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Abstract

We consider a financing game with costly enforcement based on Townsend (1979),

but where monitoring is non-contractible and allowed to be stochastic. Debt is the

optimal contract. Moreover, the debt contract induces creditor leniency and strate-

gic defaults by the borrower on the equilibrium path, consistent with empirical

evidence on repayment and monitoring behavior in credit markets.
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1 Introduction

Debt contracts are ubiquitous in financial markets. The classic Townsend (1979) considers

a setting where a project is financed by an outside investor, and the subsequent cash flow

is observable only to the borrower. Townsend shows that if monitoring is contractible

and deterministic, debt contracts are optimal. Under the optimal contract, the investor
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monitors (or liquidates) upon a default, and defaults by the borrower are driven purely

by lack of liquidity.

This paper considers optimal contracts and repayment/monitoring behavior in a mod-

ified Townsend setting where monitoring is non-contractible and allowed to be stochastic.

We find that the optimal contract is a debt contract. Under the optimal contract, the

borrower strategically defaults (i.e., offers the investor a partial repayment even with suf-

ficient funds to repay in full) and the investor is lenient towards defaults (i.e., less than

certain monitoring upon defaults by the borrower) in equilibrium.

Our finding that debt is optimal adds to the literature exploring optimal contracting

under repayment frictions. Our finding that debt incurs strategic defaults and creditor

leniency fits well with the empirical corporate finance literature on repayment behavior in

credit markets, such as Brown et al., (2003), Esty and Megginson (2003), and Davydenko

(2005). For example, in a broad sample of firms, Davydenko (2005) finds that about 70%

of defaulting firms are not liquidated.

The intuition behind our results can be understood from the following figure.
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Figure 1

The figure depicts the cash flow x (known only to the manager) on the horizontal axis

and the dollar amount offered in payment to the investor on the vertical axis. The bold

line depicts the optimal repayment function r∗(x) (how to implement r∗(x) is discussed

below). r∗(x) follows the feasibility barrier F for x in regionA and gives a constant payout

in regions B and C. We now argue that r∗(x) must beat alternative payment functions,

such as r1(x), by having lower monitoring costs. To make a comparison between r∗(x)

and r1(x) interesting, assume that r∗(x) and r1(x) induce the same aggregate payment to

the investor. Note first that to induce any non-constant r(x), the investor needs to more

likely monitor the lower the payment. At the level of maximal payment the monitoring

probability is zero. Given these observations, let us compare the monitoring costs for

r∗(x) and for r1(x) in the regions A, B, C. In C, the investor receives his maximal

payout under both r∗(x) and r1(x) and does not have incentives to monitor in either

case. Judged from this region alone, r∗(x) and r1(x) are equally good. In B, r∗(x) offers

the maximal payout, and incurs no monitoring, while r1(x) pays less than its maximal

payout and therefore must imply some monitoring by the investor (if not, the manager

would never offer the maximal payout). Therefore r∗(x) beats r1(x) in B. In A, r∗(x)

must also beat r1(x), because r∗(x) offers more than r1(x) (more precisely, r∗(x) has a
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lower proposed writedown than r1(x), where the proposed writedown equals the maximal

payout subtracted the payment offer). Thus r∗(x) dominates r1(x) in all regions A, B,

and C, and must therefore beat r1(x). Now consider a payment scheme r2(x), which

crosses the line F= x− c (where c is the cost of monitoring) and enters the area E, and
note that it is not feasible. If the manager plays r2(x), it would be strictly optimal for

the investor to not monitor following payments in E; by monitoring he gets at most x− c,
while by accepting the payment offer he gets more. But then an equilibrium with r2(x)

would unravel, and cannot exist.

This argument gives intuition for why the optimal payment function r∗(x) is flat for

high cash flows and pays ”as much as possible” for low cash flows. It does not take much

imagination to guess that r∗(x) can be implemented with a debt contract, which is indeed

also the case. Note that the argument also gives intuition for why strategic defaults occur

in equilibrium. Interpreting (as it turns out correctly) the maximal payout of r∗(x) as

the contractual debt obligation, we see that the borrower defaults on debt in the upper

interval of A, where he in fact has sufficient funds to repay debt in full but chooses not

to do so.

Several papers have modified the Townsend (1979) basic assumptions that monitoring

is contractible and deterministic. Townsend (1979) showed with an example that a (non-

debt) contract with stochastic monitoring dominates a debt contract with deterministic

monitoring. Border & Sobel (1987), Mokherjee and Png (1989), and Boyd & Smith (1994)

show that optimal contracts under these conditions, i.e., stochastic but non-contractible

monitoring, tend to involve some forgiveness of the contractual obligation, but there is

no guarantee that the optimal contract will be debt-like. In an important paper, Krasa

& Villamil (2000) allow for stochastic monitoring and assume that monitoring is non-

contractible. Their solution is surprisingly similar to Townsend’s in that debt contracts

are optimal, and the equilibrium payment and monitoring behavior is also essentially the

same. Krasa-Villamil (2000) require equilibrium contracts to be ”time consistent” (their

equation (1.4)), meaning that optimal contracts need to be immune to renegotiation at

the interim stage (after the entrepreneur has made a payment offer but before the investor

has decided whether to monitor). Time consistency implies deterministic monitoring in

equilibrium; if the investor is indifferent between monitoring and not monitoring for some
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payment offer, as must be the case for stochastic monitoring to occur in an equilibrium,

there would be mutual gains from ”bribing” the investor to refrain from it.1 Such bribes

are possible through rewriting the contract. We study a closely related problem to Krasa

& Villamil (2000) in that we allow stochastic monitoring and assume that monitoring

is non-contractible. We differ, however, in not requiring time consistency (we rule out

interim renegotiation of contracts) and as a result get stochastic monitoring under the

optimal contract. The other difference to Krasa & Villamil (2000) is that we require the

payment to be continuous in the underlying cash flow. This assumption means that we

can employ differentiation techniques to solve our problem. Other related papers include

Hvide & Leite (2005) who derives the optimal mix of debt and equity in a setting without

commitment and allowing for random monitoring. Their pure debt equilibria have the

same structure as the equilibria in the present paper, but Hvide & Leite (2005) does not

derive optimal contracts. Gale & Hellwig (1989) analyze a similar payment game to in

the present paper and derive necessary conditions for the existence of signalling equilibria

that are broadly consistent with the equilibria of the present paper, but do not derive

optimal contracts. In Section 1, we set up the model and Section 2 contains the results.

Section 3 concludes.

2 Model

There are two risk-neutral agents, an entrepreneur and an investor. The penniless en-

trepreneur is endowed with a project that requires I units of funding to yield the cash

flow x. The cash flow is stochastic with density h(.) defined on X = [xL, xH ]. In return

for providing I, the investor gets a claim on x. This claim is a function f : X → <.
We make the feasibility restriction f(x) ≤ x, ∀x ∈ X, and denote the set of contracts
satisfying it for F .2 After being funded, x is generated and observed only by the entre-

preneur. The entrepreneur makes a payment offer r to the investor, where the payment

1The time consistency requirement of Krasa-Villamil (2000) implies that monitoring can occur in equi-
librium only when the entrepreneurs lacks liquidity. In other words, time consistency rules out strategic
defaults.

2Note that we depart slightly from Krasa & Villamil (2000) in allowing the claim only to depend on
x, and not on the payment offer r. This has no impact on our results.
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function r(x) is a mapping r : X → < with the restriction r ≤ x. We consider determin-
istic3 and absolutely continuous payment functions r(x), which implies that its derivative

r0(x) exists almost everywhere. The set of payment functions satisfying these criteria is

denoted by R. The investor accepts or rejects the offer r based on his posterior beliefs

h0. If the investor accepts, he receives r, and the manager gets the residual x − r. If
the investor rejects/monitors, he receives a payoff y according to the written contract,

i.e., y = min[f(x), x − c], and the manager gets the residual. Note that implicit in this
formulation the cost of monitoring c is taken from the firm’s cash flow (our results do not

depend upon this assumption). The investor’s accept probability function is a mapping

P : <→ [0, 1]. To ensure sufficient liquidity to cover the monitoring cost, we assume that

c ≤ xL. To make the problem interesting, we finally assume that an r(x) that gives a

constant payout on X falls short of making the investor willing to participate.

Let e = 1 if the investor rejects/monitors and e = 0 if the investor accepts an offer.

The payoff functions πi, where i = I, E are then given by,

πE = (1− e)(x− r) + e(x− y) = x− (1− e)r − ey (1)

πI = (1− e)r + ey

For a given strategy tuple hr(x), P (r)i the expected payoffs are given by,

EπE =

Z
X

[P (r(x))(x− r) + (1− P (r(x))(x− y − c)]dH (2)

EπI =

Z
X

[P (r(x))r + (1− P (r(x))y]dH

The investor participation constraint emerges from setting EπI = I. The basic trade-

offs are as follows. The manager makes a payment offer to the investor trading off the

gains from cash diversion with cost of an increased probability of monitoring (and hence

reducing the net payoff via reducing the cash flow). The investor follows a monitoring

3There are technical problems in defining mixed strategies for a continuous type space. Barring such
problems, we conjecture that a mixed repayment strategy is not consistent with equilibrium (in contrast
to in Persons, 1997, which operates with a finite type space). The intuition is that a continuous X pins
down a unique accept probability function P (.), which in turn makes only one repayment offer optimal
for given hf(x), xi. Martimort & Stole (2002) makes a similar observation in a different context.
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strategy that balances off the cost of monitoring against the possible gain from detecting

a diversion attempt by the manager. We focus on Perfect Bayesian equilibria (PBE) of

the payment game. That a tuple hr(x), P (r), h, h0i is a PBE means that a)P (r) is optimal
play by the investor given his posterior beliefs h0, b)The manager anticipates the investor’s

behavior and chooses r to maximize his payoff, and c)The investor’s posterior beliefs are

formed using Bayes’ rule whenever possible.

The implementation problem can be formulated as,

Problem 1 (3)

Maxhr(.),P (.)iEπE

s.t. EπI = I

r(x) ∈ R

f(x) ∈ F

Strategies and beliefs are PBE

Problem 1 amounts to finding the payment function and monitoring probabilities that

maximize the expected utility of the entrepreneur given the incentive constraints. Prob-

lem 1 is equivalent to finding a contract f(x) that minimizes the expected monitoring

(verification) cost V =
R
X
(1− P (.))dH subject to the investor’s participation constraint.

Let us define a debt contract as,

fD(x) = min(x, d) (4)

This contract entitles the investor to the full cash flow up to a point d, and then a constant

payout.

3 Analysis

The main result of the paper is as follows.

Theorem 1 (i)The optimal contract is a debt contract. (ii)Under the optimal contract,

the investor is lenient with defaults and the manager defaults strategically.
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We prove the theorem in several steps. Since the investor cannot precommit to a

monitoring strategy, the revelation principle does not hold, and we have to apply a more

indirect method of proof.4 The strategy of the proof is to solve a simplified version of

Problem 1 and then show that the solution also solves Problem 1.

First some definitions. Let Γ(f) be the set of PBE induced by a contract f(x) ∈ F . We
say that the payment function r(x) is inducable (implementable) if there exists f(x) ∈ F
such that r(x) is contained in Γ(f). Let x̃ be some arbitrary constant on X and denote

by B (where B ⊂ R) the set of payment functions satisfying (i)r0(x) > 0 for x ∈ [xL, x̃]
and (ii)r0(x) = 0. B contains all continuous payment functions that are either strictly

increasing on X or initially strictly increasing and then flat.

Now define Problem 1’ as Problem 1 except r(x) ∈ B is substituted in for r(x) ∈ R in
(3). We start out by solving Problem 1’ and then show that the solution to Problem 1’

is also a solution to Problem 1. The method we use to solve Problem 1’ is the standard

one of first finding the cheapest way to induce an arbitrary r(x) ∈ B and then find the

optimal r(x). We first note the following.

Lemma 1 For any r(x) ∈ B to be inducable, it must satisfy r(x) ≤ x− c, ∀x ∈ X.

Proof. The proof is by contradiction. Let us assume that r(x) ∈ R is strictly

increasing on X. Suppose that there exists a contract f̂(x) ∈ F that induces a r(x) with
r(x) > x − c on some interval X 0 = [x1, x2]. Since f̂(x) ≤ x by feasibility we must have
that r(x) > f̂(x) − c on X 0. But then the investor would accept offers on [r(x1), r(x2)]

with probability 1. In that case, the entrepreneur never offers more than r(x1) on X 0,

which contradicts the assumption that r(x) is strictly increasing. To extend the proof to

the case where r(x) is flat at the top is straightforward and omitted.

Lemma 1 limits the set of feasible payment functions in B to lie below the line F in

Figure 1.

Lemma 2 For any inducable r(x) ∈ B, (i)The contract f∗(x) = r(x) + c induces r(x).
(ii)The associated accept probability function is P (r) = e

r−r(xH )

c . (iii)f∗(x) is the cheapest

4Bester & Strausz (2001) show that a modified version of the revelation principle holds under limited
commitment. Since we operate in a setting with a continous type space, their results do not immediately
apply.
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way to induce r(x).

Proof. Fix r(x) ∈ B and suppose that the contract is f∗(x) = r(x) + c. Since

r(x) ≤ x−c by Lemma 1, clearly f∗(x) ∈ F . We show that f∗(x) induces r(x). Note that
if the manager adheres to r(x), the investor is indifferent to monitoring or not since r = y.

Given that the manager plays r(x), any P (r) is therefore consistent with optimal play

by the investor (given h0 appropriately defined). We now construct P (r) such that the

manager does not have incentives to deviate from r(x). Since the ensuing P (r) is unique,

we thereby prove both (i) and (ii). For given x, the expected payoff for the manager from

offering r equals,

UE(r) = P (r)(x− r) + (1− P (r))(x− f∗(x)) (5)

Differentiating with respect to r, we get

U 0E(r) = P 0(r)(x− r)− P − P 0(r)(x− f∗(x)) (6)

= P 0(r)(f∗(x)− r)− P

For r(x) to be optimal play by the manager, it must be a local maximum for all x,

P 0(r)c− P (r) = 0 (7)

The unique solution to this differential equation (barring the trivial solution P (x) = 0)

is P (r) = Ke

r

c , where K is an integration constant. Invoking the corner condition

P (r(xH)) = 1 (the investor accepts the maximal offer with probability 1) and simplifying,

P (r) = e
r−r(xH )

c (8)

P (r) is increasing and convex in r. Note that the associated monitoring probability 1−P
lies between zero and one for all r. To show that adhering to r(x) is a global optimum
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for the manager, observe that P 0(r) =
P (r)

c
. Substituting into U 0E(r),

U 0E(r) = P 0(r)(f∗(x)− r)− P (9)

= P (r)[
f∗(x)− r

c
− 1]

= P (r)[f∗(x)− c− r]/c

This expression is negative for r > f∗(x) − c and positive for r < f∗(x) − c. Hence
r(x) = f∗(x) − c is a global optimum for the manager. To complete the proof of (i)

and (ii), we need to construct beliefs that support this separating equilibrium. The

prior of the investor is that x follows h(x). For an offer r on the equilibrium path, the

investor’s posterior beliefs h0 are degenerate at r + c for r < r(xH), and unrestricted for

r = r(xH). These posterior beliefs are obviously consistent with the manager’s strategy.

We do not need to restrict the investor’s posterior beliefs for offers outside the interval

[r(xL), r(xH)]; for any posterior beliefs with support X it will be optimal for the investor

to accept r > r(xH) and optimal to reject r < r(xL). We have then proved (i) and (ii).

We now need to show (iii) that there are no cheaper ways to induce an arbitrary

r(x) ∈ B. We show that a contract f̂(x) where f̂(x) 6= r(x) + c for some interval(s) on
X must be suboptimal. We initially assume that r(x) is strictly increasing on X. Now,

since f̂(x) 6= r(x) + c for some interval(s) on X, there must exist constants x1 and x2

such that f̂(x) > r(x) + c or f̂(x) < r(x) + c for x ∈ X 0 = [x1, x2] ⊂ X. For convenience
assume that f̂(x) = f∗(x) for x /∈ X 0 (the logic of the proof is the same if this condition

does not hold). First let f̂(x) < r(x) + c on X 0. This implies that r(x) > f̂(x) − c
on X 0 and the investor would set P (r) = 1 for r ∈ [r(x1), r(x2)]. But in that case the
manager would offer r(x1) for all x ∈ X 0, which is inconsistent with r(x) being strictly

increasing. Now let f̂(x) > r(x) + c on X 0. Then the investor would set P (r) = 0 for

r ∈ [r(x1), r(x2)], since y > r. For the manager to have incentives to follow r(x) for

x ∈ [xL, x1] it follows immediately that P (r) = 0 for r ∈ [r(xL), r(x1)]. Now consider
the interval [x2, xH ]. Since f̂(x) = f∗(x) for x ∈ [x2, xH ], by the same argument as in
the first part of the proof we must have that P (x) = er(x)−r(xH) for x ∈ [x2, xH ]. Let us
now compare the monitoring costs induced by f̂(x) with the monitoring costs induced by

f∗(x), assuming that f̂(x) induces r∗(x). For x ∈ [x2, xH ], the accept probability is the

10



same for every x, and the expected monitoring cost of f̂(x) and f∗(x) on [x2, xH ] must

be the same. For x ∈ [xL, x2], however, the monitoring costs induced by f̂(x) must be
strictly higher than the monitoring costs by f∗(x), since f∗(x) induces investor lenience

while under f̂(x) the investor monitors with probability 1 for x ∈ [xL, x2]. It follows
immediately that f∗(x) dominates f̂(x), and consequently f∗(x) is the optimal contract

to induce r(x). We initially made the assumption that f̂(x) = f∗(x) for x /∈ X 0. The

proof in the case where f̂(x) 6= f∗(x) on more than one interval is a simple extension and
omitted. We also initially made the assumption that r(x) is strictly increasing on X. The

proof of the case where r(x) is flat in the upper region is also a simple extension, and

omitted.

We have shown that f∗(x) = r(x) + c is the optimal contract to induce a r(x) ∈ B
that satisfies the feasibility condition in Lemma 1. Equipped with Lemma 1 and Lemma

2 we can replace Problem 1’ with an equivalent and more manageable Problem 1”. Let

us denote by B0 the set of payment functions in B that satisfies the condition in Lemma

1.

Problem 1” (10)

Maxhr(.)i

Z
er(x)−r(xH)dH

s.t. EπI = I

r(x) ∈ B0

f(x) ∈ F

Strategies and beliefs are PBE

To obtain Problem 1” from Problem 1’, we have substituted in r(x) ∈ B0 for r(x) ∈ B by
Lemma 1, and P (r) = e

r−r(xH )

c by Lemma 2. Moreover, since Lemma 2 enables us to map

r(x) into P (r), observe that we now maximize over only r(x) instead of over hr(.), P (.)i
as in Problem 1’. Informally speaking, Problem 1” is the problem depicted in Figure 1.

Now define D = [xL,m+ c) and E = [m+ c, xH ]. Clearly D ∪E = X and D ∩E = ∅.
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Lemma 3 The solution to Problem 1” is r∗(x), where

r∗(x) =

⎧⎨⎩ x− c
m

for
x ∈ D
x ∈ E

(11)

Proof. r∗(x) follows the feasibility barrier r(x) ≤ x − c and then becomes flat for
x = m+c (as depicted in Figure 1). To prove (i), let r̂(x) ∈ B0 be an arbitrary alternative
payment function in B0 that raises the same amount as r∗, i.e.,

R
X
r̂(x)dH =

R
X
r∗(x)dH

(recall that one example of an r̂(x) is r1(x) depicted in Figure 1). Recall that for an

arbitrary r̂(x), its expected monitoring cost equals
R
X
c[1 − P (r̂(x))dH. Let V̂ be the

expected monitoring cost of r̂(x) and V ∗ be the expected monitoring cost of r∗(x). To show

that r∗(x) solves Problem 1” is equivalent to showing that V̂ > V ∗. In the following we

show that V̂ ≥ V ∗. To extend the proof to holding for strict inequality is straightforward
and omitted. Denote the expected monitoring cost of r∗(x) on D (E) for V ∗D (V ) and

the expected monitoring cost of r̂(x) on D (E) for V̂D (V̂E). By definition, V̂D + V̂E = V̂

and V ∗D + V
∗
E = V ∗. r∗(x) = r(xH) for x ∈ E implies V ∗E = 0 and therefore V ∗E ≤ V̂E.

It therefore suffices to prove that V ∗D ≤ V̂D. Since r∗(x) = x − c for x ∈ D, Lemma
1 implies r∗(x) ≥ r̂(x) for x ∈ D. Recall from Lemma 2 that for an arbitrary r̂(x) we

have P (r̂(x)) = e
r̂(x)−r̂(xH )

c . To show that V ∗D ≤ V̂D it is therefore sufficient to show that
r̂(xH) ≥ r∗(xH). Since r∗(x) ≥ r̂(x) for x ∈ D, we have that

R
D
r∗(x)dH ≥

R
D
r̂(x)dH.

Therefore
R
E
r̂(x)dH ≥

R
E
r∗(x)dH must hold for the investor to be indifferent between

r∗(x) and r̂(x). But since r∗0(x) = 0 for x ∈ E, there must exist a constant x̃ ∈ E
such that r̂(x) ≥ (≤)r∗(x) for x > (<)x̃. Therefore r̂(xH) ≥ r∗(xH). Note finally that
by adjusting m we can satisfy any feasible investor participation constraint (it is easy to

show that r∗(x) maximizes the range of fundable projects). That completes the proof.

We have shown that r∗(x) solves Problem 1” and now show that fD(x) is the optimal

contract inducing r∗(x).

Lemma 4 fD(x) induces r∗(x) and is the cheapest way to induce it.

Proof. That fD(x) induces r∗(x) follows from Lemma 2, part (i). That fD(x) is

optimal in inducing r∗(x) follows from Lemma 2, part (iii).
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We have showed that r∗(x) is optimal in B and that a debt contract is optimal in in-

ducing r∗(x). It follows directly that the manager defaults strategically under the optimal

contract since for x ∈ [xL,m+c] the contractual obligation is x, while the actual payment
offer equals x − c. Also, the creditor is lenient towards defaults, since his monitoring
probability 1− P is less than unity for any equilibrium path default. We have therefore

proven Theorem 1 under the limitation r(x) ∈ B. That payment functions not in B
cannot be optimal is intuitively straightforward but formally quite tedious, and relegated

to the appendix.

Lemma 5 Any r(x) /∈ B must be dominated by r∗(x).

We have then proved Theorem 1. Let us consider an example to highlight the economic

behavior induced by the optimal contract. All qualitative features of the example hold

generally.

Example 1 Let c = 1 and x be uniformly distributed on [1,2].

The contract is fD(x) = min(x, d) which implies that the manager plays r(x) =

min(x − c, d). The manager defaults for x ∈ [xL, d + c), a purely strategic default for
x ∈ [d, d + c) and partly strategic, partly liquidity-based for x ∈ [xL, d). The creditor
monitors according to P (r) = e

r−r(xH )

c ; the higher payment, the lower probability for

monitoring, and the higher maximal amount, the more monitoring. Since r(xH) − r
can be interpreted as a writedown proposal by the manager, the accept probability is

decreasing and concave in the magnitude of the writedown proposal.5 Substituting in

for r(x) we get P (r) = min(e
x−c−d

c , 1). The investor’s participation constraint simplifies

to
R d+c
xL
(x − c)dx +

R xH
d+c
mdx = I, which substituting in for c = 1 and solving gives

d = 1−
√
1− 2I. We can note that d is (increasing and) convex in I.

The maximum fundable amount is obtained for D = xH − c = 2 − 1 = 1, in which

case the investor’s payoff becomes
R
X
(x − c)dH =

R 2
1
(x − 1)dx = 1/2. Hence in this

5The intuition for concavity is that when r is low then P (.) is low and the gains from cheating is small
simply because the probability of getting away with it is low. On the other hand the loss from cheating is
proportional in P 0(.). The only way to induce adherence to r(x) is therefore for the cheating deterrence
to be stronger the higher r, or in other words for P 0(.) to be higher for higher r.
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example any I ∈ [0, .5] is obtainable from the investor. The literature on bankruptcy

costs (e.g., Andrade & Kaplan, 1998) finds that bankruptcy costs are about 10-30% of

bankrupt firms’ value. Interpreting c as bankruptcy costs, the example generates expected

bankruptcy costs E(c/x|e = 1) within these bounds for I ∈ [0.15, 0.37].
We can calculate the gain in utility for the manager from defaulting strategically by

playing r∗(x) rather than adhering to the written contract by playing r(x) = min(x, d).

For x ∈ [xL, d) the gain equals (x − r)P (r(x)) = ce
x−xH
c , which increases in x. For

x ∈ [d, d+c) the gain equals (d−r)P (r(x)) = (d−x+c)P (r(x)) = (d−x+c)e
x−xH
c which

decreases in x. Therefore the expected gain for the manager is concave and maximized

for x = d. The economic implication is that under the optimal contract, the expected

priority violation is maximized when the manager is closer to solvency, which is consistent

with empirical evidence from Betker (1995).

Finally, as noted by Hvide & Leite (2005), the interest rate, d/I − 1, as spread over
the riskfree rate increases in (i)the funding requirement I, and in (ii)the riskiness of the

cash flow, under the optimal contract. An implication is that riskier firms on average face

less lenient investors in default, as seen from the fact that a greater d implies a higher

monitoring probability.

4 Discussion and conclusion

In this section we summarize and then discuss two crucial assumptions.

We have solved for optimal contracts and payment behavior in a modified Townsend

setting where monitoring is non-contractible and stochastic monitoring is allowed. We

found that the optimal contract is a debt contract. Under the optimal contract, the

borrower strategically defaults on his payment obligation and the investor is lenient to-

wards defaults. Our finding that debt is optimal adds to the literature exploring optimal

contracts under repayment frictions in financial markets. Our findings that debt incurs

strategic defaults and creditor leniency fit well with the corporate finance literature on

repayment behavior of debt in real financial markets. In fact influential papers such as

Anderson & Sundaresan (1996) and Mella-Barall & Perraudin (1997) argue that strategic

defaults are a main reason for why observed risk premia on debt exceeds that implied by
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the hugely influential Merton (1974) debt valuation model. We therefore believe that our

solution match real-world contracts and repayment behavior fairly well.

We have made two main departures from Krasa & Villamil (2000); that renegotiation

of contracts is not allowed (i.e., we do not require ”time consistency”) and that payment is

continuous in the underlying cash flow. One way to defend our no-renegotiation assump-

tion is that renegotiation would impose an ex-ante cost — through restricting the feasible

utilities or simply through lawyer fees or delays in coming to agreement in the interim —

that the parties impede in the initial contract. A different type of defense is the Segal

& Whinston (2002) argument that which commitment assumptions to employ should be

motivated by which assumptions produce the more realistic solution. Given the emphasis

on strategic defaults and investor leniency in the corporate finance literature we feel that

our assumptions fare well in this respect. The second departure from Krasa & Villamil

(2000) is our requirement that the payment function is continuous, which allows for use

of differentiation techniques.6 A simple ”trembling” argument defends the continuity re-

quirement. Suppose that the manager may tremble slightly when making his payment

offer, so that the actual payment offer equals a distorted version of the equilibrium pay-

ment. This might be because of bounded rationality by the manager (or by the investor),

because of rounding, or because of random mistakes by an intermediary. The difference

to the payment game without trembles is that all payments occur with positive density in

equilibrium. For sufficiently small trembles, r∗(x) is still the optimal continuous payment

function. More interestingly, there cannot exist an equilibrium with a discontinuous r(x).

To see why, suppose that r(x) is continuous except in (countably) many points. Consider

one of these points and label it y ∈ X. Then r(y−) > r(y+), where ”−” topscript denotes
left limit and ” + ” topscript denotes right limit. Suppose that a payment offer r(y−) + δ

is observed, where δ is small relative to r(y+)− r(y−). Then the investor will conjecture
that the offer was made by a type on the interval [xL, y−]. But in that case, for sufficiently

small trembles, the investor will strictly prefer to accept the offer r(y−) + δ. But then

the offer r(y−) will never be made in equilibrium and an equilibrium with a discontinuous

6If we allow for discontinuous schemes, we would have an identical implementation problem to them,
except for their added time consistency constraint. Obviously, then, we can obtain a higher entrepreneur
payoff than Krasa-Villamil (2000).
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payment function cannot exist.
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6 Appendix

Here we prove that any r(x) /∈ B must be dominated (Lemma 5). We split the proof into
two parts. First we show that (i)r(x) /∈ B with r(x) ≤ x − c must be dominated, and
then that (ii)r(x) /∈ B with r(x) > x− c for some interval on X must be dominated.

To prove (i), denote a candidate payment function by r̂(x). First suppose that r̂(x) is

weakly increasing. By the same construction as in Lemma 1, r̂(x) should be implemented

by f(x) = r̂(x) + c, and the only accept probability function consistent with r̂(x) being

part of a PBE is P (x) = e
r̂(x)−r̂(xH )

c . But then exactly the same dominance argument

as in Lemma 1 shows that r∗(x) dominates r̂(x). Suppose instead that r̂(x) is strictly

decreasing on some interval(s). Again, by the same construction as in Lemma 1, the

only accept probability function consistent with r̂(x) being part of a PBE is e
r̂(x)−r̂(xu)

c ,

where xu = argmax{x} r̂(x). If xu = xH , the proof goes through by the same dominance
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argument as before. Let us therefore suppose that xu < xH . We now construct an

alternative payment function r̄(x) through modifying r̂(x) and show that r̄(x) constructed

in a suitable manner dominates r̂(x). We assume for convenience that there exists x0 so

that r̄(x) reaches a local minimum for x0.7 We construct r̄(x) in two steps. In step

1, let r̄(x) = r(xu) − δ in an ²-neighborhood of xu, labeled XA. ² is small enough to

guarantee that r̄(x) pays less than r̂(x) in XA, and δ defined to ensure continuity of

r̄(x) in the endpoints of XA. In step 2, perform a similar modification of r̄(x) in a

neighborhood of xu, but now ”shave” from below so that r̄(x) raises more than r̂(x).

Formally, let r̄(x) = r̂(xu) + ψ in an ²-neighborhood of xu labeled by XB. ψ is defined

to ensure continuity in the endpoints of XB. Let now ² be such that the investor is

indifferent between r̄(x) and r̂(x) (by the continuity of r̄(x) and r̂(x) such ² exists). Let

us now compare the expected monitoring costs for r̄(x) and r̂(x). In XA, the expected

monitoring cost for r̄(x) is zero, while greater than zero for r̂(x). In XB, the monitoring

cost for r̄(x) is lower than for r̂(x), since the payment is higher for r̄(x). Finally, outside

XA and XB, r̄(x) must also have a lower monitoring cost than r̂(x), since the maximal

payout is higher for r̄(x) than for r̂(x). Hence r̄(x) beats r̂(x) and consequently any r̂(x)

strictly decreasing on some interval(s) cannot be optimal.

We now need to show that (ii)r∗(x) beats any r(x) /∈ B with r(x) > x − c for some
interval on X. Denote a candidate payment function of this type by r̂(x) and the set of

such functions by R̂, where R̂ ⊂ R. The optimal payment function in R̂ we denote by

r̂∗(x). The strategy of the proof is to derive r̂∗(x) and then show that r∗(x) beats r̂∗(x)

by having lower monitoring costs. We first consider weakly increasing r̂(x) in steps 1-7.

Step 1. A weakly increasing r̂(x) ∈ R̂ must have a constant payout for X 0 = [xL, t],

where t is some constant, since the same contradiction argument as eliminating r2(x) in

Figure 1 would otherwise apply. It follows that to find r̂∗(x) we can restrict attention to

7If such a local minimum does not exist, r̂(x) must either be weakly increasing (in which case it is
covered in the previous paragraph) or reach a local minimum for x = xH . The proof extends readily to
the latter case.
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r̂(x) that are continuous approximations to ρ̂(x), where

ρ̂(x) =

⎧⎪⎪⎨⎪⎪⎩
q

x− c
m

for

x ∈ [xL, t]
x ∈ [t,m+ c]
x ∈ [m+ c, xH ]

(12)

ρ̂(x) has constant payout q on X 0, then follows x− c, and flattens at x = m+ c.
Step 2. r̂∗(x) must induce the investor to monitor stochastically on X 0: if it is strictly

optimal for the investor to accept q then r̂(x) cannot be an equilibrium,8 and if it is strictly

optimal for the investor to monitor with probability 1 then r̂(x) cannot be optimal. For

the investor to monitor stochastically on X 0 we must have that,Z
X0
qdH =

Z
X0
(f(x)− c)dH, which implies

q(H(t)−H(xL)) =

Z
X0
f(x)dH − cH(t), which simplifies to

q =

Z
X0
f(x)dH/H(t)− c (13)

On the left hand side is what the investor gets if he accepts an offer q, and on the right

hand side is what he expects to get if he monitors.

Step 3. For any choice of contract f(x), equation (13) generates a function q(t),

where q(xL) = xL − c by L’Hospitals rule. By a straightforward dominance argument,
to find r̂∗(x) we want to pick the northernmost q(t). This must arise from maximizingR
X0 f(x)dH on X 0 with respect to f(x), which is obtained by setting f(x) = f∗(x) = x

on X 0.

Step 4. Substituting f(x) = x back into (13), r̂∗(x) must satisfy

q =

Z
X0
xdH/H(t)− c (14)

Note that
R
X0 xdH/H(t) = E(x|x ∈ X 0), where E(x|x ∈ X 0) is the conditional mean of x

8Recall the assumption that the scheme r(x) = q for x ∈ X does not satisfy the investor’s participation
constraint. Therefore, candidate schemes with payout q for x ∈ X 0 must have a higher payout for x /∈ X 0.
But if P (q) = 1, the manager would offer q also for x /∈ X 0.
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on X 0. (14) implies that E(x|x ∈ X 0) = q + c, a fact that will be used in Step 7.

Step 5. Since
R
X0 xdH/H(t)− c =

R
X0(x− c)dH/H(t) =

R
X0 r

∗(x)dH/H(t), equation

(14) implies that r̂∗(x) and r∗(x) gives the same aggregate investor payoff onX 0. It follows

directly from (12) that r̂∗(x) and r∗(x) must be identical on x ∈ X 0
c (where X

0
c = X/X

0)

i.e., r̂∗(x) = r∗(x) for x ∈ X 0
c. By Lemma 1, the accept probability and monitoring costs

of r̂∗(x) and r∗(x) are therefore also identical for x ∈ X 0. To show that r∗(x) beats r̂∗(x)

it is therefore sufficient to show that r∗(x) has a lower monitoring cost than r̂(x) on X 0.

This is equivalent to showing that r∗(x) has a higher average accept probability than

r̂∗(x).

Step 6. The average accept probability for r∗(x) on X 0 equals
R
X0 P

∗(x)dH/H(t),

where P ∗(x) = e
x−c−r∗(xH )

c . Since r̂∗(x) has a constant payout on X 0, its average accept

probability simply equals P ∗(q) = e
q−r∗(xH )

c .9 We therefore need to show that

P ∗(q) ≤
Z
X0
P ∗(x)dH/H(t) (15)

Step 7. We now show that (15) holds strictly, except in the non-generic case where it

holds with equality. Note that the left hand side of (15) is unaffected by h(x). It is

therefore sufficient to show that (15) holds for the h(x) that maximizes the right hand

side subject to (13). Since both r∗(x) and r̂(x) are linear in x, (13) will hold for any

distribution that keeps E(x|x ∈ X 0) constant, or in other words for any mean-preserving

shift of h(x) on X 0. Since H(t) is constant through mean-preserving shifts and P ∗(x) is

convex in x, the right hand side of (13) is maximized by minimizing risk, i.e., putting an

atom of the size H(t) at the point x = q+ c. Substituting into (15), we get the condition

e
q−r∗(xH )

c ≤ H(t)e
q−r∗(xH )

c /H(t) = e
q−r∗(xH )

c (16)

which always holds. Hence we have shown that r∗(x) dominates r̂(x) strictly except in

the non-generic case where h(x) is a non-generate distribution.

We finally need to eliminate r(x) that have r(x) > x − c on some interval and is

9This is where the requirement that r̂(x) is continuous bites. Allowing r̂(x) to be discontinuous in the
point t would soften the incentive constraint of the manager, and decrease the monitoring probability for
the offer q.
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strictly decreasing on some (possibly different) interval. But this follows from the same

type of argument as in part (i): for any such decreasing r(x) we can construct an alter-

native payment function which pays more than r(x) in the region where r(x) is strictly

decreasing and less in a region around the point where r(x) is maximized, and show that

this alternative payment function must dominate r(x).
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