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Grid investments are normally done in electrical networks in order to achieve a well

functioning integrated electricity market and/or making the network more secure, i.e. less

sensitive to link failures. In general, there are two aspects to be considered when making a

new grid investment, the first is that of detecting beneficial investments, and the second is

how to induce them under the chosen market regime. We will show that network

“improvements”, i.e. strengthening a line or building a new line, may in fact be detrimental to

social surplus, and that some agents will have incentives to advocate these changes.
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In user-optimizing traffic assignment problems, where each individual user chooses the path

with the lowest travel cost, it is well known that the equilibrium flow in a network is generally

different from the system optimal flow, i.e. the flow minimizing total travel cost. In his

original example, Braess [3] showed that adding a new link to a congested network may in

fact �������� travel cost for all, and this phenomenon is referred to as the Braess’ paradox.

Braess’ paradox and variations of it have been the subject of several papers, like Murchland

[20], Stewart [26], Frank [14], Dafermos and Nagurney [11], Steinberg and Zangwill [25] and

Steinberg and Stone [24], among others.
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More recently, Penchina [22] and Pas and Principio [21] have studied the classical Breass’

traffic network configuration1 with a single origin-destination pair and with fixed and variable

user cost on the links, representing for instance travel and congestion cost respectively. Given

the cost parameters, demand is varied and it is illustrated that the paradox typically occurs for

intermediate traffic demand, whereas for low and high demand the additional link is

beneficial. This means that when traffic demand increases over time, networks can “grow

into” or “grow out from” the paradox region.

In relation to this, Penchina discusses different cures, including tolls and reversible one-way

signs, showing that the “best” remedy depends on traffic, and although system optimum is

achieved under marginal cost pricing, in some cases there is a trade-off between the optimality

and complexity of the suggested cure. Similarly, Pas and Principio show that the paradox-

region can be divided into two sub-ranges. In the first (for relatively lower demand) marginal

cost pricing results in a flow pattern, in which the additional link is used, and the overall

system performance is improved. In the second, marginal cost pricing results in the additional

link ��	 being used. This means that in this sub-range, not only will the additional link

increase travel time in the user equilibrium flow pattern (Braess’ paradox), the additional link

is not warranted even under marginal cost pricing.

Yang and Bell [30] also study the classical Braess’ network adding throughput capacities to

the links and showing that at a given service level, a new link may reduce the throughput

capacity of the network. Alternatively, at the same level of throughput queues may develop

when the new link is introduced. The concept of reserve capacity, in the form of a flow-

multiplier, is introduced as a means to detect and avoid capacity expansions that are

detrimental to overall throughput capacity.

Hallefjord et al. [15] discuss paradoxes in traffic networks in the case of elastic demand.

When travel demand is elastic it is not evident what a paradoxical situation is, and in this case

there is a need for characterizations of different paradoxes. An example is given where total

flow decreases while travel time increases due to adding a new link to the network. This is a

                                                
1 In some papers, like Cohen and Horowitz [10] and Calvert and Keady [7] [8], it is referred to as the Wheatstone
bridge topology.
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rather extreme type of paradox. A different paradox is when the network “improvement” leads

to a reduction in social surplus.

The reason for the traffic equilibrium paradoxes is the behavioral assumption that a traveler

chooses the path that is best for himself, without paying attention to the effect this has on the

other users (eventually including himself). In user equilibrium a user cannot decrease travel

time by unilaterally changing his travel route, leading us to seeing the equilibrium as a Nash

equilibrium of an underlying game. Korilis et al. [18] investigate the non-cooperative structure

of certain networks, where the term non-cooperative emphasizes that the networks are

“operated according to a decentralized control paradigm, where control decisions are made by

each user independently, according to its own individual performance objectives”. Nash

equilibria are generally Pareto inefficient as demonstrated by Dubey [13], and Korilis et al.,

who use the Internet as an example while referring more generally to queuing networks.

Cohen and Horowitz [10] give examples of Braess’ paradox for other non-cooperative

networks like mechanical systems (strings) and hydraulic and electrical networks, and point to

the need for specifications of conditions under which general networks behave paradoxically.

This is partly provided by Calvert and Keady [7] [8] and Korilis et al. [18] propose methods

for avoiding degradation of performance when adding resources to non-cooperative networks.

In the following sections we will give examples of paradoxical situations that can occur in

electrical networks due to electrons behaving “non-cooperatively”. This behavior is reflected

by the power flow equations. When computing the equilibria, we assume competitive

deregulated electricity markets. In that respect our analysis follows the same line of research

in electricity markets that was performed by Hallefjord et al. [15] for elastic traffic equilibria.
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We consider real power only and the lossless and linear “DC” approximation of the power

flow equations (Wu and Varaiya [28], Wood and Wollenberg [27], McGuire [19]). Assuming
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all line-reactances equal to 1, the optimal dispatch problem of an �-node network with 
 links

can be formulated as follows:
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where )( G

L

G

L
�
  is the demand function of node � , G

L�  is the quantity of real power consumed

in node �, )( V

L

V

L
�
  is the supply function of node � , and V

L
�  is the quantity of real power

produced in node �. 
LM

�  is the capacity of link �� , and LM�  is the power flow over the link from

�  to � .

The objective function (2-1) expresses the difference between consumer benefit (the area

under the demand curve) and the cost of production (the area under the supply curve).

Equations (2-2) correspond to Kirchhoff’s junction rule, and there are 1−�  independent

equations. Equations (2-3) represent Kirchhoff’s loop rule, where ),,( 11 +−=
QP

��� �

represents a set of independent loops (Dolan and Aldous [12]), and 
O

�  is the set of directed

arcs in a path going through loop �. Equation (2-4) stands for conservation of energy, while

inequalities (2-5) are the capacity constraints.

Solving (2-1) (or alternatively (2-1)-(2-4) to obtain line flows) gives the unconstrained

dispatch and a uniform price of energy (the system price). The convex program (2-1)-(2-5)

corresponds to the optimal dispatch problem, from which optimal nodal prices can be found

(see for instance Schweppe et al. [23], Hogan [16], Wu et al. [29] or Chao and Peck [9]). In

optimal dispatch the locational prices can vary over all nodes, even if there is only one

congested link.
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In Wu et al. [29] a 3-node example is given, showing that strengthening a line by increasing

its admittance may lead to larger minimum cost. The network and initial optimal dispatch is

displayed in Figure 2-1. In optimal dispatch the nodal prices will be related by 321 


 <<

since line 1-3 is congested (for an argument, see Wu et al.). When the admittance of line 2-3 is

increased, the power flow equations change, and flow will increase on path 1-3-2 if injections

are maintained. This will result in line 1-3 becoming overloaded and injection in node 1 must

be reduced. Hence, by increasing the admittance, the former feasible power flow becomes

infeasible. This can be viewed as the physical paradox that results from the underlying

physical equilibrium model. If consumption is to be maintained, injection in node 3 must

increase, leading to larger minimum cost. Hence, an economic paradox that is the result of the

underlying characteristics of the physical equilibrium model occurs.
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In a similar 3-node example exhibited in Figure 2-2, Bushnell and Stoft [4] show that a new

line hurts the network but still collects congestion rent.
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In the example, there is high cost production in node 1 and relatively lower cost production in

node 2. Consumption takes place in node 3 where there is a fixed demand equal to 900 MW.

Initially, there are only two links, 1-3 and 2-3, each with a capacity of 1000 MW, and demand

is supplied entirely by the low cost producers in node 2.

In part B of Figure 2-2, a new line has been built between nodes 1 and 2. This is a weak line

with a capacity of only 100 MW, and it introduces loop flow, having as a consequence that the

transfer capacity between node 2 and 3 is greatly reduced. Assuming reactances equal to 1 on

every link and no production in node 1 to generate counter flow on line 1-2, it is reduced from

1000 to 300 MW. By inducing injections in node 1, the minimum cost of supplying 900 MW

to node 3 is obtained by injecting 600 MW in node 2 and 300 MW in node 1, which is

obviously a more costly dispatch. The new line is congested in direction 2 to 1, and since

21 

 > , the new line receives a positive congestion rent, )( 2121 

� −⋅ .

In the following we will give examples of paradoxes in a 4-node network with the Wheatstone

bridge topology and with elastic demand and production in every node. We assume linear cost

and demand functions, represented by V

LLL
��
 =  and G

LLLL
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node �, V

L
�  is the quantity produced in node �, G

L�  is the quantity consumed in node �, and 
L

� ,

L
�  and 

L
�  are positive constants. Net injection in node � is given by G

L

V

LL
��� −= . With input

data given in Table 2-1 and a thermal capacity of 15 units on line 1-2, optimal dispatch and

optimal prices are given in Figure 2-3. Part A shows the situation without line 2-4, while part

B includes this line. We use the linear and lossless “DC” approximation of the power flow

equations, assuming reactances equal to 1 one every line.
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1 20 0.05 0.1
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1=15.284
�1=58.529


2=17.577
�2=10.123


3=16.813
�3=-21.717


4=16.048
�4=-46.935

15.00

3.406

25.12

43.52


1=14.741
�1=42.244


2=17.635
�2=11.483


4=16.478
�4=-37.493

15.00

1.995

14.23

27.24

Part A: No Line between Nodes 2 and 4
Social Surplus: 2878.526
Grid Revenue: 45.848

Part B: New Line between Nodes 2 and 4
Social Surplus: 2852.660
Grid Revenue: 69.444


3=17.056
�3=-16.234

12.24
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By introducing the new line, total production and consumption has been reduced together with

social surplus. On the other hand, grid revenue defined as the 
������������� ���
���,

∑ ∑∑ ⋅−=−=
L M LMLML LL

�

�
�� )(2
1 , increases. The effect on individual agents varies,

i.e. some agents loose while others are better off, as displayed in Table 2-2. If surplus changes

for an agent, it means that the nodal price that he faces has been altered. More specifically, if

the price of node � increases as a consequence of the new line, producer � gains, while

consumer � looses. If the price falls, the opposite is valid.
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Node 1 Node 2 Node 3 Node 4
Before After Before After Before After Before After

Production 152.843 147.415 58.589 58.783 42.031 42.641 32.097 32.955
Consumption 94.314 105.171 48.466 47.300 63.749 58.874 79.031 70.448
Net Exports 58.529 42.244 10.123 11.483 -21.717 -16.234 -46.935 -37.493
Producer Surplus 1168.048 1086.554 514.901 518.321 353.328 363.646 257.552 271.511
Consumer Surplus 222.379 276.522 58.724 55.933 101.597 86.655 156.149 124.075
Surplus of Region 1390.427 1363.076 573.624 574.254 454.925 450.301 413.701 395.585

Considering the surplus of each region (i.e. the combined producer and consumer surpluses of

each node), it is evident that in general, some regions are better off due to the new line while

others loose. However, it is easy to construct examples in which every region looses because

of the new line. For instance, changing the example above by letting 37.02 =� , makes every

region worse off, while the grid revenue increases when line 2-4 is introduced.

In the discussion so far, we have considered optimal nodal pricing as the means of managing

congestion. Zonal pricing constitutes an alternative, which is used in practice, for instance in

Nordic market, and the characteristics of zonal pricing are studied in Bjørndal and Jørnsten

[2]. When the number of zones �  ( �� ≤ ) and the allocation of nodes to zones 
.

�� ,,1 �  are

determined, the optimal zonal prices can be found by solving problem (2-1)-(2-5) with

additional constraints:
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where 
N=


  is the price in zone 
N

� . Equations (2-6) guarantee that prices are uniform over

nodes belonging to the same zone. It is obvious that the social surplus of the zonal solution is

less than or equal to the surplus of the optimal dispatch (which again is less than or equal to

social surplus in unconstrained dispatch). Moreover, it is obvious that a finer partition of the

grid (dividing a zone into two or more “subzones” by allowing more prices) will increase

social surplus or leave it unchanged.

In the given example, assuming only two zones, there are four zone allocations that separate

nodes 1 and 22. These are displayed in Figure 2-4. Different zone allocations affect social

surplus, and for the parameters of our example, Z4 is best without the new line, while Z1 is

best when the new line is included. This illustrates that modifications to the grid should lead

to a reconsideration of zone allocations.

��������	
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Prices, net injections and power flows for Z1 and Z4 are displayed in Figure 2-5, together with

total social surplus and grid revenue. As is evident from the numbers, also under zonal pricing

total social surplus is reduced when the new line is built. This is so for fixed zone allocations

(i.e. the partition of nodes into zones remains the same after the new line is in place), but it is

also valid even if the best zone allocation is chosen at every point. For fixed zone allocations

grid revenue is reduced when building the new line. However, if the new line changes the

partition of nodes from Z4 to Z1, grid revenue increases considerably, thus providing a strong

incentive on the part of the grid owners to build the line.

Z1 Z2 Z3 Z4
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2 In practical implementations, it is often required that a zone boundary should cut the link with the capacity
problem.

�1=14.713
�1=41.387

�2=17.080
�2=-1.460

�3=17.080
�3=-15.693

�4=17.080
�4=-24.234

15.00

2.153

13.54

26.38

�1=14.524
�1=35.721

�2=17.164
�2=0.489

�4=17.164
�4=-22.396

15.00

4.046

9.768

20.72

�3=17.164
�3=-13.814

�1=15.437
�1=63.124

�2=17.395
�2=5.873

�3=17.395
�3=-8.622

�4=15.437
�4=-60.375

15.00

12.25

20.87

48.12

�1=15.044
�1=51.327

�2=17.841
�2=16.283

�4=15.372
�4=-69.027

15.00

11.37

9.956

36.32

�3=17.841
�3=1.146

Z1

Part A: No Line between Nodes 2 and 4
Social Surplus: 2858.235
Grid Revenue: 97.979

Part B: New Line between Nodes 2 and 4
Social Surplus: 2844.051
Grid Revenue: 94.296

5.721

Part C: No Line between Nodes 2 and 4
Social Surplus: 2869.871
Grid Revenue: 5.380

Part D: New Line between Nodes 2 and 4
Social Surplus: 2821.270
Grid Revenue: -49.495

Z4

21.32
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In Table 2-3 we show the surpluses for each region. In general, the change of surplus for

individual agents can be positive or negative. In Z1 every region surplus as well as the grid

revenue decreases due to the new line. If parameters are changed so that 35.02 =�  and the

thermal capacity of line 1-2 is 5 units, the effect of the new line on every region would be

negative when choosing the social beneficial zone allocations (i.e. switching from Z4 to Z1

when building line 2-4). Grid revenue on the other hand would increase.

�������	�� ���
�����!�����

Z1 Z4
Before After Before After

Node 1 1361.881 1354.600 1399.745 1377.242
Node 2 571.474 571.434 572.168 577.110
Node 3 449.917 448.685 446.096 444.489
Node 4 376.983 375.036 446.482 471.924

In the examples cited so far, the reductions in social surplus are relatively minor. In the

original example in Table 2-1 the reduction in total social surplus is equal to 25.866, or 0.9%.

This is partly due to the assumption of identical demand functions in every node. By allowing

more unequal distributions of consumption, the reductions can be of considerable size. For

instance, increasing 2,1, =��
L

 to 0.25, i.e. the size of the markets in nodes 1 and 2 are

assumed to be only 20% of the markets in nodes 3 and 4, social surplus in optimal dispatch is

reduced from 2541.968 to 2394.397, i.e. by 5.8%, when the new line is built. This is more

than 2.5 times the cost of the thermal limit itself, as social surplus in unconstrained dispatch is

equal to 2600.506. If there is no consumption in nodes 1 and 2, social surplus is reduced from

2395.869 to 2129.125, i.e. by 11.1%. Also when increasing demand by shifting the demand

curves positively (for instance by raising the 
L
� ’s), the paradox becomes more severe.

The persistence of the paradox depends also on the cost parameters. Consider for instance

varying 2� . When )080.0,0[2 ∈�  the new line improves social surplus. When

)102.0,080.0[2 ∈�  the new line has no effect on social surplus because the thermal limit is

not binding in optimal dispatch (neither with nor without line 2-4). Finally, when 102.02 ≥�

the new line reduces social surplus, implying that the paradox also occurs when production in
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node 2 is so costly that it is not being used. The reduction reaches a maximal value at

350.02 =� . Varying 4�  in the same manner, the thermal capacity is binding for all values of

4� . When 179.04 <�  line 2-4 improves social surplus, whereas the paradox arises for

179.04 >� .

From the treatment of the “DC”-approximation in Wu et al. [29], we know that

)sin()sin(
1

MLLMML

LM

LM
�

	
� δδδδ −=−= ,

where 
L

δ  is the phase angle at node �, 
LM
�  is the power flow over line �
, 

LM
	  is the reactance of

line �
, and the admittance 
LM
�  of line �
 is equal to the reciprocal of the reactance of the line.

Since the sine function has a maximal value of 1, we must have that 
LMLM
�� ≤ . Considering

also the thermal limit 
LM

�  of line �
, 
LM
�  is bounded by },min{

LMLM
�� . This means that

“strengthening” a line has two interpretations: increasing the admittance or increasing the

thermal limit.

From the optimal dispatch problem, we know that the shadow price of the thermal limit is

non-negative, i.e. 0≥
LM

µ , which means that social surplus cannot be reduced by improving

the thermal limit of any line. What we have shown by the previous examples is that whenever

there is at least one binding thermal limit, say on line �
,

NO
�∂

∂ Surplus Social

may be negative for some link �
. I.e. by either increasing the admittance of an existing line or

by building a new line3, we may reduce social surplus.

Consider now varying the thermal capacity of line 1-2. In Diagram 2-1 social surpluses are

shown as functions of 12� . The functions are concave and increasing and the difference

                                                
3 I.e. increasing the admittance from the 0 level.
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between the curves is the greatest for ε=12�  and vanishes when 12�  is so large that the

thermal limit is no longer binding in any of the network configurations considered. This

occurs at 587.4212 =� , which is the flow over line 1-2 in unconstrained dispatch assuming

line 2-4 is included in the network. From this point, social surplus is constant and equal to

2916.525, and increasing the thermal capacity is not beneficial in either network

configuration.

"�����#��	���
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As is shown by Wu et al. [29], in optimal dispatch, the merchandizing surplus given by

∑∑ −
L M

LMLM
��� )(2

1  is equal to the ��������������� defined by

LM

L M

LM
��� ∑∑= µ .

Since line 1-2 is the only congested line in our example4, grid revenue is equal to 1212�µ , i.e.

for a given thermal capacity 12� , the size of the grid revenue is determined by the value of

12
12 C

Surplus Social

∂
∂=µ  .

                                                
4 Assuming 012 >µ , while 0=LMµ  for 12≠�
 .
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As is indicated by the curves of Diagram 2-1, building line 2-4 will increase grid revenue

since at every 587.4212 <�  the social surplus function ���� line 2-4 is steeper than the

function depicting social surplus ������� line 2-4.

Note however that whether the grid revenue increases due to the new line is not indicative of

whether the paradox occurs. Grid revenue may increase also when the new line is beneficial.

For instance, letting 15.04 =� , total social surplus increases from 3448.992 to 3457.022 when

the new line is built. Grid revenue increases from 58.969 to 64.530 i.e. total social surplus

increases more than the grid revenue, leaving a net increase for the market participants due to

the new line.

In Diagram 2-2 social surplus is shown as a function of the admittance of line 2-4. For

reference, social surplus without line 2-4 is also exhibited. We note that the difference

between social surplus with and without line 2-4 increases with the admittance 24� . When

∞→24� , social surplus approaches the value 2828.161 asymptotically, signifying that the

paradox becomes more severe the stronger is the new line, but there is a maximal degradation

of social surplus equal to 2878.526-2828.161 = 50.365.

"�����#��	���
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Load factor NO

LMβ  is the fraction of a trade from node � to node 
 that flows over the directed arc

�
, and load factors are such that ON
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LM ββ −= . In general, load factors vary
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with the level of the power flows in the system. However, given the admittances of the lines,

load factors are constants in the “DC” approximation. The load factors of line 1-2 for different

trades can be expressed as functions of 24� . When the new line is introduced with an

admittance of 24� , the power flow equations become the following:

Kirchhoff’s junction rule: 14121 ��� +=

2423122 ���� ++−=

34233 ��� +−=

Kirchhoff’s loop rule: 1424122424 ����� +−=

3424232424 ����� +=

Conservation of energy: 04321 =+++ ���� .

By solving the power flow equations for different trades, we find the load factor matrix
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where the entry of row � and column 
 is NO

12β . The negative numbers indicate that the

corresponding trades generate counter flows on line 1-2.

When ∞→24� , trades between nodes 2, 3 and 4 have no influence on line 1-2, which can be

seen from
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Nodes 2, 3 and 4 thus become one market with identical nodal prices. Net injection in node 1

on the other hand, distributes equally on lines 1-2 and 1-4 (load factors are equal to 2
1 ),

implying that the maximal export from region 1 is equal to 12230 �⋅= . An interpretation of

this situation is that nodes 2 and 4 are electrically “the same”, which is similar to a cost of

zero on line 2-4 in a traffic equilibrium network. In the case of our electrical network, this

makes the paradox maximal.

The paradox of the example of Table 2-1 and Figure 2-3 can be interpreted in terms of load

factors. The load factor matrix without line 2-4 is equal to



















−
−−
−−−

=

0

0

0

0

4
1

2
1

4
1

4
1

4
1

2
1

2
1

4
1

4
3

4
1

2
1

4
3

0
12& ,

whereas the load factor matrix ���� line 2-4 (with admittance equal to 1) is equal to



















−
−−
−−−

=

0

0

0

0

8
1

4
1

8
3

8
1

8
1

2
1

4
1

8
1

8
5

8
3

2
1

8
5

1
12& .

Considering optimal dispatch without line 2-4, 529.581 =� , 123.102 =� , 717.213 −=�  and

935.464 −=� . As is evident from matrices 0
12&  and 1

12& , the load factors of trades between

net injection and net consumption nodes have developed unfavorably when introducing line 2-

4. The positive load factors 13
12β  and 14

12β  stays the same or increases, meaning that the

corresponding trades use as much or more of the capacity of line 1-2 under the new network

configuration. The negative load factors 23
12β  and 24

12β  have increased, indicating that the

trades that they represent, produce smaller counter flows on line 1-2, thus relieving the

capacity constraint to a lesser extent. Under the new network configuration, the injection

vector (58.529, 10.123, -21.717, -46.935) is no longer feasible. According to the
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characterization used by Bushnell and Stoft [6], the old dispatch belongs to the “newly

infeasible region”, and the “newly feasible” region that follows from the new line, provides no

better dispatch, thus the paradox. It could be interesting to investigate if traffic equilibrium

paradoxes can be interpreted using something similar to the load factors in electricity

networks.

��� �����	�
�	����	
��

A consequence of the paradoxical characteristics of certain electricity networks is that in the

presence of congestion constraints, social surplus can be reduced when markets are integrated.

In Figure 3-1 market 1 consists of nodes 1, 2 and 3, while market 2 consists of nodes 4 and 5.

We assume linear cost and demand functions, with parameters given in Table 3-1. We want to

consider integrating the markets by building lines 2-4 and 3-5. Disregarding any thermal

constraints we find that social surplus would increase from 3126.177 to 3157.895. The system

price settles on 16.842, which is higher than the price of market 1 and lower than the price of

market 2.

��������	��'��(���)��������
��	�*��
����������"��!����

1

Market 2

Separate Markets
Unconstrained Dispatch:
       Social Surplus: 3126.177
       Price Market 1: 16.271
       Price Market 2: 17.778

Market 1

Integrated Market
Unconstrained Dispatch:
       Social Surplus: 3157.895
       Market Price: 16.842

2

3

4

5
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�������	��$
�������"�#����+���#�����

CONSUMPTION PRODUCTIONNODE

L
�

L
�

L
�

1 20 0.05 0.1
2 20 0.05 0.8
3 20 0.05 0.4
4 20 0.05 0.6
5 20 0.05 0.3

Assume now there is a capacity limit of 10 units on line 1-2. In Figure 3-2 we show optimal

dispatch without the connecting lines. Social surplus is equal to 3000.433. In Figure 3-3 the

new lines have been built, and social surplus is reduced to 2988.241, implying that the thermal

limit on line 1-2, which is internal to market 1, prevents the realization of potential benefits

from market integration.

��������	��,!��#���"��!�����	�&��
���)��������
�

�1=14.299
�1=28.962

�2=18.775
�2=-1.038

18.96

14.81

10.00

�5=17.778
�5=14.815

�4=17.778
�4=-14.815

8.962

Social Surplus: 3000.433
Grid Revenue: 67.139

�3=16.537
�3=-27.924
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��������	��,!��#���"��!�����	�������)��������
�

��� ������	��������

Given that an investment has already been carried out, in traffic equilibrium networks

marginal cost pricing can lead to improved overall system performance from the grid

modification even when Braess’ paradox occurs in user equilibrium (Pas and Principio [21]).

In electricity networks there is no equivalent methodology, since electrons do not respond to

marginal cost pricing. To alter flows for a given set of injections, we would have to alter line

impedances.

Considering the investment decision itself, the obvious way to avoid the paradox in our

Wheatstone bridge example is to build line 1-3 instead of line 2-4. This would resolve the

capacity problem of line 1-2, but may be unacceptable for other reasons, for instance

investment cost. Generally, the issue of how to encouraging beneficial investments and

discouraging detrimental investments has been treated in the literature, for instance by Baldick

and Kahn [1], Bushnell and Stoft [4] [5] [6] and Hogan [17]. As is shown by Bushnell and

�1=14.147
�1=24.399

�2=18.762
�2=-1.297

14.39

3.462

10.00

�5=17.444
�5=7.019

�4=18.103
�4=-7.762

4.399

Social Surplus: 2988.241
Grid Revenue: 72.535

�3=16.784
�3=-22.354

3.557

4.304
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Stoft [4] [5], transmission congestion contracts (TCCs), where new contracts are allocated

according to a �������
���� ��
�, which helps internalizing the external effects of detrimental

grid investments, can provide at least a partial solution.

However, as is demonstrated by some of the examples in this chapter, and also pointed to by

Bushnell and Stoft [6], the performance of a network depends on expected dispatch, which is

influenced by future supply and demand conditions, which are constantly changing and

subject to uncertainty. Thus, as market conditions change, so can the performance of the

different network configurations considered. This is further complicated by typically long

asset lifetimes and the lumpiness of the investment decisions, which sometimes makes it

desirable to expand the network in a manner that is not immediately beneficial but will be in

the long run. Ideally, we should compare different expansion ����� rather than various fixed

networks, as the investment problem is dynamic in nature.

��� �������
���

Depending on the parameters of the problem considered (cost, demand, thermal capacity and

admittance) a new line may be detrimental to social surplus. In general, some agents are better

off while others loose. In this article we provide examples where, in optimal dispatch, every

region looses while the grid revenue increases. For fixed zone allocations there is also the

possibility that every region-surplus ��� the grid revenue is reduced as a consequence of a

new line. In this article it is also demonstrated that a thermal limit, which is internal to a

market, may result in market integration being disadvantageous. The possibility of such

paradoxical effects and the incentives that they provide to different agents must clearly be

taken into consideration both in the process of grid development and market development.
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