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Abstract

We study a model of a production economy in which every set of
agents owns a set of resources, and where they all have access to the
same technology. The agents can cooperate by pooling their resources,
and the total profit from the joint venture is given by the optimal
value to a linear program. The problem of allocating the total profit
among the participants of such a joint venture can be formulated as
a cooperative game, as in Owen (1975), and it is well-known that
some core points can be obtained from optimal solutions to the dual
of the LP-problem corresponding to the grand coalition. We provide
lower (upper) bounds on the values of the game by aggregating over
columns (rows) of the LP-problem. By choosing aggregation weights
corresponding to optimal solutions of the primal (dual) LP-problem,
we can create new games whose core form a superset (subset) of the
original core. An estimate of the resulting error, in terms of an ε-core,
is obtained by solving a mixed-integer programming problem, and we
also suggest an iterative procedure for improving the bounds. Using a
set of numerical examples, we investigate how the performance of the
aggregation approach depends on the structure of the problem data.

Keywords: linear programming, cooperative game theory

1 Introduction

We study a model of a production economy, in which the production tech-

nology is given by linear relationships, and where every group of agents have

access to the same technology. There is a set of resources R that can be
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used to produce a set of products P . The production technology is given

by a matrix A, where aij is the amount of resource i needed to produce one

unit of product j. It is assumed that an infinite amount of product j can be

sold at the price cj , giving the price vector c = {c1, . . . , cp}. The resources

available is given by a vector b = {b1, . . . , br}, where bi is the amount avail-

able of resource i. The maximal profit that can be made from the resource

bundle b is given by

max
{

cT x : Ax ≤ b, x ∈ IRp
+

}

, (1.1)

where xj denotes the amount of product j that is produced.

The resources are owned by a set N of agents, and ownership of the resources

is dispersed among the agents. The agents may operate on their own, or

they may combine their resources in order to increase the total profit. Before

they agree to cooperate, they will typically decide how to allocate the total

profit among themselves. The resulting allocation will, among other things,

depend on the outside options available to the agents, i.e., the profits that

can be earned by sub-groups of agents if they should decide to establish

their own production facilities. The problem of finding an allocation of the

profit can be modeled as a TU-game, such as in Owen (1975), providing us

with solution concepts such as the core. Generalizations, with respect to

how resources are controlled by various subsets (coalitions) of agents, have

been studied by Granot (1986) and Curiel et al. (1989).

To describe a solution to a TU-game, we need to know not only the profit

that can be made by N , but also the corresponding values for some or all

of the subsets S ⊂ N . Since there are 2n − 1 such subsets, the amount of

computational work involved can be prohibitive. In this paper we present

a method that provides us with lower and upper bounds on v(S) for any

S ⊆ N , while requiring less computational effort than actually computing

v(S). Our method is related to aggregation of columns and rows in linear

programming problems, as in Zipkin (1980b) and Zipkin (1980a), respec-

tively.

In Section 2 we define linear production processes and linear production

games, as well as some concepts related to cooperative game theory. Section

3 describes how lower and upper bounds for linear production games can be
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found by aggregating columns and rows, respectively, and in Section 4 we

give a method to find bounds on the error resulting from the aggregation.

The method involves solving a mixed integer programming problem, and

the solution from this problem also suggests how the weight matrix of the

aggregated game may be updated in order to improve the bound. Finally, in

Section 5, we investigate, using numerical examples, how the performance

of the aggregation approach depends on the structure of the problem data.

2 Linear production games

The set of agents (players) is denoted by N , the set of resources by R, and

the set of products by P , where n := |N |, r := |R|, and p := |P |. The

production technology is described by the matrix A ∈ IRr×p, where aij is

the amount of resource i needed to produce one unit of product j. The profit

per unit sold of product j is cj , making up the column1 vector c ∈ IRp. Each

coalition S ⊆ N owns the resources given by b(S) = {b1(S), . . . , br(S)},

where bi(S) is the amount of resource i that the subset S controls.

Definition 2.1 The triple (A, b, c) is a linear production process if

(i) aij ≥ 0 for all i ∈ R and j ∈ P ,

(ii) bi(S) ≥ 0 for all i ∈ R and S ⊆ N ,

(iii) if cj > 0, then there exists some resource i such that aij > 0.

The above assumptions ensures that that the linear programs that we will

define below have finite optimal solutions. For a linear production process

(A, b, c), and for every S ⊆ N , the maximal profit that the agents in S can

obtain by pooling their resources is given by

v(A,b,c)(S) := max
{

cT x : Ax ≤ b(S), x ∈ IRp
+

}

. (2.1)

We will refer to the LP-problem given by (2.1) as LP (A, b, c, S), or, if this is

unambiguous, just LP (S). From the Duality Theorem of Linear Program-

1If nothing else is stated, a vector is assumed to consist of one column.
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ming follows that we can also compute the value of LP (S) from

v(A,b,c)(S) = min
{

uT b(S) : AT u ≥ c, u ∈ IRr
+

}

. (2.2)

For every linear production process (A, b, c) we define a linear production

game (N, v(A,b,c)), where N is the set of players, and v(A,b,c) : 2N → IR is the

characteristic function2. We will mostly skip the superscript and just write

v for the characteristic function.

A solution of the game v is an allocation vector z = {z1, . . . , zn}, where zi

specifies the amount of the total profit awarded to player i. A core solution

satisfies Pareto-efficiency, i.e., z(N) = v(N), as well as the participation

constraints z(N) ≥ v(S) ∀S ⊂ N . The core of the game v will be denoted

C(v). For some allocation vector z ∈ IRn, let e(v, S, z) := v(S)−z(S) denote

the excess value of coalition S ⊆ N . The strong ε-core3 is defined as

Cε(v) := {z ∈ IRn : z(N) = v(N) and e(v, S, z) ≤ ε ∀S}. (2.3)

If ε = 0, we have Cε(v) = C(v), and for ε ≤ 0 we have Cε(v) ⊆ C(v).

Several variations on linear production games, with respect to how the func-

tion b is defined, exist in the literature. Owen (1975) studies the situation

where the resources are controlled by individual players, where bik denotes

the amount of resource i controlled by player k. Owen assumes that a group

of players can pool their resources by simply adding the individual amounts,

i.e., bi(S) =
∑

k∈S bik. In this case, an allocation in the core can be deduced

from an optimal solution to the dual of LP (N). If u is such an optimal

dual solution then y is in the core of v, where yk :=
∑

i∈R bikui for every

k ∈ N . Gellekom et al. (1999) provide alternative characterizations of this

allocation rule.

Granot (1986) generalizes this model, and studies the core of the linear

production game (N, v(A,b,c)) by looking at the resource games (N, bi), i ∈

R. If the cores of all the resource games are nonempty, then the core of

(N, v(A,b,c)) is also nonempty. Moreover, if ti is a core allocation for the

resource game (N, bi) for every i ∈ R, and u is an optimal dual solution

2Let 2N denote the set of all subsets of N .
3See Maschler et al. (1979).
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to LP (N), then a core allocation for the game (N, v(A,b,c)) is given by the

vector y, where the amount allocated to player k is yk :=
∑

i∈R tikui.

Curiel et al. (1989) assumes that each resource i ∈ R is divided into di

portions. The amount of resource i belonging to portion q, 1 ≤ q ≤ di, is bq
i .

Portion q of resource i is controlled by a committee Q ⊆ N , meaning that

a coalition S ⊆ N can only use this portion if it contains Q. Formally, this

is modeled using a simple game4 (N, wq
i ), where wq

i (S) = 1 only if Q ⊆ S.

The amount of resource i ∈ R controlled by coalition S is given by bi(S) :=
∑di

q=1 bq
i w

q
i (S). Curiel et al. show that the core of a linear production game

is nonempty if all the games wq
i , where i ∈ R and q ∈ {1, . . . , di}, have

nonempty cores. Moreover, if zq
i is in the core of the game (N, wq

i ) for every

i ∈ R and q ∈ {1, . . . , di}, and if u is an optimal dual solution to LP (N),

then y is a core allocation for (N, v(A,b,c)), where yk :=
∑

i∈R ui

∑di

q=1 bq
i (z

q
i )k

for every k ∈ N .

3 Aggregation of columns and rows

Reducing the size of (each of) the linear programs that must be solved in

order to compute v can be done by aggregating over columns or rows (or

both), as in Zipkin (1980b) and Zipkin (1980a), respectively.

In Zipkin (1980b), column aggregation is performed by specifying a partition

of the set of columns. The columns belonging to each partition member are

combined using a pre-specified weight vector. After the aggregated problem

has been solved, a feasible solution to the original problem can be obtained

by disaggregating using the same weight vectors. Our approach is a general-

ization5 of that of Zipkin, and the aggregation is performed by multiplying

4A game (N, g) is simple if g(N) = 1 and g(S) ∈ {0, 1} for every S ⊆ N .
5In Zipkin (1980b), column aggregation is performed by specifying a partition σ =

{Pk : k = 1, . . . , K} of P , and a weight vector gk for each member of this partition.
To illustrate how our approach relates to that of Zipkin, consider an example with four
products, where σ = {{1, 2}, {3, 4}}, and where g1

1 = g1

2 = g2

1 = g2

2 = 0.5. In our case this
corresponds to the matrix

G =









0.5 0
0.5 0

0 0.5
0 0.5









Note that our approach is more general than that of Zipkin, in that aggregation is done
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A and c with the matrix G ∈ IRp×p̄
+ , where p̄ is the number of ”products”

of the resulting linear production process (AG, b, GT c). Our purpose is to

reduce the size of the LP-problems to be solved when computing the values

of the linear production game, so we will typically have p̄ < p. The values

of the resulting linear production game, which we label vG, is given by, for

every S ⊆ N ,

vG(S) := v(AG,b,GT c)(S) = max
{

cT GX : AGX ≤ b(S), X ∈ IRp̄
+

}

. (3.1)

The linear program to be solved by coalition S will be denoted LP G(S) =

LP (AG, b, GT c, S). In order to distinguish between the solutions of the

original and the aggregated LP-problem, we will use uppercase letters to

denote solutions to the latter problem. In order to illustrate how vG is

constructed, we provide an example.

Example 3.1 [Figures 3.1 and 3.2] There are four products (p = 4) and

two resources (r = 2), and the production technology and the profits that

can be made are given by

A =

[

2 1 3 1
1 2 2 1

]

, and cT =
[

6 6 8 5
]

.

The resources are controlled by three players (n = 3), and, as in Owen

(1975), we assume that b(S) := BeN
S for every S ⊆ N , where

B =

[

9 0 6
1 8 3

]

.

The value of coalition S is computed as

v(S) = max 6x1 + 6x2 + 8x3 + 5x4

s.t. 2x1 + 1x2 + 3x3 + 1x4 + s1 = b1(S)

1x1 + 2x2 + 2x3 + 1x4 + s2 = b2(S)

xj ≥ 0 for j = 1, 2, 3, 4

si ≥ 0 for i = 1, 2

and the (unique) optimal solutions of the primal problems are shown in

Figure 3.1.

with respect to coverings of the set of columns, since each row of G can have more than
one nonzero element (see Section 4 of Zipkin (1980b)).
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S x1 x2 x3 x4 s1 s2 v(S) vG(S) vG′

(S)

1 1 0 0 0 7 0 6 5.25 6
2 0 0 0 0 0 8 0 0 0

3 3 0 0 0 0 0 18 15.75 18
1 2 0 0 0 9 0 0 45 37.8 45
1 3 4 0 0 0 7 0 24 21 24

2 3 0 5 0 1 0 0 35 25.2 30
1 2 3 3 0 0 9 0 0 63 63 63

Figure 3.1: Optimal primal solutions for Example 3.1

Suppose now that we combine the columns of A using one of the solutions

shown in Figure 3.1. Choosing the solution corresponding to the grand

coalition, i.e.,

G =









3
0
0
9









,

gives the new linear production process (AG, b, GT c), where

AG =

[

15
12

]

and cT G =
[

63
]

.

Since the aggregated game has a single column, its value for a particular

coalition can be computed by solving a continuous knapsack problem, e.g.,

for the grand coalition the value is

vG(N) = max{63X : 15X ≤ 15, 12X ≤ 12, X ∈ IR1
+}

= 63 × min

{

15

15
,
12

12

}

= 63 = v(N).

Not surprisingly, for the grand coalition, from which we obtained the ag-

gregation weights, the game vG coincides with v. For the other coalitions,

having smaller amounts of resources than N , the value of the aggregated

game is obtained by scaling down the value of the grand coalition. E.g., for

coalition {1, 3},

vG(1, 3) = max{63X : 15X ≤ 15, 12X ≤ 4, X ∈ IR1
+}

= 63 × min

{

15

15
,

4

12

}

= 21 < v(1, 3) = 24.

We note that for all coalitions, the game vG forms a lower bound for v.
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Had we instead chosen the weight matrix

G′ =









0 4
0 0
0 0
9 0









,

i.e., the columns of G′ correspond to the optimal solutions of LP (1, 2) and

LP (1, 3), the game vG′

, also shown in Figure 3.1, would result. The games

v and vG′

coincide for all but one coalition, namely {2, 3}. An interesting

point is that coincidence occurs even for coalitions for which we did not

include the optimal solution in G′. We will show, in Proposition 3.2(iii), that

coincidence will occur for a coalition S if and only if the optimal solution

for LP (S) can be obtained as a linear combination of the columns of G′. In
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the example, the optimal solution for the grand coalition can be obtained6

by combining the solutions for {1, 2} and {1, 3} as

[

3 0 0 9
]

= 1 ·
[

0 0 0 9
]

+
3

4

[

4 0 0 0
]

,

hence we will have vG′

(N) = v(N). The weights in this expression corre-

spond to the optimal primal solution of LP G′

(N), i.e., X∗
1 = 1 and X∗

2 = 3
4 .

/

Proposition 3.2 Let (A, b, c) be a linear production process, and G ∈ IRp×p̄
+ .

Then the following statements are true:

(i) (AG, b, GT c) is a linear production process.

6In fact, the two problems LP (N) and LP (1, 2) have the same optimal basis, hence the
solution of both problems could have been obtained using the corresponding basis matrix.
For any coalition S we can write the primal of LP (S) as

v(S) = max c
T
x

s.t Ax + Is = b(S) (3.2)

x ≥ 0, s ≥ 0,

where s is a vector of slack variables. Letting

d
T := [cT 0T ], y :=

[

x

s

]

, and C := [A I],

we can rewrite (3.2) as

max d
T
y

s.t Cy = b(S) (3.3)

y ≥ 0

The optimal basis matrix B ∈ IRr×r, not to be confused with the matrix describing
ownership of the resources, determines the solutions of the primal and dual, respectively,
as

y
∗

B = B
−1

b(S) and u
∗ = (dT

BB
−1)T

.

Hence, if B is an optimal basis also for some other coalition R 6= S, then B
−1b(R) is an

optimal primal solution to LP (R).
In the example, an optimal basis for coalitions N and {1, 2} corresponds to columns 1

and 4 of the matrix A, i.e., the basis matrix

B =

[

2 1
1 2

]

and its inverse B
−1 =

[

1 −1
−1 2

]

.

The optimal solution for LP (N) and LP (1, 2) are, respectively,

B
−1

b(N) = B
−1

[

15
12

]

=

[

3
9

]

and B
−1

b(1, 2) = B
−1

[

9
9

]

=

[

0
9

]

.
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(ii) vG(S) ≤ v(S) for every S ⊆ N .

(iii) vG(S) = v(S) if and only if there exists X ∈ IRp̄ such that GX is an

optimal primal solution of LP (S).

Proof. (i) Since A and G have non-negative elements, the elements of

AG must also be non-negative. Also, if (GT c)j =
∑

k∈P ckgkj > 0 for some

j ∈ P̄ , then there must exist some k ∈ P such that ck > 0 and gkj > 0.

Then, since (A, b, c) is a linear production process, there must exist some

i ∈ R such that aik > 0, and hence (AG)ij =
∑

l∈P ailglj ≥ aikgkj > 0.

(ii) For S ⊆ N and an optimal solution X to the primal of LP G(S), we

have AGX ≤ b(S), implying that GX is a feasible solution to the primal of

LP (S), hence we must have v(S) ≥ cT GX = vG(S).

(iii) If GX is optimal in LP (S), then

v(S) = cT GX ≤ vG(S) ≤ v(S) ⇒ vG(S) = v(S).

The optimality of GX in LP (S) implies AGX ≤ b(S), i.e., X is feasible

in the primal of LP G(S), hence the first inequality. The second inequality

follows from (ii).

Suppose vG(S) = cT GX = v(S), where X ∈ IRp̄ is an optimal primal solu-

tion to LPG(S). Then clearly, GX ∈ IRp is feasible in LP (S), since GX ≥ 0

and AGX ≤ b(S). Then, since v(S) = cT GX, the solution GX must be

optimal in LP (S). 2

From Proposition 3.2(iii), we know that by including in G an optimal so-

lution for the grand coalition, we can make vG(N) = v(N). Also, since

vG ≤ v, by Proposition 3.2(ii), the core of vG will contain the core of v.

This is illustrated by Figure 3.2, where the solid lines represent the game v,

and the dashed lines the game vG.

We may also aggregate over the rows (resource constraints) of the LP-

problem, as in Zipkin (1980a). Let R̄ be the set of ”resources” in the

aggregated problem. Then, take some H ∈ IRr̄×r
+ and define, for every
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(63,0,0) (0,63,0)

(0,0,63)

{1}

{2
}

{1
, 3
}

{3}

{1, 2}

{2, 3}

Figure 3.2: Core of v and vG in Example 3.1

S ⊆ N ,

vH(S) := v(HA,bH ,c)(S) = max
{

cT x : HAx ≤ bH(S), x ∈ IRp
+

}

= min
{

UT Hb(S) : UT HA ≥ cT , U ∈ IRr̄
+

}

,

where bH(S) := Hb(S) for every S ⊆ N . The linear program to be solved

by coalition S will be denoted LP H(S) = LP (HA, bH , c, S).

Example 3.3 [Figures 3.3 and 3.4] There are two products (p = 2) and four

resources (r = 4), and the production technology and the profits that can

be made are given by

A =









2 1
1 2
3 2
1 1









, and cT =
[

6 6
]

.

The resources are controlled by three players (n = 3), and b(S) = BeN
S for
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every S ⊆ N , where

B =









9 0 3
1 8 3
3 4 7
3 3 3









.

The value of coalition S can be obtained as

v(S) = min u1b1(S) + u2b2(S) + u3b3(S) + u4b4(S)

s.t. 2u2 + 1u2 + 3u3 + 1u4 − s1 = 6

1u1 + 2u2 + 2u3 + 1u4 − s2 = 6

ui ≥ 0 for i = 1, 2, 3, 4

sj ≥ 0 for j = 1, 2

and the optimal solutions of the dual problems are shown in Figure 3.3.

S u1 u2 u3 u4 s1 s2 v(S) vH(S) vH′

(S) vH′′

(S)

1 0 1.5 1.5 0 0 0 6 6 6 6
0 6 0 0 0 6

2 6 0 0 0 6 0 0 18 12 0
3 2 2 0 0 0 0 12 15 15 15

1 2 0 0 3 0 3 0 21 24 21 24
1 3 0 1.5 1.5 0 0 0 21 21 21 21

2 3 6 0 0 0 6 0 18 33 33 18
1 2 3 0 1.5 1.5 0 0 0 39 39 39 39

Figure 3.3: Optimal dual solutions for Example 3.3

The weight matrix could e.g. be constructed from the dual solution for the

grand coalition, i.e.,

H =
[

0 1.5 1.5 0
]

,

which produces the new linear production process7 (HA, Hb, c), where

HA =
[

6 6
]

and HB =
[

6 18 15
]

.

The dual of LP H(N) can now easily be solved as a continuous knapsack

7It is not obvious that the aggregation actually yields a linear production process, since
we may use H such that for a product j for which cj > 0, we have (HA)ij = 0 for all
i ∈ R̄.
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problem

vH(N) = min{39U : 6U ≥ 6, 6U ≥ 6, U ∈ IR1
+}

= 39 × max

{

6

6
,
6

6

}

= 39 = v(N).

Again, as for column-aggregation, the value of vH for the grand coalition,

which we used to generate H, coincides with the value of the original game.

For other coalitions we get an upper bound on v, e.g.,

vH(2) = min{18U : 6U ≥ 6, 6U ≥ 6, U ∈ IR1
+}

= 18 × max

{

6

6
,
6

6

}

= 18 ≥ v(2).

Note also that, since the dual constraints are the same for all coalitions, and

they all have positive amounts of the single resource, U ∗ = 1 will be the

optimal solution for all of them, and we have the additive structure given by

vH(S) =
∑

k∈S(HB)k, i.e., the value for a coalition S is given by the total

value of the resources owned by S, where the value is computed using the

price vector included in H.

A slightly better bound is obtained by using

H ′ =

[

0 6 0 0
0 0 3 0

]

,

i.e., we use the dual solutions corresponding to the coalitions {1} and {1, 2}.

Note that we have v(N) = vH′

(N), even though the optimal dual solution

for the grand coalition is not included in H ′. However, as we shall prove in

Proposition 3.4(iii) below, coincidence follows from the fact that the optimal

dual solution of LP (N) can be written as a linear combination of the two

row vectors of H ′, i.e.,

[

0 1.5 1.5 0
]

=
1

4

[

0 6 0 0
]

+
1

2

[

0 0 3 0
]

.

The weights correspond to the optimal dual solution of LP H′

(N), i.e., U∗
1 =

1/4 and U∗
2 = 1/2. /

Proposition 3.4 Let (A, b, c) be a linear production process, and H ∈ IRr̄×r
+ .
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(i) If (HA, bH , c) is a linear production process, then vH(S) ≥ v(S) for

every S ⊆ N .

(ii) If, for some S ⊆ N , there exists U ∈ IRr̄ such that HT U is optimal in

the dual of LP (S), then (HA, bH , c) is a linear production process.

(iii) vH(S) = v(S) if and only if there exists U ∈ IRr̄ such that HT U is

optimal in the dual of LP (S).

Proof. (i) Take S ⊆ N and an optimal solution U to the dual of LP H(S).

Then, since the optimality of U implies UT HA ≥ cT , UT H must be feasible

in the dual of LP (S), which implies vH(S) = UT Hb(S) ≥ v(S).

(ii) Since the elements of A and H, as well as the values returned by the

function b, are non-negative, this must also be the case for the elements of

HA, as well as the values returned by bH . Also, since HT U is optimal in

the dual of LP (S), we must have
∑

i∈R̄ Ui(HA)ij ≥ cj for all j ∈ P . So if

cj > 0, there must exist some i ∈ R̄ such that (HA)ij > 0.

(iii) If HT U is optimal in the dual of LP (S), then

v(S) = UT Hb(S) ≥ vH(S) ≥ v(S) ⇒ vH(S) = v(S).

The optimality of HT U implies UT HA ≥ cT and HT U ≥ 0, hence U must

be feasible in the dual of LP H(S), which implies the first inequality. The

second inequality follows from (i).

Suppose vH(S) = UT Hb(S) = v(S), where U ∈ IRr̄ is optimal in the dual of

LPH(S). Then UT H ≥ 0 and UT HA ≥ cT implies that HT U is feasible in

the dual of LP (S), and optimality follows from v(S) = UT Hb(S). 2

The cores of v and vH in Example 3.3 are illustrated in Figure 3.4, where

the solid (dashed) lines are hyperplanes corresponding to v (vH). Since vH

is an upper bound for v, the core of vH is contained in the core of v. Note

that the core of vH consists of the single point

[

6 18 15
]

= HB,

i.e., the allocation where the resources of the players are valued at the price

vector corresponding to the dual solution of LP (N).
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(39,0,0) (0,39,0)

(0,0,39)

(6,18,15)
{1}

{2
}

{2
}

{1
, 3
}

{3}

{3}

{1, 2}

{1, 2}

{2, 3}

{2, 3}

Figure 3.4: Core of v and vH in Example 3.3

Proposition 3.5 Let u be an optimal dual solution to LP (Q) for some

Q ⊆ N such that v(Q) > 0. Then, if H = uT , we have vH(S) = uT b(S) for

every S ⊆ N .

Proof. Since the aggregated problem contains only one row, i.e., r̄ = 1,

the value of the game can be computed, for any S, as

vH(S) := min
{

UuT b(S) : UuT A ≥ cT , U ∈ IR1
+

}

= uT b(S) · max
j∈P

uT Aj>0

cj

uT Aj
(3.4)

Note that the feasibility of u, for any Q ⊆ N , implies that uT Aj ≥ cj holds

for every j ∈ P . Moreover, since v(Q) > 0, it must be optimal for the

coalition Q to produce at least one product, hence we must have uT Aj = cj

for at least one j ∈ P . Then vH(S) = uT b(S) follows from (3.4). 2
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4 Error bounds and ε-cores

The aggregated games presented in Section 3 enable us to analyze the origi-

nal game with less computational effort. However, aggregation introduces a

possible error, and the purpose of this section is to give an estimate of this

error.

First, we need to make clear what we mean by ”error”. Since the core is

one of the most widely used solution concepts for TU-games, it is natural

to discuss error bounds relative to it. Suppose we use the game vG as an

approximation to the game v, where we have chosen G, according to Propo-

sition 3.2, such that the core of v is contained in the core of vG. Knowing

that an allocation vector z belongs to C(vG) thus does not guarantee that it

also belongs to C(v), hence there might exist some coalition S that receives

less than its stand-alone value, i.e., z(S) < v(S). We shall use as a ”distance

measure” the excess e(v, S, z) = v(S) − z(S). Suppose we know that

C(vG) ⊆ Cε(v)

for some ε. Since z ∈ Cε(v), we know that no coalition has an excess of more

than ε, hence no coalition receives less than v(S)− ε. We would like to find

the smallest ε-core containing C(vG), i.e., we need to solve

min{ε : C(vG) ⊆ Cε(v)}. (4.1)

Since making ε sufficiently high always makes Cε(v) nonempty, (4.1) always

has a solution.

Proposition 4.1 Let (A, b, c) be a linear production process, and v be the

corresponding linear production game. Let G be a matrix constructed ac-

cording to Proposition 3.2 such that C(v) ⊆ C(vG), and let

ε := max
S∈2N\{N,∅}

{v(S) − vG(S)}. (4.2)

Then C(vG) ⊆ Cε(v).

Proof. If z ∈ C(vG), and Q ⊂ N , then

z(Q) ≥ vG(Q) ⇒ v(Q) − z(Q) ≤ v(Q) − vG(Q) ≤ ε.
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2

In Example 3.1, (4.2) gives ε = 9.8 = v(2, 3) − vG({2, 3}), and Figure 4.1

illustrates8 that Cε(v) ⊇ C(vG).

(63,0,0) (0,63,0)

(0,0,63)

C(vε)

C(vG)

{1}{2
}

{1
, 3
}

{3}

{1, 2}
{2, 3}

Figure 4.1: Core of vG (shaded) and ε-core (hatched) in Example 3.1

Likewise, consider the games v and vH , and suppose we know that

C(vH) ⊇ Cε(v)

for some ε. By using vH instead of v, we may exclude from consideration

some elements of the core of v. However, we are certain to include all the

points in Cε(v), i.e., those with an excess less than or equal to ε. Of course,

for ε = 0, we exclude no core elements, and in this case it follows that the

cores of v and vH coincide. We would like to find the largest ε-core that is

8The solid lines correspond to the sets

H
ε
S(v) := {z ∈ IRn : z(N) = v(N) and z(S) = v(S) − ε}.
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contained in C(vH), i.e., we solve

max{ε : Cε(v) ⊆ C(vH)}. (4.3)

Whereas (4.1) always has a solution, (4.3) does not, since Cε(v) is empty for

small enough values of ε.

Proposition 4.2 Let (A, b, c) be a linear production process, and v the cor-

responding linear production game. Let H be a matrix constructed according

to Proposition 3.4 such that C(vH) ⊆ C(v), and let

ε := min
S∈2N\{N,∅}

{v(S) − vH(S)}. (4.4)

Then, if Cε(v) 6= ∅, we have Cε(v) ⊆ C(vH).

Proof. If z ∈ Cε(v), and Q ⊂ N , then

v(Q) − z(Q) ≤ ε ≤ v(Q) − vH(Q) ⇒ z(Q) ≥ vH(Q).

2

In Example 3.3, if the weight matrix

H ′′ =

[

0 1.5 1.5 0
6 0 0 0

]

is used, then (4.4) gives ε = −3 = v(1, 2) − vH′

(1, 2) = v(3) − vH′

(3). In

Figure 4.2 the cores of v and vH′′

are given by the shaded area and the thick

solid line, respectively. The ε-core of v is represented by the white solid line,

and we see that Cε(v) ⊆ C(vH′′

). Note that we deliberately chose H ′′ here

in order to make the ε-core of nonempty, given that ε satisfies (4.4).

How can we find the error bounds given by (4.2) and (4.4) in practice?

In addressing this question, we will limit our attention to the special case

considered by Owen (1975). Here, player k controls bik units of resource i,

where bik corresponds to row i and column k of the matrix B ∈ IRr×n
+ . The

coalition S pool their resources by simply summing them, i.e., they control

the resource vector b(S) := BeN
S . In what follows, we will let (A, B, c) denote

a linear production process, where the matrix B has replaced the function

b.

18



(39,0,0) (0,39,0)

(0,0,39)

{1}{2
}

{1, 2}

{3}

{1
, 3
}

{2, 3}

Figure 4.2: Core of vH′′

(black line) and ε-core (white line) in Example 3.3

Problem (4.2) may be formulated as

εG := max
x,u,s

cT x − uT Bs (4.5)

subject to Ax ≤ Bs (4.6)

uT AG ≥ cT G (4.7)

x ≥ 0 (4.8)

u ≥ 0 (4.9)

0 ≤ s ≤ 1 (4.10)

s integer (4.11)

In a solution (x, u, s) to (4.5)-(4.11), x ∈ IRp is a solution to the primal of

LP (S), and u ∈ IRr is a solution to the dual of LP G(S). The coalition

S corresponding to the solution is given by S = {k ∈ N : sk = 1}. The

objective function (4.5) maximizes the difference between the optimal values

of the two problems. Primal feasibility of LP (S) is ensured by (4.6) and

(4.8), and dual feasibility of LP G(S) by (4.7) and (4.9). Problem (4.5)-
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(4.11) may be rewritten as:

max
∑

j∈P

cjxj −
∑

i∈R

∑

k∈N

bikuisk (4.12)

subject to
∑

j∈P

aijxj ≤
∑

k∈N

biksk ∀i ∈ R (4.13)

∑

i∈R

ui

∑

j∈P

aijgj` ≥
∑

j∈P

cjg`j ∀` ∈ P̄ (4.14)

xj ≥ 0 ∀j ∈ P (4.15)

ui ≥ 0 ∀i ∈ R (4.16)

0 ≤ sk ≤ 1 ∀k ∈ N (4.17)

s integer (4.18)

Finding a solution to (4.12)-(4.18) is made more difficult by the fact that

(4.12) is non-concave, and because of the integrality condition (4.18). Meth-

ods to linearize such problems are given by Petersen (1971), Glover (1975),

and Adams and Sherali (1990). In Petersen (1971) the product term uisk is

replaced by the variable wik, and the following constraints are added:

ui − u+
i (1 − sk) ≤ wik ≤ u+

i sk ∀i ∈ R, k ∈ N (4.19)

wik ≥ 0 ∀i ∈ R, k ∈ N (4.20)

wik ≤ ui ∀i ∈ R, k ∈ N (4.21)

The constant u+
i is an upper bound on the value of the variable ui. If sk = 1,

then the first inequality of (4.19), together with (4.21) imply ui ≤ wik ≤ ui.

In the case where sk = 0, the second inequality of (4.19) together with (4.20)

imply 0 ≤ wik ≤ 0. Hence the equality wik = uisk always holds, and we

may replace the objective function (4.12) by

max
∑

j∈P

cjxj −
∑

i∈R

∑

k∈N

bikwik. (4.22)

Problem (4.12)-(4.18) is equivalent to the mixed-integer programming prob-

lem given by (4.13)-(4.22), hereafter referred to as MIP G. Note that in an

optimal solution, either we have ui = 0 for all i ∈ R, or at least one of the

constraints (4.14) is binding. Hence the upper bounds for the variable u can
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be set to

u+
i := max











max
`∈P̄

∑

j∈P gj`aij 6=0

∑

j∈P gj`cj
∑

j∈P gj`aij
, 0











∀i ∈ R.

Problem (4.4) may be formulated as

εH := max
x,u,s

cT x − uT Bs (4.23)

subject to HAx ≤ HBs (4.24)

uT A ≥ cT (4.25)

x ≥ 0 (4.26)

u ≥ 0 (4.27)

0 ≤ s ≤ 1 (4.28)

s integer, (4.29)

which, in a manner similar to that applied to (4.5)-(4.11), can be rewritten

as

max
∑

j∈P

cjxj −
∑

i∈R

∑

k∈N

bikwik (4.30)

subject to
∑

j∈P

xj

∑

i∈R

h`iaij ≤
∑

k∈N

sk

∑

i∈R

h`ibik ∀` ∈ R̄ (4.31)

∑

i∈R

uiaij ≥ cj ∀j ∈ P (4.32)

xj ≥ 0 ∀j ∈ P (4.33)

ui ≥ 0 ∀i ∈ R (4.34)

0 ≤ sk ≤ 1 ∀k ∈ N (4.35)

s integer (4.36)

ui − u+
i (1 − sk) ≤ wik ≤ u+

i sk ∀i ∈ R, k ∈ N (4.37)

wik ≥ 0 ∀i ∈ R, k ∈ N (4.38)

wik ≤ ui ∀i ∈ R, k ∈ N, (4.39)

where

u+
i := max







max
j∈P

aij 6=0

cj

aij
, 0







∀i ∈ R.
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The mixed integer programming problem given by (4.30)-(4.39) will here-

after be referred to as MIP H .

Example 4.3 [Figure 4.3] The data of this example is given by n = 5, p = 5,

r = 10,

A =

































7 3 5 2 1
6 9 9 5 10
6 3 3 4 3
9 5 4 2 1
3 6 10 2 4
4 5 1 3 8
4 3 4 2 3
7 9 1 1 7
5 8 9 3 2
2 6 3 10 2

































, c =













53
57
49
34
41













, and B =

































4 0 15 0 0
0 22 18 0 0
9 0 11 0 0
0 17 0 5 0

19 0 0 7 0
0 13 0 9 0
2 0 0 0 15
0 22 0 0 4

12 0 0 0 16
0 23 0 0 0

































.

The value of the grand coalition is v(N) = 241.046. We aggregate rows

using the matrix

H :=
[

0.0 0.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0
]

,

corresponding to the optimal dual solution of LP (N). Solving MIP H yields

εH = 226.576, corresponding to the coalition {2, 3, 4}. We add a new row

corresponding to u∗, the optimal dual solution to LP (2, 3, 4), to the weight

matrix and obtain

H :=

[

0.0 0.0 0.0 0.0 0.0 0.0 19.0 0.0 0.0 0.0
0.0 0.0 0.0 0.000 17.7 0.0 0.0 0.0 0.0 0.0

]

,

and by solving MIP H again we obtain εH = 220.549, corresponding to the

coalition {2, 3, 5}. Continuing in this manner, new rows can be added to H

until the value of εH is small enough. In Figure 4.3, the solutions of MIP H ,

as new rows are added, are shown. After nine rows have been added, we

have εH = 0, implying that vH = v. /

5 Numerical results

The purpose of this section is to investigate how the performance of the

aggregation approach introduced in Section 3 depends on properties of the
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r̄ εH s∗ u∗

1 226.6 0 1 1 1 0 0.0 0.0 0.0 0.0 17.7 0.0 0.0 0.0 0.0 0.0
2 220.5 0 1 1 0 1 0.0 0.0 19.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 123.7 0 1 0 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.5
4 88.5 1 0 1 1 1 13.2 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0 0.0
5 69.0 1 1 0 0 1 0.0 0.0 0.0 3.2 2.9 3.2 0.0 0.0 0.0 1.2
6 46.3 1 1 1 0 1 9.6 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 21.8 1 1 0 1 1 0.0 3.3 0.0 3.0 0.0 0.0 0.0 0.3 0.5 1.0
8 0.0

Figure 4.3: Solutions of MIP H for Example 4.3

problem data. The analysis will be based on Owen’s (1975) model, where

the ownership of the resources is given by the matrix B. In our analysis, we

will especially focus on the density of A, and the degree to which ownership

is concentrated/dispersed, i.e., the structure of B.

A number of data sets with n = 5 were generated in a random manner.

The nonzero elements of A were drawn from a uniform discrete distribution

in the interval 1, . . . ,10. The density of A, i.e., the probability that a

particular element Aij is nonzero, was set equal to the values 0.1, 0.4, 0.7,

or 1.0. After A had been determined, we set cj :=
∑

i∈R Aij for all j ∈ P .

The total amount of resource i was initially set to biN :=
∑

j∈P Aij , which

was then distributed among the players according to the ownership profiles

shown in Figure 5.1, where the x’s indicate9 which players are allocated

positive amounts of each resource. For resource i denote these players by

Ni. Let βik ∼ U(0, 1) be a random number corresponding to resource i and

player k. Then the amount of resource i given to player k is given by

⌈

biN
βik

∑

`∈Ni
βi`

⌉

Profile 1 implies a relatively even distribution of the resources among the

players, and may be seen as an extreme case. At the other extreme we

find profile 4, where the entire amount of each resource is given to a single

player. In the former case, the increased profits resulting from cooperation

are modest, while in the latter cooperation is essential. Profiles 2 and 3 are

located somewhere in between the two extremes. Note that according to

these profiles, the resource bundles of player 1 and 2 are complements, and

9Row numbers from 1-10 refer to data sets with r = 10, and row numbers 1-100 to
datasets with r = 100.
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Player

Rows 1 2 3 4 5

1 1-10 x x x x x
2 11-20 x x x x x
3 21-30 x x x x x
4 31-40 x x x x x
5 41-50 x x x x x
6 51-60 x x x x x
7 61-70 x x x x x
8 71-80 x x x x x
9 81-90 x x x x x
10 91-100 x x x x x

(a) Profile 1

Player

Rows 1 2 3 4 5

1 1-10 x x
2 11-20 x x
3 21-30 x x
4 31-40 x x
5 41-50 x x
6 51-60 x x
7 61-70 x x
8 71-80 x x
9 81-90 x x
10 91-100 x x

(b) Profile 2

Player

Rows 1 2 3 4 5

1 1-10 x x
2 11-20 x x
3 21-30 x x
4 31-40 x x
5 41-50 x x
6 51-60 x x
7 61-70 x
8 71-80 x x
9 81-90 x x
10 91-100 x

(c) Profile 3

Player

Rows 1 2 3 4 5

1 1-10 x
2 11-20 x
3 21-30 x
4 31-40 x
5 41-50 x
6 51-60 x
7 61-70 x
8 71-80 x
9 81-90 x
10 91-100 x

(d) Profile 4

Figure 5.1: Ownership distribution profiles
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this is also the case for 3-5. Profile 3 differs from profile 2 in that player

4 does not own anything of resource 7 (61-70), and that player 4 does not

own anything of resource 10 (91-100). Hence, profile 3 should, a priori, give

greater benefits from cooperation than does profile 2.

Some properties/special cases regarding the data sets should be mentioned.

First, note that if the ownership of resources is highly concentrated, and the

density of A is high, we will have zero profits for many coalitions. In the

extreme case of profile 4, where each resource has a single owner, we will

have

v(S) = 0 ∀S 6= N, (5.1)

if all entries of A are nonzero. Hence, positive profits can only be made if

all the players pool their resources. In Figures 5.2 and 5.4, a ”?” after the

problem name indicates that (5.1) is satisfied.

On the other hand, in the case where A is sparse, the game v will in many

cases be additive, i.e.,

v(S) + v(T ) = v(S ∪ T ) ∀S, T ⊂ N s.t. S ∩ T = ∅. (5.2)

To see why this is the case, consider the special case where every column of

A has at most one nonzero entry. Then a unit of resource i should be used to

produce the product that gives the highest profit contribution per unit that

it consumes of resource i, i.e., the product, among those for which Aij > 0,

such that
cj

Aij
is greatest. Assuming that there is at least on product such

that Aij > 0, the value of one unit of resource i is the constant

wi := max
j∈P

Aij>0

cj

Aij
,

and this constant is independent of who the owner of resource i is. Hence,

the total profit that can be made by a coalition S can be found by simply

summing the value of its resources, i.e.,

v(S) =
∑

i∈R

wibi(S) =
∑

i∈R

∑

k∈S

wibik =
∑

k∈S

∑

i∈R

wibik,

which clearly satisfies (5.2). For additive games, the core consists of a single

point. If u∗ is an optimal solution to the dual of LP (N), we know from
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Profile Problem d p∗ ε1 ε5 ε10 ε20 ε30

P1D10A ◦ 0.1 15 0.361 0.180 0.122 0.000 0.000
P1D10B ◦ 0.1 14 0.391 0.224 0.133 0.000 0.000
P1D10C ◦ 0.1 17 0.418 0.151 0.069 0.000 0.000
P1D40A ◦ 0.4 13 0.394 0.306 0.137 0.000 0.000
P1D40B ◦ 0.4 18 0.348 0.212 0.130 0.000 0.000

1 P1D40C ◦ 0.4 11 0.339 0.172 0.069 0.000 0.000
P1D70A 0.7 16 0.237 0.154 0.122 0.000 0.000
P1D70B 0.7 18 0.333 0.159 0.086 0.000 0.000
P1D70C 0.7 21 0.446 0.197 0.134 0.009 0.000
P1D100A 1.0 31 0.456 0.180 0.131 0.068 0.003
P1D100B 1.0 30 0.367 0.199 0.104 0.042 0.000
P1D100C 1.0 26 0.281 0.151 0.088 0.018 0.000
P2D10A ◦ 0.1 23 0.780 0.593 0.463 0.207 0.000
P2D10B ◦ 0.1 25 0.747 0.620 0.481 0.219 0.000
P2D10C ◦ 0.1 23 0.630 0.602 0.439 0.213 0.000
P2D40A 0.4 26 0.715 0.575 0.456 0.147 0.000
P2D40B 0.4 26 0.627 0.574 0.435 0.127 0.000

2 P2D40C 0.4 27 0.704 0.596 0.459 0.136 0.000
P2D70A 0.7 25 0.752 0.573 0.294 0.039 0.000
P2D70B 0.7 26 0.774 0.639 0.418 0.080 0.000
P2D70C 0.7 24 0.679 0.512 0.275 0.041 0.000
P2D100A 1.0 11 0.502 0.304 0.019 0.000 0.000
P2D100B 1.0 7 0.606 0.107 0.000 0.000 0.000
P2D100C 1.0 11 0.385 0.200 0.004 0.000 0.000
P3D10A ◦ 0.1 25 0.713 0.639 0.500 0.282 0.000
P3D10B ◦ 0.1 25 0.868 0.607 0.494 0.202 0.000
P3D10C ◦ 0.1 25 0.735 0.627 0.475 0.265 0.000
P3D40A 0.4 29 0.838 0.652 0.547 0.299 0.000
P3D40B 0.4 29 0.850 0.636 0.497 0.258 0.000

3 P3D40C 0.4 30 0.800 0.671 0.525 0.232 0.000
P3D70A 0.7 21 0.796 0.540 0.347 0.101 0.000
P3D70B 0.7 22 0.837 0.518 0.410 0.114 0.000
P3D70C 0.7 21 0.707 0.483 0.271 0.039 0.000
P3D100A 1.0 8 0.631 0.165 0.000 0.000 0.000
P3D100B 1.0 5 0.586 0.000 0.000 0.000 0.000
P3D100C 1.0 8 0.509 0.213 0.000 0.000 0.000
P4D10A 0.1 31 0.880 0.721 0.619 0.405 0.042
P4D10B ◦ 0.1 31 0.849 0.718 0.620 0.416 0.151
P4D10C ◦ 0.1 31 0.876 0.733 0.609 0.412 0.124
P4D40A 0.4 30 0.812 0.792 0.596 0.360 0.000
P4D40B 0.4 27 0.832 0.772 0.589 0.253 0.000

4 P4D40C 0.4 27 0.815 0.787 0.590 0.327 0.000
P4D70A 0.7 11 0.789 0.660 0.203 0.000 0.000
P4D70B 0.7 12 0.813 0.689 0.276 0.000 0.000
P4D70C 0.7 8 0.819 0.649 0.000 0.000 0.000
P4D100A ? 1.0 1 0.000 0.000 0.000 0.000 0.000
P4D100B ? 1.0 1 0.000 0.000 0.000 0.000 0.000
P4D100C ? 1.0 1 0.000 0.000 0.000 0.000 0.000

Figure 5.2: Results for column aggregation, with n = 5, p = 100, and r = 10
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Owen (1975) that the entire core is given by the point (u∗)T B. In Figures

5.2 and 5.4, a ”◦” after the problem name indicates that (5.1) is satisfied.

For the data sets shown in Figure 5.2, where p = 100 and r = 10, column

aggregation was performed. Initially, the weight matrix G consisted of a

single column corresponding to an optimal primal solution of LP (N), and

new columns were added by repeatedly solving MIP G, where p∗ is the

number of columns needed in order to have εG = maxS⊂N, S 6=∅{v(S) −

vG(S)} = 0, i.e., in order for the games v and vG to coincide. Note that the

number of coalitions is 2n−1 = 31, which is an upper bound on the number

of columns needed. In the table of Figure 5.2 is also reported εt, the value

of εG/v(N) when t columns have been added to G.

The results in Figure 5.2 indicate that the effect on p∗ of varying the density

of A is ambiguous. If ownership is concentrated, as in profile 4, increasing

density has a negative effect on p∗, whereas when ownership is dispersed, the

effect is positive. Figure 5.3, based on four of the datasets, can help explain

this phenomenon. Each row in the four respective diagrams corresponds

to a coalition, and the coalitions have been sorted according to their size,

as indicated by the numbers to the left of the diagrams. The |’s and •’s

represent nonzero elements of optimal primal solutions to LP (S) for every

nonempty coalition S ⊆ N . Let Ω(G) denote the set of coalitions that

correspond to columns included in G. The •’s correspond to coalitions

that are members of Ω(G), while the |’s correspond to coalitions outside of

Ω(G)10.

We see that increased density

(i) leads to more variation among the production plans of the various

coalitions, and

(ii) makes it more difficult for small coalitions to produce anything at all,

i.e., there are fewer nonzero entries for small coalitions.

When ownership is dispersed, such as for profile 1, effect (i) is dominant.

10In this latter case, because of Proposition 3.2(iii), we solved LP G(S) and used GX

to obtain an optimal solution of LP (S). Hence, if there are multiple optimal solutions to
LP (S), we ensure that the chosen solution can indeed be expressed as a linear combination
of the columns of G.
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(c) P3D10A
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(d) P3D100A

Figure 5.3: Nonzero elements of primal solutions
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Proposition 3.2(iii) indicates that greater variation among the primal so-

lutions of various coalitions makes the column aggregation approach less

successful. When ownership is relatively concentrated, as for profile 3, ef-

fect (ii) dominates. If a coalition S cannot produce anything, we will have

v(S) = 0, hence 0 ≤ vG(S) ≤ v(S) ⇒ vG(S) = v(S) = 0 for any choice of

the weight matrix G ∈ IRp×p̄
+ .

For the data sets of Figure 5.4, where n = 5, p = 10, and r = 100, row ag-

gregation was performed. Initially, H consisted of one row corresponding to

an optimal dual solution of LP (N), and new rows were added by repeatedly

solving MIPH . The number r∗ indicates the number of rows that had to

be included in H in order to make v = vH . We also report εt, the value of

εH/v(N) when t rows have been added to H.

The results in Figure 5.4 indicate that increased density of A makes the row

aggregation approach more successful, i.e., r∗ decreases, except for profile 1,

where r∗ is close to or at the upper bound 2n − 1. In order to explain this,

consider Figure 5.5, which is similar to Figure 5.3, except that the nonzero

elements of optimal dual solutions are indicated for every coalition. The •’s

correspond to S ∈ Ω(H), where Ω(H) is the set of coalitions corresponding

to rows of H, and the |’s correspond to S 6∈ Ω(H)11.

We see that increased density of A, for the examples shown in Figure 5.5,

has the effect of decreasing the number of nonzero entries. To see why this is

the case, note that a relatively dense A-matrix makes decisions on different

products/resources more interdependent. The number of bottlenecks, and

hence the number of positive dual prices, will be fewer, as seen for dataset

P2D100D and P4D100D. This makes it easier to express the dual solutions

of all coalitions as combinations of the dual solutions of a relatively small

subset of the coalitions.

More concentrated ownership seems to work in the same direction as in-

creased density of A, but we have no good explanation for this phenomenon

at present.

11In this latter case, we solved LP G(S) and, considering Proposition 3.4(iii), used UT H

in order to obtain an optimal solution to LP (S). Hence, if there are multiple optimal dual
solutions, we choose one that can be expressed as a linear combination of the rows of H.
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Profile Problem Density r∗ ε1 ε5 ε10 ε20 ε30

P1D10D 0.1 31 0.218 0.097 0.040 0.026 0.006
P1D10E 0.1 31 0.153 0.088 0.050 0.020 0.001
P1D10F 0.1 31 0.155 0.085 0.043 0.020 0.003
P1D40D 0.4 31 0.282 0.167 0.081 0.036 0.011
P1D40E 0.4 31 0.319 0.177 0.076 0.040 0.005

1 P1D40F 0.4 31 0.337 0.197 0.094 0.039 0.003
P1D70D 0.7 31 0.303 0.186 0.083 0.047 0.017
P1D70E 0.7 31 0.342 0.210 0.140 0.050 0.007
P1D70F 0.7 31 0.382 0.202 0.141 0.046 0.009
P1D100D 1.0 30 0.328 0.239 0.141 0.065 0.000
P1D100E 1.0 31 0.317 0.208 0.118 0.046 0.002
P1D100F 1.0 31 0.509 0.201 0.133 0.043 0.002
P2D10D 0.1 20 0.646 0.404 0.156 0.000 0.000
P2D10E 0.1 21 0.646 0.332 0.119 0.014 0.000
P2D10F 0.1 17 0.707 0.484 0.205 0.000 0.000
P2D40D 0.4 17 0.816 0.502 0.104 0.000 0.000
P2D40E 0.4 17 0.865 0.443 0.065 0.000 0.000

2 P2D40F 0.4 17 0.734 0.457 0.311 0.000 0.000
P2D70D 0.7 15 0.852 0.572 0.053 0.000 0.000
P2D70E 0.7 15 0.867 0.581 0.063 0.000 0.000
P2D70F 0.7 16 0.844 0.437 0.055 0.000 0.000
P2D100D 1.0 14 0.927 0.492 0.010 0.000 0.000
P2D100E 1.0 14 0.791 0.713 0.015 0.000 0.000
P2D100F 1.0 12 0.942 0.397 0.002 0.000 0.000
P3D10D 0.1 17 0.715 0.246 0.111 0.000 0.000
P3D10E 0.1 18 0.639 0.403 0.135 0.000 0.000
P3D10F 0.1 18 0.725 0.275 0.178 0.000 0.000
P3D40D 0.4 11 0.743 0.540 0.017 0.000 0.000
P3D40E 0.4 10 0.869 0.481 0.000 0.000 0.000

3 P3D40F 0.4 16 0.811 0.390 0.257 0.000 0.000
P3D70D 0.7 9 0.880 0.464 0.000 0.000 0.000
P3D70E 0.7 9 0.889 0.510 0.000 0.000 0.000
P3D70F 0.7 11 0.889 0.492 0.045 0.000 0.000
P3D100D 1.0 8 0.918 0.398 0.000 0.000 0.000
P3D100E 1.0 9 0.959 0.589 0.000 0.000 0.000
P3D100F 1.0 10 0.857 0.563 0.000 0.000 0.000
P4D10D 0.1 12 1.000 0.337 0.060 0.000 0.000
P4D10E 0.1 9 0.928 0.460 0.000 0.000 0.000
P4D10F 0.1 10 0.935 0.388 0.000 0.000 0.000
P4D40D ? 0.4 6 1.000 0.507 0.000 0.000 0.000
P4D40E ? 0.4 6 0.836 0.732 0.000 0.000 0.000

4 P4D40F ? 0.4 6 0.859 0.730 0.000 0.000 0.000
P4D70D ? 0.7 6 1.000 0.521 0.000 0.000 0.000
P4D70E ? 0.7 6 0.950 0.527 0.000 0.000 0.000
P4D70F ? 0.7 6 1.000 0.383 0.000 0.000 0.000
P4D100D ? 1.0 6 0.996 0.211 0.000 0.000 0.000
P4D100E ? 1.0 6 1.000 0.229 0.000 0.000 0.000
P4D100F ? 1.0 6 0.989 0.620 0.000 0.000 0.000

Figure 5.4: Results for row aggregation, with n = 5, p = 10, and r = 100
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(b) P2D100D

10 20 30 40 50 60 70 80 90 100

| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

| | | | | | | | | |
| | | | | | | | | |

| | | | | | | | |
| | | | | | | | |

| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

| | | | | | |

| | | | | | | | | |

| | | | | | | | |

| | | | | | | | |
| | | | | | | | |

| | | | | | | |

� � � ������� �

������� � � �

������� ��� ��� �

������� ��� �

��� ���������

��� � � �����

��� ����� ���
�

����������� �

�����������������

��� �����������

��������� � �

� ����� ��� �������5
4

3

2

1

(c) P4D10D

10 20 30 40 50 60 70 80 90 100

| | |
| | |
| | |

| |
| |

| | | | | |
| | | |
| | | |
| | | |
| | | |
| | | |

| | | | | |
| | | | | |

| |
| |

| | | |
| | | |
| | | |
| | | |

| | | | | |
| | |
| | |

| | | | | |
| | | | | |

| |
����� �

��� �

��������� �

�

�

� ������ ��� � � �5
4

3

2

1

(d) P4D100D

Figure 5.5: Nonzero elements of dual solutions
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6 Conclusion

We have shown how the dimensions of linear production games may be

reduced by aggregating over columns or rows. In Section 3 we showed that

by choosing weights corresponding to optimal solutions of the primal (dual)

corresponding to particular coalitions, we can make the aggregated games

coincide with the original games for those coalitions. This can be used to

create a new game, easier to handle computationally, whose core form a

superset (subset) of the original core. This introduces a possible error, and

in Section 4 we provide a method, by solving a mixed integer programming

problem, for quantifying this error in the special case where the players

pool their resources by simply adding them. The solution of this problem

can also be used to improve the bound on the original game, by adding

a new column (row) to the weight matrix, and suggests a procedure by

which the bound can successively be improved. In section 5 we tested this

procedure on a number of examples. The examples differ with respect to

how concentrated the ownership of the resources are, and the density of the

technology matrix A. The results indicate that for column aggregation, the

aggregation approach is suitable for problems where ownership is relatively

concentrated (dispersed) and A is dense (sparse). Row aggregation seems

to be suitable for cases where ownership is relatively concentrated and A is

dense.

We know from Owen (1975) that some core points can be obtained from the

dual solution corresponding to the grand coalition. An interesting question

is, if we have constructed H such that vH = v, whether the dual solutions

included in H can be given an interpretation in relation to the core of the

original game.
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