
Analysing Flexible Load Contracts in the

Energy Market

Arne-Christian Lund and Fridthjof Ollmar ∗

November 20, 2002

Abstract

In this paper we analyse flexible load contracts (FLC), a type of “swing”

option. This contract type has existed in energy markets for a long time

and has proved to be challenging to value. The term swing refers to the

flexibility in the quantity of energy that the holder of the contract can

receive. We formulate the FLC as a stochastic optimisation problem. The

price process, modelled as a time dependent Ornstein-Uhlenbeck process,

is calibrated to the spot price on the Nordic electricity market. With

this process the optimisation problem is solved numerically. The results

of the algorithm are compared with the exercise policy for nine market

participants. We find that our algorithm obtain the highest accumulated

exercise revenue for a five year period.
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1 Introduction

The first power plants built in the first part of the previous century were built to

meet the nearby industry’s demand for electricity. To reduce transmission losses

or the cost of transporting the raw material used to make the electricity the

industries were often located close to the power plants. Another characteristic

of this early stage was that the same firms owned both the power plants and the

industry. The value of electricity was consequently not exogenous calculated but

endogenous valued as a part of the product costing. When it was possible to sell

energy surplus, the need to formulate and value electricity contracts occurred.

One of the first types of contracts to be traded was the contract that gave the

owner the right to a certain amount of energy within a given period of time.

To make it possible to deliver the electricity the seller restricted the maximum

amount per hour (i.e. the effect) the buyer could withdraw. The buyer of the

contract could then withdraw electricity, given the effect restriction, to cover

his own electricity demand. This type of contract was the predecessor to the

type of contracts we today call flexible load contracts (FLC).

Since the first flexible load contracts were traded, most electricity consumers

and producers have interconnected themselves with a national or international

power grid. In recent years many countries have also deregulated their electric-

ity marked. These changes have influenced how we can utilise the flexible load

contract. Before being connected to a power grid the owner of a flexible load

contract had to withdraw the amount he consumed and any surplus energy was

wasted. If there exists a liquid spot market the buyer of a flexible load contract

can now withdraw energy from the seller of the contract and sell it in the spot

market. To meet his own demand for electricity he can buy it directly from

the spot market instead of exercising the contract. By incorporating the spot

market the owner of a flexible load contract can fully utilise the flexibility of

the contract. This effect has naturally increased the value of the contract. But

it has also made the problem to value and decide when to exercise the contract

more difficult.

Lets assume that we have a liquid spot market and that we have just bought

an 8335 MWh flexible load contract1. The contract has a maximum effect of

5 MWh per hour and a delivery period from 1. May 1997 to 30. September 1997.

The price we paid for this contract was 115 NOK/MWh or 958.525 NOK, and
1We will use this contract as an example throughout the paper
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the delivery period of the contract consists of 3672 hours. Assuming we have

a neutral attitude toward risk and we are profit maximising, then our target

will be to exercise the contract during the 1667 2 of the total 3672 hours with

the highest spot price. Every day at 10 am we must inform the seller of the

contract which hours the following day we want to exercise our right to buy for

115 NOK/MWh. The energy we buy will then be sold in the spot market, and

our profit/loss will be the difference between 115 NOK/MWh and the price we

manage to sell the energy in the spot market for. The flexibility of the contract

is the ability to change our exercise policy during the delivery period. After

buying the contract we may ask ourselves the following questions: How high

should the spot price be before we start exercising the contract? What is its

theoretical value? Which factors influence the value of the contracts and how

do they influence the contract? All these questions and more will be answered

in this paper.

The remainder of this paper is organised as follows. In the next section

we formulate the FLC as a mathematical optimisation problem, and in section

three we analyze the spot price and decide upon a spot price model. Then in

section four we analyse how we can solve the optimisation problem numerically.

In section five we describe our data-set and estimate the price process. The

results and concluding remarks are given in section six and seven.

28335MWh/5MW=1667h
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2 Mathematical formulation of the FLC

We will in this section show how we can find the optimal exercise policy and cor-

responding contract value by formulating the FLC as an continuous stochastic

optimal control problem.

2.1 Background

Optimisation methods for hydroelectric power has been studied since the early

1960s. The first attempt to value a flexible load contract was by modelling

the contract as a hydroelectric power plant with no inflow. In [4] Stage and

Larsson developed one of the first optimisation methods for hydroelectric power

plants. Their method was called incremented cost of waterpower and was based

on finding the hydroelectric production that minimise the cost of the thermal

power in a system where hydroelectric power is predominant. To implement this

type of model one usually has to represent all hydroelectric power production

as one representative hydroelectric power plant. If the individual hydroelectric

power plants are significantly different from each other, representing them as

one unit is both difficult and an inferior representation. Since there was no spot

or forward market when the model was developed, they did not incorporate

any information from these markets into the model. Instead they regarded the

price as an endogenous function of the marginal production costs. This is a

good approximation when there is no spot or forward market. If there exist a

spot or forward market it is common to regard the price as exogenous. Despite

several weaknesses, Larsson and Stages model is still used today.

Recent literature ([5], [2]) on valuing flexible load contracts is more based

on contingent claims and derivative theory. If there exist a forward market with

the same resolution3 as the flexible load contract Øksendal shows in his PhD

thesis [2] how to value it. He shows that it is possible to hedge the claim with

a portfolio of forward contracts. The value of the FLC is equal to the value

of the hedging portfolio. This method of valuing a flexible load contract only

works when we have a forward market with equal or higher resolution than the

FLC contract. If we try to use the method in practice we will discover that this

assumption is not fulfilled. This can give an erroneous valuation of the flexible
3With “same resolution” we mean that if the FLC is based on an hourly resolution then

the forward market must have one forward contract for each hour in the delivery period of

the FLC.
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load contract.

In this paper we will regard the FLC as a contingent claim on the spot

price. We assume there is no forward market, or that the owner of the contract

is unable to participate in the forward market. Since we in this setup cannot

hedge the contract we need to specify the owner’s risk attitude. We have decided

to value the flexible load contract under the assumption of risk neutrality, and

postpone further risk considerations to future work.

2.2 FLC as an optimisation problem

In this section we show how the flexible load contract can be formulated mathe-

matically as a continuous stochastic optimal control problem. In the real world

this optimisation problem is typically a combined discrete-continuous problem.

It seems natural to think of the spot price as a continuous process. The control

is however chosen on an hourly basis. Still one hour is a small time interval com-

pared to the total contract length. A continuous model formulation is therefore

natural. When we later implement a numerical scheme, one hour is used as the

basic discrete time interval.

We study a control problem related to the optimal delivery of electrical

power. We assume that a contract for a specified amount of energy over a

period [0, T ] is given. The price of the electricity at a certain time t ∈ 〈0, T 〉
is given by a specified price process Pt. We assume that the ’producer’ is a

small participant in the market, so the price does not depend on the amount

of delivered power. Further we assume that the contract puts restrictions on

the delivery; At each instant the rate of delivered energy must be in a specified

interval. Let Qt denote the amount delivered up to time t. Our goal is to

find the optimal control choice at each moment t, and for all levels of Q and

P . This is a feedback form of the control. With this optimal policy in hand,

the controller can choose the best delivery, given the current levels of the state

variables. Further, the actual value of the contract is important when such

contracts are bought or sold. We now show how this problem may be formulated

as a stochastic optimal control problem with a terminal condition.

Suppose that we have agreed to deliver M units of a product (e.g. power)

during the period [0, T ]. The delivery rate is called ut. Therefore

dQt = utdt

with Q0 = 0. Obviously Q must satisfy QT =
∫ T
0 utdt = M . This is an end
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constraint on the variable Qt. We assume that the control ut must be in an

interval [u0, u1] for all t. Further, the contract specifies that the holder of the

contract is paid a spot price Pt for the delivered amount of product. We assume

that P follows a process

dPt = µdt + σdWt

where Wt is a Brownian motion, µ and σ may be functions of t and P . At

time t the price Pt
∆= p, and the amount Qt

∆= q are known by observation. The

objective for the producer is now to maximise the net present value. Let the

function Π represent the instantaneous profit of the delivery, and δ the discount

factor. We want to find the value function

V (t, q, p) = max
u∈U

E

∫ T

t
e−δsΠ(s, us, Ps)ds. (2.1)

when t < T and the corresponding control under the condition that Q(T ) = M .

This side condition calls for a control space U which is explicitly dependent of

t and Q. In general such problems are hard to solve. In this case we may refor-

mulate the problem to get a state independent control space. In subsection 2.4

we give a more precise formulation of the problem but first we need to study

the structure of the problem more thoroughly.

2.3 Further observations

The function V (t, q, p) is the value of the remaining period, given that the time

is t, the delivered amount so far is q, and the current spot price is p. As seen

above, there is an intimate relationship between the control and the level of the

Q variable. When the problem is solved numerically, we take advantage of this.

We would expect that the value V must be found for all p > 0, all Q ∈ [0,M ]

and for all t ∈ [0, T ]. Actually this is not necessary. Let us take a closer look

on the condition Q(T ) = M . The restrictions on u limits the Q-space that

must be considered. See figure 1. For this problem to be well posed we must

assume that Tu0 < M < Tu1. The problem is trivial if one of the two extremes

is binding. The upper boundaries of the parallelogram are traced out by the

policy
u = u1 for t ∈ [0, T1]

u = u0 for t ∈ [T1, T ]

where

T1 =
M − u0T

u1 − u0
.

7



3

1

2

4

0

1

t

u=u

u=u

0

Q(t)

Possibility area for Q

1u  < u  < u

M

T

Figure 1: The possible values of Q(t), given the restrictions on ut.

The lower boundaries are on the other hand given by

u = u0 for t ∈ [0, T2]

u = u1 for t ∈ [T2, T ]

where

T2 =
u1T −M

u1 − u0
.

Depending on the parameters of the problem we may have T1 < T2, T1 = T2 or

T2 < T1.

To simplify the analysis and the numerical scheme we focus on a problem

with control restrictions of the form [0, u1]. This is no limitation since a contract

with the limitation [u0, u1] may be modelled as a flexible load contract with

[0, (u1 − u0)] combined with a contract with constant delivery u0 in the same

period.

2.4 Precise formulation

We can now formulate the optimisation problem precise without a state depen-

dent U . By defining the stopping times

τ1 = inf{t;Qt = M}

τ2 = inf{t;Qt = u1 · (t− T2)}

τ = min(τ1, τ2),
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the value function can be expressed as

V (t, q, p) = max
u∈U

Et

{∫ τ

t
e−δsΠ(s, us, Ps)ds (2.2)

+I(x=M)(Qτ )F (τ, Pτ ) + [1− I(x=M)(Qτ )]G(τ, Pτ )
}

.

Here the functions F and G is defined as

F (t, p) = E

[∫ T

t
e−δsΠ(s, u0, Ps)ds

∣∣∣∣ Pt = p

]
G(t, p) = E

[∫ T

t
e−δsΠ(s, u1, Ps)ds

∣∣∣∣ Pt = p

]
Now U is the space of functions taking values in [0, u1]. It is important to keep

in mind that this is not an optimal stopping problem.

2.5 The Hamilton Jacobi Bellman equation

First of all we assume that the instantaneous profit is given by

Π(u, P ) = αuP,

and let α = 1 for simplicity of notation. This turns the control problem into

a problem which is completely linear in the control u. We therefore expect

optimal controls of the so called ’bang-bang’ type.

We want to find the value function V (t, q, p). Define the space (see figure 2).

Ω(t) ⊂ R2 by

Ω(t) = {(q, t) ∈ {M > q > 0} ∩ {u1t ≥ q > u1 · (t− T2)}} .

The function V : Ω(t)× R → R can be found as the (viscosity) solution of the

partial differential equation

Vt + µ(t, p)Vp +
1
2
σ2(t, p)Vpp + max

u∈U
{uVq + e−δtup} = 0. (2.3)

Here subscripts on V denotes the partial derivatives with respect to the sub-

script. This equation is called the Hamilton Jacobi Bellman (HJB) equation.

The equation cannot be uniquely solved without proper boundary conditions.

We know that the value is zero at time T , i.e.

V (T, q, p) ≡ 0 ∀ q, p.
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Figure 2: The (t, Q) projection of the parallelepiped, defining the space Ω(t).

Further, V (t, q, p) = F (t, p) when q = M and V (t, q, p) = G(t, p) when q =

u1 · (t− T2). From the definition of F and G we see that they can be found as

solutions of the following partial differential equations4

Wt + µ(t, p)Wp +
1
2
σ2(t, p)Wpp = 0

Wt + µ(t, p)Wp +
1
2
σ2(t, p)Wpp + u1e

−δtp = 0 (2.4)

both with end condition W (T, p) = 0. We see that this gives F (t, p) ≡ 0.

We now focus on the maximum operator in equation (2.3). Observe that

e−δtp > −Vq ⇒ u = u1

e−δtp = −Vq ⇒ u = ?

e−δtp < −Vq ⇒ u = u0.

It can be shown that the optimal control only takes the extreme values, thus a

bang-bang control. This is a consequence of the risk neutral formulation.

The flexible load contract is now formulated as a stochastic control problem.

Observe that the equations in this section suggests that the value function may

be found by backward induction, starting at time T . To solve the problem we

need to specify a reasonable spot price process. We focus on this task in the

next section.
4Alternatively, for a price process with simple structure, the functions may be calculated

directly from the definitions. We chose however to keep the presentation general with respect

to the process choice.
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3 Modelling the spot price

We will in this chapter analyse the spot price to find a suitably stochastic

differential equation to model it. After deciding upon a stochastic process we

will show how we can calibrate the process parameters to the data.

3.1 Examining the spot price

The Nordic spot market for electricity is a market for physical delivery of elec-

tricity. Each day at noon, spot prices and volumes for each hour the following

day are determined in an auction. The spot price is the clearing price that

makes the demand for a given hour match the supply. Real aggregated supply

and demand curves for hour 12 on 10. July 2000 are shown in figure 3. To

understand the dynamics of the spot price it helps to understand the dynamics

of the aggregated supply- and demand curve. Since a high degree of all energy

used for heating in the Nordic countries is electricity, the demand for electricity

is closely linked to temperature. The demand for electricity is also influenced

by general work activity. Due to limited choice in alternative energy forms and

lack of end users that actually observe real time price movements, the demand

for electricity is highly inelastic (i.e. independent of market clearing price). The

inelasticity of the demand curve can be seen from the steepness of the demand

curve in figure 3. From figure 4 we see that the demand follows daily, weekly

and yearly cycles. We also observe a small growth in electricity demand of

approximately 1% to 1.5% per year. Induced by extreme weather conditions

one can on several occasions observe temporary spikes in electricity demand.

These spikes are not sustainable and the demand reverts back to normal levels

within a short time.

In contrast to the nearly price independent electricity demand, the supply

characteristics of the electricity producers are price responsive. The supply

characteristic is mainly a function of generation technology, fuel costs, availabil-

ity of generation and the possibility of import/export. The supply depends, in

the long run, on the production cost for electricity. In the short run the supply

is influenced by production outages and constraints in the power grid. Produc-

tion costs for thermal based power depends mainly on the degree of utilisation

and fuel costs. For hydroelectric power the production cost depends more on

the reservoir filling, inflow and accumulated snow. The sum of deviation of

reservoir filling and accumulated snow from the normal level is called the hy-

11



Figure 3: Supply and demand curves for hour 12 on 10. July 2002.

drological balance. Estimated hydrological balance together with spot price for

the period 1996-2001 are shown in figure 5. From the figure we see a clear mean

reversion in the hydrological balance. If we compare the hydrological balance

with the spot price for the same period we see a strong negative correlation

(Since we have inverted the scale in the figure it appears to be positive cor-

relation). The empirical correlation coefficient is -0.72. The strong negative

correlation is due to the fact that the hydroelectric power has a high alterna-

tive cost when the hydrological balance is below normal and a low alternative

cost when the balance is above normal. The share of hydroelectric power in

the Nordic electricity market is approximately 60%5. It is therefore no surprise

that the supply curve is strongly influenced by the hydrological balance. Since

the hydrological balance is so important it is crucial that the price process we

choose is able to capture its effect.

5The total consumption of electricity for the Nordic countries were in 2000 384 TWh, and

234 TWh of this was hydroelectric power.
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Figure 4: In the first figure we have total consumption of electricity in Norway during Tuesday

20. October 1998. The second figure is the total consumption during one week (19. October 1998

- 25. October 1998) and the third figure is the total consumption during a period of 4.5 years. As

we can see the consumption of electricity follows daily, weekly and yearly cycles. Since the demand

curve is highly inelastic we expect to find the same cycles in the electricity price.
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3.2 Selecting a model

This section addresses the challenge of selecting a suitably stochastic process to

model electricity prices in the Nordic electricity market. For reasons mentioned

in the previous subsection the stochastic characteristics of electricity production

and consumption are reflected directly in electricity prices. In addition to the

lack of storability the cyclical patterns of electricity demand makes modelling

the electricity price a challenge.

By analysing the Nordic electricity market we find following important fac-

tors influencing the spot price process:

• Cyclical patterns in demand over the course of the day, week and year.

• Price spikes or fast mean reversion due to unusual load conditions.

• A slow mean reversion in price caused by mean reverting hydrological

balance.

• More long term factors such as fuel prices, currency exchange rates, emis-

sion costs and climate changes.

We are analysing flexible load contracts with a settlement period of approxi-

mately six to twelve months. We therefore focus on the spot dynamics within
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this time horizon, and long term factors such as inflation, fuel prices and climate

changes can be ignored.

In the book “Energy modelling and the management of uncertainty” [1],

B. Johnson and G. Barz analysed how the following four stochastic differential

equations managed to model the spot price for different electricity markets:
Brownian motion: dPt = µtdt + σdWt

Mean reversion, OU: dPt = κ(αt − Pt)dt + σdWt

Geometric Brownian motion: dPt = µtPtdt + σPtdWt

Geometric mean reversion: dPt = κ(αt + σ2

2 − lnPt)Ptdt + σPtdWt

where Pt is the spot price of electricity, µt is the drift term, σ is the diffusion

term, Wt is a Brownian motion, κ is the speed of mean reversion and αt is a sort

of long run mean. They tried the above models with and without jump terms.

The jumps where modelled with a Poisson arrival time, Bernoulli (positive or

negative) jump direction, and exponential jump magnitude. The eight models

where tested on four different electricity markets. They found the best model

regarding sum of log-likelihood values for the Nordic electricity market to be the

mean reversion with jumps followed by the pure mean reversion model. Since

we chose not to incorporate jumps into our model, we use the mean reverting

Ornstein-Uhlenbeck process to model the spot price.

To model the seasonal changes in the demand curve, we need a time de-

pendent mean. In addition we want some kind of mean reversion to capture

the effect of the hydrological balance. Since this reversion is slow compared to

the mean reversion generated by price spikes, we need to separate them. If we

do not separate them we get a mixture of fast and slow reversion. This will

result in a volatility that is so high that the daily and weekly price patterns will

vanish and a volatility that is too small to model the large deviation from the

long run mean due to the hydrological balance. We specify the price process as

Pt = Xt + Dt, where Xt represents the low frequent changes and Dt represents

the high frequent changes. It is now possible to model the slow hydrological

mean reversion together with annual seasons in Xt, and high frequent changes

such as fluctuation in price over the course of the day or a week in Dt. We

define the high frequent changes, Dt, as changes within one week and Xt as all

other changes. Further we specify changes in Xt as

dXt = at(bt +
b′t
at
−Xt)dt + σtdWt, Xs = xs, s < t (3.1)

where at is the speed of mean reversion due to hydrological balance, bt is the
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normal seasonal price, b′t is the derivative and σt is the price volatility. We

specify the normal seasonal price, bt, and Dt as a sum of trigonometric functions.

bt = b0 +
k∑

j=1

RX
j cos(ωX

j t + φX
j )

= b0 +
k∑

j=1

{AX
j cos(ωX

j t) + BX
j sin(ωX

j t)} (3.2)

Dt = d0 +
l∑

j=1

RD
j cos(ωD

j t + φD
j )

= d0 +
l∑

j=1

{AD
j cos(ωD

j t) + BD
j sin(ωD

j t)}

where Aj = Rj cos(φj), Bj = −Rj sin(φj), ω is the frequency, φ is the phase,

R is the amplitude and b0 is a constant level. The parameter d0 will later

be used to ensure that the process Dt starts at zero every week. Choosing

appropriate frequencies, phases and amplitudes we can model the daily, weekly

and yearly price patterns. By specifying bt and Dt as we did in (3.3) we could

alternatively simplify Pt by incorporating Dt in bt as an extension to the sum of

trigonometric functions. Since we are going to use different sampling intervals

for the estimation of the parameters in Xt and Dt, we will keep Dt separated

from bt.

The explicit solution to the price process, Pt, is given by

Pt = (Ps −Ds − bs)e−
∫ t

s audu + Dt + bt +
∫ t

s
σue−

∫ t
u ardrdWu (3.3)

If we let at = a, σt = σ we can write Pt as

Pt = (Ps −Ds − bs)e−a(t−s) + Dt + bt + σ(
1− e−2a(t−s)

2a
)1/2ε (3.4)

where ε is a standard normal distributed random variable. From the above

equation we see that the Gaussian process, Pt, has an conditional mean equal

to (Ps −Ds − bs)e−a(t−s) + Dt + bt and a conditional standard deviation equal

to σ(1−e−2a(t−s)

2a )1/2. Since the expected value of Pt, when t → ∞, is equal to

bt + Dt, we can interpret bt + Dt as the long run mean function for the price

process.

3.3 Parameter estimation method

In the previous section we chose a stochastic differential equation with solution

given by equation (3.4) to model the spot price. In this section we will show
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how to estimate all the parameters in this process. Since the distribution of

Pt is known, we can make use of the maximum likelihood estimation method.

Let the parameter vectors α = {a, σ, ωX
1 , . . . , ωX

k , ωD
1 , . . . , ωD

l } and β = {b0,

AX
1 , . . . , AX

k , BX
1 , . . . , BX

k , AD
1 , . . . , AD

l , BD
1 , . . . , BD

l }. The reason for collecting

the parameters into two vectors is to shorten our notation and, as we see later,

we can use different methods to obtain the estimates of the different parameter

vectors.

Let P= [pt1 , pt2 , . . . , ptn ] be a vector of observations of Pt at t = t1, t2, . . . , tn.

The maximum likelihood estimates α̃ and β̃ are the solution to the following

maximisation problem

(α̃, β̃) = arg max
α,β

Ψ(P, α, β) (3.5)

where Pt ∼ N
(
m(pti |pti−1 ;α, β) , s(α)

)
and

Ψ(P, α, β) =
n∑

i=1

log f(pti |pti−1 ;α, β),

f(pti |pti−1 ;α, β) =
1√

2πs(α)
exp

{
−

(
pti −m(pti |pti−1 ;α, β)

)2

2s(α)2

}
m(pti |pti−1 ;α, β) = (pti−1 −Dti−1 − bti−1)e

−a(ti−ti−1) + Dti + bti

s(α) = σ
(1− e−2a(ti−ti−1)

2a

)1/2
.

This maximisation problem has a parameter space of 3(k + l + 1) dimensions.

As we discovered in the first section of this chapter the spot price has three

distinct seasons. The seasons have periods of one day, one week and one year.

To get a realistic representation of the spot price we need at least two trigono-

metric functions to represent each season. With k = 2 and l = 4 the maximisa-

tion problem given by (3.5) has a 21 dimensions parameter space. Numerically

solving a maximisation problem with such a high degree of freedom can be

difficult. To simplify the problem we fix the frequencies ωX
j and ωD

j to

ωX
1 = 2π/8760 ωX

2 = 2π/4380 (year)

ωD
1 = 2π/168 ωD

2 = 2π/84 (week)

ωD
3 = 2π/24 ωD

4 = 2π/12 (day)

We have here assumed an hourly sampling resolution of P. The frequencies in

the left column makes the long run mean follow cycles with a period of one

year, one week and one day. The frequencies in the right column are set to one
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half of the frequencies in the left column. The reason for this is to make the

long run mean able to model non-symmetric seasons. With fixed frequencies

we only need to estimate 15 parameters with maximum likelihood. To further

reduce the number of parameters to be estimated by maximum likelihood we

reformulate (3.4) as

Yti = b0Z0(ti) +
k∑

j=1

AX
j ZAX

j (ti) +
k∑

j=1

BX
j ZBX

j (ti)

+
l∑

j=1

AD
j ZAD

j (ti) +
l∑

j=1

BD
j ZBD

j (ti) + εti (3.6)

where

Yti = (pti − pti−1e
−a(ti−ti−1))/s(α)

Z0(ti) = (1− e−a(ti−ti−1))/s(α)

ZAX
j (ti) = {cos(ωX

j ti)− e−a(ti−ti−1) cos(ωX
j ti−1)}/s(α)

ZBX
j (ti) = {sin(ωX

j ti)− e−a(ti−ti−1) sin(ωX
j ti−1)}/s(α)

ZAD
j (ti) = {cos(ωD

j ti)− e−a(ti−ti−1) cos(ωD
j ti−1)}/s(α)

ZBD
j (ti) = {sin(ωD

j ti)− e−a(ti−ti−1) sin(ωD
j ti−1)}/s(α)

The solution of the stochastic differential equation is now linear in the β pa-

rameters, and we can use ordinary least square to obtain an estimate of β. By

specifying the frequencies and reformulating (3.4) we were able to reduce the

number of parameter to be estimated by maximum likelihood from 21 to 2.

Solving equation (3.5) is equal to solving

(α̃, β̂) = arg max
α

Ψ
(
P, α, β̂(α)

)
(3.7)

where β̂ = {b̂0, Â
X
1 , . . . , ÂX

k , B̂X
1 , . . . , B̂X

k , ÂD
1 , . . . , ÂD

l , B̂D
1 , . . . , B̂D

l } is the or-

dinary least squares estimate. The procedure used to solve this maximisation

problem is as follows: First we start with an initial guess α, and find the cor-

responding β̂(α) by OLS. The OLS-estimates together with α are then used

to calculate the value of the log likelihood function. This procedure is then

repeated until we find the α that maximises the log likelihood function and

thereby solving the problem. We will later in section 6 use (3.7) on historical

price data to estimate the parameters of the spot price process.
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4 Numerical solution

In this section we show how the problem formulated in section 2 can be solved

numerically on a discrete state space.

4.1 Discretisation

To solve the problem on a computer we need to discretise the time and state

space. In this market the natural smallest time scale is one hour, and this is

chosen as the basic time discretisation. In combination with the limitations on

the control, this also gives the discretisation of the Q space, see figure 6. The

parameters of the traded contacts are typically specified such that T1, T2 and

T are all integers. The price space is truncated and divided into N uniform

Q(t)

M

tT

Figure 6: The natural nodes in the Q-space.

intervals. The value function is found in every node of the three dimensional

parallelepiped in the (t, q, p)-space. We use backward induction, starting at

time T .

The time horizon T is typically measured in whole hours. If T1 = M
u1

is an

integer number of hours6, it is natural to use one hour as the basic discrete

time interval. In this case both T1 and T2 are reached after an integer number
6This is typically the case for the traded contracts. To increase numerical stability we may

introduce e.g. four sub steps within each hour.
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of periods. The initial time node is denoted 0, the last node is T , that is,

0 = t0, . . . , tT = T

totally T +1 nodes. The control applied in the first hour is found in time-node 0.

The time discretisation combined with the control gives a natural discreti-

sation of the Q space into T1 + 1 nodes, see figure 7. Totally the (Q, t) space

consists of (T1 + 1)(T − T1 + 1) nodes7.

Node 1

Node 2

0 654

Node 3

1 2 3

Q(t)

t

Figure 7: The discretisation of the (t, Q)-space.

The price process Pt studied in section 3 is unbounded. The infinite P -space

must therefore be truncated before the optimisation problem can be solved

numerically. Assume that the process can only take values in [P , P ]. This

interval is represented discretely as {P , P +∆P, P +2 ·∆P, . . . , P +N ·∆P, P}
that is, Pi = P + i ·∆P .

4.2 The numerical scheme

On the grid previously stated, we define

V k
i,j = V (tk, qi, pj).

This is a discrete approximation to the continuous value function8 in equa-

tion (2.1), see page 7. After the choice of control the HJB equation (2.3)
7For the test case we have T1 = 1667 and T = 3672. Therefore, with the P space divided

into 100 intervals, we get 335 million nodes in the three dimensional parallelepiped.
8We denote the approximation and the true (continuous) function as V . When this is

unclear, the continuous function is called Ṽ .
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reduces to the partial differential equation

Vt + µ(t, p)Vp +
1
2
σ2(t, p)Vpp + ûVq + e−δtûp = 0 (4.1)

where û is either 0 or u1.

Let us first focus on the interior of the P -space. We use finite difference to

approximate the derivatives of V . At time tk we use the known value function

V k+1 to approximate Vq while the unknown V k is used for Vp. Therefore the

scheme is explicit in the q-variable and implicit in p. We use

∂

∂t

{
V k

i,j

}
≈

V k+1
i,j − V k

i,j

∆t

∂

∂q

{
V k

i,j

}
≈

V k+1
i+1,j − V k+1

i,j

∆q

∂

∂p

{
V k

i,j

}
≈


V k

i,j+1−V k
i,j

∆p when µ ≥ 0
V k

i,j−V k
i,j−1

∆p when µ < 0.

∂2

∂p2

{
V k

i,j

}
≈

V k
i,j+1 − 2V k

i,j + V k
i,j−1

(∆p)2

This is a downwind-upwind discretisation of ∂V
∂p . Observe that the approxima-

tion is done in the flow-direction of the underlying process. Define

µ+ = max(µ, 0)

µ− = max(−µ, 0).

Observe that µ+ + µ− = |µ| and µ+ − µ− = µ. Inserting the above approxima-

tions into (4.1) we get

V k+1
i,j − V k

i,j

∆t
+ (µk

j )
+

V k
i,j+1 − V k

i,j

∆p
− (µk

j )
−V k

i,j − V k
i,j−1

∆p

+
1
2
(σk

j )2
V k

i,j+1 − 2V k
i,j + V k

i,j−1

(∆p)2
+ û

V k+1
i+1,j − V k+1

i,j

∆q
+ e−δtk ûpj = 0

Using that ∆q = ∆tu1, û ∈ {0, u1} and collecting the terms, we get

V k+1
i+1,j − V k

i,j

∆t
+ (µk

j )
+

V k
i,j+1 − V k

i,j

∆p
− (µk

j )
−V k

i,j − V k
i,j−1

∆p

+
1
2
(σk

j )2
V k

i,j+1 − 2V k
i,j + V k

i,j−1

(∆p)2
+ e−δtku1pj = 0

when û = u1. When û = 0 the equation is

V k+1
i,j − V k

i,j

∆t
+ (µk

j )
+

V k
i,j+1 − V k

i,j

∆p
− (µk

j )
−V k

i,j − V k
i,j−1

∆p

+
1
2
(σk

j )2
V k

i,j+1 − 2V k
i,j + V k

i,j−1

(∆p)2
= 0.
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Observe that this may be seen as discrete representations of (2.4) with the

convention that we move up in the Q-grid over the time step when u1 is chosen.

Since we use backward induction, V k+1 is completely known at time tk. At

the boundaries two and three (see figure 2 on page 10) the control must be u1

and 0 respectively, that is, there is no choice here. At these boundaries the

value function is equal to the functions G and F . At the boundaries one and

four, and in the interior both control choices may be used.

The above scheme can be organised as

ak
j V

k
i,j−1 + bk

j V
k
i,j + ck

j V
k
i,j+1 = e−δtkuk

i,jpj∆t + W k+1
i,j (uk

i,j) (4.2)

where

ak
j = −

(
(µk

j )
− ∆t

∆p
+

1
2
(σk

j )2
∆t

∆p2

)
bk
j = 1 +

∣∣∣µk
j

∣∣∣ ∆t

∆p
+ (σk

j )2
∆t

∆p2

ck
j = −

(
(µk

j )
+ ∆t

∆p
+

1
2
(σk

j )2
∆t

∆p2

)

W k+1
i,j (û) =


V k+1

i,j when û = 0

V k+1
i+1,j when û = u1.

At the boundaries 2 and 3 of the (Q, t)-space (see figure 1 on page 8) û is known.

At each time step tk and for each Q-node qi away from these boundaries we

find the optimal control

uk
i,j = arg max

u∈{0,u1}
(e−δtkupj∆t + W k+1

i,j (u)),

and thereby also the righthand side of the linear system of equations defined

by equation (4.2).

Before we focus on the discretisation on the boundaries of the P -space, we

show how the above scheme may be linked to a Markov chain approximation

of the underlying stochastic process.

With reference to the book by Kushner and Dupuis [3] we note that the

scheme (4.2) may be written as

V k
i,j =

∑
l={j−1,j+1}

p(i, l; k, k)V k
i,l + p(i, j; k, k + 1)

[
W k+1

i,j (uk
i,j) + e−δtkuk

i,jpj∆t
]
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with the following definition of the “probabilities”;

p(i, j − 1; k, k) = −
ak

j

bk
j

p(i, j + 1; k, k) = −
ck
j

bk
j

p(i, j; k, k + 1) =
1
bk
j

.

Observe that p(·) ≥ 0 and
∑

p = 1. With this representation we see that

this scheme may be associated with a Markov chain approximation of the price

process. The chain lives in the discrete (p, t) space, and time is treated as just

another state variable. At each period there is only a certain probability that

a time step is taken. See figure 8. This intuition proves useful when we study

the boundaries of the P -space in the next subsection.

j

j−1
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Time 
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Figure 8: The Markov chain interpretation, with reflection on the boundary.

4.3 The boundaries of the price space

In this section we study the boundaries of the truncated P -space [P , P ]. Two

different types of boundary conditions are used. We first present the method

called “Absorbtion”. This type of boundary conditions typically arise when

a process is absorbed in a boundary node, and a specified value is known in

that node. In this case conditions are put directly on the value function. In

the theory of partial differential equations such boundary conditions is called

“Dirichlet” conditions.
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The second method is called “Reflection”, and must be used when we study

a process that is reflected at a boundary. In this case it is important that the

discrete Markov chain is reflected in the proper direction. This can be seen

to correspond to conditions on the derivative of the value function, so called

“Neumann” conditions.

We now show in detail how these boundary conditions affects the above

scheme.

4.3.1 Absorbtion

We first focus on how absorbtion may be implemented. Suppose that the value

V k
i,j is known (or approximated) for all k, i at the boundaries of the P -space,

that is,

V k
i,0 = Ṽ (tk, qi, P )

V k
i,N+1 = Ṽ (tk, qi, P )

for all i, k. Next to the lower boundary the equation (4.2) must be changed to

bk
1V

k
i,1 + ck

1V
k
i,2 = e−δtkuk

i,1p1∆t + W k+1
i,1 (uk

i,1)− ak
1Ṽ (tk, qi, P )

and

bk
NV k

i,N + ak
NV k

i,N−1 = e−δtkuk
i,NpN∆t + W k+1

i,N (uk
i,N )− ck

N Ṽ (tk, qi, P )

at the upper. Remember that p0 = P and pN+1 = P .

In this subsection the value function were taken as given at the boundary.

The problem is that it may be hard to say anything meaningful about this value

in advance. The error done in this specification typically propagate towards

the center of the grid. It is damped as it gets far away from the boundary,

but still this may be a problem for the scheme, especially when the volatility

(modelled by σ) is large. The solution is to truncate the price process at levels

far away from the regions of interest. Further, we must keep an eye on the

approximate solution near the boundaries, and adjust the specifications if it is

clearly inconsistent with the real value function. Such methods are quite easy

to implement, but is costly since the grid must be enlarged and the resulting

value function inspected carefully.
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4.3.2 Reflection

Reflection is an alternative to the method studied in the previous section. The

idea is easier grasped when we think of our scheme as a (Markov chain) approx-

imation of the movements of the price process. Instead of letting the process

be absorbed at the boundaries as in the last section, we now assume that the

process is reflected at the boundaries. This may be seen as a condition on the

derivative of the value function, and as such, a weaker condition.

When the real process possess reflection, it is important that the reflection

in the scheme is implemented in a consistent manner. The process we study has

no natural reflection. We have therefore freedom to choose the approximation.

What the most efficient reflection looks like is not obvious in advance, and we

found a good approximation by experimentation.

At the boundaries the chain was reflected back into the grid, we here use the

lower boundary as an illustration. When the chain goes from node 1 to node 0

it is immediately returned to node 1, i.e. the probability p(1, 1; t, t) is positive.

Now the expected movement of the process is shifted upwards. To reduce this

effect, we decrease p(1, 2; t, t) and increase p(1, 1; t, t) further. For our problem

this procedure proved efficient.

We here present the chosen probabilities at node 1,

p(1, 1; t, t) = −2a1
b1

p(1, 1; t, t + 1) = 1
b1

p(1, 2; t, t) = − c1−a1
b1

,

where a, b and c (We have suppressed the time index) is defined on page 22. We

see that they sum to unity. Further, if the drift is positive at node 1, they are

all positive and less than one. Therefore we may interpret them as transition

probabilities. The procedure is similar at node N .

4.4 Implementation of the scheme

Our problem is time dependent, with very explicit periodicity on a daily, weekly

and yearly scale. Further, the mean reversion effect is small. This means that

the drift of the process change sign during the day. We may therefore suspect

that the reflection procedure at node 1 is a good approximation when the drift

is positive, but poor when the drift is very negative. Opposite in node N. We

have therefore implemented absorbtion when the drift is smaller than a chosen

level (e.g. zero). The value associated with the absorbing node is approximated
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as the value at the previous time step. Then the unknowns V k
i,1, . . . V

k
i,N may be

found as the solution of the system of linear equations defined in equation (4.3).

Afterwards V k
i,0 and V k

i,N+1 can be approximated with interpolation of their

neighboring values.

To illustrate the above discussion we present the scheme in a situation where

reflection is used on the lower boundary, and absorbtion on the upper. We can

find V k
i,j for all k, i, j by the following procedure

1. V T
i,j = 0 is given from the end conditions.

2. When V k+1
i,j is given, find V̄ = [V k

i,1, . . . , V
k
i,N ] as the solution of the fol-

lowing linear system of equations (For simplicity of notation, we suppress

the sub- and superscripts of V,A and G.)

AV = G (4.3)

where

A =



b̃1 c̃1 0 0 . . .

a2 b2 c2 0 . . .
...

. . . . . . . . .
...

0 . . . aN−1 bN−1 cN−1

0 . . . 0 aN bN


and

G =



e−δtkuk
i,1p1∆t + W k+1

i,1 (uk
i,1)

e−δtkuk
i,2p2∆t + W k+1

i,2 (uk
i,2)

...

e−δtkuk
i,N−1pN−1∆t + W k+1

i,N−1(u
k
i,N−1)

e−δtkuk
i,NpN∆t + W k+1

i,N (uk
i,N )− cNV k

i,N+1


Here

b̃1 = b1 + 2a1

c̃1 = c1 − a1.

This system of equations is tridiagonal and can be solved efficiently by

Gauss elimination.

3. Iterate from step 2.
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Observe that the coefficients a, b, c of the A matrix are independent of the

control and the Q-level. Therefore, at a given instant tk, the A matrix is the

same for all Q-levels. The three-diagonal system of equations is solved once,

with a loop calculating the solutions corresponding to the different righthand

sides. This improves the efficiency of the algorithm considerably. Also observe

that bi ≥ 1.0, and that the matrix A is strictly diagonal dominant. This secures

the stability of the scheme.

4.5 The control matrix

The algorithm in the previous section calculates the value and the optimal

control in each node of the grid. As previously pointed out, the grid may

typically have more than 300 million nodes. Consequently it is inefficient to

store all the information. We chose to store the value only at the first time

step. This gives an estimate for the initial value of the contract. The value of

the contract may be interesting at later time steps if the contract is re-traded,

but we put this aside at the present.

The optimal control is however needed at each node of the grid. Still the

structure of the problem gives a limited demand for storage. The point may be

explained by the following argument.

Suppose the time is tk and the current price is pl. Focus on the amount

delivered up to this point, i.e Qt. If we choose to deliver u1 for Qt = qj , then

we chose u1 for all qm where m < j. Therefore we need only keep the critical

qn̂ such that

u =

{
u1 for n < n̂

0 for n ≥ n̂.

This critical level must be found for all tk and all pl, thus giving a N × T

matrix. See figure 9. If the process parameters are fixed for the whole period,

this matrix is generated only once. This can be quite time consuming, especially

when the contract horizon is long.

The real observed price is now used to find the optimal control for each

hour, and to calculate the realised value of the contract. In section 6 we use this

algorithm to analyze several different contracts. The resulting control policy is

compared to the strategy of competitors in the market.
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Figure 9: The control matrix.

4.6 Deterministic test

It is important to try to check the results generated by the numerical algorithm.

For this problem we have no explicit solution to compare with. Still, if we let

σ ≡ 0, we may test the algorithm by the following method.

Suppose we study a contract over the period9 [0,168] and that we have

to find the 100 hours with the highest price. If the price process is purely

deterministic, the price is known for the whole period at time 0. It is therefore

a simple task to find the hours to exercise the contract. The time 0 value we

achieve (called explicit solution below) is compared with the value calculated

by our algorithm. The price grid is [−50, 300] with ∆p = 3.846. In the time

space we use ∆t = 1. The results are presented in table 1. Relative error is

the absolute error divided by the explicit solution. Observe that the numerical

scheme is good in the middle of the grid but worse close to the boundaries,

especially at the lower boundary. The error close to the boundaries is expected.

We can however not explain the asymmetry in the error.

In this version of the paper we do not include the proof for convergence

of the algorithm. This proof is rather technical and does not give any new

intuition for a reader interested in applications.
9For simplicity, we study a contract with a short settlement period.
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Table 1: Deterministic test of the algorithm
Price time 0 Explicit solution Algorithm Absolute error Relative error

-23 -14666 -6988 7678 -0.52
0 7597 8821 1224 0.16
50 55840 54311 -1529 -0.027
100 104104 102461 -1643 -0.016
150 200789 198949 -1840 -0.0092
250 249205 245088 -4117 -0.017

4.7 Remarks

The above scheme has transition only to neighboring10 nodes. This limits the

possible movements of the process from hour to hour. The weakness of this

implementation may be dealt with in different ways. One possibility is to use

non-local finite difference approximations. Another is to introduce intermediate

time steps, where the control is inherited from the large time step of one hour.

An easier way to more flexible movements of the process is to introduce

intermediate time steps. At each small step the optimal control is found. The

control for the present hour is the accumulated controls for the sub-steps. We

have promising results using this method, but the full study of this extension

is left for future work.

10From one time step to the next the Markov chain may move to other nodes. This is
because the probability that a time step is actually taken is less than 1.0. If a fully explicit
scheme was used, the chain had been limited to the neighboring nodes. This motivates, from
a Markov chain perspective, why implicit schemes are more stable than explicit schemes.
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5 Data and estimation

We have chosen a stochastic process for the spot price and developed a numerical

algorithm to find the value and optimal policy for a flexible load contract. The

next step is to implement our algorithm. To do this we need to estimate the

price process from historical prices.

5.1 Price data

To estimate the parameters in the price process we use historical spot prices

obtained from Nord Pool. The spot price is called system price, and is the

price in NOK for one MWh of electricity for a given hour. Our data sample

consists of 76 608 hourly prices from 4. January 1993 to 1. October 2001. See

figure 10 for a graphical illustration of the data sample. There where no missing

data but the prices were in a standard time format. Since cyclical patterns of

electricity demand over the course of a day mostly depends on the time shown

by the clock and not the time implied by the sun, we need to adjust for daylight

saving time. To adjust for daylight saving time we inserted one fictitious price

observation in the spring and removed one in the autumn. The observation we

inserted in the spring was the average of the price value before and after. If

we do not adjust for daylight saving time we will get a phase shift between the

daily patterns on a winter day and the daily patterns on a summer day.

Another characteristic of our data sample is that it includes several price

spikes due to unusual load conditions. Since we chose a price process without a

jump term we are unable to model price spikes or fast mean reversion directly.

We must therefore be careful not to let the spikes influence the parameter

estimation too much. By closer inspection it seems that the price spikes mainly

occurs in the morning or in the afternoon, with a duration of one to six hours.

Fortunately the data sample used to estimate the parameters in the weekly

process, Xt, does not include many spikes. The reason for this is that the

data sample consist of the first hour on every Monday and at this time of

the night the demand is low and price spikes rarely occurs. Since the intra-

weekly process, Dt, is deterministic an occasional spike does not influence the

estimation much. If we look at the descriptive statistics in table 2 the price

spikes shows up as increased skewness and kurtosis. We can also see from

figure 10 that the occurrences of price spikes has increased dramatically the

last three years. The descriptive statistics also indicate that the spot price is
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Figure 10: System price for the period 4. January 1993 to 1. October 2001, a total of 76 608

hours. Since we have plotted hourly prices we can more clearly see the occasional price spike. We

can also see periodicity in the price.

lower and more volatile in the summer than the rest of the year. The low price

is due to the seasonal pattern of electricity consumption, and the high volatility

is because of deviations in hydrological balance.

5.2 FLC data

To be able to compare our algorithm to real market participants we have man-

aged to get hold of a very unique data-set. The data-set consist of historical

FLC policies for nine real market participants. The policies are for two kinds

of flexible load contracts:

• Summer FLC: With a settlement period from 1. May to 30. September.

The flexibility is to exercise in 1667 of 3672 hours (45.4%).

• Winter FLC: With a settlement period from 1. October to 30. April.

The flexibility is to exercise in 3333 of 5088 hours (65.5%).

Together these two contracts make up a flexible load contract called “5000

hours FLC with 2/3 of the volume in the winter and 1/3 in the summer.” For

three of the participants we have policies from 1. May 1997 to 1. May 2002,

and for three other participants we have policies from 1. May 1999. Due to
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Table 2: Descriptive statistics

Nominal prices
Avg Min Max SD Skewness Kurtosis

1993* 80.04 14.27 193.75 41.10 0.1896 2.1258
1994 182.65 60.81 459.35 68.49 1.0679 7.0252
1995 117.67 25.38 210.89 60.59 -0.5807 2.7852
1996 253.63 102.97 391.62 79.16 0.2880 3.0466
1997 134.99 28.40 377.80 73.61 0.7945 4.4389
1998 116.35 17.97 735.28 70.47 0.5873 17.7840
1999 112.11 39.99 654.98 67.29 1.9075 28.3528
2000 103.33 19.01 1808.66 66.06 12.7962 410.4873
2001* 188.46 31.21 1951.76 67.86 11.6510 218.7751
Full sample 142.42 14.27 1951.76 67.86 2.2028 33.5961
W1 154.56 20.36 1951.76 65.90 5.4542 100.3643
SO 124.54 14.27 391.62 73.05 1.0170 3.7532
W2 157.53 29.45 735.28 51.37 1.1702 6.0739

Deseasonalised prices
Avg Min Max SD Skewness Kurtosis

1993* -34.41 -94.98 90.41 28.15 0.31 2.64
1994 57.05 -51.22 318.14 40.31 1.30 8.77
1995 -7.93 -107.76 75.60 28.87 -0.49 3.23
1996 128.55 -7.91 271.32 53.04 0.03 2.38
1997 9.06 -74.10 234.89 28.50 1.02 5.85
1998 -9.30 -97.56 583.46 27.80 1.99 46.66
1999 -13.48 -61.04 509.17 23.27 3.81 60.41
2000 -22.25 -74.80 1658.95 36.79 19.46 724.19
2001* 66.58 -93.85 1801.81 68.14 10.55 195.98
Full sample 18.35 -107.76 1801.81 63.78 2.74 39.26
W1 14.32 -88.16 1801.81 63.26 5.99 113.10
S 20.48 -97.56 271.32 70.63 1.09 3.68
W2 20.09 -107.76 583.46 50.44 1.31 6.29

Descriptive statistics conducted on yearly and seasonal subsamples. W1 denotes the period 1. Jan-
uary to 30. April, S denotes the period 1. May to 30. September and W2 denotes the period 1. Oc-
tober to 31. December. The deseasonalising is performed by subtracting Et[Ps], s = {1, . . . , 8760}
from the prices at the beginning of each year. The main results from the statistics is that the
average prise has decreased and the skewness and kurtosis has increased. We also see that the
skewness and kurtosis is highest in the W1-period, and the S-period has the highest volatility.
*not all prices for this year is included in the calculation of the statistics

incompatibilities we could only use the summer FLC policies for the remaining

three participants.

The FLC data was obtained from Skagerak Energi AS - one of Norway’s

leading power companies. To get hold of the data set we had to anonymise the
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data by scaling the contracts and by naming the participants as C1, C2, . . . , C9.

5.3 Parameter estimation

With the price data we can now begin the estimation of the parameters in the

spot price process. As we recall from section 3 it is possible to estimate the

spot price parameters by solving the maximisation problem given by (3.7) on

page 18. To separate the fast mean reversion generated by large and sudden

changes in the demand or supply from the more slowly mean reversion generated

by the hydrological balance, we used a two stage estimation procedure. First

we estimated the parameters in Xt from hourly prices with a weekly sampling

interval. By construction Dt will start out at zero every week, meaning that Dt

will be zero in the weekly data sample. Assuming an hourly sampling resolution

of P, we pick every 168’th value and use this data sample to estimate the

parameters a, σ, AX
1 , b0, AX

2 , BX
1 and BX

2 by solving (3.7) on page 18. The

second stage is to estimate the parameters in Dt from the full data sample P.

To get an estimate for the parameters in Dt we insert the parameters estimated

from the first stage into (3.6) and solve the maximisation problem given by

(3.7). To ensure that Dt start at zero at the beginning of every week, we set d0

equal to the value of -ε at time t1.
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Figure 11: We can here see the relationship between the Dt sample and the Xt sample. We

have in this figure on purpose picked a period with price spikes to show that Xt is usually not

effected by spikes.
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To incorporate new spot prices into our sample we re-estimated the param-

eters 1. May and 1. October each year. The re-estimation of the parameters

made it possible to adapt to changes in dynamics of the spot price and use the

largest available sample to get more accurate estimates. The results are given

in table 3. As we can see from the estimated parameters the speed of mean

reversion, a, is equal in all sub samples. This indicates that the mean reversion

property of the spot price dynamics is unchanged over the last eight years. This

is however not the case for the volatility parameter, σ, which has decreased.

The deseasonalised long run mean, b0 + d0, has also decreased during the data

period. Since we are operating with nominal prices we expected an increase,

but the effect of the deregulation of the electricity market and several years

with more than normal precipitation must have counteracted this.

The remaining parameters in the table determines the shape of the seasonal

patterns. The day and weekly price patterns are quite stable throughout the

sample period. The parameters AX
1 , AX

2 , BX
1 and BX

2 which control the yearly

price cycle on the other hand seems to be more varying. This may indicate that

the yearly price pattern is influenced by other factors than just the deviation

from long run mean and the time of the year.
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6 Results

The purpose of this paper is to study how a flexible load contract should be

exercised optimally when only historical spot price information is to be used.

So far we have expressed the FLC as an optimisation problem, found a good

process to model the spot and estimated the parameters of this process. We

are therefore ready to implement our model and compare it with historical

FLC-data.

6.1 Results from case

In this section we focus on the contract defined in the first section. This was

a FLC contract for the summer 1997 from 1. May to 1. October, totally 3672

hours. In our case we paid 958.525 NOK for the right to withdraw 8335 MWh,

with a maximum of 5 MWh per hour. Therefore our target is to exercise the

contract during the 1667 hours with the highest spot price.

In figure 12 we show how our algorithm exercised the contract during the

summer period of 1997. The plot shows the accumulated control (i.e. the Q-

variable) at each instant. We compare this with the aposteriori best path

which picks exactly the best 1667 hours. We also show how the contract was

utilised by a market participant. Even though the historical contract is closer

to the aposteriori best, it is not necessarily better than the model. This is

because there is no monotonicity in the value of the policies as we get closer

to the ex post optimal curve. This can be illustrated by the policy picking the

same hours as the optimal, but with a 12 hours lag. This policy will normally

perform poorly (because of the low price levels in the night) but it will be very

close to the aposteriori optimal curve. In figure 12 we have also plotted the

frequency plot of all the prices together with the distribution of the prices for

the exercised volume. As we can see our model managed to exercise most of its

volume on the “right side” of the price distribution. This indicates an ability to

distinguish a high-price state from a low-price state. The actual performance

of the model is difficult to measure from the frequency plot or the accumulated

control. Therefore we need to calculate the realised revenue from the different

policies. The results are given in table 4. We see that the model based on an one

hour update gets a fourth place, but the difference from the other competitors

is relatively small. The model has an advantage since the control can use hourly
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Table 4: Value of exercised FLC (Summer-1997)
Total revenue Revenue excess Excess revenue

from FLC base load per MWh

Model:
1h 1 000 559 98 353 11.80
24h 982 141 79 935 9.59

Competitors:
C1 1 010 281 108 075 12.97
C2 1 000 506 98 300 11.79
C3 1 007 316 105 110 12 61
C4 986 806 84 600 10.15
C5 1 013 166 110 960 13.31

Value of the exercised FLC obtained by our model and 5 competitors. Since the total revenue

mainly consist of the value of the base load, and this base load is often hedged when a FLC is

bought, it is common to look at the total or per MWh excess revenue. For this particular FLC we

see that competitor C5 managed to obtain the highest revenue, with our model obtaining a 1.2%

lower total revenue.

price information. We can adjust for this and use the (possibly11) more realistic

model where a 24 hours deterministic development of the observed price is used

to find the control. We see that the result is worsened, as expected.

Can we from this conclude that our model is inferior? The answer is no!

It is important to keep in mind that this problem is of a stochastic nature.

Therefore even though we knew the real stochastic process (which of course is

impossible) the optimal control could give bad results when only one season (i.e.

one replicate) is studied. But since the expected value is maximised, the long

run accumulated value should be good. In the next subsection we introduce

a new FLC for the winter period and again show how our model performs

compared to real life competitors during the 1997 - 2001 period.

6.2 General results

To supplement the FLC for the summer period we introduce a new type of

FLC for the winter period 1. October to 30. April, totally 5088 hours. The new

contract has a total volume of 16665 MWh and a maximum effect of 5 MW.

Our goal is therefore to pick the 3333 hours with the highest price. With this
11The market participants does have good estimates for price development the following

days. If we use this information the model with an hourly update may be realistic after all.
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contract we are able to show how the model performs over the whole 1997 - 2001

period. Finding a good method to compare different contracts is not straight

forward. Contracts with the same degree of flexibility and with equal delivery

period must be used. In addition competitors may have different risk attitudes.

We decided to first focus on the excess revenue obtained for the period 1997-

2001, and as a second stage see if there were any differences in the volatility of

the revenue among the participants.

The results are presented in table 5 and figures 13 to 21. We may draw

some conclusions from the results. First of all our model manage to obtain the

highest accumulated revenue during the period. The model also demonstrates

that it has the courage to pick many hours early if the prices are sufficiently

good. Opposite, the model waits for a long time if the prices are poor. This

can be seen as a risky behavior, and may be a consequence of the risk neutral

model12 formulation. The results also shows that the results vary substantially

from extremely good (as in W2001) to extremely bad (as in W2000), but with

a good average performance. This may also be seen as a materialisation of risk

neutrality. We will in the next subsection take a closer look at the FLC for the

winter period 2000, and try to analyse the result.

Another observation is that our model seems to perform better for the winter

contracts than for the summer contracts. One reason can be that the winter

contract has a lower degree of flexibility than the summer contract. For the

winter contract we have to exercise 3333/5088 ≈ 65.5% of the hours against

only 1667/3672 ≈ 45.4% for the summer contract. Another reason may be that

the process is best calibrated to the winter data. The reason for this is that since

we have only used two trigonometric functions to model the changes through

the year, the process can not model the summer vacation and all the holidays

in May properly. The low prices in the summer is typically expected to appear

6 months after the highest winter prices. This is not necessarily the case in the

real world. Normally the lowest prices appear in the vacation weeks of July.

Our spot process does not expect collapse in the July prices, and therefore the

routine has a tendency to pick too few hours in May and June. Then, when the

really poor prices appear in July these hours cannot be exercised either. Now

the routine is basically forced to take all the hours in August and September.

This scenario is broken if the early summer prices are sufficiently high as in
12On the other hand, we believe that this routine does the correct trade off between the

different effects of the model such as interest rate, volatility, reversion and periodicity.
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the summer of 2001. We believe that the performance in the summer contracts

could be improved with a more representative process. Several different ideas

can be followed.

• We could include more trigonometric functions into the spot process.

• We could estimate separate summer and winter processes.

• We could include a drift term into the process such that the holidays are

placed properly.

We feel that we have demonstrated that the model works quite good with this

level of precision, and leave the process of refinements for future work.
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6.3 A closer look at the winter 2000 FLC

The revenue from the FLC during the winter 2000 period was very low. In fact

the revenue was lower than the value of a base load contract. We have two

different types of explanations for this. Firstly, there may be weaknesses in the

routine, especially due to the limitations of the movements of the discretised

price process from hour to hour. Secondly and more importantly there are

clearly an informational asymmetry since the market has access to information

that the model does not have.

From figure 19 on page 48 we see that the algorithm starts out with an

exercise policy close to maximum. This was a result of the higher-than-normal

prices for this time of year. The degree of exercised volume was later reduced

some, and the difference between the competitors policy and ours was reduced.

During February our model saw sufficiently high prices to exercise the remain-

ing volume, thereby missing several price spikes in March and April. This is

reflected in the density plot as the low volume exercised in the 180 - 240 price

range. If we had used a price process that was able to model spikes, the al-

gorithm would not have exercised the remaining volume so soon. The forward

prices did capture large parts of the price spikes and if incorporated would have

helped. On the other hand the FLC for the winter 2001 period did very well

since the routine overlooked the predictions given by the forward market. So

the effect of information from the forward market is not clear. We therefore

believe the main reason for the poor winter 2000 results was the algorithm

inability to capture the possibility of future price spikes.
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7 Concluding remarks

In this paper we have analysed flexible load contracts by formulating the con-

tract as a stochastic optimisation problem. The value function is expressed

as the solution of the Hamilton Jacobi Bellman equation in which the optimal

control takes only the extreme values. By carefully examining the dynamics

of the spot price in the Nordic electricity market we decided to use a time

dependent mean reverting Ornstein-Uhlenbeck process. The process modelled

daily, weekly and yearly price cycles. In addition it captures mean reversion

due to deviations in the hydrological balance. The process has 21 parameters

which was estimated from historical price data by a mixture of OLS and maxi-

mum likelihood. Estimation was conducted partly on a weekly data sample and

partly on an hourly data sample. This to distinguish the short range factors

from medium range factors.

To be able to solve the optimisation problem we discretised the time and

state space and derived an algorithm to find the value function and optimal

control in each node. To dampen the effects of a truncated price space we

combined absorbing and reflecting boundary conditions.

We implemented the algorithm and calculated the optimal control for the

five year period 1. May 1997 to 30. April 2002. The accumulated revenue from

this control was compared to the revenue for nine market participants. We find

that our algorithm obtains the highest accumulated exercise revenue for this

period. The model also demonstrates that it has the courage to pick many

hours early if the prices are sufficiently good. This can be seen as a more risky

behavior, and may be a consequence of the risk neutral assumption. Another

observation is that our model seems to perform better for winter contracts than

for the summer contracts. We believe the performance for the summer contracts

can be improved with a more representative process.

In our opinion this model demonstrates a great potential for utilisation

of contracts of this type. The methods can be developed further to improve

the results even more. The introduction of a jump process is important in

this respect. We stress that the methods are fully operational, and can be

implemented by practitioners, for instants as a tool for benchmarking (or just

to improve their profits).
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