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Suppose there exists a market for yield futures contracts as well as ordinary
futures contracts for price. Intuitively one would think that a combined use
of yield contracts and futures price contracts ought to provide a reasonable
strategy for locking in revenue.

In the paper this is made precise - it is shown that revenue can be approx-
imately locked in by a combined, dynamic use of these two markets. This
procedure is perfect if the correlation between yield and price is zero. The
relevant strategy is characterized: It depends only on observable price infor-
mation in these two separate markets, not on the specification of parameters
in utility functions of the agents involved.
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Introduction

In the farming industry as well as for many other primary commodity pro-
ducers it is possible to effectively manage price risk by the use of futures
price contracts and options on futures. However, in many of these indus-
tries there is still considerable uncertainty left when it comes to revenue,
since quantities produced can be volatile, depending on many factors, such
as e.g., weather conditions in the growing season. Until recently, similar
market-based instruments for managing yield risk have not been available.
Instead, federal agricultural support programs and subsidized crop yield in-
surance programs have served as alternatives. In an important development



in 1995, the Chicago Board of Trade (CBOT) launched its Crop Yield In-
surance (CYI) Futures and Options contracts. The first CYI contract that
began trading on 2 June 1995 was lowa Corn Yield Insurance Futures and
Options. On 19 January 1996 the CBOT added a U.S. contract plus four ad-
ditional state corn yield contracts for Illinois, Indiana, Ohio, and Nebraska.
So far the trading volumes have been fairly modest. Regardless of the status
of this particular market for the moment, we want to discuss such contracts
from a principle point of view.

The CYT contracts are designed to provide a hedge for crop yield risk. For
example, CYT futures users can lock in a certain crop yield several months
into the future as a temporary substitute for a later yield-based commitment,
or they can alternatively try to lock in the revenue of a given acreage by
combining yield contracts with futures price contracts. How this can be
done is the subject of the present paper.

In the following we abstract from production costs, and assume zero local
price basis (i.e., local cash price equals futures price) and zero yield basis (i.e.,
individual farm yield equals index yield). Intuitively one would think that a
combined use of yield contracts and futures price contracts ought to provide
a “reasonable” strategy for locking in revenue. In the paper this intuition
is made precise - in that it is shown that revenue can be approximately
locked in by a combined, dynamic use of these two markets. This procedure
is perfect if the correlation between yield and price is zero. Moreover, the
relevant strategy is also characterized: We show what dynamic strategy can
be used to lock in a certain revenue, when combining these two markets.
Most importantly for practical implementations, this strategy depends only
on observable price information in these two separate markets.

There is a large literature on non-market based risk management and
insurance of crop yield, which we will not address here. Yield contracts
have been dealt with from the perspective of hedging, using a mean variance
approach by Vukina, Li and Holthausen 1996, while minimizing the variance
of revenue was the objective in Li and Vukina 1998. In both these papers the
yield contracts traded at CBOT are explained, so we need not elaborate on
the market structure here. A more recent paper is Nayak and Turvey 2000,
again using a simple mean-variance model. Two other papers try to examine
this problem in the expected utility framework (see e.g., Hennessy, Babcock
and Hayes 1997; Mahul and Wright 2000). The focus in this paper is rather
different from these investigations, in that our results are not depending on
any specific assumptions about utility functions: Our hedging ratios can be
read straight from observed market prices.

There was another securitized insurance market at the CBOT centered
around certain catastrophe indexes, these indexes playing a similar role to



the yield index of the present paper; e.g. (Aase 1999, 2001). The analysis
of such markets must typically differ from the model chosen in the present
paper, since catastrophes can not be modelled well by a continuous stochastic
process. However, we shall briefly discuss jump models in the last section of
the paper.

The paper is organized as follows: In the first section we start by an
illustration of the potential use of CYI contracts in order to manage risk.
Then we proceed directly to the main results of the paper, demonstrating in
Theorem 1 and Corollary 1 how a farmer can combine a pure yield contract
with a pure futures price contract to lock in a revenue similar to what a
farmer could ideally secure if a futures market on revenue were to exist.

Finally we briefly discuss the possibilities to enlarge the analysis to mod-
els containing jumps of unpredictable sizes, thus extending our results to
incomplete financial markets, and the final section concludes.

Area Yield Futures and Options

Introduction

Imagine a country, or another area, sectioned into regions which are uniform
in terms of growing conditions for a certain crop, say corn. In each area there
is a quantity index y,, for time ¢ running from 0 to 7T, where T is the time
of sale and 0 is the time of sowing. As an example, for agricultural yield
contracts in the USA traded at the CBOT the values of y are provided by
the United States Department of Agriculture (USDA). One may think of y;
as a forecast at each time ¢ of quantity, measured in bushels per acre, up for
sale in this specific region at the final time 7. On this index we assume it
is possible to trade futures, and futures options contracts. In order to bring
in the quantum uncertainty, we assume that this index can be modeled as a
stochastic process. A farmer in this region may have production uncertainty
that is well represented by this index, where the relevant number of contracts
can be determined from each farmer’s production area.

The idea is that if the producer can buy options on this quantity index
or on its corresponding futures index, the farmer can lock in a prespecified
quantity by buying an appropriate number of such contingent claims. This
strategy is of course only 100% efficient if the farmer’s yield uncertainty is
perfectly represented by the index, an unlikely event, but a careful selection
of homogeneous regions may make such markets useful for practical risk
management purposes. Since agricultural agents are concerned about revenue
rather than solely about yield, or about price, one may think that the yield



market may be combined in an appropriate manner with the futures market
for crop price to lock in a certain revenue. The conditions when this can be
done is the topic of this paper.

A private insurance market giving the farmer insurance against quantity
shortfall is of course difficult to establish, partly because of the adverse in-
centives this would create for the farmers, as the rich literature on this topic
in agricultural economics journals show. The yield futures market may, how-
ever, avoid this difficulty, at least under some presumptions: The farmers do
not engage in any kind of “collective moral hazard” which effects the yield
index, and there is no moral hazard in the construction of the index. There is
an implicit assumption that the farmer’s actions do not influence the quantity
index to any significant degree. Also the individuals in USDA constructing
the index should have no economic interest attached to this market.

Market failures that seem caused by asymmetric information have been
dealt with by several authors, among them Chambers 1989, Skees and Reed
1986, Nelson and Loeman 1987, Quiggins 1994 and Goodwin and Smith 1995.
There seems to be a tradeoff between moral hazard and basis risk. There
is a growing literature that examines this tradeoff (see e.g., Doherty (2000);
Doherty and Mahul (2001)). CYT contracts, like cat options, does not seem
to be widely used among farmers or insurers. One standard explanation is
the existence of basis risk, i.e., individual losses are not sufficiently correlated
with aggregate losses. In our approach we assume there is no problem with
asymmetric information, and, as already mentioned, we assume a zero yield
basis.

Ordinary crop quantity insurance would also exhibit another obvious dif-
ficulty, namely positive correlation between produced quantities from the
different farmers in each area. This kind of insurance would thus be highly
risky compared to ordinary “household insurance” of say cars, houses, etc.,
where one can consider the different insurance cases as statistically indepen-
dent. This phenomenon is well understood in the general theory of insurance.
In the agricultural economics literature the risk that is not diversifiable in
this regard has been termed “systemic risk”; e.g. (Miranda and Glauber
1997). In our approach this positive correlation will not be any problem.

Crop Yield Insurance Futures Contracts

The mechanics of using yield futures can perhaps best be illustrated by an
example.

Example 1. Consider a farm of 1000 acres in Iowa, in an area with ex-
pected crop FY = 130 bushels per acre at time ¢. The futures price of corn
is F = $2.50 per bushel, also at time ¢, in both cases for contracts expiring
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at a future time 7.

Consider a strategy that sells 130,000 corn futures and similarly sells 2,500
area yield futures, both at time ¢ and these positions are held until maturity.
The payoff at expiration for this strategy would be

(F7 — g8*)F} - 1000 4 (F} — y5**) F - 1000.

Consider four scenarios:

(i) The observed price of corn at time T turns out to be ¢%* = $2 per
bushel, the observed yield index y%* ended up on 100 bushels per acre. This
is the case of a situation the farmer would like to insure against. The payoff
from this strategy would be $140,000. Without futures contracts, the farmers
would end up $125,000 below the expectation, assuming a perfect correla-
tion between the farm output and the yield index, and after the gain from
the futures contracts are taken into consideration, the “net gain” would be
$15,000.

(i) ¢%* = $3, y4** = 160 bushels per acre. The payoff from the above
strategy would be -$140,000. Under the same simplifying assumptions as
above, the farm would now end up with a result of $155,000 higher than
projected, in which case the “net gain” would also be $15,000.

(iii) ¢9* = $2, y%* = 160 bushels per acre. The payoff from the above
strategy would be -$10,000. Under the same simplifying assumptions as
above, the farm would now end up with a result of $5,000 below the expec-
tation, in which case the “net loss” would be $15,000.

(iv) g% = $3, y%** = 100 bushels per acre. The payoff from the above
strategy would be $10,000. Under the same simplifying assumptions as above,
the farm would now end up with a result of $25,000 below the expectation,
in which case the “net loss” would also be $15,000.

If these four cases were equally likely, the expected “net gain” would equal
zero, so on average the insurance would then work.

When considering pure area yield contracts, one should notice that for
yield futures contracts is used a multiplication factor of $100 per bushel to
convert production to income (here: in US $), and also, the trading unit for
corn futures is 5000 bushels. 0

In Example 2 below we analyze strategies of this type, and investigate if a
farmer could do better using other strategies. In general one must maintain
that selling futures contracts is considered as risky business, and the farmers
would usually be better off buying put options.

The market based yield contracts have the potential to satisfy various
traditional users of yield insurance, as well as some not so traditional ones.
The traditional users are companies tied to corn production contracts, who



prefer to lock in certain rates of production. For bulk cargo goods, where the
capacity in the transportation sector is determined largely by high, and fixed
costs, a fall in production of, say corn, would typically lead to a shortage of
goods to transport. This will in its turn lead to a fall in the freight rates,
and consequently to a drop in the income also in the transportation sector.
The yield futures options may therefore also be utilized by transporters for
risk management purposes. Suppliers of capital and loans to the farming
industry may indirectly profit from the general use of such contracts, since
they are making the borrower’s portfolios less risky.

Nontraditional users may typically be agricultural brokers, insurers and
other intermediaries who whish to offer income guarantees to farmers. These
agents can make direct use of these contracts to hedge the risks they are
facing, or the risk they are carrying from insurance of their customers.

Potential users of yield contracts include, in addition to farmers, (1) com-
panies offering crop insurance, (2) reinsurers/brokers, (3) large food process-
ing companies, (4) wholesalers of corn, (5) cargo shipping companies, (6)
railways (7) forage agents, (8) corn storage agents, (9) seed producers, (10)
producers of agricultural equipment, (11) lenders/banks, (12) agricultural
brokers, insurers and other intermediaries who offer income guarantees to
farmers, (13) investors who want to diversify, (14) spread traders, (15) spec-
ulators.

Finally a few key words about yield futures.

Flexibility: Can help to reach a given investment, or risk management
goal under almost any scenario.

Versatility: Even if one does not have a clue where the market is going,
it is possible to gain from changes in volatility, reduced time to expiration,
or change in some of the other distinguishing parameters of options.

Additional protection: The options offer revenue insurance without re-
ducing the potential of gains.

Liquidity: Possibilities to quickly leave, or enter the market.

Offers reduced risk: The exposure of an option is limited to the premium
paid. Options can be combined to obtain very little residual risk.

Traded at an exchange: This means standardization, anonymity and ac-
cess to price and quantum expectations.

Finally, yield futures traded at an exchange may give the public access to
weather forecasts that may sometimes outperform those that are otherwise
accessible.



How to lock in a prespecified revenue

Introduction

Consider two futures markets, one where yield futures options are traded, and
one where standard price futures options are traded. The quantity index y(t)
at time ¢ is measured in bushels per acre, and spot price ¢(t) at time ¢ is
measured in $ per bushel. As earlier explained we abstract from production
costs, and assume zero local price basis and zero yield basis. In this case
we can define the revenue R(t) = y(t)q(t). A yield futures option contract
will specify a real function ¢g so that the payoff from a yield futures option
contract at the expiry time T is given by g¢(y(7)) bushels per acre, having
yield futures price at time ¢t < T' given by

F/Y = BE2(g(y(T)) - ¢). (1)

To be specific, given is a filtered probability space (2, F,F, P), where 2 is
the set of states with generic element w, P is a probability measure, the
“objective probability”, F is the set of events in {2 given by a o—algebra,
F={F,0 <t < T} is a filtration satisfying the usual conditions, where
F, C F if s < t, F; signifying the possible events that could happen by
time ¢, or “the information available by time ¢”. We assume F; to be triv-
ial, containing only events of probability zero or one, meaning roughly that
there is no information available at time zero, and Fr = F, i.e., at time T’
all uncertainty is resolved. Here ) appearing in equation (1) is an equiva-
lent martingale measure, assumed to exist, () being equivalent to the given
probability measure P (i.e., the measures P and () coincide on the null sets).
The symbol E; in (1) is the conditional expectation operator given the “in-
formation” F; possibly available by time ¢.

The constant c¢ signifies a conversion factor measured in $ per bushel, so
that the futures price is measured in $ per acre. For example, for the Iowa
Corn Yield Insurance Futures (ticker symbol CA) the unit of trading is the
Towa yield estimate times $100 (e.g., a yield of 140.3 bushels per acre gives a
contract value of $14,030). In this section we set this conversion factor equal
to 1 without loss of generality.

Similarly an ordinary futures option contract on price will specify a real
function h so that the corresponding payoff from a futures option contract at
expiration is given by h(q(7T")) $ per bushel, and the associated futures price
at any time ¢ prior to T is given by F}"@ = E2(h(¢(T)) measured in $ per
bushel.



The main result

We now turn to the dynamics of the two processes ¢ and y. We assume
that the processes ¢ and y are both defined on the given probability space as
follows:

dy(t) = py (O)dt + 0, (1)dB(1) 2)
and

dq(t) = g (1)t + o, (1)dB(1), (3)

where B(t) = (B (t), B2(t)) is a standard two dimensional Brownian motion,
oy(t) = (0y.1(t),042(t)) and o4(t) = (04.1(t),042(t)) are adapted volatility
processes satisfying standard L2-type integrability and regularity conditions.
Similarly the drift terms p,(t) and p,(t) are adapted stochastic processes
satisfying standard L'-type integrability conditions.

Now we consider product contracts of the form R9"(t) = g(y(t))h(q(t)).
Our revenue process R(t) = y(t)q(t) would then follow as a special case, when
both g and h are the identity function. We want to investigate whether we can
lock in a prespecified “revenue” R9(t) at any time ¢ prior to the expiration
time 7" by dynamically trading in the two separate futures options markets
described above. To this end imagine first that a separate market for this
type of “revenue” were available. The futures price of this contract we denote
by F/Y™9 and it must be given as follows under our assumptions:

FYOM) = ER{g(y(T)) - h(g(T))}, 0<t<T. (4)
Notice that this can be written
EZ{g(y(T)) - h(q(T)) = F{""P}y =0, 0<t<T, (5)

the usual starting point for analyzing futures contracts. Equation (5) implies
that if the futures price F/¥"9 is agreed upon at time ¢, then nothing is
actually paid at this time.

In order to better understand what follows, let us recall the main features
of a simple futures contract on, say, price. For the holder of one long contract,
the payoff at expiration is

T
/ 1-dFy=Fpr —F,=qr — F, (6)
t

by the principle of convergence in the futures market, where F; is the futures
price of one contract at time t. If an agent holds 6, futures contracts at
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time s in the time interval (¢,7], the resettlement gain at time 7 from this
strategy would similarly be
T
/ 0,dF, (7)
t

(v)

Now consider a strategy that holds Fy"’ pure futures options on h(qr),

and F9 pure futures options on g(yr) at each time s between ¢ and T'. The
resettlement gain from this strategy is given by

T T
/ Fg(y) dFsh(") _|_/ Fﬂh(q) dFSg(y) (8)
t t
Using stochastic integration by parts, this can be written
T
— glyrhlar) — (FPV R + [ dp apio) ©)
t

Consider the expression in (9) and compare it to (6) and (7). If it were
the case that the term (F/®F"9 4+ ftT dF!Y dFM9) is the futures price
given in equation (4), it would be the case that the above combined strategy
is equivalent to a futures contract on the product h(qr)g(yr). Since a futures
price at time ¢ must be F;-measurable, this can not be strictly the case for the
above strategy, since the integral naturally does not satisfy this information
constraint. On the other hand, if we take the conditional expectation under
@, we do indeed get the futures price in question. Let us demonstrate this.
In order to do so, we will need some technical conditions, which we relegate
to Appendix 1. Assuming these, we use the following notation: The futures
price processes F/"? and F’® can both be written as smooth functions
a(q,t) and b(y,,t) respectively. Denote by a,(g,t) the partial derivative of
the function a(g, t) with respect to its first argument, and similarly for b, (y, t).
We have the following result:

Theorem 1 Consider the resettlement gain from the strategy given in (8).
(i) Suppose o,(s) - oy(s) = 0 for all s € (t,T] , i.e., a zero correlation
rate between yield and price. Then this strategy is equivalent to a futures
contract on the product h(qr)g(yr) having futures price at each time t given
by FYOMD i equation (4).
(ii) Consider the general case. The futures price (4) can always be written

T
th(y)h(tJ) _ th(y)Fth(q) + EtQ (/ dpsg(y)dFSh(q)> (10)
t

= R 4 52 ([ e )os) ool 9)ds)



Proof: In order to prove (ii) first, according to (5) we have to show that

T
E° <g(yT)h(qT) — (FFW M / dF9W) dFsh(q))> =0, t<T, (11)

t

and this follows, since

T T
EP ( / F9W gFh@ 4 / Fh@ dFSg(y))) =0 forany t<T (12)
t t

by the standard conditions (20) - (23) of Appendix 1; under these conditions
it is known, essentially by Hglder’s inequality, that the stochastic integrals in
(8) both have zero conditional expectations under @, since F?® and F/'"*) are
both @-martingales. Thus we get the conclusion of (ii) from the expression
for the futures price in equation (4), the fact that £7® and F"? are both
Fi-measurable, and from the representations (18) and (19) of Appendix 1 for
the stochastic processes a(q,t) and b(y;, t).

Now the conclusion in (i) follows from (ii) just proven, by the expression
for the resettlement gain given in (9), since the integral

T
/ dFSg(y) dFsh(q) =0
t

in this case, combined with the observations in (6) and (7). O

Before we comment on this theorem, we briefly describe the situation
with pure futures contracts only. Consider a strategy that holds F? futures
contracts on price and F¥ futures contracts on quantity at any time s, where
0 <t < s <T,tsignifying the present. The resettlement gain from this
strategy is given by

T T
/ FYdF + / FdFY. (13)

t t

We then have the following corollary:

Corollary 1 Consider the resettlement gain from the strategy that, for any
time s between the present time t and the expiration time T, holds F¥ futures
contracts on price and F2 contracts on quantity, given in (13).

(1) Suppose o4(s) - oy(s) = 0, for all s € (t,T] i.e., a zero correlation
rate between yield and price. Then this strateqy is equivalent to a futures
contract on revenue Ry having futures price at each time t given by FF =
Ef{q(T)y(T)}.

(ii) Consider the general case. The futures price EF can always be written

rr=rer 4 2 ([ o )os) oDl 9)ds)
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Proof: Set g(z) =z and h(z) = z for all real  in Theorem 1. O

The above results show that, in the case with a zero correlation rate be-
tween yield y and price ¢, there is no need for a specialized futures market of,
say, revenue R = yq for someone who has access to the two separate markets
for price and yield contracts. One can then, at least in principle, achieve
exactly the same results in terms of risk management by simultaneous, dy-
namic trade in these two markets. Since a dynamic strategy is then needed,
needless to say, we here abstract from transactions costs.

In the situation where the correlation o, 4(s) = o4(s) - o,(s) does not
vanish for all s € (¢, T, this strategy would not constitute an exact substitute
of a market for revenue. The relevant “correction term” is given by

T T
(ES{ / dFYdF9} — / dF;de;), (14)
t t

with a similar expression for the futures options case in Theorem 1. The
smaller the correction term given in (14) is, the better would the given strat-
egy in (13) constitute a substitute to a futures market for revenue. This term
has conditional expected value equal to zero under the measure ), so it is
not a bias in ordinary statistical language, at least not under ). Obviously,
even if the term o,, # 0, this correction term may still be small. Clearly
this term goes to zero as t approaches T. If o,, = 0, the correction term
vanishes.
Let us illustrate by a simple example.

Examples and discussion

Example 2. Consider the case of a zero cross-correlation rate o,(t)-0,(t)) =0
for all t. In this particular case, the strategy (F¥, F'9) duplicates exactly the
pay-off (yrqr — FF) from one long “revenue”-contract: At the initiation time
t the futures prices F} and F} are both set such that nothing is actually paid
at this time.

Instead of the resettlement strategy in (13) let us consider a more “laid
back” strategy that buys F} quantity contracts, priced at F} at time ¢t < T,
and holds this position until maturity, and buys F} price contracts, priced
at F}! at time ¢ < T, and holds this position till maturity as well. This is
similar to the strategy of Example 1, except that there the contracts where
sold.

The payoff at expiration for the hypothetical contract on revenue would
be (yrqr — FF), for a farmer buying one such contract. On the other hand,
the combined contracts described above would yield the following payoff:

((JT - th)Fty + (?JT - Fty)th7
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where the first term is the payoff of F} long futures contracts on price ¢, and
the second term is the corresponding payoff of F} long contracts on quantity
Y.

This latter sum can be seen to be equal to

(yrar — ) + (F — yr)(ar — F), (15)

in the situation where F}f = FJF/ e.g., when the cross-correlation rate is
Zero.

Since F} can be considered as an “economic forecast” of yr at time ¢,
and similarly is F}! an economic forecast of ¢r, the remainder term in (15)
should be “small of second order” (it goes to zero faster than the first term in
(15) as t approaches T'), in which case this strategy may function reasonably
close to a hypothetical futures market for revenue. Of course, this latter ideal
market does not exist, so this “laid back” arrangement of combining existing
markets for quantity and price separately may be a reasonable substitute.
The strategy described in equation (13) constitutes, on the other hand, a
perfect substitute in this situation. O

Finally, we remark the following: The results of Theorem 1 and Corollary
1 do not depend on any specific assumptions about utility functions of the
agents (except from some obvious axioms of the preferences in situations like
these, like agents prefer more to less). The result is that a futures market
for revenue can approximately be obtained through the combination of the
two markets for yield and price futures. There exists a dynamic replication
strategy in quantity futures and price futures which is, under certain condi-
tions, equivalent to a futures contract on revenue. Moreover, this strategy
can be obtained directly from futures price information in these two separate
markets. There are no parameters to estimate, no assumptions about the
relative risk aversion, or the subjective interest rate, or anything like that.
Thus this result should obviously be of great practical interest.

More Dramatic Uncertainty Revelation

In a companion paper we give an example of a model for the price of the
crop, ¢q;, and the index 1, as well as a valuation model where market prices
can be found for a large class of relevant financial contracts. In other words,
we give an example how to construct an equivalent martingale measure () for
yield contracts. Since we have chosen an Ito process framework, this is done
by judiciously transforming to two price processes (y is not a price process),
and then it is natural to choose a complete model, in which case we have to
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solve a linear system of equations, and use Girsanov’s theorem to establish
a unique market-price-of-risk process (see Aase 2002).

Suppose instead that we imagine agricultural yields are exposed to natural
disasters and thus it seems natural to include more dramatic changes than
continuous ones in the process dynamics for y and ¢. Consider the following
dynamics

dy(t) = iy (t)dt + o, ()dB(t) + / Yy(t, 2) N (dt, dz) (16)
and
dq(t) = pe(t)dt + o4(t)dB(t) + / Yo(t, 2) N, (dt, dz). (17)

Here N;(dt, dz) = N;(dt, dz) —v;(dz)dt signify two independent, compensated
Poisson random measures of an underlying Levy process, i = vy, ¢, also in-
dependent of the two dimensional Brownian motion B. Here v;(dz) is the
Levy measure of process i. The idea is that jumps of random sizes v;(t, 2)
occur at unpredictable time points of a two-dimensional Levy process in the
respective processes y and ¢. If a jump happens to take place at time ¢, and
the underlying jump sizes of the two Levy-processes is (Z, = z,, Z, = z,),
then the jump size in the quantity index y is v,(¢, (24, 24)). Without going
into further technical details, we note the following: This class of models is
obviously very general, and can be made to fit well most observed time series
of data one can imagine. There is an integration by parts formula also for
the type of processes given in the equations (16) and (17) above. Since this
is an essential part of the proof or Theorem 1, our results in Theorem 1 and
Corollary 1 can still be shown to go through.

In the above model we are not able to construct a unique market-price-of-
risk process as in the above mentioned companion paper, so there will exist
many equivalent martingale measures () (indeed, uncountable many) that
will do for pricing purposes, even if no arbitrage prevails. All these measures
will coincide on the marketed subspace M C L? containing all the random
payoffs of the type that can be generated by portfolio formation of two dif-
ferent, correlated assets with pricing processes like the one in (17). However,
for contingent claims with components in the orthogonal complement M~ of
M (here L? = M @& M=), these components can not be hedged by the exist-
ing financial instruments. As a consequence we do not have a good pricing
theory for this part, and the measures Q will normally not coincide on M*.
Thus our resulting model is incomplete.

But this is of no concern to the present results. The farmer can still ob-
serve the prices in the two separate futures markets, construct the dynamic
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strategy as time goes, and replicate the payoff of a futures (or a futures op-
tion) contract on revenue to the degree that we have explained above. Thus
our results are robust to the modelling of uncertainty - more interesting mod-
els than Ito-processes can be used, in principal there are no major restrictions
(other than technical ones).

Conclusions

We have presented a simple model for the analysis of futures contracts on
quantity and futures contracts on price in separate markets for such contracts,
in order to construct futures contracts on revenue.

The analysis is motivated from the actual creation of certain futures mar-
kets for agricultural quantity products, originally set up by the CBOT.

It is shown how a farmer can lock in a certain revenue by a combined
trade in futures price and futures yield contracts, abstracting from produc-
tion costs. This can be done perfectly if the correlation between yield and
price is zero, otherwise the procedure is only approximately correct, where
a correction term is identified. The main result is not depending upon the
particular choice of model for the random dynamics. Thus the result is rather
robust.

Furthermore, our results do not depend upon any specific assumptions
about utility functions, relative risk aversions, subjective discount rates, and
the like. Thus our results are practically implementable.
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Appendix 1

Here we present the technical conditions needed for Theorem 1:

The futures price processes Fi'@ and F#“) can be both be written as
some C*1(R? x [0, T))-functions a(q;,t) and b(y;, t), say. Since they are both
(Q-martingales, by Ito’s lemma

da(qi,t) = a,(ar. o, ()dB(1) (18)
by, 1) = by, )0, ()AB(D). (19)

where a,(g,t) means the partial derivative of the function a(g, t) with respect
to its first argument, and similarly for b, (;, ), and where B is a standard two
dimensional Brownian motion with respect to the measure ). We will now
need the following technical conditions: We suppose the processes a(q;,t)
and b(y,, t) satisfy the following:

[ 0 De0(a ) a0 + o 0)it < 0. (20)

B ([ 0 fan ) (s 0+ onale))a) <o (21
and

/UT (a(qs, )by (yi, 1)) (01 (1) + 0y2(t)?)dt < 00 a.s. (22)

B ( / " (alae Dby (g0 1)) (00 (1 + ay,z<t>2>dt) <o (23
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