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Abstract 

RiskMetrics™ (RM) represents a framework for measuring market risk founded on the Value at 

Risk concept, and offer daily updated estimates of standard deviations and correlations of the assets 

within their market risk universe. Unfortunately, a company may also be exposed to other sources of 

market risk than the ones covered by RM. This paper shows how to extend the RM universe in a 

consistent way. The main challenge is to obtain the correlations between each pair of RM asset and 

additional asset. Simple rules apply for updating estimates of the extended universe for new daily 

information. 
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How to Extend the RiskMetrics™ Market Risk Universe 

 

1. Introduction 

Quantitative models for managing the downside market risk exposure have gained increased 

attention in business as well as in legislation and regulation.i RiskMetrics™ (RM) represents a 

framework for measuring market risk founded on the Value at Risk conceptii, and offer daily reports 

containing information on updated estimates of standard deviations and correlations of returns of the 

assets within the RM market risk universe.iii By assessing the company risk exposure with respect to 

each RM asset, the company can calculate the overall downside risk exposure due to market risk. 

 

Unfortunately, it may be the case that a company due to its activities or its location also is exposed to 

other sources of market risk than the ones covered by RM. One example is the lack of data for 

several small counties, for instance Norway.iv The purpose of the paper is to show how to extend 

the RM market risk universe in a consistent way. The main challenge is to obtain the correlations 

between the returns of each pair of RM asset and additional assets. In addition, we need estimates of 

the standard deviation of each additional asset return as well as the correlation for each pair of 

additional asset returns. 

 

For our analysis, we need information on the observed daily return for the additional assets, as well 

as the RM daily reports on standard deviations and correlations. In addition, it is required that we 

can observe the daily return time series of at least one asset within the RM universe. 
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To include additional assets, the idea is as follows: First, use the time series of RM daily estimates of 

standard deviation and correlation - in addition to the observed return time series on at least one of 

them - to reconstruct the daily return series for each RM asset. Second, use the observed return time 

series of the additional assets to estimate the current standard deviation and the correlation between 

each pair of them. And third, use the reconstructed and the observed daily return time series to 

estimate the correlation for each pair of RM asset and additional asset.  

 

It is important to notice that once the additional assets have been included, a simple updating rule 

applies for updating the estimates as new information arrives. This means the following simple daily 

routine: Download the updated RM data. Observe the return on one asset within the RM universe, 

as well as the returns on the additional assets. Apply a simple rule for updating the covariances 

between the assets in the RM universe and the additional assets, as well as the covariances between 

the additional assets. Translate the covariances into standard deviations and correlations. 

 

Section 2 translates the RM market information into a covariance matrix, which is a more convenient 

representation. Section 3 introduces the RM covariance estimator and the daily updating rule. 

Section 4 explains how to infer the underlying returns from the RM daily standard deviation and 

correlation reports. Section 5 explains how the covariance estimator can be approximated from a 

finite return time series, say 100 days, and section 6 concludes. 
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2.  Standard deviation, correlation, and the covariance matrix 

Let the RM universe consist of N assets (asset classes). RM provide daily reports where the 

information can be represented by a Value at Risk vector )(tVN  and a correlation matrix )(tR NN ×  
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where iσ  is the standard deviation (per day) of daily returns of asset (class) i , and ji ,ρ  is the 

correlation between the returns of assets i  and j . The number 1.65 corresponds to a 95% Value at 

Risk when returns are normally distributed, but is not of particular interest for our purposes. 

 

The RM implicitly assumes that USD is the relevant home currency. In case the company uses 

another home currency, we take the standard deviations and correlations above to be the ones using 

the home currency as base.v 

 

For convenience and with no loss of generality, we translate the above information into a covariance 

matrix C tN N× ( )  where each element )(, tjiσ  is related to the standard deviations σ i t( )  and 

σ j t( ) and the correlation )(, tjiρ  above as follows 

(1) jitttt jijiji , allfor )()()()( ,, ρσσσ ≡ . 

By definition, ii,σ  corresponds to the return variance of asset i . Furthermore, observe from 

Equation (1) that ijji ,, σσ = , i.e., the covariance matrix C tN N× ( )  is symmetric around the diagonal.  
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Hence, we may disregard the elements northeast of the diagonal, and write the RM covariance 

matrix as 
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Now, suppose that we want to extend the RM universe by n  additional asset. This leads to an 

extended covariance matrix, )()()( tC nNnN +×+ , defined by 
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where ~ ( )C tN n×  is the covariance matrix between the RM universe and the additional assets, i.e., 
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and ~ ( )C tN n×  is the covariance matrix of the additional assets, i.e., 
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3. EWMA zero-mean covariance estimator 

The RM covariance estimation based on the exponentially weighted moving average (EMWA), 

where geometric weights are assigned to each observation. In addition, RM considers the return 

deviations from zero, i.e., as if returns have zero mean. 

 

To formalize, consider the following historical return time series of assets i  and j   
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Table 1: Infinite return series 

Day Return 

asset i 

Return 

asset j 

M  M  M  

t k−  X t ki ( )−  X t kj ( )−  

M  M  M  

t − 2  X ti ( )− 2  X tj ( )− 2  

t − 1  X ti ( )− 1  X tj ( )− 1  

t  X ti ( )  X tj ( )  

 

The zero-mean covariance EWMA estimator for the returns on assets i  and j  is defined byvi 

(2) ∑
∞

=

−−−≡
0

, )()()1()(
k

ji
k

ji ktXktXt λλσ , 

where 10 << λ .vii In Equation (2) above, kλλ)1( −  represents the positive weight assigned to the 

observation at day ( )t k− , where the weights add up to unity.viii We may interpret X ti ( )  and 

X tj ( )  as the return deviation from zero for assets i  and j , i.e., the deviation as if both assets have 

zero expected return (zero mean). 

 

It can be shown that the EWMA estimate of Equation (2) leads toix  

(3) )1()()()1()( ,, −+−= ttXtXt jijiji λσλσ , 

which may be interpreted as a daily updating rule for the estimated covariance. On the other hand, 

note that if the two covariance estimates are known, Equation (3) can be used to infer (partial) 

information on the returns X ti ( )  and X tj ( ) . 
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4. How to infer return from the RM reports 

One of our basic premises is that we can observe the return of at least one RM asset, say asset 

1=i . Examples of such asset classes are the S&P-500 stock index, the euro/dollar rate, or the 1-

year U.S. zero-coupon yield.  

 

From the RM daily reports, we know the current variance estimate )(, tiiσ  as well as yesterdays 

estimate )1(, −tiiσ  of the RM assets. It follows from Equation (3) that the absolute return deviation 

(from zero) for asset i  is 

(4) NitttX iiiii ,,2for)1(
1

)(
1

1
)( ,, L=−

−
−

−
= σ

λ
λ

σ
λ

. 

Consequently, we can use Equation (4) to determine the absolute value of returns, iX , of the RM 

assets from the diagonals of the two RM covariance matrices C tN N× −( )1  and C tN N× ( ) . 

 

The remaining problem is to determine the sign of the returns of these RM assets. Insert j = 1 in 

Equation (3), and rearrange to obtain 

(5) NitttXtX iii ,,2for)1()()()()1( 1,1,1 L=−−=− λσσλ . 

With 10 << λ , it follows immediately from Equation (5) that if the right hand side is positive, X ti ( )  

and X t1( )  must have the same sign, and opposite signs otherwise.x  

 

Consequently, we have demonstrated that the return X ti ( )  at day t on RM asset Ni ,,2 L=  can 

be inferred from the covariance matrices C tN N× ( )  and C tN N× −( )1  and the observed return 

X t1 ( ) . It follows immediately that for a given period, we may reconstruct the entire RM underlying 
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return time series from the daily covariance reports and the observed return series on at least one of 

the RM asset classes. xi 

 

5. How to approximate the covariance from a finite time return series 

Armed with the time series of inferred RM returns and the observed additional asset returns, the 

problem boils down to estimating the covariance between returns of each RM and additional assets, 

as well as the covariance between returns of each pair of additional assets, i.e., the matrices 

~ ( )C tN n×  and ~ ( )C tn n× . In section 3 above, we implicitly assumed an infinite time series. Assume the 

following finite daily return time series from day 1 to day t  

 

Table 2: Finite return series 

Day Return 

asset i 

Return 

asset j 

1 X i ( )1  X j ( )1  

2 X i ( )2  X j ( )2  

M  M  M  

t − 2  X ti ( )− 2  X tj ( )− 2  

t − 1  X ti ( )− 1  X tj ( )− 1  

t  X ti ( )  X tj ( )  

 

From equation (2), it follows thatxii  

(6) )0()()()1()( ,
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0
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t
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where the weights assigned to the observations from day 1 to day t add up to the sum 
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0
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t
t . 
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However, the initial covariance )0(, jiσ  in Equation (6) is unknown. We suggest that the zero-mean 

covariance is approximated by 

(8) ∑
−

=

−−−≡
1

0
, )()()1()(~

t

k
ji

k
ji ktXktXt λλσ . 

The approximation in Equation (8) may be interpreted as using the daily updating rule of Equation (6) 

above, where the “history” at the initial day is taken to be 0)0(, =jiσ , i.e., as if returns before that 

day were riskless (no deviation from zero). Consequently, the covariance estimator )(~
, tjiσ  

suggested in Equation (8) represents a downward biased approximation to the “true” (but unknown) 

covariance estimator )(, tjiσ .  

 

Note, however, that at day t , the weight tλ  is assigned to the initial covariance )0(, jiσ . Hence, the 

downward bias tends to wash out with the number of observations. As an illustration, note that with 

a weight of λ = 094. (used by RM) and 100 daily observations, the history preceding this 100-days 

period is assigned a weight of λ100 0 0021≈ . . Now, if the return in the two periods were equally 

risky, the approximated covariance estimator would be downward biased by a 

factorxiii ( ) .1 09979100− ≈λ . 

 

It can be shownxiv that with a finite time series, the approximated covariance estimate above 

translates into the following daily updating rule  

(9) )1(~)()()1()(~
,, −+−= ttXtXt jijiji σλλσ , 

which is similar to the updating rule of Equation (3) above. Hence, yesterdays approximated 

covariance and the current (observed or reconstructed) returns represent sufficient information for 

updating the approximated covariance.  
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6. The extended RM market risk universe 

The final step is to apply the identities 

(10) nNNitt iii ++== ,,1for)(~)(~
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and translate the estimated covariances of the extended covariance matrix )()()( tC nNnN +×+  into the 

following extended Value at Risk vector )(tV nN +   

( ))(~65.1)(~65.1)(65.1)(65.1)( 11 tttttV nNNNnN +++ ≡ σσσσ LL   , 

and the extended correlation matrix )()( nNnNR +×+  
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This information can now be used, in combination with the risk exposure of the company with 

respect to each asset class, to calculate the total downside risk of the company. 

 

6.  Conclusion 

In this paper, we discuss a method for including additional assets in the RM concept, i.e., extending 

the RM asset universe. The idea is to use the daily RM reports and the observed return time series of 

at least one of these assets, to reconstruct the entire set of underlying return time series. The 

reconstructed return time series and the observed return time series of the additional assets are 

thereafter used to estimate the desired volatilities and correlations. Once an additional asset has been 
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included, a simple rule applies for updating the estimates as new information arrives in terms of RM 

reports and returns on the additional assets and at least one RM asset. 
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ix Obtain Equation (3) from Equation (2) as follows: 

[ ]

[ ]{ }

)1()()()1(

)1()1()1()()()1(

)2()2()1()1()1(

)()()1(

)2()2()1()1()()()1(

)()()1()(

,

0

2

0
,

−+−=








+−+−−+−=

+−−+−−−+

−=

+−−+−−+−=

−−−=

∑

∑

∞

=

∞

=

ttXtX

ktXktXtXtX

tXtXtXtX

tXtX

tXtXtXtXtXtX

ktXktXt

jiji

k
ji

k
ji

jiji

ji

jijiji

k
ji

k
ji

λσλ

λλλλ

λλλ

λ

λλλ

λλσ

L

L

 

x To formalize, the inferred return is 

( ) ( ) NitXtttXtX iiii ,,2for)()1()(sgn)(sgn)( 1,1,1 L=⋅−−⋅= λσσ  

where ( )⋅sgn  denotes the sign function. 

xi As demonstrated above, one observed return series is sufficient to determine the signs. In practice, 

problems due to zero return and missing observations may arise, hence several RiskMetrics™ return 

series should be observed (if possible).  

xii Obtain Equation (6) from Equation (2) as follows: 
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Next, obtain the identity stated in Equation (7) by considering the two equations 
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Subtract the two equations, and rearrange, to obtain the desired result. 

xiii Combine Equations (6) and (8) to obtain )0()(~)( ,,, ii
t

iiii tt σλσσ += , insert )()0( ,, tiiii σσ = , and 

rearrange to obtain the factor )1()(/)(~
,,

t
iiii tt λσσ −= . 

xiv We obtain Equation (9) from Equation (8) as follows: 
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