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Abstract

RiskMetrics™ (RM) represents a framework for measuring market risk founded on the Vdue at
Risk concept, and offer daily updated estimates of standard deviations and correlations of the assets
within their market risk universe. Unfortunately, a company may aso be exposed to other sources of
market risk than the ones covered by RM. This paper shows how to extend the RM universein a
consstent way. The main chalenge isto obtain the correlations between each pair of RM asset and
additiona asset. Simple rules gopply for updating estimates of the extended universe for new daily

information.
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How to Extend the RiskMetrics™ Market Risk Universe

1. Introduction

Quantitative models for managing the downsde market risk exposure have gained increased
atention in business aswell asin legidation and regulation.’ RiskMetrics™ (RM) represents a
framework for measuring market risk founded on the Vaue at Risk concept”, and offer daily reports
containing information on updated estimates of standard deviations and correlations of returns of the
assets within the RM market risk universe By assessing the company risk exposure with respect to

each RM asst, the company can calculate the overall downside risk exposure due to market risk.

Unfortunately, it may be the case that a company due to its activities or its location aso is exposed to
other sources of market risk than the ones covered by RM. One example isthe lack of data for
severad small counties, for instance Norway." The purpose of the paper isto show how to extend
the RM market risk universe in a congstent way. The main challengeisto obtain the correlations
between the returns of each pair of RM asset and additiond assets. In addition, we need estimates of
the standard deviation of each additional asset return as well as the correlation for each pair of

additiond asset returns.

For our analysis, we need information on the observed daily return for the additiona assets, aswell
asthe RM daily reports on standard deviations and corrdations. In addition, it is required that we

can observe the daily return time series of at least one asset within the RM universe.



Toindude additiond assts, theideaisasfollows Firg, use the time series of RM daily estimates of
standard deviation and correlation - in addition to the observed return time series on &t least one of
them - to reconstruct the daily return series for each RM asset. Second, use the observed return time
series of the additiona assets to estimate the current standard deviation and the correlation between
each pair of them. And third, use the reconstructed and the observed daily return time seriesto

estimate the correlation for each pair of RM asset and additional asset.

It isimportant to notice that once the additiona assets have been included, asmple updating rule
gopliesfor updating the estimates as new information arrives. This means the following Smple daly
routine: Download the updated RM data. Observe the return on one asset within the RM universe,
aswell as the returns on the additiond assets. Apply asmple rule for updating the covariances
between the assetsin the RM universe and the additional assets, as well as the covariances between

the additional assats. Trandate the covariances into sandard deviations and correlations.

Section 2 trandates the RM market information into a covariance matrix, which is a more convenient
representation. Section 3 introduces the RM covariance estimator and the daily updating rule.
Section 4 explains how to infer the underlying returns from the RM daily standard deviation and
correlation reports. Section 5 explains how the covariance estimator can be gpproximated from a

finite return time series, say 100 days, and section 6 concludes.



2. Standard deviation, corréation, and the covariance matrix
Let the RM universe condst of N assets (asset classes). RM provide daily reports where the

information can be represented by aVaue at Risk vector V,, (t) and acorrdation matrix Ry, (t)
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where s ; isthe standard deviation (per day) of daily returns of asset (class) i, and 1 ; isthe

correlation between the returns of assets i and | . The number 1.65 corresponds to a 95% Vdue at

Risk when returns are normally distributed, but is not of particular interest for our purposes.

The RM implicitly assumesthat USD isthe relevant home currency. In case the company uses
another home currency, we take the standard deviations and correlations above to be the ones using

the home currency as base.”

For convenience and with no loss of generdity, we trandate the above information into a covariance

matrix Cy- (t) whereeach dlement s, | (t) isrelated to the standard deviations s ; (t) and
s, (t) andthe correlation r; ; (t) above asfollows
@ s;;(0°s (s, @®)r ;) fordli,j.

By definition, s, ; corresponds to the return variance of asset i . Furthermore, observe from

Equation (1) thats ; ; =s ;, i.e, the covariance matrix C,.  (t) is symmetric around the diagonal.

ji?



Hence, we may disregard the e ements northeast of the diagond, and write the RM covariance

meatrix as

= 1(0)
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Now, suppose that we want to extend the RM universe by n additiond asset. Thisleadsto an

extended covariance matrix, C . +n (1) , defined by
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where C,- (t) isthe covariance matrix between the RM universe and the additional assets, i.e,,
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and C, (t) isthe covariance matrix of the additional assets, i.e,

_ 83 N+1,N+l(t) 9
Cin®°c : -
gS~N+n,N+1 ® - S~N+n,N+n (t)é

3. EWMA zero-mean covariance estimator
The RM covariance estimation based on the exponentidly weighted moving average (EMWA),
where geometric weights are assigned to each observation. In addition, RM consders the return

deviations from zero, i.e, asif returns have zero mean.

To formdize, condder the following historica return time seriesof assets i and |



Table 1: Infinitereturn series

Day Return Return
asset | asset |

-k X(t- k)X k)

-2 X(t-2)  X(t-2)
-1 X(-D X (t-1)

t X (1) X; (1)

The zero-mean covariance EWMA estimator for the returnson assets i and j is defined by”

2 si(®°@-| )glkxi(t- K)X;(t- k),

k=0
where 0<| <1.""In Equation (2) above, (1- | )| * represents the positive weight assigned to the
observation at day (t - k) , where the weights add up to unity."" We may interpret X, (t) and

X (t) asthereturn deviation from zero for assets i and | , i.e, the deviation asif both assets have

zero expected return (zero mean).

It can be shown that the EWMA estimate of Equation (2) leads to”™
B s O=-HXOX,O)+s,(t-1),
which may be interpreted as a daily updating rule for the estimated covariance. On the other hand,

note that if the two covariance estimates are known, Equation (3) can be used to infer (partid)

information on the returns X; (t) and X, (t).



4. How toinfer return from the RM reports
One of our basic premisesisthat we can observe the return of at least one RM asset, say asset
i =1. Examples of such asset classes are the S& P-500 stock index, the euro/dollar rate, or the 1-

year U.S. zero-coupon yield.

From the RM dally reports, we know the current variance estimate s | ; (t) aswell as yesterdays
edimate s ; (t- 1) of the RM assets. It follows from Equation (3) that the absolute return deviation

(from zero) for asset i is

(4) |Xi(t)|:\/%si,i(t)']-_I—Isi’i(t‘l) for i=2,---,N.

Consequently, we can use Equeation (4) to determine the absolute value of returns, |Xi | , of the RM

assats from the diagond's of the two RM covariance matrices C-  (t- 1) and C-  (t).

The remaining problem is to determine the Sign of the returns of these RM assets. Insart j =11in
Equation (3), and rearrange to obtain

5) @- )X, @)X @) =s,,®)-Is;,(t-1) for i=2,---N.

With 0<| <1, it followsimmediatey from Equetion (5) that if the right hand Sde is postive, X, (t)

and X, (t) must have the same sign, and opposite Sgns otherwise™

Consequently, we have demondtrated thet the return X, (t) atday tonRM asset i = 2,---,N can
be inferred from the covariance matrices C,,- , (t) and C,-, (t - 1) and the observed return

X, (t) . It follows immediately that for a given period, we may recondiruct the entire RM underlying



return time series from the daily covariance reports and the observed return series on at least one of

the RM asset classes.

5. How to approximate the covariance from afinitetimereturn series

Armed with the time series of inferred RM returns and the observed additiona asset returns, the
problem boils down to estimating the covariance between returns of each RM and additional assets,
aswell as the covariance between returns of each pair of additional assets, i.e., the matrices

C, (t) and C,, (). In section 3 above, we implicitly assumed an infinite time series. Assume the

following finite daily return time seriesfrom day 1 to day t

Table 2: Finitereturn series

Day Return Return

asst i asset |
1 X0 X
2 %@ X0

-2 X(t-2) X(t-2)
-1 X(t-D X(t-1)

t X (1) X; (1)

From equation (2), it follows that*"
6 si;(t)°@-l )§| “Xi(t- K)X;(t- k) +I's;(0),

k=0

where the weights assigned to the observations from day 1 to day t add up to the sum

7 @-1 )té_.llk =1-1".



However, theinitid covariance s ; ; (0) in Equation (6) is unknown. We suggest that the zero-mean

covariance is approximated by

® simea-l )g| “Xi(t- K)X(t- k).

k=0
The approximation in Equation (8) may be interpreted as using the daily updating rule of Equation (6)
above, where the “history” a the initid day istakentobes ; ;(0) = 0, i.e, asif returns before that

day were riskless (no deviation from zero). Consequently, the covariance estimator s | (t)

suggested in Equation (8) represents a downward biased gpproximation to the “trug’ (but unknown)

covariance estimators | (t) .

Note, however, that at day t, theweight |  isassgned to theinitid covariance s i ;(0) . Hence, the

downward bias tends to wash out with the number of observations. As an illugtration, note that with
aweght of | = 094 (used by RM) and 100 daily observations, the history preceding this 100-days
period is assigned aweight of 1 ' » 0.0021. Now, if the return in the two periods were equally
risky, the approximated covariance estimator would be downward biased by a

factor®" (1- 1'®) » 09979.

It can be shown™" that with afinite time series, the approximated covariance estimate above
trandates into the following daily updeting rule

© s M= 1)XOXE)+s5(t-1),

which is smilar to the updating rule of Equation (3) above. Hence, yesterdays approximated
covariance and the current (observed or reconstructed) returns represent sufficient information for

updating the approximated covariance.



6. Theextended RM market risk univer se
Thefind gep isto goply the identities

(10) s (t)=,/s;;(t) for i=N+1---,N+n,

s
W 0= =ns o

foo j=1,--,i-1 and i=N+1---,N+n,
and trandate the estimated covariances of the extended covariance matrix C - (n+n (1) intothe
following extended Vaue a Risk vector V,, , (t)

V.. (t)° (1.65s,(t) --- 1.65s (t) 1655, (t) --- 1655, (t) .

and the extended correlation matrix R .. n+n)

e ! ;
S :

raa() - 1 N

+n)" (N+n (t):g~ ’ ~
R(N )" (N+n) gr N+l,l(t) ST SN (t) 1 :
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This information can now be used, in combination with the risk exposure of the company with

respect to each asset class, to caculate the total downside risk of the company.

6. Conclusion

In this paper, we discuss a method for including additiond assetsin the RM concept, i.e., extending
the RM asset universe. Theidealisto use the daily RM reports and the observed return time series of
a least one of these assets, to recongtruct the entire set of underlying return time series. The
reconstructed return time series and the observed return time series of the additiona assets are

thereafter used to estimate the desired volatilities and correations. Once an additional asset has been

10



included, asmple rule gpplies for updating the estimates as new information arrives in terms of RM

reports and returns on the additional assets and at least one RM asst.
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I RM usestheweight | =0.94.
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¥
Vil Formally, & (1- 1)1 ¥ =1 when 0<1 <1.

k=0

' Obtain Equation (3) from Equation (2) asfollows:

S, (0 = DA X, - KX, (t- k)

= (- )[)Ei(t)xj(t)+| Xi(t- DX, (t-D+12X(t- 2)X,(t- 2)+]
=1- )X ()X, 1)
sHa- DX - X, - DX - 29Xt 2 +-]

=(1- )X, OX, 0 +1 L@~ 1)E 14X, - 1+K)X, (- 1+ k)g

=1- )X ()X, @) +I Isi’j (t- :kL;O
* To formdize, the inferred return is

X, () =sn (X, (0)sonls () - 1's,,(t- D)AX, @] for i=2--,N

where sgn (¥ denotes the sign function.
X As demonstrated above, one observed return seriesis sufficient to determine the signs. In practice,
problems due to zero return and missing observations may arise, hence several RiskMetrics™ return
series should be observed (if possible).

X Obtain Equation (6) from Equation (2) asfollows:

S,,(0° @ AT, - KX, (t- K)

=(1- | )§1| X, (t- k)X, (t- k) +(1- | )5 14X, (t- k)X, (- K)

=(1- | )§| X, (t- K)X, (t- K)+1t@- | )5 1X,(0- k)X, (0- k)

k=0 k=0

=(1- | )t§l| X, (t- K)X, (t- K)+1's,(0)

Next, obtain the identity stated in Equation (7) by considering the two equations
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[o] - -
all =1+l +12+ +1"2+1"
k=0

t-1

Q |k _— 2 t-2 t-1 t
lal =1+ 4. +17+] "7 +]",
k=0

Subtract the two equations, and rearrange, to obtain the desired resullt.
X Combine Equations (6) and (8) to obtains ,; (t) =s;; (t) +1 's;(0), insert s, (0) =, (t), and
rearrange to obtain thefactor s~ (t) /s, () = (@- 1)

XV \We obtain Equation (9) from Equation (8) as follows:

$,(M° @I )§| X, (t- K)X, (t- k)

= (L 1)X, ()X, (1) + (- | )51| KX, (t- k)X, (t - K)
=@ X 0%, +1 @ DA (- D- KX, (- - K

= (- )X, OX, (O +1S, (- 1



