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Abstract 

 
This paper gives a survey over a common aspect of prospect theory that occurred to 
be of importance in a series of recent papers developed by Enrico De Giorgi, Thorsten 
Hens, Janos Mayer, Haim Levy, Thierry Post, Marc Oliver Rieger and Mei Wang. 
The common aspect of these papers is that the value function of the prospect theory of 
Kahneman and Tversky (1979) and similarly that of Tversky and Kahneman (1992) 
has to be re-modelled if one wants to apply it to portfolio selection. Instead of the 
piecewise power value function, a piecewise negative exponential function should be 
used. This functional form is still compatible with laboratory experiments but it has 
the following advantages over and above Kahneman and Tversky`s piecewise power 
function: 
 
1. The Bernoulli Paradox does not arise for lotteries with finite expected value. 
2. No infinite leverage/robustness problem arises. 
3. CAPM-equilibria with heterogeneous investors and prospect utility do exist. 
4. It is able to simultaneously resolve the following asset pricing puzzles: 
    the equity premium, the value and the size puzzle. 
 
 

1. Introduction 
 
THE CUMULATIVE PROSPECT THEORY (CPT) of Tversky and Kahneman (1992) 
summarizes several violations of the expeccted utility hypothesis. First of all, while 
expected utility is already based on a formal representation of a decision problem, 
CPT has two stages. The first stage is an editing phase in which the given 
representation  of  the  decision  problem  is  transformed  into a formal decision.  The 
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second stage is an evaluation phase in which, based on a value and a probability 
weighting function, the lottery with the highest value is chosen. 
In this paper, as in most finance papers, we assume that the editing phase is already 
completed and we thus only consider the valuation phase. This makes our results 
comparable to expected utility. The main building blocs of prospect theory that 
distinguishes it from expected utility theory are then: 
 

1. Investors evaluate assets according to gains and losses relative to a given 
reference point.. 

2. Investors dislike losses by a factor of 2.25 as compared to their liking of gains. 
3. Investors have changing risk aversion because their value functions are S-

shaped with turning point at the origin. 
4. Investors` probability assessments are biased in the way that extremely small 

probabilities (extremely high probabilities) are over- (under-) valued. 
 
While CPT describes very well the choice of agents among a restricted set of lotteries 
it has some shortcomings when it is transferred to describe the solutions to portfolio 
selection problems. This is because the set of lotteries that can be generated by 
portfolio selection is quite large – it is typically uncountable and unbounded. 
Unfortunately, while the mathematical representation of prospect theory suggested by 
Tversky and Kahneman did well in the laboratory, it is not appropriate for portfolio 
selection problems. The main point of this survey is to argue that the prospect theory 
of Tversky and Kahneman (1992) and similarly that of Kahneman and Tversky (1979) 
has to be re-modelled if one wants to apply prospect theory in finance. Instead of 
modelling the value function by a piecewise power function a piecewise negative 
exponential function should be used. The main difference between the piecewise 
power function and the piecewise negative exponential function concerns large 
outcomes. In fact, while both functions are assumed to have a kinked and convex-
concave shape with turning point at the origine, the piecewise negative exponential 
function exhibits more curvature and thus discourage extreme risk taking. As a 
consequence, while the suggested functional form also satisfies the main features of 
prospect theory and is still compatible with laboratory experiments, it has the 
following advantages over and above Kahneman and Tversky`s piecewise power 
function: 
 
1. The St. Petersburg Paradox does not arise for lotteries with finite expected value. 
2. No infinite leverage/robustness problem arises. 
3. CAPM-equilibria with heterogeneous investors and prospect utility do exist.  
4. It is able to explain the disposition effect with myopic optimization. 
5. It is able to simultaneously resolve the following puzzles:  
    The equity premium, the value and the size puzzle.  
 
The St. Petersburg paradox is associated with the birth of expected utility theory. It 
shows that for lotteries with infinite expected monetary value people are not willing to 
pay an infinite sum of money. This observation led Bernoulli (1738) to postulate that 
people value lotteries not by their expected monetary value but rather by their 
expected utility of the monetary values it delivers. Assuming a sufficiently decreasing 
marginal utility of wealth, which is for example the case with a logarithmic utility, 
Bernoulli (1736) resolved the St. Petersburg Paradox. However, for any unbounded 
utility a lottery can be found that would still result in an infinite valuation of its 
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monetary payoff. Hence, Bernoulli`s (1738) suggestion only solved the particular 
paradox arising from the particular game played in St. Petersburg but similar 
paradoxes occur for any unbounded utility. One solution is to only admit lotteries with 
bounded expected monetary value. However, as Rieger and Wang (2004) show, see 
section 3 of this survey, this solution is not sufficient to rule out the paradox for CPT. 
Since the piecewise exponential value function that we proposes in this survey is 
bounded this paradox would no longer arise for prospect theory. 
 
As we show in section 4, the piecewise power function also has the problem that for 
almost all asset prices the investors` optimal portfolios are unbounded. With this 
functional from, the marginal utility of wealth does not decrease sufficiently fast. As 
an effect, existence of competitive equilibria, for example in the CAPM, cannot be 
ensured with the piecewise power function for economies with heterogeneous 
investors. As we show in section 5, with heterogeneous investors, CAPM equilibria 
do however exist if CPT is based on the piecewise negative exponential function. Of 
course, for any given investor one is able to find asset prices such that his portfolio 
selection problem has a solution. Indeed one can still use the standard argument 
common in the asset pricing literature where for a single representative investor asset 
prices are chosen such that the investor holds the market portfolio. However, as De 
Giorgi, Hens and Levy (2004) show this “decision support argument” for asset prices 
is not robust, since already small changes of the asset prices would lead the investor to 
choose totally different portfolios. Hence, with heterogeneous investors having 
piecewise power utilities there will not be a common vector of asset price for which 
all investors find a solution to their portfolio selection problem. 
 
In Finance CPT has been successful in explaining the equity premium puzzle, i.e. the 
historically favourable risk-return trade-off of stocks relative to bonds. As shown by 
Benartzi and Thaler (1995), for a yearly holding period, the CPT statistic of the stock 
index is not significantly different from the CPT statistic of the bond index. However, 
as shown in De Giorgi, Hens and Post (2005), see section 7 of this survey, the same 
explanation does not rationalize the size premium puzzle, i.e. the historically 
favourable risk-return trade-off of small cap stocks relative to large cap stocks (first 
documented by Banz (1981)). Neither is it able to solve the value premium puzzle i.e. 
the favourable returns of value stocks relative to growth stocks (first documented by 
Basu (1977)). Fama and French (1992), (1993)) provide a rigorous empirical analysis 
of these phenomena. Nevertheless, the three puzzles can be explained simultaneously 
if we replace the piecewise-power value function of Tversky and Kahneman with a 
piecewise negative exponential value function. In fact, as discussed above, the new 
value function has a kinked and convex-concave shape (reflecting loss aversion and 
risk seeking for losses), just as the original value function. However, for large 
outcomes, the piecewise negative exponential value function exhibits more curvature 
hence the function discourages investment opportunities which provide extreme 
losses, also when this are coupelet with huge gains.  
 
Previous work on prospect theory in portfolio selection has mainly focussed on the 
impact of loss aversion2. Following the seminal analysis of Bernartzi and Thaler 
(1995), Barberis, Huang and Santos (2001), Gomes (2003) and Berkelaar, 

                                                 
2 An exception is Barberis and Huang (2004) who consider loss aversion, changing risk aversion and 
probability weighting simultaneously. 
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Kouvenberg and Post (2003) have studied how loss aversion affects single period 
portfolio decisions. Berkelaar, Kouvenberg and Post (2003) consider a multi-period 
model where the price dynamics are described by Ito processes (a generalization of 
Gomes 2003) and investors possess prospect theory utility indexes. The main result of 
their paper is that investors with prospect theory preferences follow a partial portfolio 
insurance strategy. Moreover, the initial portfolio weights on stocks typically 
increases with the investment horizon. If the investment horizon is short, then 
investors with loss aversion strongly reduce their holdings in stocks (myopic loss 
aversion, see Bernatzi and Thaler (1995) compared to investors with smooth power 
utility, while when the investment horizon is long, they strongly invest on stocks, 
since there is time to make up their losses, i.e. investors face gain opportunities. In 
these papers the value function is piecewise linear and the probability transformation 
is not considered. Moreover, these models consider a single representative investor.  
 
This paper is organized as follows: In the next section we lay down a model that is 
sufficiently general to embed the papers we want to give a survey of. Then we report 
the results on the St. Petersburg paradox, the infinite leverage problem, the existence 
of CAPM equilibria, the disposition effect and the asset pricing puzzles.  
 
 

2. The Model 

Since the various aspects of CPT that we want to bring together in this survey come 
from quite different settings it is important to first lay down a model that is 
sufficiently general to embody all these aspects as special cases.  
 
The description of the model follows Duffie (1988, section I.11). There are two points 
in time, t = 0, called today and t = 1, called tomorrow. The uncertainty tomorrow is 
modelled by a probability space ( )ηM, ,M . Consider L, the space of real-valued 
measurable functions on ( )ηM, ,M . We endow L with the scalar product 

M
x  y = x(m)y(m)dη⋅ ∫ and with the norm x x x= ⋅ . The consumption set will be 

the subset of L with finite norm, { }22 ( )η = ∈ < ∞L x L x . Let 

( ) ( ) ( )
M

E x x m dmx x= ∫  denote the expected value of the random variable 2( )x L h∈  

under the probability measure .x h∼  In the case  we denote E ( ) by (x).xxx h m=  For 

any two random variables 2, ( )η∈x y L , let ( , ) ( ) ( ) ( )cov x y xy x yµ µ µ= − be the 

covariance and let ( ) cov( , )σ =x x x  be the standard deviation. The price space is 

also 2 ( )ηL . Let the marketed subspace, X, be generated as the span of ( )
0,1,...,j j J

A
=

, a 

collection of securities in 2 ( )L h  , one of which, say j = 0, is the risk free asset. Let jq  
denote the price of asset j, j=0,1,…,J. Then the gross return of asset j is defined as 

j
j

j

A
R

q
= . There are i = 1,2,…,I investors being endowed with initial wealth wi. Using 

the existing assets, investors transform their initial wealth into random wealth which 
they totally use for consumption in t = 1. All agents have already decided to invest wi 
on the financial market and they evaluate the consumption in t = 1 by utility functions 
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: , i = 1,2,...,I →iU X R that are monotonically increasing and continuous. Hence the 
agents` optimization problem can be defined as 
 

( )1

J

j0
j=0

max  U  s.t. q .
J

Ji i
j j jjR

A w
q

q q
+ =∈

=∑ ∑  

Equivalently the optimization problem can be written in terms of returns: 

( )( )1

J

0
j=0

max  U  s.t. 1.
J

Ji i
j j jjR

R w
l

l l
+ =∈

=∑ ∑  

These optimization problems do only have a solution if there are no arbitrage 
opportunities. Since investors’ preferences are monotone, any non-negative attainable 
consumption x with non-positive price represents an arbitrage opportunity. Thus, any 
no arbritrage condition should ensure that every non-negative attainable consumption 
x with non-positive  price must be zero: 

}{J
2 2

j0
j=0

( )  and q
J i

j j jj
L x L x A wh q q+ =

   ∩ ∈ = ≤ = ∅   
∑ ∑ . 

This condition can be seen as a minimal restriction for the asset prices qj, j=0,1,…,J. 
One immediate implication is that the risk free asset needs to have a positive price, i.e.  
q0 > 0. By the Dalang-Morton-Willinger Theorem (see for example Delbaen (1999)), 
there exists a probability measure, called the equivalent martingale measure, 

j

0

q
 on (M, ) such that ( ), for all j=1,2,...,J.

q jM E App h =∼ Defining 

0 j
1 1

 we obtain q ( ), 1,..., .
1 1 jq E A j J

r r p= = =+ +  Equivalently we get 

( (1 )) 0, for all j = 1,...,J.jE R rp − + = That is to say under the equivalent martingale 
measure there are no expected excess returns.  
 
In the case of prospect theory the utility function Ui is defined by a reference point 

∈iRP R , a value  function : →iv R R  and a probability transformation 

[ ] [ ]: 0,1 0,1→iT : ( ) ( ) ( ( )), = − Ν∫ oi i i i

R
U x v x RP d T x where N denotes the 

cumulative distribution of 2 x L ( ).η∈  We assume the following general properties of 
vi and Ti: 
 

1. vi is a two times differentiable function on R\ }{0 , strictly increasing on R, 

strictly concave on (0,8 ) and strictly convex on (-8 ,0). 
2. Ti is a differentiable, non-decreasing function from [0,1] onto [0,1] with 

( )( )  for p = 0 and p=1 and with ( )  ( )  for p large (small).= < >i i iT p p T p p T p p

 
Kahneman and Tversky`s (1992) model of CPT and also our suggestion share these 
general properties. The weighting function is assumed to be given by 

( )
i

1/
( )  , where the median of  is about 0.65.

(1 )

γ

γ
γ γ

γ=
+ −

i

i
i i

i p
T p

p p
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Kahneman and Tversky (1979) and (1992) have suggested for the value function to 
consider the piecewise power function. Instead we propose the piecewise exponential 
function: 

        for 0 exp( )  for 0
( )  and ( )

exp( )       for x < 0( )  for x < 0

α

α

β λ α λ
λ α λβ

+ + +

− −−

 ≥  − − + ≥= = 
−− − 

i

i

i i i i
i i

i i ii

x x x x
v x v x

xx
. 

Where  i+ i+ i- i-0 1 and the , and ,  are positive numbers. iα β λ β λ≤ ≤ Kahneman and 

Tversky (1979) report median values for  α i and  
β
β

−

+

i

i  of about 0.88 and 2.25 

respectively. Figure 1 shows that our proposal, choosing our parameters 

0.2 and α ≈i , i+= 6.52 λ i-and =14.7 λ (
i-

i+so that 2.25
λ
λ

≈ ) approximates the 

Tversky and Kahneman (1992) utility index very well for values around zero. We 
presume that the experimental evidence given for the value function specification of 
Kahneman and Tversky (1979) foremost concerns the shape of the utility function 
around zero. Note also that the utility function we propose is different to that of 
Kahneman and Tversky (1979) for very high stakes because it is less linear than 
theirs. Indeed our function is bounded above by i+λ and it is bounded below by i-λ− .  
Our theoretical analysis is supported by the laboratory results obtained by Bosch-
Domenech and Silvestre (2003), who experimentally find that decision makers 
usually show risk aversion for larger amounts, for both gains and losses. 
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3. The St. Petersburg Paradox [Rieger and Wang (2004)] 

The St. Petersburg paradox is usually explained by the following example: A player is 
reluctant to pay enormous amounts of money for a gamble in which he gets 2n ducats 
when the coin lands “heads” on the ground for the first time at the n-th throw. Note 
that the gamble has an infinite expectation: 

1 1 1
( ) 2 4 ... 2 1 1 .

2 4 2η = ⋅ + ⋅ + + ⋅ + ⋅ ⋅ ⋅= + + ⋅ ⋅ ⋅ = ∞n
nE x  

This example already dates back to Bernoulli (1736). The solution of this problem is 
usually to replace the formula of expected value with the one of expected utility, in 
which a strictly concave utility function makes the subjective utility of the large 
outcomes no longer high enough compensate the very low probability associated with 
them. 
 
It is, however, important to keep in mind that for gambles with infinite expected 
value, the strict concavity of the utility function alone cannot guarantee the expected 
utility to be finite. For example, if the gamble from above offers 22

n

 ducats when the 
coin lands “heads” for the first time at the n-th throw, then with a strictly concave 
utility function like 0.88( ) =u x x , the expected utility is still infinite. The St. Petersburg 
paradox can be resolved by allowing only for “realistic” gambles: Indeed, under the 
assumption of a finite expected value, a (not necessarily strictly) concave utility 
function is sufficient to guarantee the expected utility is finite. Even though this 
statement is almost trivial in the framework of expected utility theory, it turns out to 
be false in the context of CPT. In fact Rieger and Wang (2004)3 show that with CPT a 
gamble with finite expected value can have infinite prospect utility – independent of 
the concavity of the value function. This is possible, since the probability weighting 
function suggested by Kahneman and Tversky (1979) has infinite slope at zero and 
since the slope of the value function does not decrease much for high. The gamble 
Rieger and Wang (2004) construct is as follows: The probability measure of possible 

outcomes is given by -
-

0

0     x 1
 p( ) where C = x .

Cx   x>1 
x dxκ

κ

∞≤
= 


∫  For ? close to 2, they 

show that for values of the risk aversion parameter a and the probability weighting 
parameter ? that are consistent with the experimental literature indeed CPT utility is 
infinite.. Note that this problem does not arise from the usual S-shape of the value 
function in CPT, since the example works with only considering positive outcomes 
(i.e. the concave part). Rieger and Wang (2004) suggest curing this problem by 
choosing a probability weighting function that has finite slope at 0. Alternatively, one 
could replaced the piecewise power value function by the piecewise negative 
exponential value function. This also solves the version of the St. Petersburg Paradox 
pointed out by Rieger and Wang (2004) because the piecewise negative exponential 
value function is bounded. 
 

                                                 
3 See also Blavatskyy (2004). 
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4. The Infinite Leverage/Robustness Problem [De Giorgi and 

Hens (2005)] 

So far we have shown that given the probability weighting function of Kahneman and 
Tversky (1979) the value function should better be bounded. Here we will argue that 
the boundedness is also important to solve an infinite leverage problem arising with 
the piecewise power function. Moreover, choosing a power function to model the 
agents` risk aversion leads to a robustness problem that does not occur for the 
piecewise exponential function. The infinite leverage problem is the observation that 
without imposing short sales constraints on the risk free asset (i.e. a borrowing 
constraint) a prospect utility maximizer always finds a portfolio of risky assets that he 
would like to leverage infinitely in order to obtain infinite utility: Recall that 
maximizing a power function in the expected utility approach is certainly possible 
without imposing a borrowing constraint. If markets are arbitrage free any portfolio of 
risky assets delivers gross returns that have a positive probability to obtain both, 
positive and negative excess returns. Hence scaling any such portfolio will let the 
utility tend to negative infinity. In the prospect theory case however, negative excess 
returns are not punished enough to avoid infinite leveraging. The robustness problem 
is the observation that small changes of the value function parameters lead to drastic 
changes in the asset allocation. As we show next these two problem are closely 
related for the piecewise power value function. 
 
To make this point, start from the optimization problem written in terms of returns. 

( )( )1

J

0
j=0

max  U  s.t. 1.
J

Ji i
j j jjR

R w
l

l l
+ =∈

=∑ ∑  Assuming CPT we can write: 

( )0 0 01 1
( ) ( ) ( ( )), x = (1 ) , =1 . 

J Ji i i i i
j j jj jR

U x v x RP d T x R R wλ λ λ λ λ
= =

= − Ν − +∑ ∑∫ o  

Now suppose, for the reference point being equal to zero, for some portfolio of risky 
assets, say 

JJ 
jj=1

R with 1l l∈ =∑% % , we obtain a positive prospect value: 

( )0 0 01 1
( ) ( ( )) 0, for some x = (1 ) ,with =1 . 

J Ji i i
j j jj jR

v x d T x R R wλ λ λ λ λ
= =

Ν > − +∑ ∑∫ %
% %o  

 
The existence of such a portfolio follows from weak conditions on asset prices. For 
example, in case of Gaussian distributed returns, the existence of a risky portfolio 
with positive prospect value is ensured if the expected return of the market portfolio 
exceeds the risk-free rate of return.  
Referring to Kahneman and Tversky`s (1979) and (1992) specification of the value 
function we can rewrite the utility function as: 

( )
i

( ) ( ) ( ) ( )( ) ( ( )), i i i i

R
U x x x x x RP d T x

α

λδ β δ= − Ν∫ %o

i1    
where (x)=  , (x)=

1    

i i i

i i i

x RP x RP

x RP x RP

β
δ β

β

+

−

 + ≥ ≥
 

− < < 
 

Now, fix a portfolio J Rl ∈% as defined above and consider what happens if the 
leverage is increased, i.e. 0l → −∞ . For any such portfolio we obtain the payoffs: 

( ) 0 0
01

0

(1 )
(1 )

i i
Ji i

j jj

R w RP
x RP R w

λ
λ λ

λ=

 −
− = + − − 

∑ % . Hence the term 0(1 )αλ−
i

 factors 
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out from the utility computation and by the choice of the portfolio J Rl ∈% in the 
limit for 0l → −∞ it is multiplied with the positive term 

( )
i

0 1
( ) ( ) ( )( ) ( ( )),where x = .  

Ji i i
j jjR

x x x x R w d T x R
α

λδ β δ λ
=

− Ν ∑∫ %
%o  

Note that this term is independent of l% . Hence 0l → −∞ gives infinite utility.4 
 
With a bounded utility, infinite utility is impossible but still one may want to 
infinitely leverage the portfolio. For example with the piecewise exponential function 
there is no optimal leverage since the utility is increasing for all positive payoffs. 
However since the utility values are bounded above the increases become more and 
more negligible so that for any small epsilon there are portfolios that cannot be 
improved by other portfolios by more than epsilon. Hence an investor with a 
piecewise exponential value function who will be satisfied (up to some epsilon) with a 
finite leverage.  
 
A problem closely related to the infinite leverage problem is the robustness problem. 
The simplest case where this problem arises with the piecewise power function occurs 
when the reference point is the wealth obtained from investing all initial wealth in the 

risk free asset. In this case we obtain: ( ) 0 01
(1 )

Ji i
j jj

x RP R R wλ λ
=

 − = − −  ∑ % . Hence 

when on changing the parameters the excess return term ( ) 01

J
j jj

R Rλ
=

−∑ %  crosses 

zero, the asset allocation jumps from no risk-free asset to only risky free assets. This 
is a non-intuitive property for portfolio choice. Moreover, in asset pricing models with 
a representative investor who is induced to hold the market portfolio for some prices, 
on changing the parameters slightly the representative agent will depart from his 
choice drastically. That is to say, the standard “decision support argument” is not 
robust with the piecewise power function. As De Giorgi and Hens (2005) show also 
the robustness problem does not occur with the piecewise negative exponential value 
function, because this functional from prohibits to factor out the fraction invested in 
the risk free asset.  
 

5. Existence of CAPM-equilibria [De Giorgi, Hens and Levy 

(2004)] 

So far we have basically argued that a good value function for prospect theory should 
be bounded and should not allow to factor out the fraction of wealth invested in the 
risk free asset. Here we now argue that the exponential function is a very convenient 
function when prospect theory should be combined with the CAPM. Assuming that 
the payoffs (and thus the returns) are normally distributed it is easy to see that a 

prospect utility is actually also a mean-variance utility. Let 
0

( )λµ µ λ
=

= ∑ J
j jj

R  be the 

expected return of a portfolio and let accordingly  

                                                 

4 Indeed, ( )
0

01
0

 lim  
1

i
J i

j jj

x RP
R R w

λ
λ

λ =→−∞

−  = −  − ∑ % . Hence if for the market portfolio RM we have 

( ) 1 ,  MR rµ > + then already for  Mλ λ=% the prospect utility divided by (1-? 0) is positive so that 
infinite leveraging gives infinite utility. 



 9 

2
0 0

cov( , )λσ λ λ
= =

= ∑ ∑J J
j j k kj k

R R  be the variance of a portfolio. Denoting by ,m sΦ the 

cumulative normal distribution we can write the agent`s optimization problem as: 
 

( ), 0 0
( ) ( ) ( ( )), where x = ,with =1 . 

λ λµ σ λ λ
= =

= − Φ ∑ ∑∫ o
J Ji i i i i

j j jj jR
U x v x RP d T x R w  

Hence in this case the CPT utility function is a function of mean and variance only. 
Moreover, standardising the normal distribution reveals that this function is certainly 
increasing in mean but due to the convexity of the value function for losses it need not 
be decreasing in variance. 
 

( )i ˆ ˆ( , ) (x-RP ) +  ( ( )), where ( )  . λ
λ λ λ λ

λ

µ
µ σ σ µ

σ
 −

= Φ Φ = Φ 
 

∫ oi i i

R

x
V v d T x x  

 
Since there is a risk free asset and since agents` mean-variance utility is increasing in 
the mean, agents will only choose portfolios on the capital market line in the mean-
standard deviation diagram, i.e. on the straight line through the risk free asset and the 
tangential portfolio (see Figure 1b). Hence two-fund separation holds and in a capital 
asset market equilibrium the security market line theorem will hold. As a 
consequence, excess returns are determined by covariance with respect to the market 
portfolio, which is given by the total amount of payoffs available in the economy: 
 

( ) M2 1

cov( , )
( ) (1 ) ( ) (1 ) , where R .

( )
µ µ λ

σ =
− + = − + = ∑ Jj M

j M j jj
M

R R
R r R r R

R
 With λ j  

being the supply i.e. the total market capitalization of asset j. 
 

 
Figure 1b: Two-Fund Separation Theorem 

 
For the piecewise power function of Kahneman and Tversky the indifference curve in 
the mean-standard deviation diagram looks rather strange (see Figure 3). For values of 
the mean below the reference point (which we have taken to be the risk free rate) the 
utility function is not quasi-concave and the indifference curves are not sufficiently 
upward sloping while for values above the reference point we get quasi-concavity but 
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downward sloping indifference curves. It should not come as a surprise that the 
infinite leverage problem, described in the previous section, also holds in this more 
restricted setting.  
 
With the piecewise negative exponential value function indifference curves look 
much nicer, as Figure 3 reveals. No infinite leverage problem occurs and the area 
where quasi-concavity cannot be ensured can be ruled out as possible equilibrium 
allocations if one is willing to assume that the expected return of the market portfolio 
is higher than the risk free rate. If the latter is chosen as the reference rate of return, 
this assumption means that one is more likely to find returns in the gain region of the 
value function. As a result of these assumptions (after a long sequence of careful 
computations) indeed De Giorgi, Hens and Levy (2004) are able to show the existence 
of CAPM-equilibria for any set of prospect theory investors.  
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6. The Equity Premium -, the Size - and the Value Puzzle  

[De Giorgi, Hens and Post (2005)] 

 
In order to stay as close as possible to the original equity premium studies of 

Mehra and Prescott (1985) and Benartzi and Thaler (1995) we consider real returns on 
equity and bonds. However, there are two differences. First, De Giorgi, Hens and Post 
(2005) consider an extended sample including the bull market of the 1990s and the 
equity bear market that followed in the early 2000s. Second, they expand the 
investment universe and include portfolios sorted on market capitalization (ME) and 
book-to-market-equity ratio (B/M) in the analysis.  

The stock market portfolio is proxied by the CRSP all-share index, a value-
weighted average of common stocks listed on NYSE, AMEX, and NADAQ. The 
bond index is defined as the intermediate government bond index maintained by 
Ibbotson. This index closely matches the 5-year Government bond index employed by 
Benartzi and Thaler (1995). De Giorgi, Hens and Post (2005) use the canonical decile 
portfolios formed on ME and the decile portfolios formed on B/M. For detailed data 
description and selection procedures we refer to Fama and French (1992) (1993). De 
Giorgi, Hens and Post (2005) use monthly and annual real returns for the period from 
January 1927 to December 2002 (912 months). Bond and inflation data are obtained 
from Ibbotson Associates and the stock portfolio data from Kenneth French’s online 
data library. 
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Table I presents some basic descriptive statistics of the stock portfolios and 
bond and equity indices. Clearly, stocks outperform bonds during our 76-year sample 
period by about 6 percent on an annual basis. However, stocks are riskier which is 
reflected in a low minimum (-40% in the worst year) and a high standard deviation. 
Contrary, bonds offer downside protection (-17% in the worst year), but the upside 
potential is limited. Small and value firms offer higher average returns and higher 
variance, combined with positive skewness. Puzzling is the BM8 and BM9 portfolios, 
which combine high average returns with a minimum return above -50% and a 
maximum return in excess of 100%. Clearly, these portfolios seem far more attractive 
than the all-equity index.  
 

[Insert Table I about here] 
 

De Giorgi, Hens and Post (2005) basically intend to test whether the market portfolio 
of risky assets is the optimal portfolio for a representative investor who obeys to the 
rules of (1) the mean-variance framework, (2) the piecewise power CPT or (3) the 
piecewise exponential CPT. The standard approach to test if the market portfolio is 
optimal is to analyze the first-order condition or the Euler equation. This approach is 
valid for the mean-variance framework, because the first-order condition is necessary 
and sufficient for establishing the maximum in this framework. By contrast, the first-
order condition gives only a necessary optimality condition for CPT. Both models 
allow for local risk seeking and hence there may be minima and local maxima, which 
will also satisfy the first-order condition.  

There exist various multivariate global optimization methods for locating the 
global optimum if the objective function is not concave (see, for example, Horst and 
Pardalos (1995)). Unfortunately, these methods generally are computationally too 
demanding for high dimension problems such as ours (we use 22 assets).  

To circumvent this problem, De Giorgi, Hens and Post (2005) simply analyzed 
the various objective functions (Sharpe ratio, CPT statistic, adjusted CPT statistic) at 
all the individual benchmark portfolios. This approach can be seen as a very rough 
grid search; the individual assets are excluded from the analysis and only the 22 
benchmark portfolios are seen as a discrete approximation to the investment 
possibilities set. 
 Thus, for each benchmark portfolio, they compute the Sharpe ratio, the CPT 
statistic and the adjusted CPT statistic. To account for sampling variation, we use the 
bootstrap methodology to compute the p-value for the null that the benchmark 
portfolio is equally attractive as the market portfolio. 
 

Contrary to Benartzi and Thaler (1995), the CPT statistic of the bond index is  
significantly higher than the CPT statistic of the stock index. This is due to the 
inclusion of the equity bear market in the early 2000s. Further, CPT cannot rationalize 
the size and value effects. Specifically, while the CPT statistic of the stock market 
index is –1.590, the CPT statistic of size portfolio 1 is 2.290 (0.03) and that of B/M 
portfolio 8 is 2.083 (0.00). In large part, these high values are explained by the 
favourable upside potential of small caps and value stocks. For example, the ME 1 
portfolio of small caps has a maximum return of 155.29% and the BM1 portfolio of 
value stocks has a maximum of 113.53%. Interestingly, there is no corresponding 
downside risk for the small caps and value stocks. Apparently, the return distribution 
is positively skewed and highly correlated in downside markets, which limits the 
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downside risk and the potential for downside risk reduction by means of portfolio 
diversification. These properties make the small cap and value stock portfolios very 
attractive for the CPT investor, who overweighs small probabilities and whose 
marginal value function diminishes very slowly. 

Using the piecewise exponential value function, all three puzzles are resolved. 
The bond index does not achieve a significantly higher CPT+ statistic than the stock 
index. Also, the size and value effects disappear; no benchmark portfolio achieves a 
significantly higher CPT+ statistic than the market portfolio. Because the marginal 
function of the piecewise negative exponential value function decreases much faster 
than the piecewise-power value function, CPT+ assigns a much lower weight to the 
upside potential of the small caps and value stocks. In brief, the piecewise-exponential 
value function succeeds in explaining away the equity premium, size premium and 
value premium puzzle at the same time.  
 

[Insert Table II about here]  
 
 

7. Other modifications of Prospect Theory 

The modification of the value function that we proposed here is one important aspect 
of making prospect theory applicable to finance. As mentioned above, one may also 
want to change the probability weighting function in order to avoid an infinite slope at 
zero. An even more fundamental point arises from the fact that prospect theory has 
been designed to describe choices between lotteries while in many finance 
applications data are given that are not represented as lotteries (probability 
distributions). In a typical application, for a finite number of dates t = 1, 2 ,…,T a 
sample of a finite number of asset returns , 1,2,... .k

tR k K= is given. A lottery on the 
other hand is a representation in which each observation of returns gets assigned the 
relative frequency or the likelihood of that observation. The resulting probability 
distribution depends on which returns are seen to be sufficiently similar to be seen as 
one observation. Unfortunately, this decision (which in the case of representing data 
by a histogram is the selection of the band width) is not innocuous for the prospect 
theory of Kahneman and Tversky (1979) since the probability weighting function 
distorts the relative frequencies obtained. In the extreme case, for example, in which 
every observation is seen as being different to any other observation, all returns would 
be equally likely and the probability weighting function would not change the relative 
weight. However, if some returns get grouped together they get a different likelihood 
than others and the weighting function distorts the asset allocation. Hens, Mayer, 
Rieger and Wang [2005] started looking into this issue and suggested to “repair” 
prospect theory in order to avoid unreasonable dependence on the way data is grouped 
to lotteries.  

8. Conclusion 

We have argued that for various reasons instead of modelling the value function of 
prospect theory by a piecewise power function a piecewise negative exponential 
function should be used. This functional form is still compatible with laboratory 
experiments but it has the following advantages over and above Kahneman and 
Tversky`s piecewise power function: 
 
1. The Bernoulli Paradox does not arise for lotteries with finite expected value. 
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2. No infinite leverage/robustness problem arises. 
3. CAPM-equilibria with heterogeneous investors and prospect utility do exist.  
4. It is able to simultaneously resolve the following asset pricing puzzles:  
The equity premium, the value and the size puzzle.  
 

Modelling prospect theory with the piecewise negative exponential function makes it 
fit for applications to finance like portfolio selection. From this re-modelling of 
prospect theory we expect a series of new results, as for example a new explanation of 
the asset allocation puzzle (see De Giorgi, Hens and Mayer (2005)). Our contribution 
to these new results should however not be overemphasized since we are “standing on 
the shoulders of giants”: Daniel Kahneman and Amos Tversky. 
 
 
 
 

9. References 

Banz, Rolf W. (1981) The relationship between return and market value of common 
stocks, Journal of Financial Economics 9, 3-18. 

 
Barberis, N., M. Huang, and T. Santos, (2001) "Prospect Theory and Asset Prices," 
Quarterly Journal of Economics, 116(1), 1−53. 
 
Basu, Sanjoy (1977) Investment performance of common stocks in relationship to 

their price-earnings ratios: A test of the efficient market hypothesis, Journal of 
Finance 32, 663-682. 

 
Bernoulli, D. (1736): Specimen theoriae de mensura sortis, Commentarii Academniae 

Scientiarum ImperialisPetropolitanae (Proceedings of the royal academy of 
science, St. Petersburg. 

 
Benartzi, S., and R. H. Thaler (1995), Myopic Loss Aversion and the Equity Premium 

Puzzle, Quarterly Journal of Economics 110, 73-92. 
 
Bosch-Domenech, A. and J. Silvestre (2003) ``Reflections on Gains and Losses: A 

2x2x2x7 Experiment",Working Paper, Universitat Pompeu Fabra and 
University of California at Davis}. 

 
Blavatskyy, P.R. (2004): "Back to the St. Petersburg Paradox?", to appear in 

Management Science. 
 
Camerer, F. and M. Weber  (1998) "The Disposition Effect in Securities Trading: 
An Experimental Analysis", Journal of Economic Behavior\& Organization, 33, 167-

184. 
 
De Giorgi, Enrico, Thorsten Hens and Haim Levy (2004), Existence of CAPM 

equilibria with Prospect Theory Preferences, Zurich NCCR-Working Paper 
No. 85. http://ssrn.com/abstract=420184. 

 



 15 

De Giorgi, Enrico and Thorsten Hens (2005) Infinite Leverage and Prospect Theory, 
mimeo university of Zurich. 

 
De Giorgi, Enrico, Thorsten Hens and Janos Mayer (2005) Prospect Theory as a 

Solution to the Asset Allocation Puzzle, mimeo university of Zurich. 
 
Delbaen, Freddy (1999): The Dalang-Morton-Willinger Theorem", mimeo, ETH 

Z\"urich, available from http://www.math.ethz.ch/~delbaen. 
 
Duffie, D. (1988): Security Markets: Stochastic Models; Academic Press. 
 
Fama, Eugene F., and Kenneth R. French (1992), The cross-section of expected stock 

returns, Journal of Finance 47, 427-465. 
 
Fama, Eugene F., and Kenneth R. French (1993) Common risk-factors in the returns 

on stocks and bonds, Journal of Financial Economics 33, 3-56. 
 
Hens, Thorsten, Janos Mayer, Marc-Oliver Rieger and Mei Wang (2005), Robustness 

of Prospect Theory when Lotteries are derived from Data, mineo University of 
Zurich. 

 
Horst, Reiner and Panos M. Pardalos (1995), Handbook of Global Optimization, 

Kluwer, Dordrecht. 
 

Kahneman, D. and A. Tversky (1979), "Prospect Theory: An Analysis of Decision 
Under Risk," Econometrica, 47, 263−291. 

 
Odean, Terrance (1998), "Are Investors Reluctant to Realize Their Losses," The 
Journal of Finance, October, 1775−1798. 
 
Rieger, M-O. and M. Wang (2004): Cumulative Prospect Theory and the St. 
Petersburg Paradox, UFSP-Finance, University of Zurich, accepted for publication in 
Economic Theory.  
 
Samuelson (1969):“Lifetime Portfolio Selection by Dynamic Stochastic 
Programming“, Review of Economics and Statistics (51), pp.239-246. 

 
Shefrin, Hersh and Meir Statman (1985), "The Disposition to Sell Winners Too Early 
and Ride Losers Too Long: Theory and Evidence," Journal of Finance, 40, 777−790. 
 
Tversky, A., and D. Kahneman, 1992, Advances in Prospect-Theory - Cumulative 

Representation of Uncertainty, Journal of Risk and Uncertainty 5, 297-323. 
 



 16 

 
 
 
 
 
 

 Avg. Stdev. Skew. Kurt. Min Max 
Equity 8.59 21.05 -0.19 -0.36 -40.13 57.22 
Bond 2.20 6.91 0.20 0.59 -17.16 22.19 
Small 16.90 41.91 0.92 1.34 -58.63 155.29 

2 13.99 37.12 0.98 3.10 -56.49 169.71 
3 13.12 32.31 0.69 2.13 -57.13 139.54 
4 12.53 30.56 0.46 0.83 -51.48 115.32 
5 11.91 28.49 0.44 1.60 -49.57 119.40 
6 11.65 27.46 0.31 0.61 -49.69 102.17 
7 11.09 25.99 0.30 1.14 -47.19 102.06 
8 10.15 23.76 0.29 1.19 -42.68 94.12 
9 9.63 22.33 0.02 0.46 -41.68 78.15 

Large 8.06 20.04 -0.22 -0.52 -40.13 48.74 
Growth 7.84 23.60 0.02 -0.64 -44.92 60.35 

2 8.77 20.41 -0.27 -0.27 -39.85 55.89 
3 8.52 20.56 -0.10 -0.47 -38.00 51.90 
4 8.25 22.49 0.49 2.39 -45.02 96.33 
5 10.29 22.82 0.36 1.92 -51.55 93.77 
6 10.05 23.04 0.19 0.63 -54.39 73.57 
7 11.00 24.73 0.18 1.22 -51.13 97.91 
8 12.82 27.01 0.67 1.95 -46.56 113.53 
9 13.71 29.08 0.56 1.85 -47.42 123.72 

Value 13.32 33.05 0.43 1.40 -59.78 134.46 

Table I 

Descriptive Statistics 

The table shows descriptive statistics for the annual real returns of the value-weighted CRSP all-
share market portfolio, the intermediate government bond index of Ibbotson and the size and value 
decile portfolios from Kenneth French’ data library. The sample period is from January 1927 to 
December 2002 (76 yearly observations).  
 



 17 

 
 
 
 
 

  MV CPT CPT+ 

 Statistic p-value statistic p-value statistic p-value 
Equity 0.380  -1.590  -1.496  
Bond 0.329 0.007 -0.788 0.008 -1.105 0.240 
Small 0.384 0.140 2.290 0.030 -2.172 0.933 

2 0.357 0.317 1.053 0.085 -1.981 0.888 
3 0.384 0.215 0.654 0.085 -1.749 0.749 
4 0.387 0.212 0.278 0.066 -1.509 0.514 
5 0.394 0.180 0.197 0.070 -1.411 0.377 
6 0.400 0.153 0.101 0.043 -1.441 0.413 
7 0.402 0.142 0.076 0.033 -1.416 0.347 
8 0.403 0.140 -0.006 0.020 -1.342 0.233 
9 0.404 0.116 -0.552 0.035 -1.322 0.224 

Large 0.376 0.457 -1.767 0.741 -1.427 0.279 
Growth 0.308 0.821 -2.673 0.863 -2.012 0.920 

2 0.410 0.104 -1.352 0.410 -1.286 0.129 
3 0.392 0.219 -1.299 0.251 -1.503 0.516 
4 0.336 0.591 -0.695 0.158 -1.484 0.465 
5 0.420 0.075 0.502 0.039 -0.985 0.059 
6 0.403 0.137 -0.176 0.147 -1.380 0.336 
7 0.419 0.076 -0.018 0.101 -1.234 0.273 
8 0.447 0.027 2.083 0.003 -1.163 0.233 
9 0.449 0.026 1.905 0.008 -1.098 0.203 

Value 0.383 0.174 -0.050 0.202 -1.422 0.436 

Table II 

Test Results 
The table shows for each benchmark portfolio the Sharpe ratio, the CPT statistic and the adjusted 
CPT statistic with the piecewise-exponential value function. Also, the table reports the bootstrap p-
value. Cells that are colored gray refer to portfolios that yield a significantly higher value than the 
market portfolio at a 5% significance level. 




