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Abstract

This paper focus aspects connected to the optimal control of a renewable
resource modelled by a stochastic differential equation. The main point
is to show how small changes of the problem may cause severe changes in
the properties of the control. In particular we show how the introduction
of uncertainty may lead to a less conservative policy. In this context we
introduce the notion “induced critical depensation”. We also demonstrate
how a stochastic process may be analysed by comparison with a simpler
process.
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1 Introduction

In this paper we study the optimal control of a renewable resource. We assume
that a sole owner manages a resource modelled as a continuous time stochastic
process. The optimal exploitation rate is identified, when given a function
describing the instantaneous profit from the harvest. It is not the scope of this
paper to describe the optimal policy for a specified natural resource. We try
to illuminate some important facts a real world stock optimiser must keep in
mind.

It is well known how seemingly small perturbations in the specification of a
problem may alter the optimal control substantially. This may in turn lead to
the extinction of the resource, if the cost of extinction is small. In particular,
the effects of a large discount factor is well recognised. The point is that with
large discounting the optimal program tend to move consumption closer to the
present. The resource is not allowed to grow as much as with lower discounting.
If the natural growth rate of the resource is small (e.g. close to zero) it may be
economically optimal to “mine” the resource, that is, harvest the total resource,
sell it and let the money grow in the bank. This is illustrated later in an
example.

In the classical book by Clark [2] the dynamics of continuous determinis-
tic models is categorised as “depensation” and “compensation” models. The
growth function is called a depensation curve if it is convex for small levels of
the stock. If not it is called a compensation curve. Further, if the growth rate
is negative for small stock levels, we say that the resource possess “critical”
depensation. For such processes the stock will go extinct if it is reduced below
a certain level. With critical depensation it may be optimal to harvest the re-
source in this region, the situation from a stock conservational view is hopeless
anyway. Here extreme care must be taken by the practitioner. What if there
is no critical depensation in the real world stock? Introducing this seemingly
conservative attitude in the model may then actually lead to the extinction of
a reproducing stock! This point can not be emphasised enough, and has not
been given the attention it deserves in the literature.

In this work we mainly focus on another important aspect of bio economic
resource models with a stochastic resource. Our main point is to show that
the introduction of uncertainty into a biological model may or may not lead
to a more conservative attitude. We also want to demonstrate the somewhat
contra-intuitive fact that harvest policies may be non monotone in the noise.
This is to the best of our knowledge not documented earlier in the literature.
In the paper we first demonstrate this on an example model. Then we show
why this is a natural consequence of the process specification. This is followed
by sections demonstrating how the problem may be analysed analytically to
explain the inherent properties of the problem.

1.1 The setup

The optimisation problem is formulated as a continuous control problem over an
infinite horizon. See e.g. Fleming and Soner [3], Bardi and Capuzzo-Dolcetta [1]
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or Kamien and Schwartz [4] for thorough presentations of such problems. The
stock is described by a stochastic process of the form

dxt = (f(xt) − ut)dt + σ(xt)dBt,

where ut denotes the harvest to be optimised. We assume that this process de-
scribes the dynamics of the aggregated stock biomass. No breeding or diffusion
from another stock is possible. Therefore

x(t̂) = 0 ⇒ x(t) = 0, ∀ t ≥ t̂.

The object is to maximise the present value

max
u≥0

∫ ∞

0
e−δtΠ(xt, ut)dt. (1)

The value given x0 = x and the optimal control can be found by solving the
Hamilton-Jacobi-Bellman equation

−δV + f(x)Vx +
1

2
σ2(x)Vxx + max

u≥0
{Π(x, u) − uVx} = 0

We assume that the profit function Π is on the form

Π(x, y) =
a · y

(

y
40

)c
+ b

− 32 · 10−5 · y2

xd

where a = 11
6 , b = 5

6 , c = 6
10 and d = 5

100 . This is a simplifying approximation
of the profit function used in the paper [11]. For positive y observe that this
function approach infinity slowly1 as x → 0. Maximising Π as a function of y
gives the “Bliss” control. At this level the instantaneous profit is maximised,
without considerations about the long term effects on the stock. Normally this
constitutes an upper limit for the optimal control.

We solve the optimisation problem numerically. See Kushner and Dupuis [7]
for an excellent presentation of how such problems may be solved with the
computer. Fleming and Soner [3] also gives a condensed presentation based on
Kushner’s earlier work. Both books show how the convergence of numerical
schemes may be proved. The book by Bardi and Capuzzo-Dolcetta [1] also has
a large section written by M. Falcone with focus on the solution of deterministic
control problems. The focus of the present paper is on the control implications
the optimisation gives. We therefore skip the technical details concerning the
numerics.

Remark 1.1. In most of this paper we consider problems with “zero discount-
ing”. When δ ≡ 0 the integral in (1) may be infinite, and the optimisation
problem is not well posed. We are here interested in the optimal control policy,
not the value. This policy is continuous as δ → 0. We can therefore approxi-
mate the zero discounting control using a small δ. The term “zero discounting”
may in the following be interpreted as “negligible discounting”.

1This is done to simplify the presentation. The effects we present here may occur in a
model where the cost of harvest close to zero stock is large, but not too large.
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Figure 1: The growth functions.

2 The deterministic case

In the first part of this paper we focus on deterministic models (let σ ≡ 0 in
the stock process). Such models are simpler and important as reference for the
stochastic models we study later. We first present some facts about the effects
of discounting. These facts are well known in the literature. We still feel that
they are relevant for the paper, because this demonstrates how seemingly small
changes of a model may have large consequences for the stock process. This is
the main point also in the later parts of the paper. Secondly we show how we
get similar control implications when we introduce critical depensation. We are
then ready to study stochastic models.

Suppose that the growth function is estimated2 to be of the form

f(x) = αx3 + βx4

where α = 5.0 · 10−7 and β = −2.2 · 10−10, see figure 1. This is a depensation
curve with a very low growth rate for small stock levels. We have calculated
the optimal control as a function of x for four different levels of the discount
factor. The result is given in figure 2. Observe that the stock may be driven to
extinction when discounting is introduced. If we compare with the case without
discounting, we see that a small “shark fin” has appeared close to zero. This
is the mining effect due to the low return of the stock in this regime. For this
reason discounting is unpopular amongst conservationists3. We have observed
the dramatic consequence of low growth in combination with discounting.

Suppose that we satisfy the conservationists and keep δ = 0. To be care-
ful we even adjust the original growth function slightly and introduce critical

2This functional form has been found to fit the growth data for Namibian pilchard very
well. See the paper by S.I. Steinshamn and L.K. Sandal [10] and also S.I. Steinshamn, A.C.
Lund and L.K. Sandal [11].

3This is, in our opinion, due to a misunderstanding. Discounting must be used, but the
problem should be changed to remove ecologically unacceptable harvest policies. This can be
done by introducing some kind of social cost of loosing a species.
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Figure 2: The optimal harvest.
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Figure 3: The optimal harvest with critical depensation.

depensation. We use the growth function

g(x) = αx3 + βx4 − 20Ix≤400(x) sin2(πx/400), (2)

see figure 1. This function is a small perturbation of the original function
f , but what about the control? In figure 3 we present the zero discounting
control for the two problems using f and g respectively. Observe how the
optimal control is increased for small stock levels when critical depensation is
used. Also observe that this control would deplete the real world stock also if it
was following a depensation process with low growth rate close to zero (as for
instance the growth rate f). We feel that this example clearly illustrates why
a model with critical depensation may be dangerous if used unconsciously.

In the following we use the original growth function defined by f . We relax
the assumption σ ≡ 0, that is, we study the effects of uncertainty. To simplify
the presentation, we only focus on the model with depensation. See remark (3.2)
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on page 9 for a comment on how the introduction of stochasticity affects the
model with critical depensation.

3 Stochasticity and induced critical depensation

Suppose that we want to extend our deterministic model and include uncer-
tainty. We let the stock develop according to a stochastic process. It is natural
to choose noise proportional to the stock size, that is

σ(x) = σ0x.

What are the implications of this extension of the model? It seems natural
to expect that the introduction of noise lead to a more precautionary harvest
policy. We will show that this may be false. We also demonstrate why this is
false.

Remark 3.1. We do not want to mislead the reader. It is important to keep
in mind that many of the following observations is actually a consequence of
the choice of volatility function. If we use a volatility which goes to zero faster,
the effects may disappear. Our point is to demonstrate why the choice of σ
may be extremely important for the policy implications, and that a completely
intuitive σ-choice may give contra-intuitive effects. Hopefully, this will be an
important observation for people dealing with different aspects regarding the
management of renewable resources.

3.1 Basic observations

Suppose that a deterministic model with the growth function f is extended to
include uncertainty. Assume that observations of the stock indicate that the
system is extremely volatile, and that the noise seems to be stock proportional.
We model the system as a stochastic process with σ = σ0x where σ0 = 0.7. In
figure 4 we again show the deterministic optimal control in combination with the
control for the stochastic control problem. We see, surprisingly, that the new
control is more aggressive for small stock levels. It seems contra-intuitive that
when uncertainty is taken into account; an apparently more risky behaviour is
optimal!

Let us now perturb the deterministic model in a more continuous manner.
We solve the same control problem, now with σ0 = {0.0, 0.15, . . . , 1.2}. The
results are given in figure 5. We see that the policy is increasingly more con-
servative as long as the noise is moderate! If the uncertainty is raised further;
the harvest for all stock levels is increased, leading to the possible extinction
of the stock. This may also seem contra-intuitive, but will make sense for the
reader in short.

3.2 Simulation of the process

We now show how the process described above could develop without harvest.
Since the process is stochastic we show several replicates of the process. A
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Figure 4: The optimal harvest for a stochastic model compared with the deter-
ministic control.
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Figure 5: The optimal harvest with zero discounting.

simple Euler scheme is used to compute numerical realisations of the stock
development. See Kloeden and Platen [6] for an extensive discussion about the
numerical solution of stochastic differential equations. In figure 6 we give the
growth when σ0 = 0, i.e. the deterministic development. Each of the following
figures shows 10 possible replicates for increasing levels of σ0, all starting at
x0 = 500. We make some observations:

• First, observe that the stock volatility is extreme when x and σ0 is large.

• Second, and more important, observe that if σ0 is “to large” the expected
level of the stock is zero as time gets large. This is the dangerous effect
of low growth combined with proportional noise. We may call this crit-
ical depensation induced by the uncertainty, i.e. “stochastically induced
critical depensation”.
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Figure 6: Simulation of replicates, σ0 = 0.0.
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Figure 7: Simulation of replicates, σ0 = 0.2.

With this knowledge it is not at all surprising that the introduction of risk to
the model may actually cause a very (biologically) risky behaviour! Still this
may be correct in some cases4, the point is that the modeler must be aware of
these effects.

It is important not to believe that depensation alone is the reason for this
behaviour. It is more due to the combination of low growth, large volatility
close to zero. This is illustrated in the figures 9 and 10 where an adjusted
growth function (still with depensation) of the form

h(x) = 0.2x + α̂x3 + β̂x4

is used, with α̂ = 3.2 ·10−7 and β̂ = −1.6 ·10−10. As we see from the simulation
with σ0 = 0.6, this process recovers from weak periods. The optimal control

4A stock process as in figure 8 is though unlikely since then the species would have disap-
peared a long time ago!
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Figure 8: Simulation of replicates, σ0 = 0.6.

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 120 140 160 180 200

x

t

σ 0 = 0.6

Figure 9: Simulation of replicates, new growth function. σ0 = 0.6.

also develops in a more intuitive manner, disregarding the case σ0 = 1.2 where
the model breaks down again. Observe that the control is more aggressive
compared with figure 5. This is because the possibility of self extinction is
removed with this adjusted growth function, at least for moderate volatility
levels. For the same reason, the control is now less sensitive to an increase in
the volatility.

We can now give an intuitive explanation for the changes in the control
curves in figure 5 as the volatility increases. When σ0 is small and the harvest
is zero, the stock will develop as in figure (7). The stock is safe as long as it
is kept sufficiently large. This is reflected by the control policies. When the
volatility is increased further, there is a trade of between the expected life time
and the profit. This leads to the tilting of the curves.

Remark 3.2. With uncertainty, the critical depensation model defined in equa-
tion (2) on page 5 prescribes a more conservative harvest for large stock levels

9



0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000

u

x

    f(x)    
    h(x)    

σ 0 = 0.00 
σ 0 = 0.15 
σ 0 = 0.20 
σ 0 = 0.45 
σ 0 = 0.60 
σ 0 = 0.80 
σ 0 = 1.20 

Bliss control 

Figure 10: Optimal harvest, new growth function.

compared to the depensation model. As the volatility grows, the “shark fin”
close to zero becomes smaller. This is because there is a positive probability
that the stock may get out of the “trap” in this case.

The lesson learned from this is that the qualitative characteristics of the
process should be examined carefully either analytically or numerically before
a process is used for optimal control calculations. The figure 7 on page 8 illus-
trates how simulation may be used to estimate the self extinction probability
when x0 and σ0 is given. From the plot we see that 2 out of 10 curves go to zero,
indicating that this probability is approximately 0.2 when x0 = 500. Increasing
the number of replicates improves the estimate. From this figure we also see
that the stock seems to be safe if it is sufficiently large. We must however keep
in mind that we try to characterise the properties of the process for all t > 0
based on finite horizon simulations. This may be problematic, especially since
the stochastic differential equation is solved by discretisation. For the process
in figure 7, there may be a small probability that the stock can escape the high
level “trap”. If so, the self extinction probability may actually be 1! Still, if
we observed this in the plot, this could be due to discretisation errors. It is
therefore clearly important to find some analytical estimates.

4 Analytic examination

To our knowledge the given process does not possess a closed form solution. It
is still possible to make some statements about its future behaviour. Our first
idea is to compare the process with a simpler process. Suppose we study two
stochastic process of the form

dxt = b1(t, xt)dt + σ(t, xt)dBt

dyt = b2(t, yt)dt + σ(t, yt)dBt
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It can be proved, under weak technical conditions on bi and σ, that if x0 = y0

and
b2(t, x) ≥ b1(t, x)

for 0 < t < ∞ and all5 x ∈ R, then P (xt ≤ yt, 0 ≤ t < ∞) = 1. See proposition
2.18 in the book by Karatzas and Shreve [5]. We now study the example process

dxt = f(xt)dt + σxtdBt (3)

where f(x) = αx3 + βx4 as before. The function ax with a ≈ 0.383 is the
smallest linear function dominating f for all x ≥ 0. We know that the equation

dyt = aytdt + σytdBt. (4)

has solution
yt = y0e

(a− 1
2
σ2)t+σBt .

It is well known that Eyt = y0e
at. Further, we know that

lim
t→∞

yt = 0 a.s. ⇔ σ >
√

2a.

The process is assumed to model a natural resource. We will therefore say that
the process possess self extinction6. Using comparison we can conclude that

lim
t→∞

xt = 0

almost surely when σ > 0.875. This result is independent of the level of x0.
This is however a rather weak estimate of the critical σ. More can be said if
the initial stock is small, see the following subsections.

Studying the probabilities gives more information. We know that

P (yt < x̄) < P (xt < x̄).

Since we can calculate P (yt < x̄) by integrating

∫ x̄

0

1√
2πtσu

e−
(ln u−ln y0−(a− 1

2 σ2)t)
2

2σ2t du

we can get an idea of the self extinction probability for the process in question.
This probability is obviously a function of the initial stock level, as well as all
the other parameters. With this tool in hand we can find lower bounds for
the probability of the process x being less than x̄ at any time t. More precise
estimates may be found with simulation techniques or by numerical solution of
the Kolmogorov forward equation.

Suppose that σ >
√

2a. We then know that limt→∞ yt = 0 a.s. But what is
the probability for yt ever reaching x̄ > y0? Define

τε = inf{t > 0; yt = x̄ or yt = ε}
p̃ = lim

ε→0
P [yτε = x̄]

5Here we study a nonnegative process. It is therefore sufficient to consider all x ≥ 0.
6We do not discuss the realism of such a process. It may be realistic after some kind of

environmental change, such as the introduction of a new species.
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Figure 11: Original and approximating drift functions.

Using Dynkin’s formula (B. Øksendal [9] and also appendix A) it can be shown
that

p̃ =
(y0

x̄

)1− 2a

σ2
. (5)

This gives us a tool to find better estimates for the extinction probabilities for
the original process.

4.1 A first estimate of the extinction probability

We study the properties of the process (3) with f(x) = αx3 + βx4. Again xt is
compared with the process (4). Assume that we know the present stock level
x0, where x0 is small. We further assume that the parameters α, β and σ are
estimated. We want to give an approximate probability for the self extinction
of the stock. For the parameters used earlier we know that all paths goes to
zero when σ > 0.875. What if σ is more reasonable, say 0.3?. For the y-process
the critical a is then a∗ = 1

2σ2 = 0.045. If we for example chose a = 0.04 the
process is self extinctive. For this a the drift of the process yt dominates the xt

drift when x < x̄ where x̄ is the smallest positive solution of

αx3 + βx4 = ax, (6)

see figure 11. In this case we have x̄ = 303.89. We know that the approximating
process does possess self-extinction, but this does not imply that the original
process does. Since yt goes extinct and dominates xt in the region [0, x̄], we
know that a replicate of xt goes to zero if it cannot get above x̄. It is not
possible to calculate the probability that this will happen explicitly. We know
however that this probability is smaller than the probability that yt̂ > x̄ for
some t̂. Let us therefore assume that x0 < x̄. Using the expression (5) we
can now calculate an upper bound for the probability of x passing x̄. If we let
y0 = x0 = 50, we find that

p̃ = 0.818.
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We can conclude that the probability of self-extinction of the original process
is greater than 0.192. This is a weak estimate that can be improved if we chose
the a (or x̄) parameter better.

4.2 Optimal linear approximating process

As in the last subsection we take the parameters α, β, σ, x0 as given (observed).
We want to find the optimal x̄ and corresponding ā = αx̄2 + βx̄3 such that the
probability of the process ever reaching x̄ is minimised. The expression (5) is
only meaningful for x̄ ≥ x0 and a ≤ 1

2σ2
0 (⇒ x ≤ x̃ where x̃ is the smallest

positive solution of αx̃2 + βx̃3 = 1
2σ2

0). It can be shown that (5) is a convex
function of x in this region. See figure 12. We can find the optimal x̄ by the
first order condition

− 2

σ2
(2αx + 3βx2) ln(

x0

x
) − 1

x
+

2

σ2
(αx + βx3) = 0 for x ∈ [x0, x̃]

In the example case we found x̄ = 170.4, and ā = 0.0134. With this optimal
choice of x̄, the probability that the original process ever passes x̄ is less than
0.43. Therefore we may conclude that the self-extinction probability is greater
than 0.57 in this case.

4.3 Exact calculation

Using the results from the appendix with x = x0, x̂ = 0 and x̄ = 170.4, we can
give a quasi explicit expression for the above probability. We have that

p̃ = (1 − p) =
r(x0)

r(x̄)
.

where

r(x) =

∫ x

0
e−

2
σ2 (α

2
z2+β

3
z3)dz.
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This integral must be evaluated numerically. With the parameters used above
this gives that the probability for xt passing x̄ is p = 0.307, i.e. the self extinction
probability is higher than 0.693.

5 Summary and Conclusion

We have demonstrated that a deterministic model with reasonable drift func-
tion may be turned into a process with self-extinction when uncertainty is in-
troduced. We called this induced critical depensation. When compared to
the deterministic model, the stochastic optimisation problem can therefore give
more aggressive harvest policies. This happens when the noise is large com-
pared to the growth rate for small stock sizes. We do not suggest that this is
necessarily wrong. The point is that the noise cannot be introduced in an arbi-
trary manner, since the control may be a consequence of the functional form of
the volatility function! If we really believe in proportional noise for a problem
with such a low growth rate it may be optimal to wipe out the resource. This
conclusion is completely altered if we e.g. believe in a noise proportional with
the growth rate it self. Therefore, the volatility specification does matter.

Due to lack of data it is normally hard to find the functional form of the
volatility function for a real world natural resource. It may for the same reason
be hard to say anything about the stock development close to zero. In our
opinion the modeler should therefore have a clear picture about the properties
of the chosen stock process. This can be obtained either by analytical methods,
or by simulation. The natural steps of the real world modelling of a natural
resource can be as follows:

1. We must have some clear ideas about the fundamental biological effects of
the system. What is the natural growth rate close to zero? Is it natural
that the self extinction probability is positive? What is the carrying
capacity of the resource?

Ideally the questions should be answered with thorough detail knowledge
about the resource and the biological system in question. From this we
chose a functional form reflecting our believes.

2. Calibrate the functions to data. This is normally a difficult task. If we
have much data and the process is of a form with known distribution,
the parameters can be estimated by maximum likelihood. This is often
not the case. Another approach using Kolmogorov-Smirnov statistics is
developed by D. McDonald and L.K. Sandal in [8].

3. Check the calibrated process by e.g. simulation. Are the properties of this
process compatible with our initial assumptions? Observe that this goes
both ways: If we believe that the process is self extinctive, is this reflected
by the process?

If there seems to be a miss-specification, the process must be reformulated
or the parameters estimated differently. One important point is to keep
irrelevant noise away from the stock process. Measurements of a marine
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resource is typically very uncertain. Uncritical use of such data may
therefore imply a volatility for the stock process which is unreasonably
high. It is important to let the stochasticity in the process model the
relevant noise, i.e the noise associated to fluctuations of the stock. This is
uncertainty driven by sources such as weather and temperature variations,
and biological interaction.

This procedure prevents conclusions which may accidentally lead to the extinc-
tion of a species.

The reader could argue that parts of this paper focus on superficial side
effects of the stochastic model, effects that occur when the model is pushed
to a point where it may cease to be well defined. It is our opinion that it is
immaterial whether induced critical depensation is a real world phenomenon or
a model property. It is very important to be aware of the effect either way.

A Barrier probabilities

We now show how Dynkin’s formula may be used to calculate barrier probabil-
ities. Suppose we study a stochastic differential equation

dxt = µ(xt)dt + σ(xt)dBt

with x0 = x. Define the generator A of the xt-process

Af(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Suppose we have x̂ < x < x̄. Define stopping times

τ1 = inf{t > 0; xt = x̂}
τ2 = inf{t > 0; xt = x̄}
τ = min(τ1, τ2).

Define the probability
p = P [τ = τ1]

i.e. the probability that xt reach x̂ before x̄.

Proposition 1 (Barrier probabilities). Assume that Exτ < ∞, and that g(x) =
r(x) + s(x) is a solution of Ag = 1 with Ar = 0. Then

p =
r(x) − r(x̄)

r(x̂) − r(x̄)
.

Further,
Exτ = ps(x̂) + (1 − p)s(x̄) − s(x).

Proof. Since Ar(x) = 0, Dynkin’s formula implies that

Exr(xτ ) = r(x).
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The left hand side of this expression can, under the assumption Exτ < ∞, be
written as

Exr(xτ ) = pr(xτ1) + (1 − p)r(xτ2) = pr(x̂) + (1 − p)r(x̄)

giving the first part of the proposition. Since As(x) = 1, Dynkin’s formula
gives that

Exs(xτ ) = s(x) + Exτ.

Using the same argument we get the second part of the proposition.2

Proposition 2. For the process (3) we can chose

r(x) =

∫ x

0
e−

2
σ2 (α

2
z2+β

3
z3)dz.

Further
s(x) = u1(x)r(x) + u2(x)

where u1, u2 solves the equations

u′
1(x) =

2

σ2x2r′(x)

u′
1(x) = − 2

σ2x2

r

r′(x)
.

Proof. The function r(x) is the solution of the homogenous differential equation
Ar(x) = 0. Further, s(x) is the solution of As(x) = 1, and is found with
“variation of parameters”.2
Observe that r is positive and increasing when x > 0.
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