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Abstract

In this paper a potential problem with tests for Granger−causality is investigated. If one of
the two variables under study, but not the other, is measured with error the consequence is
that tests of forecastablity of the variable without measurement error by the variable with
measurement error will be rejected less often than it should. Since this is not the case for the
test of forecastability of the variable with measurement error by the one without there is a
danger of concluding that one variable leads the other while it is in fact a feed−back
relationship. The problem is illustrated by an example.
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1 Introduction

Since the ground-breaking work by Granger (1969), tests for what is now
called Granger-causality have been employed to evaluate forecasting ability
of one time series variable by another. Even though sometimes mixed up
with the everyday-use word “causality” it can, at least rule out that one
variable is causing another by the reasonable idea that for an event to cause
another event it must at least precede it. Therefore it is perhaps as close
as we can get in using data analysis to evaluate the philosophical concept
of causality. Some variables in macroeconomics and finance are arguably
measured with error. Examples are inflation, economic growth and volatility
in financial markets. The purpose of this paper is to investigate the impact
of measurement errors on a test of Grange causality and this is done by
means of a Monte Carlo study. In the next section, a brief review of Granger
causality and how to test it is given. Section 3 investigates properties of the
test when one of the variables is measured with error and Section 4 presents
a simulation study to illustrate the consequences of this. Section 5 concludes.

2 Granger causality

A time series variable x is said to fail to Granger-cause another variable
y if the mean squared error (MSE) of a forecast of yt+s based on Fxy

t =
{xt, xt−1, ..., yt, yt−1, ...} is equal to the MSE of a foreacast based on Fy

t =
{yt, yt−1, ...}, s > 0. Tests of Granger-causality can e.g. be based on a vector
autoregressive model, a multivariate MA-representation or a regression of
yt+s on Fxy

t . See Hamilton (1994) for a review of such tests. For the purpose
of this paper, the last of these approches is particularly helpful and therefore
chosen. The test I consider is simply performed by testing the hypothesis{

H0 : α1 = ... = αp = 0
H1 : At least one αj 6= 0

(1)

where the parameters are given by the model

yt = α0 + α1xt−1 + ... + αpxt−p + β1yt−1 + ... + βpyt−p + ay,t (2)

where ay,t is a zero mean strict white noise. The choice of the lag length, p,
is of great importance for this type of analysis but is not the object of this
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paper. Therefore, it is assumed to be known. The possibility that ay,t can
be autocorrelated in practice is not considered either.

The model is estimated under the null hypothesis as well. We form

S1 =
T (RSS0 −RSS1)

RSS1

(3)

where

RSSi =
T∑

t=1

â2
it, (4)

and i = 0, 1, are the residual sum of squares for the null and alternative hy-
pothesis, respectively. Then, under the null hypothesis, S1 is asymptotically
χ2(p)-distributed.

3 Measurement error

It is common that tests of Granger-causality are used both to investigate
whether x fails to Granger-cause y and vice versa. This can be made, e.g.
in order to establish whether events connected with inflation are preceding
events connected with consumer behaviour or whether the opposite is true.

Assume now that x is measured with error while y is not. Thus, x can
be written

Xt = xt + et (5)

where Xt is the observed value of xt and et is a measurement error which
is assumed to be a strict white noise with zero mean and variance σ2

e . We
will use the notation σ2

x, σ2
y and σxy for the variances of xt and yt and the

covariance between them, respectively. As an example we consider the case
where p = 1 and the intercepts are zero.{

xt = γ1xt−1 + δ1yt−1 + ax,t

yt = α1xt−1 + β1yt−1 + ay,t

We will test the hypotheses

H0xy : x fails to Granger-cause y

and
H0yx : y fails to Granger-cause x
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which can be translated as
H0xy : α1 = 0

and
H0yx : δ1 = 0

The OLS-estimator of α1 under the alternative to H0xy, H1xy, has the
property

α̂H1
1

p−→ α1

σ2
xy − σ2

xσ
2
y

σ2
xy − (σ2

x + σ2
e)σ

2
y

≡ αH1
1 (6)

From (6) it can be seen that |αH1
1 | < |α1|. However, this does not necessarily

mean that the test statistic is performing badly. The entire distribution of the
test statistic, or an approximation of it, under measurement errors would be
the quantity to consider if one should theoretically evaluate size and power
properties of the test under measurement errors. However, evaluating the
probability limit of it, which is arguably easier, could at least hint what the
measurement errors are doing asymptotically to the test statistic. As for the
size and power of the test, I refer to the Monte Carlo study in Section 4.

In order to do this I consider the components of (3) and their probability
limits, or rather of normalized versions of them. To do this, in turn, we will
need the probability limits of the parameter estimators of β1, γ1 and δ1 as
well as the one for α1. In order to study (3) we actually need these limits
both under the null and alternative hypotheses.

In the same way as we obtained (6) we obtain the probability limit of
β̂H1

1 , the estimate of β1 under the alternative hypothesis.

β̂H1
1

p−→ β1 + α1
σ2

eσxy

(σ2
x + σ2

e)σ
2
y − σ2

xy

≡ βH1
1 (7)

We see that the bias of β̂H1
1 can be both positive and negative, depending

on the signs of α1 and σxy. From (6) and (7) we can deduce the probabilty
limit of 1

T
RSS1 under measurement error.

1

T
RSSxy

1

p−→ σ2
y − 2αH1

1 (α1σ
2
x + β1σxy)− 2βH1

1 (α1σxy + β1σ
2
y)

+2αH1
1 βH1

1 σxy +
(
βH1

1

)2
σ2

y +
(
αH1

1

)2
(σ2

x + σ2
e) (8)

Under the null hypothesis, the variable measured with error is absent and
thereby β̂H0

p−→ β1. This implies

1

T
RSSxy

0

p−→ σ2
y(1− β2

1) (9)
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If we instead test if y is useful in forecasting x, the measurement error
ends up both in the dependent and independent variables. The regression

xt = γ1xt−1 + δ1yt−1 + axt (10)

is estimated. The probability limits of the OLS estimators of γ1 and δ1 are
then

γ̂H1
1

p−→ γ1

σ2
xσ

2
y − σ2

xy

(σ2
x + σ2

e)σ
2
y − σ2

xy

≡ γH1
1 (11)

and

δ̂H1
1

p−→ δ1 + γ1
σ2

eσxy

(σ2
x + σ2

e)σ
2
y − σ2

xy

≡ δH1
1 (12)

respectively. Again, there is no clearcut inequality as it is in (6). Whether
δ̂1 converges to a quantity larger or smaller than δ1 depends on the size and
sign of σxy, the correlation between x and y, and the parameter γ1. Say, as
an example, that σxy > 0 and γ1 > 0. Then, the inequality δH1

1 > δ1 occur.
The equation (6) also indicates that for the null hypothesis H0xy we are

dealing with, mainly, a small sample problem. The explanation to this is
that, if α1 6= 0 , the estimator α̂1 will converge, in probability, to a quantity
not equal to zero at the same time as the standard error converges to zero
and thereby cause a rejection of the null hypothesis that x is Granger causing
y. The null hypothesis will thus, asymptotically, be rejected regardless of the
measurement error. However, for the null hypothesis H0yx, the problem is
not only a small sample problem. In this case, the result depends, as can be
seen by equation (12), among other things, on the value of γ1.

As a consequence of (11) and (12)

1

T
RSSyx

1

p−→ σ2
x + σ2

e − 2γH1
1 (γ1σ

2
x + δ1σxy)

−2δH1
1 (γ1σxy + δ1σ

2
y) + 2γH1δH1

1 σxy

+δH1
1 σ2

y + (γH1
1 )2(σ2

x + σ2
e)

Under the null hypothesis, the estimator of γ1 is asymptotically biased,
according to a standard result on simple regression with measurement error
in the explanatory variable

γ̂H0
1

p−→ γ1
σ2

x

σ2
x + σ2

e
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From this, it follows that

1

T
RSSyx

0

p−→ σ2
x + σ2

e − 2γH0
1 γ1σ

2
x + (γH0

1 )2(σ2
x + σ2

e) (13)

To summarize the results we now consider how the test statistic (3) will
be affected under the null and alternative hypotheses H0xy and H0yx, respec-
tively. To this end, it will be useful to rewrite it as

S1 = T

(
RSS0

RSS1

− 1

)
(14)

and just consider the probability limit of the ratio RSS0/RSS1. Under H0xy,
according to (8), RSS1 is affected by the measurement error and is thus a
possible source for size distortions. Under the alternative to H0xy, H1xy, RSS1

is dependent on the sign and size of α1 and σxy since these are determining
the bias of the parameter estimators. As for the hypothesis if y is Granger-
causing x, both RSS0 and RSS1 are affected under both the null and the
alternative hypotheses. In general, this implies size distortions. Because of
these size distortions, not necessarily hitting both tests to the same extent,
we will tend to reject one of the hypotheses H0yx and H0xy more often than
the other.

In the next section this problem is illustrated by means of a simulation
study.

4 Simulation study

The calculations in Section 3 was instructive in order to see that the asymp-
totic consequence of measurement error in x was different for the test of
forecasting power in x on y than for the test of forecasting power in y on
x. However, the power properties of such a test was not studied explicitly.
The question now is: Given that there is a feedback between x and y, does a
measurement error in x cause more rejections in one of the tests than in the
other?

In order to study this in the finite sample case data from a bivariate
VAR(1)-models is generated. The two null hypotheses

H0xy : x fails to Granger-cause y
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and
H0yx : y fails to Granger-cause x

are investigated by simulation from the process{
xt = 0.5xt−1 + ax,t

yt = 0.5yt−1 + ay,t
(15)

where (ax,t, ay,t)
′ is a normally distributed bivariate white noise with covari-

ance matrix Σa and we observe Xt = xt + et instead of xt itself. In the
simulation {et} is assumed to be a normally distributed white noise with
mean zero and variance σ2

e . For the case of a signal-to-noise ratio of one the
rejection rates under a nominal 5% level are given in Figure 1. In Figure 2
the corresponding results are given for the case when the signal-to-noise ratio
is four. As shown in Section 3, size distortions are only present under H0yx.

To study the power of the tests the example{
xt = 0.5xt−1 + 0.2yt−1 + ax,t

yt = 0.2xt−1 + 0.5yt−1 + ay,t
(16)

is used. This example is a situation where there is a symmetry in the sense
that yt is Granger-caused by xt “as much as” the opposite is true. However
xt is measured with error according to (5). Given the data generating pro-
cess above, both these hypotheses should, optimally, be rejected as often as
possible. The results are presented in Figure 3. The figure shows empirical
rejection rates when the nominal significance level is 5%. In the case of a
signal-to-noise ratio of one and a positive correlation between ax,t and ay,t,
as can be seen in Figure 3, yield a power for the test of H0yx which is sub-
stantially larger than for the test of H0xy. The implication of this is that it
is more likely that the conclusion is that y is driving x is more likely than
the opposite. In the cases with negative correlation between ax,t and ay,t, the
difference are not as remarked. In Figure 4 the case with a signal to noise
ratio of 4 is considered. The tendency is the same while the relative decrease
in measurement error is moving the power of the two tests closer.

5 Conclusion

The problem of measurement errors in one of the variables in tests of Granger-
causality has been studied. When the correlation between the two variables
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Figure 1: Monte Carlo sizes of the two tests H0xy and H0yx for different
correlations between axt and ayt. The nominal significance level is 5% which
is indicated by the horizontal solid line, the signal to noise ratio is one, the
sample size, T , is 100 and the number of replicates 1000.
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Figure 2: Monte Carlo sizes of the two tests H0xy and H0yx for different
correlations between axt and ayt. The nominal significance level is 5% which
is indicated by the horizontal solid line, the signal to noise ratio is four, the
sample size, T , is 100 and the number of replicates 1000.
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Figure 3: Monte Carlo rejection rates (power) of the two tests H0xy and H0yx

for different correlations between axt and ayt. The nominal significance level
is 5% which is indicated by the horizontal solid line, the signal to noise ratio
is one, the sample size, T , is 100 and the number of replicates 1000.
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Figure 4: Monte Carlo rejection rates (power) of the two tests H0xy and H0yx

for different correlations between axt and ayt. The nominal significance level
is 5% which is indicated by the horizontal solid line, the signal to noise ratio
is four, the sample size, T , is 100 and the number of replicates 1000.
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is positive the problem occurs in that the variable measured with error is
often mistakenly concluded to fail to Granger-cause the other variable while
the Granger causality in the other direction is more often detected. This
causes a tendency to conclude that one variable is driving the other while
there is indeed a feedback relationship present.
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Appendix

Here, an indication of how the probability limits for the different quantities
are derived, is given. Consider the model

yt = α1xt−1 + β1yt−1 + ayt (17)

and
Xt = xt + et. (18)

where et and ayt are independent, et is orthogonal to xt and yt and E(et) = 0.
The OLS-estimator of α1 can be written

α̂1 =

∑T−1
t=1 y2

t

∑T−1
t=1 Xtyt+1 −

∑T−1
t=1 Xtyt

∑T−1
t=1 ytyt+1∑T−1

t=1 X2
t

∑T−1
t=1 y2

t − (
∑T−1

t=1 Xtyt)2
(19)

Multiplying both the numerator and denumenator by 1/T 2 and taking each
of the terms in probability limit we obtain

α̂1
p−→

σ2
y(α1σ

2
x + β1σxy)− σxy(α1σxy + β1σ

2
y)

(σ2
x + σ2

e)σ
2
y − σ2

xy

(20)

which can be rewritten as (6).
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Now keeping the variables Xt−1 and yt−1 on the right-hand side of (17)
but replacing the left-hand side with Xt we can write the OLS-estimator of
δ1 in the regression

xt = γ1xt−1 + δ1yt−1 + axt (21)

as

δ̂1 =

∑T−1
t=1 X2

t

∑T−1
t=1 ytXt+1 −

∑T−1
t=1 Xtyt

∑T−1
t=1 XtXt+1∑T−1

t=1 X2
t

∑T−1
t=1 y2

t − (
∑T−1

t=1 Xtyt)2
(22)

Again, multiplying both the numerator and denumenator by 1/T 2 we obtain

δ̂1
p−→

(σ2
x + σ2

e)(γ1σxy + δ1σ
2
y)− σxy(γ1σ

2
x + δ1σxy)

(σ2
x + σ2

e)σ
2
y − σ2

xy

(23)

which can be rewritten as (12).
The probability limits in e.g. (8) can be obtain by using that e.g.

â2
y,t = (yt − α̂1Xt−1 − β̂1yt−1)

2

= y2
t − 2α̂1ytXt−1 − 2β̂1ytyt−1

+2α̂1β̂1Xt−1yt−1 + β̂2
1y

2
t−1 + α̂2

1X
2
t−1 (24)

and then considering the probability limits of each of the terms in

1

T
RSS1 =

1

T

T∑
t=1

â2
y,t. (25)
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