

purpose is to estimate the necessary elements of the formula in order to apply

it on our real-world market.

In order to implement the optimal reserve price, we need information

concerning the distribution of private values on which bidders base their bids.

Typically, at auction markets, bids are observed, while private values and

their distribution are unobserved. Advances in the structural econometrics

of auction data have focused on recovering unobservable elements of bid

strategies; Paarsch and Hong [86] provided a comprehensive presentation of

the literature. The bene�t of this novel approach is that it enables researchers

to address policy questions regarding a given format and to compare the

actual format with counter factual formats.

We rely on the nonparametric two-step estimator of Guerre, Perrigne, and

Vuong [39] for estimating the underlying distribution of private values im-

plied by observed bids and, thus, to obtain an estimate for a lower bound on

the optimal reserve price. This estimator is derived under quite restrictive as-

sumptions. From an empirical perspective, we need a sample of homogenous

goods and a �xed set of potential bidders. From a theoretical perspective,

the estimator is developed for the sale of one object within the independent

private-values model. Our main contribution in this chapter is to show that

the estimator can also be used under more complicated auction formats and

assumptions, given appropriate interpretations of results.

We acknowledge that our real-world market does not �t into the theo-

retical model without friction. Some elements of the auction format and the

market� notably the simultaneous sales format, and, possibly, an endoge-

nously determined number of participants� may give rise to an equilibrium

solution that di¤ers from the model. However, we shall argue that the poten-

tial error from our empirical model is one-sided. In particular, we show that

the estimation procedure produces results that consistently underestimates

true valuations; the procedure will not overestimate valuations. Relying on

a result from the theory of stochastic orders, we then show that our estimate
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of the optimal reserve price will also consistently underestimate the true op-

timal reserve price. Therefore, our estimate will represent a lower bound on

the optimal reserve price. Thus, one contribution of the paper is to show that

relevant policy recommendations can be obtained by applying a seemingly

restrictive model to a more complex real-world market.

An important paper analysing the optimal reserve price by applying a

structural econometric approach is Paarsch [85]. He studied timber sales

in British Columbia conducted by an open, ascending-price auction. His

estimates of the optimal reserve price suggested that the current reserve

prices used at the time should be substantially raised. The work seems to

have had an impact as the government increased reserve prices at subsequent

auctions.

The remainder of the chapter is organized in the following way: First, we

present the theoretical framework of our auction market. The bid function

and optimal reserve price are presented brie�y, since they are discussed in

chapter 2. The important issue of identifying private values from observed

bids is addressed. Next, the assumptions of the theoretical model are dis-

cussed in detail in order to determine whether the model is appropriate for

the real-world market under study. In section 10.4, we present the empirical

strategy used for obtaining estimates of the relevant elements in the model.

In section 10.5, we present and discuss our results. In the last section, we

provide some concluding remarks.

10.2 The model

The theoretical model we �force�our data into is discussed in chapter 2, see

section 2.3. In the following, we use the same notation as in chapter 2.

10.2.1 The bid function and the optimal reserve price

The allocation rule is that the bidder with the highest bid above the reserva-

tion price r wins the object and pays his bid. The equilibrium-bid function

of a �rst-price, sealed-bid auction for which risk neutral bidders receive val-
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uations independently from a symmetric distribution was derived from the

�rst-order condition (2.7) on page 18. A slight reformulation of equation

(2.7) is the key to the identi�cation problem in section 10.2.2 below. Since

b = � (v), d��1 (b) =db = 1=�0 (v) and ��1 (b) = v, we can rearrange terms in

equation (2.7) to obtain

[v � � (v)] (N � 1) fV (v)
�0 (v)

= FV (v) . (10.1)

As shown by Riley and Samuelson [95], this ordinary di¤erential equation

has a closed-form solution. The equilibrium-bid function of the �rst-price,

sealed-bid auction with a known reserve price is:

b = � (v; r;N ; FV ) = v �
1

[FV (v)]
N�1

vZ
r

[FV (u)]
N�1 du. (10.2)

The bidding function imposes structure on our auction data. The optimal

reserve price was presented in section 2.3.4. The optimal reserve price� for

both �rst-price and second-price auctions� is the solution to the following

equation:

r� = v0 +
[1� FV (r�)]
fV (r�)

. (10.3)

Interestingly, the optimal reserve price is independent of the number of bid-

ders and is strictly greater than the seller�s reservation valuation v0: A key

assumption for this result is that valuations are private, and not correlated.

Levin and Smith [64] analysed the case with correlated valuations. Under

speci�c rules governing how valuations are correlated, assuming exogenous

entry and that the seller commits to not re-o¤er unsold objects, they �nd

that the optimal reserve price converges to the seller�s private value v0 as the

number of bidders increases.

We note for later use that the last term on the right-hand side of equation

(10.3) is the inverse hazard rate of V . In terms of actually computing the
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optimal reserve price, we express the optimization problem as

r� = argmax f(r � v0) [1� FV (r)]g .

10.2.2 Identi�cation of valuations

In the sample of auctions we study, all bids and the reserve price are observed,

while valuations and their underlying distribution are unobserved. The issue

is whether the unobserved private values can be expressed in terms of vari-

ables that are either observed directly or can be estimated. Guerre, Perrigne

and Vuong [39] showed that this is indeed the case.

Since bids are observed, we can estimate their distribution directly. Let

GB (b) be the distribution of observed bids with support [r; � (v)]. It can

be shown that GB (b) and the corresponding density function, gB (b), can be

expressed in terms of unobservable elements of the �rst-order condition given

by (10.1). We have that

GB (b) =
[FV (v)� FV (r)]
[1� FV (r)]

(10.4)

and

gB (b) =
fV (v)

�0 (v)

1

[1� FV (r)]
. (10.5)

The details of arriving at the above probability functions are in appendix

10.A.1. Notice that GB and gB are conditional probability functions while

FV and fV are unconditional probability functions. Using equation (10:4),

substitute [GB (b) [1� FV (r)] + FV (r)] into equation (10.1) for FV (v). Us-
ing equation (10.5), substitute fgB (b) [1� FV (r)]g for fV (v) =�0 (v). After
some algebraic manipulations, we get

v = b+
1

N � 1

�
GB (b)

gB (b)
+

FV (r)

gB (b) [1� FV (r)]

�
. (10.6)

We now have an expression that links the unobservable private values v to

variables that can be estimated from the observable bids. Equation (10.6)

forms the basis for the estimator used in section 10.4.
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10.3 The market

Having established that there is a theoretical framework for interpreting our

auction data, we discuss how well the market under analysis �ts the main-

tained assumptions of the theoretical model. The auction format was de-

scribed in chapter 4. For a sound empirical analysis, we need to demonstrate

that our theoretical model reasonably approximates the real-world auctions

we study. We employ a structural empirical approach for our analysis of these

auctions. A structural approach enables us to recover the unobservable ob-

jects in which we are interested. A motivating factor for the development of

structural analysis of auction data was to enable researchers to address policy

questions like: What is the best auction design in a given market? This is

in contrast to the reduced-form approach in which standard hypothesis test-

ing allows applied researchers to consider theory. The structural approach

is a powerful one, but it hinges critically on the assumption that our model

correctly characterizes the speci�c attributes of the world. Forcing our data

into an incorrect model will produce dubious results. Thus, we discuss in this

section how our market relates to the assumptions of the theoretical model.

Our strategy for ensuring consistency between data and the structural

estimation of the theoretical model is based on two observations. First, we

sampled auctions that most closely represent the single-object symmetric

IPV model. Second, any remaining elements of our sample of auctions that

deviate from the theoretical model actually reinforce our conclusions on the

optimal reserve price.

The symmetric IPV model is based on one single object for sale. Bidders

are symmetric and have independent and private valuations. Models with

more complex information structures quickly become inherently di¢ cult to

analyse within the structural empirical approach. Consequently, the bulk

of empirical work has been devoted to the symmetric IPV model. We now

discuss each of the fundamental assumptions and clarify our arguments for

why we consider the maintained assumptions reasonable in our market. For

the details of the auction format to be discussed below, see chapter 4.
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10.3.1 The e¤ect of multi-object sales

Since bid strategies at single-object and multi-object auctions normally di¤er,

we have to take a closer look at possible e¤ects that multi-object sales in our

mechanism might have on equilibrium bidding compared to the solution of

the single-object sale.

Under a simultaneous-independent format, a classi�cation of Weber [108],

the sale of one object does not depend on the outcome of other sales. In

our case, the highest bidder on any object normally wins the object. The

only modi�cation to the simultaneous-independent format is that, if capacity

constraints are binding, the allocation of objects will, to some extent, be

interdependent. Recall that the expected winning bid at the standard �rst-

price, sealed-bid auction is the conditional expected second-highest private

value. If a bidder knows that, on a given lot, the high bidder will not take

the lot due to a capacity constraint, then he would condition his bid on

this information and bid an amount equal to the conditional expected third-

highest private value. But bidders have no information that makes it possible

to predict reliably such occurrences. It is likely, however, that bidders expect

capacity constraints to play a role at some auctions, and, consequently, bid

less aggressively.

Below, we establish that some important elements of standard multi-unit

auctions are likely to be absent from our mechanism.

Constant marginal values. Standard models of multi-unit auctions are

formulated under the assumption that the marginal value of each acquired

unit is decreasing; see Krishna [59, section 12.1]. For example, suppose a

bidder that demands three units submits a bid vector (8; 7; 5), meaning that

he will pay 8 for one unit, 8+7 for two units, and 8+7+5 for three units. This

gives rise to the so-called demand reduction e¤ect: When bidders have multi-

unit demand, and the marginal value of units decreases, then bid shaving

increases for each additional demanded unit; see, for instance, Milgrom [76,

p. 258].

We consider the assumption of declining marginal values inappropriate
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in our market since bidders can explicitly state capacity constraints. Plants

have a �xed capacity per day, notably cooling or freezing capacities, that

cannot be adjusted in the short run. As long as they are operating within

their capacity, marginal costs can reasonably be modelled as being constant.

Thus, at a given auction, the marginal value of obtaining raw materials to

be used for output in competitive markets is also constant. In other words,

buyers have a �at demand within their capacity limit.

The driving factor that explains di¤erences in marginal values for a given

bidder over time, is the �uctuations in available capacity. When a buyer is

replete with raw material, then his marginal value of obtaining more units

drops signi�cantly, perhaps close to zero.

Similarly, di¤erences between di¤erent buyers�marginal values at a given

time may also be explained by the short-term variation in their available

capacities. Thus, the theoretical construct� that bidders draw valuations

from the same distribution� seems especially appropriate in this market. The

randomness of valuations� or the types� is explained by the �uctuations in

capacities that give rise to variance in marginal values. To be precise on this

essential point; we assume marginal values vary over time for a given bidder,

and between types at a given time, but that a single distribution function of

valuations captures this randomness.

The acceptance of the present auction format among buyers supports

our maintained hypothesis that marginal values are constant when operating

below the stated capacity constraints. Under the auction format, there is no

direct way of formulating bids that reveal declining marginal values. Bids

are independent; one �risks�winning any object one bids on, but due to the

capacity constraint option, one does not risk winning all objects one bids on.

Increased bid shaving. Will bid shaving increase under a multi-object,

simultaneous format? We start the discussion by introducing the notion of

residual demand. The residual demand curve facing a bidder, is equal to the

total supply less the sum of the quantities demanded by other bidders given

that this di¤erence is positive, otherwise the residual demand is zero. In our

market, residual demand is almost always zero for all bidders. On average,
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demand exceeded supply by a factor of 4.33 in this market in the 2003�4

season.

In general, however, it is not the case that every buyer individually can

take away all supply. At several auctions in the dataset, it takes the aggregate

demand from two or three buyers to �consume�the entire supply. Since each

individual multi-unit demand in these cases is less than the total supply, bid

shaving increases compared to the case of single-unit auctions.

The equilibrium price at an auction market will� as in the case of tradi-

tional demand-supply analysis� be determined by the marginal buyer; i.e.,

the buyer with a marginal value equal to the market clearing price. Consider

�rst the case of single-unit auctions. At a �rst-price auction, the expected

second-highest private value will determine the market price. In the case of

multi-unit sales with unit demand, this reasoning carries directly over. Sup-

pose there are four objects for sale, and each bidder only wants one unit.

Then the equilibrium strategy is to bid equal to some conditional expecta-

tion of the fourth highest valuation. If N > 4, then the equilibrium bid for

bidder i is: �i (vi) = E
�
V(N�3:N )jvi � v(N�3:N )

�
. Under the assumption of

single-unit demand, bids are, consequently, lower and bid shaving is larger

at multi-unit than at single-unit auctions. The driving mechanism for this

result is that buyers with ful�lled demand drop out and the competition

for remaining objects is reduced. Under rational expectations, bidders will

anticipate this e¤ect and all bids at the auction will be adjusted downwards.

In our case, however, we have multi-unit demand; most bidders want

more than one catch. This increases demand and competition compared

with single-unit demand. The consequence is that bid shaving is somewhere

between single-object and multi-object auctions with unit demand. To see

this, consider the case of four objects for sale where each bidder wants two

units. Assume the same number of participants as above in order to compare

the prices obtained. In this case, the market price equals E
�
V(N�1:N )

�
, which

is strictly higher than E
�
V(N�3:N )

�
. The conclusion is that since we have

multi-unit demand, the bids will deviate from the single object case to a

lesser degree than under multi-object, unit-demand auctions.

Recall the two essential elements of the auction format; it is a discrimi-
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natory auction with capacity limits. Capacity limits imply that sometimes

the second-highest or third-highest bid will win. But the discriminatory part

of the mechanism ensures that a winner always pays his bid. We do not

have to consider bid strategies based on second-price or third-price formats

where bids will typically be closer to valuations than under the �rst-price

format. In a third-price format, equilibrium bids can actually be higher than

valuations.

Modelling the bid strategies with random multi-unit demand is messy. In

addition to requiring a distribution over valuations, one needs a distribution

over demand in order to model the appropriate number of bidders. Making

the strategies excessively complex also leads us to question how appropri-

ate the models are in re�ecting real-world behavior. We proceed under the

assumption that the bid function at single-object auctions captures the essen-

tial strategic considerations, but sometimes will underestimate bid shaving.1

Bids will still be below valuations since it is a �rst-price auction, bids will

still be increasing in N and r, and bids will still depend on the prior beliefs

of other bidders valuations represented by FV . The main di¤erence is that

expected revenue may depend on a lower order statistic from FV than in the

single-object case where expected revenue is given by E
�
V(N�1:N )

�
.

E¤ect on optimal reserve price. Finally, what e¤ect does increased bid

shaving have on the formula for the optimal reserve price given by equation

(10.3)? Valuations will not change under multi-object sales since we assume

constant marginal values, only strategies may change. The optimal reserve

price depends on the distribution of valuations, not the distribution of bids.

Consequently, the optimal reserve price will not change when the equilibrium

solution predicts increased bid shaving. In fact, the importance of setting a

reserve price is likely to increase when bid shaving increases.

The optimal reserve price depends on the shape of FV and fV . One might

wonder if the �ner details of the distributions have an unpredictable impact

on calculating the optimal reserve price r� based on an estimate F̂V that un-

1We say sometimes, because in several auctions there is actually just one lot for sale
and, at other times, some or several buyers demand the total supply.
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derestimates the true FV . Basic economic and statistical reasoning suggests

the answer is no. If buyers have constant marginal values for objects at a

simultaneous-independent discriminatory auction, then the optimal reserve

price r� based on the true FV will not be less than the estimated optimal

reserve price r̂� based on F̂V . The reasoning supporting this proposition is

as follows: First, demand is �xed. Consider one unit o¤ered at a single-unit,

�rst-price auction. The expected revenue is E
�
V(N�1:N )

�
. Next, increase de-

mand by introducing several units. It follows from fundamental economic

theory and the principle of purposeful behavior that with demand �xed and

supply increased, the new equilibrium price cannot be higher than under the

single-unit format.

What are the consequences if we model bids by (10.2) and derive the

optimal reserve price by (10.3), and the actual bid shaving taking place is

more severe than our model predicts? In that case, identifying values by

incorrectly assuming the single object format underestimates values, since

actual bid shaving is more severe than what follows from the theoretical

bid shaving factor we use. In consequence, our estimate of F̂V is �rst-order

stochastically dominated by the true FV� i.e., for all v 2 [v; v], F̂V (v) �
FV (v). Thus, the estimated inverse hazard rate (1 � F̂V )=f̂V �rst-order

stochastically dominates the true (1� FV ) =fV . Since the optimal reserve
price at the single-object auction is de�ned by

r � v0 �
[1� FV (r)]
fV (r)

= 0,

it follows that r� � r̂�. This is formally shown in appendix 10.A.2. Thus, the
estimated reserve price will represent a lower bound for the optimal reserve

price as far as model misspeci�cation is concerned. A statistical estimation

error will, however, always be present.

10.3.2 Symmetry and independence of valuations

A key element of auction models is to what extent bidders� valuations of

the auctioned good are correlated. Two polar cases are private-values and
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common-value. Valuations are private if they are not dependent; i.e., the

value one bidder places on a good does not depend on how other bidders

value it. Information on competitors�valuations do not in�uence one�s own

valuation of the good. On the other hand, valuations are common if all

value the good at the same price. A distinguishing characteristic between

the two concepts concerns the degree of certainty of valuations. Typically,

a common value is uncertain. The prime example of this situation is oil

companies bidding for the right to exploit oil tracts with uncertain contents.

Most real-world auctions have a private-values and a common-value element.

In the following, however, we shall argue that the auction under study is

predominantly a private-values auction. A closer look at what characterizes

buyers�input and output markets and a study of what kind of uncertainty

that is present, is necessary to proceed.

To begin, consider the output market. The buyers are food producers

who use the �sh as an input to various end-products. If bidders face an

uncertain future end-product price at the time of bidding for raw material,

then a common-value element is present. The price uncertainty in the end-

product markets is, however, probably relatively small. For most of these

products, established competitive prices are only to a small degree sensitive

to �uctuations in the supply side of inputs in one market. The end-products

face competition both from other complementary food products, and from

similar products from food producers who get their inputs in other markets.

In case the end-product is a conserved good, like canned products, the price

variability is known to be small. In case the �sh are shipped unprocessed

as fresh or frozen to export markets, the time span between raw costs and

revenues is, in this industry, small. Thus, presumably, the true value of the

end-product is quite certain, and the common-value element is negligible.

There is a common-value element in the cost structure in the sense that

producers all face some common costs and constraints in production. Wage

levels and capital costs may not di¤er that much, and public taxes and

charges are similar for all. However, there is no particular uncertainty with

respect to these costs. The interesting part of the common-value aspect, the

uncertainty involved, is, hence, not an issue. The common-value part of costs
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de�nes a base level for all producers.

If we are willing to invoke a certain degree of rationality on the sellers, an

additional argument for private valuations follows from the analysis of Levin

and Smith [64]. As mentioned, they showed that if valuations are correlated,

the optimal reserve price converges, often rapidly, to the seller�s private value

when the number of bidders increases. The fact that sellers commit to a

reserve price that is considerably higher than their private value, suggests

that buyers�valuations are predominantly private.

Having argued that valuations are private, we next turn to the question

of whether bidders are symmetric in the sense that bidders�valuations are

identically distributed and drawn from the same distribution. This does not

mean that bidders are identical, just that their valuations are drawn from the

same distribution. The distribution is said to encompass all relevant informa-

tion bidders have about their competitors. Bidders entertaining a speci�c bid

make assumptions about the probability that competitors�valuations exceed

a certain level. The assumption of identically-distributed valuations entails

that a bidder has no reason to believe that a particular competitor has a

certain valuation with higher probability than others. The assumption has

important consequences for the empirical analysis. The theoretical model we

have employed is a one-shot game. In order to analyse auction games em-

pirically we have to aggregate observations from a sequence of auctions. But

how can we defend the assumption that valuations are identically distributed

over time?

To begin, we notice that such an assumption is, at most real-world mar-

kets with repeated auctions, a simpli�cation. Over time, given the informa-

tion previous auctions reveal with respect to individual bidder behavior, it is

likely that some learning takes place. During this learning process, bidders�

information sets might be transformed as follows: At �rst, they start with a

crude assumption on the distribution of valuations, associated with a com-

mon distribution with relatively large or wide scale and location parameters.

Later, as experience is growing, the information set changes to a more so-

phisticated representation where individual bidders or groups of bidders are

associated with more concentrated individual distributions of valuations.
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If bidders�cost structures di¤er in a systematic way, then there will be

asymmetries. We invoke the paradigm of competitive markets, and assume

that buyers, operating within their capacity, will more or less have the same

expected long-run pro�t margins. But if variation in buyers�pro�t margins is

relatively small, then why do they submit di¤erent bids? To answer, we must

pay attention to the one important speci�c characteristic of production: the

short-term capacity constraints of buyers. Since the object for sale is dead

�sh, processing and freezing must take place within a short time span in

order to avoid spoilage. A buyer who, at the time when a speci�c auction

is held, has lots of raw material, will not be as keen to bid high as a buyer

who su¤ers shortage of raw material. Private values will di¤er in this respect

both among di¤erent buyers and for a given buyer over time. The dynamics

of the market will shift a buyer�s private value within the distribution from

auction to auction. Since variations in short-term capacities are random,

using a common distribution of valuations, seems especially appropriate in

this market.

10.3.3 Risk attitude

Next, we turn to the question of whether bidders are risk averse or risk

neutral. Although most applied studies simply assume risk neutrality, we

devote some space to discuss the assumption. Risk aversion is the normal

case; several studies, especially in the �nance literature, have shown that

human decisions are best modelled by use of risk aversion. Various notions

of risk aversion have been developed in the literature. Constant risk aversion

implies that bidders have the same attitude or aversion for risk irrespective of

the amount at stake, while increasing risk aversion means that the negative

preference for risk increases with the amount.2 Recall from auction theory

that a bid may be seen as composed of two factors. A bidder will balance

(1) the probability of winning or equivalently the risk of losing with, (2) the

realized pro�t if winning. These factors work in opposite ways; an high bid

2A distinction is made between absolute and relative risk aversion. The above expla-
nation refers to the concept of absolute risk aversion.
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increases the probability of winning while at the same time reducing the pro�t

margin. Riley and Samuelson [95] showed that a bidder with increasing risk

aversion will place more weight on the probability of losing-factor when the

amount at stake increases compared to a risk neutral bidder. Consequently,

since the probability of losing increases with decreasing bids, equilibrium bids

are higher if we model bidders as risk averse rather than risk neutral.

To begin, we assume that bidders at this auction are risk averse. In the

benchmark model, on the other hand, bidders are modelled as risk neutral.

This is a simplifying assumption making the model tractable, since intro-

ducing risk aversion complicates the model substantially. A possible defense

for the simplifying assumption of risk neutrality is that, if at a given auc-

tion, the risk involved is marginal, then risk neutrality may be an acceptable

modelling strategy.

The central question then becomes: How risk averse are bidders at the

mackerel auction? We shall argue that there is relatively little risk involved at

the mackerel auction. Bidding on a single lot does not entail a large �nancial

burden for the winner, relative to the total turnover.3 The argument rests

on the fact that increasing risk aversion seems to be the norm. People are

generally not risk averse with respect to small amounts, but less inclined

to gambles when large amounts, relative to wealth, are involved. This is

supported by the close to universal fact that people do not insure small value

items, while most people purchase insurance for valuable assets.

Moreover, during the season, many catches are o¤ered on the market

within frequent time intervals; in the peak season, up to four auctions are

held each day. In addition, plants have the opportunity to buy other species.

The risk of losing at a given auction is therefore o¤set by other opportunities.

We conclude that risk neutrality seems to be a reasonable approximation to

risk aversion of small order.

3To be more precise, we should compare the risk involved with the plant owners�wealth
since this is the relevant factor in the theory of risk; see, for example, Gollier [37].
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10.3.4 Fixed and known number of participants

An important assumption in most auction models is that the number of

potential bidders, N , is known. Moreover, when analysing auction data

empirically using the structural approach, we need to aggregate comparable

auctions. This raises two questions to be addressed by the researcher. First,

is the assumption of a known N plausible at a single auction? Second, is N
stable over sequential auctions?

At single-shot auctions, assuming a certain number of participants may in

some instances be a bit o¤ the wall. One case in question is where a large and

complicated sale involves substantial pre-contract costs. Firms considering

bidding will have to weigh the potential bene�ts and the costs from partici-

pating. Under this scenario, bidder participation can be explained by stating

that, in equilibrium, the expected pro�t from participating is equal to the

sunk costs that pre-contract e¤orts involve; see French and McCormick [30].

In our case, we have frequently repeated auctions, where the competition for

raw materials is routinely undertaken. Participation costs are likely to be

negligible.

Another case in question, is when there is a general uncertainty about the

number of competitors. This can be modelled by introducing a distribution

over N . Harstad, Kagel, and Levin [46] showed that at �rst-price auctions,
with risk neutral agents, the unique symmetric equilibrium-bid function is a

weighted average over the bid functions with a known N . Formally, if bN is
the bid function with a certain number of bidders N , then the bid function
with uncertainty in the number of participants at the auction is:

b (v) =
X
N
wN (v) bN (v) , (10.7)

where the weight wN is the probability of N bidders conditional upon win-

ning with bid bN . Each bid bN is the standard Bayes�Nash equilibrium bid

presented in equation (10.2). Obviously, the weighted bid over N will be

lower than a bid based on the maximum N .
In the present market, we chose to analyse one delivery sector, one of
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the most frequently observed. Lots o¤ered in this sector will have a stable

set of potential bidders since it is a industry with high entry costs; the com-

petitors know about each other. It is a fact, however, that the number of

actual bidders N varies from one auction to another. Formally, this could be

defended by saying that bidders�valuations vary over time, within the same

distribution FV (v). A speci�c draw from the distribution of valuations re-

sults in N bidders with valuations above the reserve price. It seems, however,

somewhat unrealistic to assume that bidders�strategies are not a¤ected by

the observed variability in N .

Another approach is to assume that the number of potential bidders varies

from auction to auction because some plants are not in a buyer position

due to capacity constraints; i.e., their valuations drop to zero in this case.

Although bidders do not have exact information on competitors�capacities at

a given time, the total supply will be an indicator of whether many capacity

constraints are binding. This situation seems to invite bidders to form their

bids on a distribution over N like the model considered by Harstad, Kagel,

and Levin [46]. We analyse the market under the condition that the number

of participants is the full set of observed potential bidders; i.e., we use the

maximum N observed in the empirical speci�cation of the model. If bidders

use a weighted average bid to account for numbers uncertainty, then their

bids will be lower than what is predicted by our model. The error is one-sided,

and the consequence is that valuations will be consistently underestimated.

We see that the error is of the same nature as discussed in section 10.3.1.

Thus, we rely on the same stochastic order result (see page 276) that says

that the estimated optimal reserve price will represent a lower bound on the

true optimal reserve price.

10.4 Empirical speci�cation

We proceed by explaining how we can utilize the identi�cation result of equa-

tion (10.6) to estimate bidders�private values, and the distribution of valu-

ations, empirically. The approach is based on the idea that these estimates

represent a lower bound on true values.
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The strategy for �nding FV (v) and fV (v), necessary to compute the opti-

mal reserve price r�, is to follow the two-step estimator of Guerre et al. [39]:

First, in order to uncover unobservable private values using relation (10.6), we

need estimates of gB (b), GB (b), N and FV (r). Straightforward estimators

of N and FV (r) can be obtained, while the estimation of GB (b) and gB (b)

are complicated by the presence of a binding reserve price, since observed

bids represent a truncated sample of the full set of potential bids without a

reserve price. A transformation of bids is necessary in order to proceed. Once

we have obtained the estimates, we calculate pseudo-valuations by using a

modi�ed version of relation (10.6) on page 271, see relation (10.11) below.

The next step is then to use the calculated pseudo-valuations to estimate

the conditional functions FV jV�r (vjv � r) and fV jV�r (vjv � r). Finally, we
transform the conditional probability functions to estimated unconditional

functions FV (v) and fV (v).

10.4.1 Estimation of the bid distribution

A technical problem concerning the estimation of gB (b) and GB (b) is that

the density gB (b) is unbounded at b = r since � (v < r) = 0. When the data

at hand is not unbounded� in our case observed bids are bounded� then

straightforward kernel density estimation will fail, since the kernel estimate

near the boundary is not consistent; see Simono¤ [100, section 3.2.1]. In our

setting, this means that gB (b) ! 1 as b & r. Guerre, Perrigne and Vuong

[39] note that gB (b) is proportional to 1=
p
b� r when b & r. The solution

they suggest is to transform observed bids B to a variable

B (r) =
p
B � r: (10.8)

Under this transformation, the cdf and pdf of the transformed bids, GB(r) and

gB(r), can be expressed in terms of the corresponding functions of observable
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bids, GB and gB, as:4

GB(r) [b (r)] = GB
�
r + b (r)2

�
(10.9)

and

gB(r) [b (r)] =
dGB
db (r)

= 2b (r) gB
�
r + b (r)2

�
. (10.10)

From (10.8) we have that b = b (r) + r2. Substituting this, together with the

expressions in (10.9)�(10.10), into (10.6) yields the result that valuations are

identi�ed by

v = b (r)2 + r+
2b (r)

(N � 1)

�
GB(r) [b (r)]

gB(r) [b (r)]
+

FV (r)

gB(r) [b (r)] [1� FV (r)]

�
. (10.11)

Let T be the number of sampled auctions, and Nt the number of observed

bids at auction t. A straightforward estimator of GB(r) is the empirical cdf

of the transformed observed bids

ĜB(r) [b (r)] =
1

T

TX
t=1

1

Nt

NtX
i=1

1 [Bit (r) � b (r)] .

We estimate the truncated density function of bids by a kernel-smoothed

density estimator

ĝB(r) [b (r)] =
1

Thg

TX
t=1

1

Nt

NtX
i=1

�

�
Bit (r)� b (r)

hg

�
(10.12)

where � (�) is a kernel function satisfying some standard assumptions, and hg
is a smoothing parameter, also called the bandwidth or window width. We

discuss the appropriate choice of kernel function and bandwidth in section

10.5.2.

4GB(r) [b (r)] = Pr
�p
B � r � b (r)

�
= Pr

h
B � b (r)2 + r

i
= GB

h
r + b (r)

2
i
.
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10.4.2 Estimation of N and FV (r)

With no reserve price, the number of potential bidders N equals the number

of observed bidders. When introducing a reserve price, N is unobserved since

bidders with valuations below r, do not bid. We observe the number of actual

bidders N , a subset of the number of potential bidders. Following Paarsch

and Hong [86], we describe the relationship between N and N and present

suitable estimators for N and FV (r). They noted that the number of active

bidders is the sum of a Bernoulli sequence:

N =

NX
i=1

Ii where Ii =

(
1 if vi � r, with probability [1� FV (r)] ;
0 if vi < r, with probability FV (r) .

Thus, N has a binomial distribution with parameters N and [1� FV (r)],
and the probability mass function is then:

fN (n) =

�
N
n

�
FV (r)

N�n [1� FV (r)]n , n = 0; 1; : : : ;N .

A natural estimator for N is

N̂ = max
t=1;:::;T

Nt. (10.13)

It can be shown that N̂ converges almost surely to N .

In order to �nd an estimator for FV (r), we note that [1� FV (r)] is one
of the parameters in the probability mass function of N . Using the fact that

the expectation of a binomially distributed variable is equal to the product

of its parameters, we get an expression for FV (r): E (N) = N [1� FV (r)],
or FV (r) = 1� [E (N) =N ]. We estimate E (N) by the sample mean �N and

N̂ by expression (10.13). Hence, an estimator for FV (r) is

F̂V (r) = 1�
�N

N̂
= 1� T

�1PT
t=1Nt�

max
t
Nt

� . (10.14)
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10.4.3 Uncovering valuations and estimating fV and FV

Having presented estimators for GB(r), GB(r), N , and FV (r), we are now in

a position to calculate an estimate of the valuations that bidders base their

bids on, the so-called pseudo-values. For each observation it, we use (10.11)

and recover valuations from bids by

V̂it = Bit (r)
2 + r

+
2Bit (r)�
N̂ � 1

�
8<:ĜB(r) [Bit (r)]

h
1� F̂V (r)

i
+ F̂V (r)

ĝB(r) [Bit (r)]
h
1� F̂V (r)

i
9=; .

(10.15)

We now want to �nd the density and distribution of estimated valuations

in order to reach the stated goal of using equation 10.6 to estimate a lower

bound on the optimal reserve price. The truncated pdf of valuations is again

estimated by a kernel estimate

f̂V jV�r (vjV � r) =
1

Thg

TX
t=1

1

Nt

NtX
i=1

�

 
V̂it � v
hg

!
, (10.16)

and an estimate of the truncated cdf is given by the empirical cumulative

distribution function of estimated valuations

F̂V jV�r (vjV � r) =
1

T

TX
t=1

1

Nt

NtX
i=1

1
�
V̂it � v

�
.

Finally, to arrive at the unconditional probability functions, we use the fol-

lowing transformation:

f̂V (v) = f̂V jV�r (vjV � r)
h
1� F̂V (r)

i
and

F̂V (v) = F̂V jV�r (vjV � r)
h
1� F̂V (r)

i
. (10.17)

Notice that this estimation procedure only gives us information about the
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shape of fV and FV above the reservation price. Below r, we have no observed

bids, and, thus, no information to infer fV and FV from. The practical

consequence is that, if the reserve price in use is initially set above the optimal

level, then we cannot estimate the correct level. The only conclusion we can

reach is that the reserve price should be somewhere between v0 and r.

10.5 Estimation and results

10.5.1 The data sample

The construction of the dataset is documented in the appendix of the thesis.

For the 2003�4 season, beginning in mid-August and ending in February,

we have observations of all submitted bids. In order to have a well-de�ned

market with a stable set of potential buyers, we chose to analyse one of the

delivery sectors most frequently observed. The sector has the city Bergen

with numerical code 19 as the southern border and a speci�c location in the

county of Møre represented by numerical code 25 as the northern border. We

then chose rather homogenous catches with a stated reserve price equal to

NOK 5.25. A reserve price of 5.25 refers to �sh with average weight equal to

or above 500 grams. This is the weight class of the largest �sh, and the most

important product, both in terms of the number of o¤ered catches and in

terms of total quantity. Consequently, since the reserve price and the realized

price are increasing with average weight, it is also the most important weight

class with respect to revenues.

In principle, buyers outside the delivery sector are entitled to submit bids.

If an outside bidder has the highest bid, the seller is free to refuse it. A few

bidders seem to bid routinely on outside catches. Normally, the extra cost

incurred in serving an outside bidder with the highest bid outweighs the

increased revenue. In fact, of all the catches o¤ered in 2003�4 (all sectors

and all weight classes), only 2.4 percent of the catches were allocated to

an outside bidder, and in our sample of catches an outside bidder is never

allocated a catch. We remove outside bids from our sample since they are

not considered realistic bids, and since including them, would break down
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the assumption of a stable set of potential bidders. This gives us a sample

of 57 auctions, 97 objects for sale and a total of 708 submitted bids. The

distribution of the number of catches per auction, which has a reserve price

equal to 5.25, in the relevant sector is:

Table 10.1: Distribution of lots per auction

Number of lots per auction: 1 2 3 4 5 7

Frequency: 35 13 2 2 3 1

We see that 61 percent of the auctions have only a single catch o¤ered in

this delivery sector at the reserve price. However, there will, in some cases,

be catches with the same reserve price o¤ered to other sectors. Some of

these will partly overlap the sector under study here. In consequence, some

of the buyers in sector 19�25 will have opportunities to bid on other catches.

In addition, catches with �sh of lighter weight and a lower reserve price

will also be o¤ered both to the same sector and to other partly overlapping

sectors. One particular auction which contained 8 relevant objects and that

otherwise met the two requirements� catches o¤ered to (1) sector 19�25 with

(2) a reserve price equal to 5.25� were not included in the data sample since,

at this auction, several similar catches were o¤ered to a partly overlapping

sector. If we concentrate on the current sector, at the sampled auctions, 25

objects are not included because they do not meet the weight requirement

and have a lower reserve price. Our sampled objects comprise 80.0 percent

of the total objects and 79.6 percent of the quantity o¤ered to this sector at

the same auctions. In terms of realized revenues, the equivalent measure is

81.3 percent.

La¤ont, Ossard and Vuong [62], in their analysis of a French eggplant

auction market, made a point of sampling auctions where only one lot was

o¤ered each day to avoid the in�uence of the �dynamics of the market�on

bidder strategies. It is not obvious that such a sampling strategy is su¢ cient

to avoid the bulk of the universal noise that every empirical analysis is ridden

with when confronting real-world data with theoretical models. Every market
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is in�uenced by substitutes and complements and several general variables.

Some way or another, we have to de�ne our market clearly. We chose to

emphasize that the sample consists of homogenous products with identical

reserve prices and a stable set of potential buyers; these are the requirements

of the estimation procedure used. The in�uence of other, dissimilar catches

o¤ered in the market is considered of less importance. The competition in the

market, characterized by the excess demand and the number of competitors,

narrows down the strategy space of bidders, both in the given market and

in the substitute goods markets. Thus, the errors invoked in estimated val-

uations are relatively small compared to environments where competition is

weaker. Moreover, the error is one-sided, and we can interpret our estimated

valuations as lower bounds on true valuations.

Table 10.2: Summary statistics of bids

Max Winning All

bids bids bids

Sample size 97:00 94:00 708:00

Minimum 5:25 5:25 5:25

25th percentile 6:65 6:58 6:23

50th percentile 7:15 7:10 6:88

75th percentile 7:42 7:39 7:16

Maximum 7:94 7:94 7:94

Mean 6:97 6:93 6:68

Standard deviation 0:60 0:57 0:63

Skewness �1:25 �0:94 �0:73
Kurtosis 3:98 3:18 2:52

Some summary statistics of bids are reported in table 10.2. The �rst

column in table 10.2 shows the statistics for the maximum bid of an object,

and the third column shows the same statistics for all bids. The second

column shows the statistics of the bid that was allocated the object; recall
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that some objects will go to lower order bids if the high bidder has reached

his stated limit in terms of quantity. The number of observations for this

variable is 94, since there are three objects in the dataset that went unsold

although they received bids. While the mean of the maximum bid is 4.19

percent higher than the mean of all bids, it is only 0.58 percent higher than

the mean of winning bids.

10.5.2 Choice of kernel and bandwidth

In equations (10.12) and (10.16), we use a kernel function � (�) to obtain
the conditional probability functions ĝBjB�r and f̂V jV�r. A kernel function is

de�ned to be symmetric around 0 and must integrate to one. Since the kernel

is a density function, the kernel estimate will also be a density. For further

characterizations of some standard requirements for kernel functions, we refer

to Härdle [43]. Several kernel functions are known to produce reliable results,

the exact choice is not critical since the di¤erences in e¢ ciencies are very

small for the commonly used kernel functions. We used the Epanechnikov

kernel de�ned by � (u) = 3
4
(1� u2)1 (juj � 1).

The choice of bandwidth, on the other hand, is critical for the kernel

estimator. A bandwidth that is too narrow, will oversmooth the density

function, while a broad bandwidth will undersmooth it. No universal agree-

ment on the optimal choice of bandwidth seems to exist. Silverman [99]

reports a rule-of thumb of hg = 1:06�̂S�1=5, where �̂ is the standard error

of the sample of size S. This is frequently used; for example, Guerre et al.

used it in their simulation analysis demonstrating their two-step estimator.

We used this bandwidth as well, although a data driven bandwidth selector,

such as the one proposed by Sheather and Jones [97] is preferable.

10.5.3 Results

Fit between true bids and estimated bids. A key output of the estima-

tion procedure are the estimated underlying valuations from equation (10.15)

and the associated cumulative distribution function from equation (10.17).

How well do our estimates of valuations explain bids given our model? Using
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Figure 10.1: True and estimated bids
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our estimated valuations, we can estimate bids by using the theoretical bid

function of equation (10.2) and compare them to the observed bids. In �gure

10.1, we plot the estimated valuations against both the true observed bids

and the estimated bids. The �t between true and estimated bids is quite

good. The estimation error is below 1 percent for all observations; the range

is from �0:52 percent to 0:98 percent.

The optimal reserve price. The number of average bidders per catch

is around 7 (arithmetic mean = 7.30). The maximum number of bidders

observed at an auction, is 14. According to (10.14) this gives us F̂V (r) =

0:48. When we estimate the cumulative distribution function and population

density function of valuations, we obtain the functions f̂V (v) and F̂V (v)

shown in �gure 10.2.
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Figure 10.2: Estimated probability functions
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With estimates of FV and fV , we can numerically solve for the optimal

reserve price. Since r� depends on the seller�s reservation value v0, we must

account for this in the calculation. If a catch goes unsold, it might be sold for

meal production instead of for human consumption. In that case, it obtains

a price considerably lower than the current reserve price. In �gure 10.2, we

have indicated a lower bound for r� = 5:98 when v0 = 1. This suggests that

the reserve price should be raised by at least 13.9 percent.

We choose to calculate r̂� for di¤erent assumptions of v0. Obviously, r̂� is

increasing in v0. The relationship between r̂� and v0 is shown in �gure 10.3.

E¤ects on shaving factor and revenues. Next, we turn to the question

of how an increase in the reserve price will a¤ect revenues, if implemented.

Let us �rst look at the degree to which shaving factors are reduced when an
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Figure 10.3: The optimal reserve price as a function of seller�s own
valuation, v0
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higher reserve price is introduced. With as many as 14 potential bidders,

we expect this market to be quite competitive, so the shaving factors will

likely be moderate. Using the estimated valuations and true bids for all 708

observations, we �nd that the average shaving factor of bids is as low as 3.85

percent (minimum 0 percent and maximum 27.16 percent).

In order to compare actual and counter-factual shaving factors, we focus

on the lots that are sold in the latter case, and the case where v0 = 1 and

r̂� = 5:98. In table 10.3, we report the estimated shaving factors for all bids

and for only the winning bids. Actual shaving factors with a reserve price

equal to 5.25 are, for all relevant statistics, larger than the shaving factors

observed when the reserve price is set to 5.98.5 This is to be expected; the

point of raising the reserve price is to decrease shaving factors. The di¤erence

in the mean shaving factor is 0.64 percent for all bids and 0.56 percent for

winning bids. This indicates that the possible gains from raising the reserve

price are moderate.

Table 10.3: Shaving factors in percent, v0 = 1

All bidsa Winning bidsb

Actual Estimated Actual Estimated

r = 5:25 r = 5:98 r = 5:25 r = 5:98

Minimum 2:42 0:46 2:43 1:59

25th percentile 2:56 2:50 2:79 2:59

50th percentile 3:14 2:91 3:63 3:16

75th percentile 4:52 3:49 4:65 3:60

Maximum 27:16 28:89 27:16 28:89

Mean 3:72 3:08 4:14 3:58

Standard deviation 1:71 1:38 2:75 2:84

a Number of observations: 641
b Number of observations: 91

5The only exception is for the maximum statistic case. The estimate of the maximum
valuation bid seems to underestimate the true bid.
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Before we conclude that the seller should raise the reserve price, we ex-

amine possible e¢ ciency e¤ects of raising the reserve price by calculating

counter-factual bids and revenues. We have seen that an increased reserve

price decreases the shaving factor. When calculating counter-factual revenue,

we respect the realized allocation. For example, if a catch was sold to the

second-highest bid, then the counter-factual bid from that same bidder is

used. The estimation procedure of underlying valuations and corresponding

counter-factual bids ensures that the ranking between counter-factual bids is

not altered relative to the true bids. In cases where valuations drop below

the new reserve price, however, all the associated bids will equal zero. The

optimal reserve price is derived by balancing the risk of having unsold objects

with the gains from reduced shaving on the objects that do attract bids. At

one-shot auctions, the outcome can indeed be suboptimal in the sense that

an object may go unsold. However, at repeated auctions with a su¢ ciently

large sample, it is likely that the realized outcome is close to the expected

revenue predicted.

Counter-factual revenue depends on what optimal reserve price r̂� we use,

which, in turn depends on the seller�s true reservation value v0. Previously,

we argued that a reservation value of one is likely. In table 10.4, the estimated

percentage change in revenues is reported for a range of di¤erent reservation

values.

The important result in table 10.4 is column 3 where the percentage

change in revenue from going from a reserve price equal to 5.25 to the reserve

price in column 2, is reported. The result is that total revenues slightly

decrease for most v0 below 4. This is due to ine¢ ciencies that a raised

reserve price entails. In the sample, we have three unsold lots. In column

5 of table 10.4, the additional unsold lots, due to an increase in a reserve

price, are reported. We see that some additional 3�4 lots go unsold in the

counter-factual case when v0 is below 3.50. For reservation values above 3.50,

the e¤ect of ine¢ ciencies is more severe, both in terms of unsold lots, and

in terms of reduced revenue. In this sample, and given our assumptions, the

total e¤ect of raising the reserve price is that the costs associated with unsold

lots that will have to end up as meal production at value v0, outweigh the
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Table 10.4: Estimated revenue e¤ects

Change in revenue (%)

v0
a r̂�b All lots Sold lots Unsoldc

0:00 5:86 �0:33 0:44 3

0:50 5:92 �0:23 0:47 3

1:00 5:98 �0:12 0:50 3

1:50 6:03 �0:03 0:52 3

2:00 6:09 �0:18 0:55 4

2:50 6:15 �0:05 0:58 4

3:00 6:22 0:14 0:66 4

3:50 6:29 �0:11 0:69 6

4:00 6:39 �1:56 0:63 10

4:50 6:51 �1:54 0:66 14

5:00 6:65 �2:04 0:58 19

a v0: Seller�s own valuation.
b r̂�: Estimated optimal reserve price.
c Number of unsold lots due to increase in the reserve
price.
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increase in revenues from higher bids on the sold lots. The ex post optimality

of the calculated reserve price rests on large sample properties. Thus, care

must be taken when considering changes in the reserve price in a given market

with a limited number of objects for sale.

The di¤erences between actual and counter-factual revenues are, however,

very small. It is fair to say that our estimates of valuations are conserva-

tive. As discussed previously, both the general demand reduction e¤ect due

to the multi-sales format, and the uncertainty with respect to the number

of bidders� see equation (10.7)� make the estimate a lower bound of true

valuations. If true valuations were su¢ ciently underestimated, then possible

ine¢ ciency e¤ects would not bind. In column 4 of table 10.4, the revenue

e¤ects on those lots that will be sold under both regimes, are reported. The

increase in total revenue is somewhere between 0.44 percent and 0.69 per-

cent. Admittedly, this is not a substantial increase, but even a small increase

in revenues is worth considering since the absolute amounts involved in a

market with a turnover of several billion NOK, are large.

10.6 Concluding remarks

Theory suggests that there may be a potential for raising revenues by ad-

justing the reserve price upwards. In our sample of auctions, however, inef-

�ciencies created by the auctioneer when aiming for an optimal extraction

of buyers�surpluses outweigh the gains. Only if valuations are su¢ ciently

underestimated, will sellers increase revenues by raising the reserve price in

our sample. In the long run, we estimate an increase in revenues of about

0.50 percent. Even though the observed reserve price is quite far from the

estimated optimal, the revenue e¤ects are moderate, and in that sense, the

reserve price in use is, probably, not far from the target.

The analysis rests on the assumption that the theoretical model captures

the driving elements of bid shaving behavior at these auctions reasonably

well. Some assumptions of the analysis may oversimplify certain elements.

First, the two-step estimator of Guerre et al., on which our analysis is based,

considers bidders�prior beliefs to be symmetric. An interesting extension
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of the model is provided by Brendstrup and Paarsch [14], which allows for

asymmetric bidders. The data requirements for computing individual proba-

bility functions for each bidder, may, however, prove to be too demanding in

our case. Second, the analysis may bene�t from a more sophisticated treat-

ment of the number of potential bidders. The number of active bidders varies

considerably across auctions. Given the high number of potential bidders we

use, the market may appear more competitive than it actually is for some

lots. Finally, although we have tried to sample homogenous lots, heterogene-

ity may be present. Investigating heterogeneity requires a parametric rather

than a nonparametric, structural approach.
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10.A Proofs

10.A.1 Probability distributions of bids

In this section, we show how the formula for the probability distributions

of bids reported in equations (10.4) and (10.5) are derived. The cumulative

distribution function (cdf) of observed bids, when a binding reserve price is

present, is conditional on private values being above r:

GB (b) = Pr [� (v) � bjv � r] = Pr
�
v � ��1 (b) jv � r

�
= FV

�
��1 (b) jv � r

�
.

The conditional density above will, by de�nition of a cdf, depend on a con-

stant c such that:

c

�(v)Z
r

fV (u) du = 1.

Since the antiderivative of fV (u) is FV (u) and FV [� (v)] = 1, we have that

c =
1

[1� FV (r)]
.

Thus, the cdf reported in equation (10.4), is:

GB (b) =
1

[1� FV (r)]

vZ
r

fV (u) du =
[FV (v)� FV (r)]
[1� FV (r)]

.

Recalling that d��1 (b) =db = 1=�0 (v), the pdf of observed bids of equation

(10.5) is:

gB (b) =
dGB (b)

db
= d

(�
FV
�
��1 (b)

�
� FV (r)

�
[1� FV (r)]

)
=db

= [1� FV (r)]�1 fV
�
��1 (b)

� d��1 (b)
db

=
fV (v)

[1� FV (r)] �0 (v)
.
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10.A.2 Stochastic dominance result

Let r̂� denote the optimal reserve price calculated using estimated functions

F̂V (r) and f̂V (r), and let r� denote the true optimal reserve price calculated

using true functions FV (r) and fV (r).

Proposition If for all r, F̂V (r) � FV (r), then r̂� � r�.

Proof. First, we note that the optimal reserve price, r�; is the solution to

r � v0 �
[1� FV (r)]
fV (r)

= 0, (10.18)

while we estimate r̂� by �nding the value of r that satis�es

r � v0 �

h
1� F̂V (r)

i
f̂V (r)

= 0. (10.19)

From (10.18) and (10.19), if [
1�F̂V (r)]
f̂V (r)

� [1�FV (r)]
fV (r)

, then r̂� � r�. Thus, we

need to show that [
1�F̂V (r)]
f̂V (r)

� [1�FV (r)]
fV (r)

implies F̂V (r) � FV (r). We proceed
by noting thath

1� F̂V (r)
i

f̂V (r)
� [1� FV (r)]

fV (r)
) � f̂V (r)h

1� F̂V (r)
i � � fV (r)

[1� FV (r)]
.

Since the exponential function is monotonically increasing, this implies that

exp

0@ rZ
v

� f̂V (t)h
1� F̂V (t)

i dt
1A � exp

0@ rZ
v

� fV (t)

[1� FV (t)]
dt

1A . (10.20)

Further, since

� fV (r)

[1� FV (r)]
=
d

dr
log [1� FV (r)] ,
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we have that the right-hand side of inequality (10.20) can be written:

exp

0@ rZ
v

d

dt
log [1� FV (t)] dt

1A = [1� FV (r)] . (10.21)

We have a similar expression for the left-hand side of (10.20). Consequently,

from inequality (10.20) and equation (10.21), it follows thath
1� F̂V (r)

i
� [1� FV (r)]

or

F̂V (r) � FV (r) .

Appendix B of Krishna [59] proved useful for the above proof. In �gure 10.4,

we illustrate the proof by sketching the relationship between the distribution

functions in part a, and the corresponding root �nding problem for an optimal

reserve price in part b. As we see, and what was the point of the above proof,

if F̂V (v) � FV (v) for all v, then r̂� � r�.

Figure 10.4: Illustration of stochastic dominance result

5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

F̂V (v)

FV (v)

Valuations

cd
f

Firstorder stochastic dominance

 a)

5 6 7 8 9
10

5

0

5

10

r ¡ 1 ¡ FV (r)

fV (r)

r ¡ 1 ¡ F̂V (r)

f̂V (r)

Reserve price

Rootfinding problem

 b)



Chapter 11

Conclusion

Simultaneous selling mechanisms require bidders to set capacity constraints

in order to avoid coördination problems that can cause e¢ ciencies. Bidders

also have the option of setting priorities to their bids. This option is unnec-

essary for allocation of catches, but may be important for optimal bundling

of catches. The auction format is complex, but interesting from a theoret-

ical perspective. The dimensionality of the bid vector (bids, priorities and

capacity limits) combined with the e¤ect that delivery sectors have on the po-

tential number of bidders make it di¢ cult to model the market analytically.

Consequently, the scope for a structural empirical analysis of the market is

limited.

The auction format can, however, be analysed by other available tools.

Numerical simulation is one promising line of research. We analysed the

e¤ect of the priority option in chapter 8 in a simpli�ed, but relevant setting.

We identi�ed a clear e¤ect on the game-theoretic equilibrium strategy. Bid-

ders will �nd it pro�table to set a reverse relation between bid levels and

priorities. Empirically, however, we found few traces of the e¤ect. The e¤ect

is of less importance when the number of bidders increases. Heterogeneity of

catches can also explain the observed predominant positive relation between

bid levels and priorities.

We analysed the determinants of market price in chapter 6 and 7. The de-

terminants may be classi�ed as object-speci�c, auction-speci�c, and bidder-
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speci�c. Marketing of seafood products through the entire value chain have

been a research topic of considerable interest. We have examined the whole-

sale market for pelagic �sh. Quality variables that the sellers control are of

particular interest. Although the primary objective of preservation methods

is to secure that the seafood is as fresh and healthy as possible, cost consider-

ations enter the picture as well. If we can identify that the best preservation

method gives a rise in prices that more than o¤set the extra costs incurred,

then the e¤ort is worthwhile. Results show that the preservation method, in

fact, has an in�uence on prices. The computed price elasticity of preservation

method is an input to the decision on preservation method.

The overall picture is that variables outside the scope of individual har-

vesters� in particular, average �sh weight of a given catch� are most im-

portant for winning bids. This is hardly a surprise, but the contribution of

this work is a better understanding of how important the di¤erent quality

variables are in determining prices.

The nature of asymmetries between bidders was also investigated. We

showed in chapter 5 that bidders di¤er with respect to capacities, bid fre-

quencies and to some extent with respect to bid success. However, bid levels

examined in chapter 7 (winning bids) and chapter 9 (all bids) showed small

average di¤erences between bidders, and we concluded that bidders�average

valuations seem to be roughly equal.

At the individual bid level, however, our understanding of bid determi-

nants is far from perfect. We were able to explain about 85 percent of the

variation in winning bids by our explanatory variables. In the regression on

all bids, about 81 percent of the variation were accounted for. The remaining

variation is a puzzle. The high volatility of the number of submitted bids

across catches and auctions is partly explained by the system of setting deliv-

ery sectors. But even if we control for this, as we did in chapter 9, utilization

of bid opportunities varies considerably between bidders. We suspect that

both variation in bid levels and in auction participation may better be ex-

plained if individual capacity limits and opportunities in other �sheries are

incorporated. In addition, we may speculate that liquidity squeezes or short-

term �nancial constraints have an impact on buyer�s bid decisions. Since
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we observe high variability in bids, a natural interpretation is that buyers�

valuations are predominantly private and independent.

Given the simultaneous selling mechanism, it is unclear whether the num-

ber of competitors is an object-speci�c or auction-speci�c variable. From an

economic perspective, the main interest is the question of e¢ ciency. Auction

formats may prove to be ine¢ cient. Increased competition will reduce the

e¤ects of any inherent ine¢ ciencies the format may give rise to. A quite

robust result is that when the number of bidders for a given catch is around

eight, we reach a competitive level. The important message is that as long

as a catch attracts reasonably many bidders, the �ner details of the auction

format, is of less concern.

The dataset was examined for any signs of bid coördination. We found

no evidence of such a practice among bidders.

A careful interpretation of our analysis on the optimal reserve price sug-

gests that minimum prices are not set too high from the sellers�perspective.

The allocation of revenues between private businesses may not be that vital.

We note that pro�ts have been low on the buyer�s side while sellers have

experienced far better operating margins in recent years. The better results

on the sellers� side may be attributed to the economic rent sellers obtain

through harvesting a natural resource owned by the people.

Some topics for future research are suggested. Our understanding of bid

behavior may be improved in order to reduce the unexplained variability in

bids. The complexity of the market and the information sets, however, may

prove to be so involved that we are close to the limit with respect to predicting

bid behavior. Likewise, our understanding of decisions on bid participation is

less than desirable. More information, in particular on bidder-speci�c private

information is necessary for making progress.

The geographical aspects of the market may be investigated. At the core

is the question of how does the market clear optimally. The importance of

the location of buyers, and the distance between vessels and delivery port

with respect to total costs may give rise to a solvable programming problem.

The solution may a¤ect the auction format, and the details of the validation

process.





Appendix A

Construction of dataset

A.1 Introduction

In this appendix, we describe how the dataset was constructed. We have a

complete set of observations from the auction market for an entire season.

The auction house, Norges Sildesalgslag (NSS), Bergen, Norway, provided us

with all of their data concerning pelagic �sh auctions from the beginning of

the 2003 season (August 11, 2003) to the end of the 2004 season (January

20, 2005).

We used a relational database management system to organize the data,

and then imported the �nal dataset into Matlab for subsequent analysis.

Data are at the auction house stored in the xml format, but were exported

to a MS Access 2002 database �le for us to use. Extensive reorganizing of

the data was necessary because the database was constructed for the daily

running of auctions and e¢ cient validation of the bid process, not for ex post

dataset construction for researchers. The necessary tables with appropri-

ate formats were created by use of programming in MS VBA. Then several

queries in the SQL language were used in order to �ll the tables. In addition,

some organizing and reformatting, in particular of date and time variables,

were done in Matlab after importing the �nal database tables. Extensive

checking of the tables was undertaken to detect typing errors.

The database consists of three main tables and in addition several support
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tables that explain numeric code values used in the main tables. The �rst

table called the lots table, contains records of each individual lot o¤ered for

sale. The other main table, the bids table, contains all bids elements. The

�nal table, the constraints table, contains the relevant quantity or vessel limits

set by a bidder for an auction. Thus, the number of records in the constraints

table equals the number of auctions.

A.2 Quality of data

In general, the quality of any empirical analysis depends on the quality of

data. Several dimensions of the data may cause trouble for the researcher.

Data can be aggregated to such an extent that important short-time �uc-

tuations are hidden. Variables may be measured at di¤erent time intervals,

making it di¢ cult to estimate consistently relationships for a given time

period. Moreover, measurement errors are a major concern in empirical

economics. To a large extent, our dataset is immune to these quality deteri-

orating features. We have micro data, there is no aggregation or inconsistent

time intervals that bring in noise. Data presented to bidders were typed in

electronically. Although it is conceivable that a wrong number was provided

bidders, they all receive identical information and base their bids on this in-

formation. Likewise with bids: bids are submitted electronically. Normally,

typing errors are understood to mean that the researcher receives information

di¤erent from what took place. This is not the case for us. If a bidder meant

to submit a bid of 5.95 and entered 5.59, this is a binding bid. Thus, a typing

error on the bidder�s part is more of a trembling-hand mistake. Admittedly,

such trembling-hand mistakes may bring in noise when modelling bids to be

governed by a Bayes�Nash equilibrium, but we regard the problem to be very

small. A few errors, however, were detected and corrected.
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A.3 The sample

Several pelagic �sh species are auctioned by the auction house NSS which

has been granted monopoly to sell all pelagic �sh in the wholesale market

of Norway. In addition, �sh harvested in other national economic zones

are sometimes o¤ered at the NSS auction because this is the best-organized

market in the North Sea region. In this thesis, we chose to analyse the

product mackerel. The mackerel market is comprised of two segments, the sea

and the coastal segments. The latter is a small-scale �shery, where harvesting

occurs close to the coast or in the Norwegian fjords. The �sh in this segment

are small and have a local-buyer market; in addition, the �sh are commonly

penned alive. We concentrate on the large-scale sea segment with a much

broader buyer market. We chose to analyse the 2003�4 season.

The distinction between lots and catches is important. A catch may be

comprised of several lots. If the total catch is comprised of signi�cantly dif-

ferent average weight classes or of di¤erent species, then the catch is divided

into lots. Each lot is described to potential buyers who will be asked to sub-

mit separate bids for each lot. The total catch of a vessel will have to be sold

to a single buyer. The winner will be the one who has the highest weighted

average bid on the catch.

After querying our database for mackerel harvested at sea in the 2003�4

season, our dataset contained 1,582 lots o¤ered for sale at 289 auctions. Most

lots were o¤ered only once, but some were o¤ered several times if they �rst

went unsold. The number of unique lots is 1,531 and the number of unique

sold lots is 1,490. The number of sold lots is 1,494. We noticed that there

were four more sold lots than unique sold lots. One lot was reported sold,

but then sold again. Two other lots were reported sold, but then sold again

later. Either the auction house made a mistake and had to cancel the �rst

sales, or the �rst buyer was allowed by the auction house to cancel and the

lot was put up for a resale before he had received the lot. In that case, the

�rst buyer would probably be responsible for any negative price di¤erence

between the �rst and second sale. We did not correct the price data and

reported buyers for these three lots.
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The corresponding numbers of catches in the dataset are: We have 1,456

records of catches. A total of 1,369 catches were reported sold, while the

number of unique catches is 1,405 and the number of unique sold catches is

1,365. For the discrepancy between unique sold catches and sold catches, see

the comment in the paragraph above.

A.4 Transformations of data

Numeric quality variables. A catch is described by di¤erent quality vari-

ables like harvesting method and storage conditions. These qualities are rep-

resented by a code number. For example, if the number is 11 for harvesting

gear, then the gear used is purse seine. For the purpose of regression analysis,

in order to measure the impact of such variables on price, it is convenient to

transform the variables into classical dummy variables.

Quantity, date/time and price variables. No transformations of the

quantity or price variables were necessary. Quantities of catches and lots are

expressed in tons, average �sh weight is reported in grams, and prices and

bids are expressed in NOK per kilo. Date and time variables were in full

string formats like �yyyy-mm-dd HH:MM:SS.s�. We reformatted them to a

consistent format for our purpose and software choice. Date variables were

set to the string format �yyyy-mm-dd�and time variables were set to the

string format �HH:MM�. Next, date and time variables were set to numeric

time vectors of the form [yyyy mm dd HH SS]. This enabled us to compute

time di¤erences.

Computed variables. Below, we report the most important variables

given to us from the auction house. Variables are not necessarily stored

in the same order as we present them. Given these variables, we computed

several variables to be used in the statistical analysis.
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A.5 Tables

LotsN

The table LotsN (�Lots Numeric�) contains numeric values that describes

the individual lots. The most important variables are:

1. KeyNo: Individual lot ID number where the AucNo is the integral

part and FormNo is the decimal part; see below for explanations of

variables AucNo and FormNo. This �eld was created by us and used

as the unique identi�cation number in the SQL queries.

2. AucNo: Auction number ID. All lots sold simultaneously have the
same auction number.

3. FormNo: Individual lot ID number irrespective of auction number. In
case a lot goes unsold, it may turn up at the next auction with a new

AucNo, but the same FormNo.

4. FormNoPart1: The �rst part of the FormNo identifying the catch.
Equals FormNo with the last integer missing.

5. FormNoPart2: The second part of the FormNo identifying the di¤er-
ent lots of a catch. A catch consisting of two lots will have FormNoPart2

equal to 1 and 2 respectively for the two lots.

6. FormDate: Date of auction. Originally recorded date string is con-
verted to serial date number.

7. HasBid: Binary variable. Equals 0 if a lot received no bids, equals 1
if the lot received bids.

8. MaxBid: The highest bid in NOK per kilo.

9. PriceSold: The realized selling price in NOK per kilo; not necessarily
equal to the highest bid if the quantity limit is binding for the �high�

bidder.
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10. MinPrice: The reserve price in NOK per kilo. Reserve price is deter-
mined by the average �sh weight, see the variable AvgWeight below.

11. Value: The total bid of the lot in NOK calculated by multiplying the
bid in NOK per kilo by the quantity of the lot.

12. CatchLocation: The �eld of harvesting identi�ed by a map sector
number.

13. EcZoneId: Number representing the economic zone of the catch lo-
cation; 0: Norwegian zone, 1: European Union zone, 6: Faroe Islands

zone.

14. Quant: Quantity of lot in tons (1000 kilos).

15. VesQuant: Quantity of catch in tons.

16. AvgWeight: Average �sh weight in the lot in grams.

17. GearId: Harvesting gear used represented by a numeric code value:
10 = Purse seine coastal vessel, 11 = Purse seine, 51 = Bottom trawl,

53 = Floating trawl, 54 = Floating trawl, pair trawling.

18. Preservation: Variable describing the preservation method on board
the vessel. Numeric code values in use are: 9: iced, 11: refrigerated sea

water (RSW), 13: salted, 18: RSW + ice, 21: RFW + ice, 24: RFW

+ acid + ozone, 25: CSW.

19. Hauls: Number of purse seine hauls used to obtain the catch.

20. Tanks: Number of storage tanks used.

21. Swim: Describes whether the �sh were held alive in sea in order to
reduce feed contents before taken on board. The number reported

represents the number of hours the �sh were kept �swimming�.

22. Feed: Integer variable describing the feed contents of the �sh. Numeric
code values in use are: 1: no feed, 2: insigni�cant feed, 3: signi�cant

feed, and 4: full of feed.
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23. AreaIdS and AreaIdN: A number identifying the southernmost port
(AreaIdS) and the northernmost port (AreaIdN) the seller prefers de-

livery to. Port codes reveal the relative position of the port along a

north-south axis. If a seller sets his delivery sector to AreaIdS = 16

(south) and areaIdN = 25 (north), then a bidder with location 20 will

be an inside bidder, while buyers located at 13 and 30 will be outside

bidders. Location 13 is south of the delivery sector and 30 is north of

it. Ports in the dataset are: 12 Agnefest; 13 Egersund and Sirevåg; 16

Haugesund, Karmøy, and Utsira; 19 Bergen and Austevoll; 20 Florø

and Kalvåg; 22 Måløy and Iglandsvik; 23 Moltu; 24 Vedde; 25 Moltu

and Harøysund; 29 Averøy; 30 Kristiansund; 31 Smøla.

LotsC

The table LotsC (�Lots Character�) contains character strings that describe

the individual lots. The most important variables are:

1. KeyNo: Unique identi�cation number; same as KeyNo in LotsN.

2. VesId: Registration code of vessel.

3. VesName: Name of vessel.

4. VesFlag: Nationality of vessel. NO: Norway, DK: Denmark, FO: Faroe
Islands, GB: Great Britain, IE: Ireland, SE: Sweden.

5. VesOwnerName: Name of vessel owner.

6. BuyerName: Name of buyer.

7. PlantUse: Describes whether the �sh are meant for consumption (K)
or meal production (M). All are K in the sample.

8. HarvestDate: Date of harvest.

9. HarvestTime: Time of harvest.
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10. AucDate: Date of auction.

11. AucTime: Time of auction.

12. AreaDateS: Expected arrival date at southernmost port of delivery
area, see variable AreaIdS in table LotsN.

13. AreaDateN: Expected arrival date at northernmost port of delivery
area, see variable AreaIdN in table LotsN.

14. AreaTimeS: Expected arrival time at southernmost port, see variable
AreaIdS in table LotsN.

15. AreaTimeN: Expected arrival time at northernmost port, see variable
AreaIdN in table LotsN.

A few typing errors were detected for the last four variables in the list

above; i.e., the expected date and time for arrival at port. A typical error

is that arrival is set before the auction is held, and the most common ex-

planation is that arrival mistakenly was recorded to be the same date as the

auction while in fact it should be set to the next day. Data were corrected by

comparing the date with auction date and auction time and with the location

of the catch �eld. Some discretion was necessary to correct the data.

Bids

Each bid at the auction house is stored in a record (or row). This way

of organizing the bid data follows from sound design rules of normalized

databases following the rule that �rows are cheap, columns are expensive.�

Our purpose (i.e., analysing the data in matrix oriented software package)

required that we organize all bids of a given catch in one record. This was

achieved by creating a table with as many columns as the number of active

bidders in the dataset, and then �lling the records with the bids. Records of

inactive bidders for a given lot were �lled with NaNs (NaN represents �not

a number�).
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A bid is a multiple of potentially six elements: the actual bid, a priority,

and a location parameter in addition to three reported capacity constraints.

Bids are given for each lot and priorities are given for each catch. The location

parameter� i.e., whether the bidder has a location inside or outside of the

delivery sector is recorded by the auction house. The capacity constraints

are given for each auction and are stored in the table Constraints, see below.

Of the six elements in the bid vector, only the actual bid in NOK per kilo is

mandatory; the other elements are optional.

We have organized these elements as di¤erent tables in a three dimen-

sional matrix. All tables have an identi�cation �eld that uniquely identi�es

the corresponding records of the tables and links the table Bids to the key

number in the table LotsN. Lots are recorded in rows and each bidder in the

dataset is aligned a column in the tables. The di¤erent tables then hold the

following information:

1. Bids: Bid in NOK per kilo.

2. Pri: Priority of bid, optional. The highest priority is set to 1, the
second-highest priority is set to 2, and so forth. Lots belonging to the

same catch will have the same priority number. Two catches can have

the same priority number meaning the bidder is indi¤erent between

them. A bidder will not necessarily give priorities to all his bids. He

may set priorities on just one or two catches and leave the rest blank.

An alternative to a blank priority is to assign the priority number 99

meaning that these catches will have the lowest priority.

3. Loc: Location parameter is 0 if the bidder has a location inside the
delivery sector and 1 if the bidder is outside of the delivery sector. The

auction house uses the value 1 for inside bidders and the value 2 for

outside bidders; we changed this to 0 and 1 respectively.

4. AvgB: The bid on the catch, i.e., the weighted average of the bids on
the lots comprising the catch. Weighting is by the quantity of the lots,

see variable Quant in the table LotsN.
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Constraints

For each auction and each bidder, we store �ve variables in the table Con-

straints. The table is organized as a 3D matrix where each sheet contains

the relevant variable. Auctions are in rows and bidders in columns. The

�rst column of each sheet stores the auction number which can be linked to

AucNo in LotsN. The variables in the table are:

1. MaxT: Maximum quantity in tons a bidder wants to receive from a

given auction, optional, set by the bidder.

2. MinT: Minimum quantity in tons a bidder wants to receive, optional,

set by the bidder.

3. MaxV: Maximum number of vessels (or catches) a bidder wants to

receive, optional, set by the bidder.

4. CurT: The number of tons allocated to the bidder after validation,
recorded by the auction house.

5. CurV: The number of vessels (or catches) allocated to the bidder after
validation, recorded by the auction house.

CatchesN

The table CatchesN (�Catches Numeric�) contains the same variables as the

table LotsN. When constructing the table, we put the lots of the same catch

together. Depending on the nature of the variable, we computed the sum

or the weighted average of the lot variables. Some variables have the same

value, so we kept the �rst record; taking the mean would be an equivalent

procedure. In addition, some variables did not make sense to incorporate. A

few examples of the calculations are reported: Quantity of catch is the sum of

the quantities of lots. As a check, it should be the same as the vessel quantity.

Average �sh weight and bids are weighted average of the corresponding lot

variables using Quantity of lots as the weights. The number of bids is the
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same for all lots of a speci�c catch since bidders bid on the entire catch.

A quality variable such as Gear is consistently the same for all lots of a

catch and we could just record the average or �rst record. On the other

hand, a quality variable such as Feed may be di¤erent for the lots of a catch,

and because it takes the integer values 1�4, we did not record any weighted

average of this variable.

At one auction, there were multi-species catches; i.e., the di¤erent lots of

a catch consisted of di¤erent species. Three lots in the table LotsN are from

multi-species catches. Since we only sample mackerel lots, we removed the

multi-species catches of that auction when creating the table CatchesN.





Appendix B

Simulation script

In this appendix, we document the computer code used to perform the auc-

tion simulation of chapter 8.

Computer code

1 clc; clear all;

2

% Matlab: Version 7.0.1.15 (R14) Service Pack 1

4 % Necessary package: Symbolic Math

6 %% Simulation of auction model:

% 2 objects for sale, 3 bidders with single unit demand.

8 % Each bidder submits two bids and give priorities to their bids.

% If the same bidder has the highest bids on both objects, then

10 % the allocation is according to his priority. The other object

% is allocated to the second-highest bidder on that object. Other-

12 % wise, the highest bidders are allocated their respective objects.

14 % The purpose of the simulation is to examine whether a Nash

% equilibrium exists when bidders scale down their preferred lot.

16

319
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% We record expected profits to bidders and expected revenue to

18 % the seller when all bidders scale down their preferred lot.

% We examine all possible combinations of alpha strategies for

20 % all 3 bidders.

22 %% Set some parameters

n = 2; % Number of competitors and objects

24 N = n + 1; % Number of bidders

T = 100000; % Number of auctions

26

ScalingFactor = (.05:.05:1);

28 L = length(ScalingFactor);

30 % Preassign tables for storing results:

Bidder1 = NaN(L,L,L);

32 Bidder2 = Bidder1;

Bidder3 = Bidder1;

34

%% Draw valuations (V):

36 % Set the seed (state) of the random generator;

% this ensures that results can be reproduced:

38 State = 591; rand(�state�, State);

40 % Draw N valuations in T auctions from U(0,1):

% Bidder 1 in col 1, bidder 2 in col 2, etc.

42 V = rand(T,N);

44 %% Calculate bids:

% Benchmark bid model: Discriminatory simultaneous.

46 % Ref: Vijay Krishna. 2002. Auction theory, page 195.

% Bid = E[Y(k)|Y(k)<x] where Y(k) is the k-th order

48 % statistic of n draws.
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50 % Define pdf and cdf of the second-highest order statistics:

syms t z

52 g2 = n*(n-1)*(t^(n-2))*(1-t); % pdf: 2(1-t)

G2 = n*(z^(n-1))-(n-1)*(z^n); % cdf: 2z - z^2 = z(2-z)

54

BidFn = (1/G2)*int(t*g2,0,z); % Theoretical bid function

56 Bidz = subs(BidFn,V); % Put valuations in bid function

58 % The table Bidz contains the benchmark bids. Make bid tables

% that will be updated depending on priorities and scaling

60 % factor:

Bids1 = Bidz; % (TxN) bids for object 1

62 Bids2 = Bidz; % (TxN) bids for object 2

64 %% Generate priorities:

% 8 possible combinations of priorities for object 1:

66 % Example: pri = 110 => Bidder 1 and 2 prefer object 1

% while bidder 3 prefers object 2.

68 State = 195; rand(�state�, State);

pri = [1 1 1

70 1 1 0

1 0 1

72 0 1 1

1 0 0

74 0 1 0

0 0 1

76 0 0 0];

78 % Draw a random vector from the uniform distribution, U(0,1).

x = rand(T,1);

80 % Get percentiles of random vector x:

y = prctile(x,[12.5 25 37.5 50 62.5 75 87.5]);

82 y = [[0 y]� [y 1]�];
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84 Pri = NaN(T,3); % Preassign a table of priorities

86 % Randomly assign a priority vector to all auctions.

% The 8 priority vectors in pri are assigned to the auctions

88 % where x belong to the percentile defined by y. Example:

% Priority vector (1 1 1) will be assigned to the auctions

90 % where x has a value that belongs to the lowest 12.5% in x.

% Thus, the procedure below ensures that exactly T/8 of the

92 % T auctions have a specific priority vector from pri:

for i = 1:8

94 r = (y(i,1)<x & x<=y(i,2));

Pri(r,:) = repmat(pri(i,:),sum(r),1);

96 end

98 Pri = logical(Pri);

100 %% Run auction simulations

% Strategy: A bidder bids the benchmark bid on the object

102 % with priority 0 while he scales down his benchmark bid

% with the scaling factor for the object with priority 1.

104

for i = 1:length(ScalingFactor)

106 tic

for j = 1:length(ScalingFactor)

108 for k = 1:length(ScalingFactor)

110 Scale1 = ScalingFactor(i); % Scaling of bidder 1

Scale2 = ScalingFactor(j); % Scaling of bidder 2

112 Scale3 = ScalingFactor(k); % Scaling of bidder 3

114 % Bid lower on preferred lot:
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116 % Bidder 1 scales down by Scale1:

Bids1(Pri(:,1),1) = Scale1*Bidz(Pri(:,1),1);

118 Bids2(~Pri(:,1),1) = Scale1*Bidz(~Pri(:,1),1);

120 % Bidder 2 scales down by Scale2:

Bids1(Pri(:,2),2) = Scale2*Bidz(Pri(:,2),2);

122 Bids2(~Pri(:,2),2) = Scale2*Bidz(~Pri(:,2),2);

124 % Bidder 3 scales down by Scale3:

Bids1(Pri(:,3),3) = Scale3*Bidz(Pri(:,3),3);

126 Bids2(~Pri(:,3),3) = Scale3*Bidz(~Pri(:,3),3);

128 % Sort bids on object 1:

[B1,IX1] = sort(Bids1,2,�descend�);

130

% Sort bids on object 2:

132 [B2,IX2] = sort(Bids2,2,�descend�);

134 % Winning bidder is now in column 1 of IX1 and IX2

% Second-highest bidder is in column 2 of IX1 and IX2

136

%% Allocation

138 % Preassign allocation tables. Allocation tables

% will be filled with ones in the winner�s position.

140 A1 = zeros(size(Bids1));

A2 = A1;

142

%% Case 1: Different winners

144 % Allocation: Give them their respective objects.

146 % Identify rows with different winners:

DiffWin = IX1(:,1) ~= IX2(:,1);

148
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% Identify winners of each object:

150 Win1 = Bids1 == repmat(B1(:,1),1,3);

Win2 = Bids2 == repmat(B2(:,1),1,3);

152

% Fill allocation for rows with different winners:

154 A1(DiffWin,:) = Win1(DiffWin,:);

A2(DiffWin,:) = Win2(DiffWin,:);

156

%% Case 2: Same winner on both

158 % Allocation: If same bidder wins both, then give

% him the object he prefers. Give the other object

160 % to the second highest bidder.

162 % Allocation of high bidder:

% Put a 1 in winner�s column if he prefers object 1

164 High1 = Win1.*Pri;

% Put a 1 in winner�s column if he prefers object 2

166 High2 = Win2.*(~Pri);

168 % Allocation of second-highest bidder:

% Get the auctions where the highest bidder prefers object 1:

170 % Mnenomic: HC1 = High Chooses 1

HC1 = sum(High1,2) == 1;

172

% Get the auctions where the highest bidder prefers object 2:

174 HC2 = sum(High2,2) == 1;

176 Sec1 = zeros(size(High1));

Sec2 = Sec1;

178

% When high bidder prefers object 2, then

180 % second-highest is allocated object 1:

Sec1(HC2,:) = Bids1(HC2,:) == repmat(B1(HC2,2),1,3);
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182

% When high bidder prefers object 1, then

184 % second-highest is allocated object 2:

Sec2(HC1,:) = Bids2(HC1,:) == repmat(B2(HC1,2),1,3);

186

% Update allocation for rows with same winner

188 A1(~DiffWin,:) = High1(~DiffWin,:) + Sec1(~DiffWin,:);

A2(~DiffWin,:) = High2(~DiffWin,:) + Sec2(~DiffWin,:);

190

%% Calculate expected profit for each bidder:

192 Surplus1 = V - Bids1; % Surplus = value - bid

Surplus2 = V - Bids2;

194 Surplus1(~A1) = 0; % Set surplus to 0 if not winning

Surplus2(~A2) = 0;

196

% Expected profits:

198 BidderProfits = sum(Surplus1+Surplus2)/T;

200 % Store the results for scaling factor i, j and k:

202 Bidder1(i,j,k) = BidderProfits(1);

Bidder2(i,j,k) = BidderProfits(2);

204 Bidder3(i,j,k) = BidderProfits(3);

206 end

end

208 fprintf(�Round %3.0f finished \n�,i)

toc

210 end

212 %% Find Nash equilibrium

Z1 = Bidder1;

214 Z2 = Bidder2;
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Z3 = Bidder3; disp(� �)

216 SF = ScalingFactor;

218 Nash = zeros(size(Z1));

for i = 1:length(Z1)

220 for j = 1:length(Z2)

for k = 1:length(Z3)

222 if Z1(i,j,k) == max(Z1(:,j,k)) & ...

Z2(i,j,k) == max(Z2(i,:,k)) & ...

224 Z3(i,j,k) == max(Z3(i,j,:))

% Fill Nash with 1 if Nash equilibrium

226 % is identified:

Nash(i,j,k) = 1;

228 disp(�Nash equilibrium:�)

fprintf(�Bidder 1 scales: %4.2f \n�,SF(i))

230 fprintf(�Bidder 2 scales: %4.2f \n�,SF(j))

fprintf(�Bidder 3 scales: %4.2f \n�,SF(k))

232 end

end

234 end

end
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Changes in this edition

This edition, to be published online, was produced in August 2010. Com-

pared to the printed Ph.D. thesis as of February 2010, a few grammatical

mistakes and typographical errors were corrected. Table 5.8 in the printed

edition, was produced by using a sample that was slightly incorrect since

it included some observations from the 2004 season. The table has been

updated by using the correct sample.


