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Abstract. Rate of return guarantees are included in many �nancial products, for example life insurance

contracts or guaranteed investment contracts issued by investment banks. The holder of such a contract

is guaranteed a �xed periodically rate of return rather than|or in addition to|a �xed absolute amount

at expiration.

We consider rate of return guarantees where the underlying rate of return is either (i) the rate of

return on a stock investment or (ii) the short-term interest rate. Various types of these rate of return

guarantees are priced in a general no-arbitrage Heath-Jarrow-Morton framework. We show that despite

fundamental di�erences in the underlying rate of return processes ((i) or (ii)), the resulting pricing

formulas for the guarantees are remarkably similar.

Finally, we show how the term structure models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985)

occur as special cases in our more general framework based on the model of Heath, Jarrow, and Mor-

ton (1992).

1. Introduction

Interest rate guarantees are included in several �nancial products. For example many life insurance

contracts guarantee the policy holder a �xed minimum annual percentage return. Another example is

guaranteed investment contracts sold by investment banks, cf., e.g., Walker (1992).

In principle, a guarantee may be connected to any speci�ed rate of return, referred to as the rate

of return process or simply the return process. Real-life examples include rate of returns of stocks and

mutual funds, various indexes, or interest rates. In this treatment, we consider (i) guarantees on return

processes connected to assets traded in �nancial markets and (ii) guarantees on the short-term interest

rate process. Guarantees on stock returns are obvious examples of the �rst kind of guarantee and we

sometimes refer to the underlying �nancial asset simply as a stock in that case.

The very existence of guaranteed return contracts reects the volatile nature of rates of return. It is

reasonable to expect that the interest rates in the economy inuence any rate of return process. A proper

valuation model should accordingly include a consistent model of the stochastic behavior of the interest

rate. We work in a Heath-Jarrow-Morton framework. This is a rather general framework and we show

how the popular term structure models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985) occur as

special cases.

Boyle and Hardy (1997) deal with long guarantees or maturity guarantees, i.e. guarantees e�ective only

at the point of expiration of the contract and compare di�erent approaches to pricing these guarantees.

The cashows connected to maturity guarantees are related to cashows of European options. Thus,

market prices of long guarantees may readily be expressed in terms of known results for European options.

We also include some results for long guarantees, in particular the structure of the resulting pricing formula
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is identical for deterministic and stochastic interest rates for guarantees on stock returns and guarantees

on interest rates. This result is perhaps surprising since stock market returns are of unbounded variation

whereas accumulated interest rates are of bounded variation.

In the case of annual guarantees we present a rather general expression for its date zero market value.

As opposed to the case of maturity guarantees the structure of this formula is much simpler in the case

of stock guarantees and deterministic interest rates than in the case of stochastic interest rates. For

one special case including deterministic interest rates and guarantees connected to stock returns, our

expression specializes to the formula by Hipp (1996). For another special case limited to only two periods

and guarantees on interest rates the formula of Persson and Aase (1997) is rediscovered. As a third

special case we present a new closed form solution in the two period case for guarantees on stock returns

in a model with stochastic interest rates.

Pedersen and Shiu (1994) and Grosen and J�rgensen (1997) deal with other aspects of guaranteed

investment contracts and interest rate guarantees.

The paper is organized as follows: In Section 2 the set-up is explained. We show how the term structure

models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985) occur as special cases in our more general

framework based on the model of Heath, Jarrow, and Morton (1992) in Section 3. In Section 4 pricing

results for European call options and long guarantees are obtained. These results are generalized to multi

period guarantees in Section 5. Section 6 contains some concluding remarks.

2. The Model

The model of Heath, Jarrow, and Morton (1992) is based on the de�nitional relationship between

forward rates and market prices of unit discount bonds

P (t; T ) = e�
R
T

t
f(t;s)ds:

The major primitive is the family of continuously compounded forward rates f(t; s), 0 � t � s � T , given

under an equivalent martingale measure by Itô-processes of the form

f(t; s) = f(0; s) +

Z t

0

�f (v; s)

Z s

v

�f (v; u)dudv +

Z t

0

�f (v; s)dWv:

Here Wt, 0 � t � T is a, possibly multi-dimensional, standard Brownian motion de�ned on a given

�ltered probability space. The volatility process �f (t; s), 0 � t � s � T , satis�es some technical

regularity conditions, cf. Heath, Jarrow, and Morton (1992). The short-term interest rate (spot rate) in

the economy is given by

rt = f(t; t) = f(0; t) +

Z t

0

�f (v; t)

Z t

v

�f (v; u)dudv +

Z t

0

�f (v; t)dWv(1)

under an equivalent martingale measure.

When considering the return process of an asset traded in a �nancial market, we assume that the un-

derlying market price process of the asset under an equivalent martingale measure satis�es the stochastic

di�erential equation

S(t) = S(0) +

Z t

0

rvS(v)dv +

Z t

0

S(v)�S (v)dWv:

In most of the paper we will assume that the volatility process �S(t), 0 � t � T , is deterministic. Possible

correlation between the return process and the interest rate process comes via the speci�cation of the

di�usion terms (�f and �S), since it is the same (multi-dimensional) Brownian motion,W , that is used
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in both SDEs. Later we consider a deterministic interest rate process, rt, as a special case. In that case

S(t) for any �xed t is log-normally distributed.

For our purpose it is convenient to de�ne the associated cumulative return process �(t) as

�(t) =

Z t

0

�
rv � 1

2
�S(v)

2
�
dv +

Z t

0

�S(v)dWv:(2)

Then the familiar relationship from deterministic models between market price and return, S(t) =

S(0)e�(t), also holds in this stochastic environment.

3. Relation to Earlier Models

In this section we will show how to �t our general no-arbitrage model into two well-known models

from the literature, the Vasicek model and the Cox-Ingersoll-Ross model. In this section the Brownian

motion is only one-dimensional.

3.1. The Vasicek (1977) Model. Under an equivalent martingale measure the SDE of the spot interest

rate is given by

rt = r0 +

Z t

0

�v(�̂v � rv)dv +

Z t

0

�vdWv;(3)

where �̂t = �t � �t�t
�t

is the risk-adjusted mean reversion level and �t is the market price of interest rate

risk. This SDE can be solved as

rt = r0e
�
R
t

0
�udu +

Z t

0

e�
R
t

v
�udu(�v�v � �v�v)dv +

Z t

0

e�
R
t

v
�udu�vdWv:(4)

On the other hand the solution for the SDE for r from the Heath-Jarrow-Morton model is given by

rt = f(t; t) = f(0; t) +

Z t

0

�f (v; t)dv +

Z t

0

�f (v; t)dWv:(5)

Moreover, under an equivalent martingale measure the drift of the forward rate, �f , is determined as

�f (v; t) = �f (v; t)

Z t

v

�f (v; u)du(6)

by the Heath-Jarrow-Morton drift restriction, cf. equation (1). Comparing rt and f(t; t) from equa-

tions (4) and (5) gives that �f must be speci�ed as

�f (v; t) = e�
R
t

v
�udu�v:

Hence the drift, �f , can be derived from equation (6)

�f (v; t) = �2ve
�
R
t

v
�udu

Z t

v

e�
R
s

v
�ududs:

Using these speci�cations of �f (t; s) and �f (t; s) the SDE for f(t; t) may now be written as

f(t; t) = f(0; 0) +

Z t

0

�v

�
1

�v

Z v

0

�2se
�2
R
v

s
�ududs� f(v; v)

�
dv +

Z t

0

�vdWv;(7)

clearly demonstrating the same mean reverting structure as the Vasicek speci�cation introduced earlier.

Observe that the Vasicek parameter �̂v is given by 1
�v

R v
0
�2se

�2
R
v

s
�ududs in the HJM speci�cation, cf.

equations (3) and (7).
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Matching drift terms in the Heath-Jarrow-Morton model and the Vasicek model under an equivalent

martingale measure yields, cf. equations (4) and (5)

f(0; t) +

Z t

0

�2ve
�
R
t

v
�udu

Z t

v

e�
R
s

v
�ududs dv = f(0; 0)e�

R
t

0
�udu +

Z t

0

e�
R
t

v
�udu(�v�v � �v�v)dv:

Multiplying this equation with e
R
t

0
�udu and di�erentiating with respect to t yields

�te
R
t

0
�uduf(0; t) + e

R
t

0
�udu

@

@t
f(0; t) +

Z t

0
�2ve

R
v

0
�udue�

R
t

v
�ududv = e

R
t

0
�udu(�t�t � �t�t):

From this equation we can �nd an expression for the market price of risk, �t, as

�t =
�t

�t

�
�t � f(0; t)

�� 1

�t

� @
@t
f(0; t) +

Z t

0

�2ve
�2
R
t

v
�ududv

�
:

If we restrict the parameters �, �, and � of the Vasicek model to be constant, the market price of risk

can alternatively be derived as

�t =
�

�

�
� � f(0; t) � f(0; 0)e��t

1� e��t

�
� �

2�
(1� e��t):

Many applications in �nance, furthermore, restrict the market price of risk, �, to be constant. By

imposing this assumption, the initial forward rates may be determined in terms of the parameters of the

Vasicek model as

f(0; t) = f(0; 0)e��t +
�
� � ��

�

��
1� e��t

�� �2

2�2
�
1� e��t

�2
:

According to Jarrow (1997) this problem has been studied by Robin Brenner, unfortunately, we have not

been able to trace speci�c references.

3.2. The Cox, Ingersoll, and Ross (1985) Model. A similar analysis is performed on the Cox-

Ingersoll-Ross model in Heath, Jarrow, and Morton (1992, Section 8). Therefore, we will just present

how to specify the volatility function of the forward rate process to get the Cox-Ingersoll-Ross model as

a special case of the Heath-Jarrow-Morton model.

Under an equivalent martingale measure the SDE of the spot interest rate is given by

rt = r0 +

Z t

0

�(�̂v � rv)dv +

Z t

0

�
p
rvdWv;

where �̂t is the risk-adjusted mean reversion level. This SDE has a solution but it cannot be written in an

explicit form. Cox, Ingersoll, and Ross (1985) show that the zero-coupon bond prices can be calculated

as

P (t; T ) = A(t; T )e�B(t;T )rt ;

where B(t; T ) is given by

B(t; T ) =
2(e(T�t) � 1)

( + �+ �)(e(T�t) � 1) + 2

and  =
p
(� + �)2 + 2�2. � is related to the market price of risk. A(t; T ) is not important for our

purpose.
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By Itô's lemma the SDE of the zero-coupon bond prices are

P (t; T ) = P (0; T )�
Z t

0

�
B(v; T )P (v; T )�(�̂v � rv)� 1

2
B(v; T )2P (v; T )�2rv

� e�B(v;T )rv
@

@v
A(v; T ) + rvP (v; T )

@

@v
B(v; T )

�
dv

�
Z t

0

B(v; T )P (v; T )�
p
rvdWv:

On the other hand the SDE of the zero-coupon bond prices by the Heath-Jarrow-Morton model is given

by

P (t; T ) = P (0; T ) +

Z t

0

P (v; T )

�
f(v; v) �

Z T

v

�f (v; s)ds +
1

2

�Z T

v

�f (v; s)ds
�2�

dv

�
Z t

0

P (v; T )
�Z T

v

�f (v; s)ds
�
dWv:

Hence, by matching di�usion terms in these two SDEs yields

B(t; T )�
p
f(t; t) =

Z T

t

�f (t; s)ds:

Di�erentiating with respect to T gives the expression of how to specify the di�usion term of the Heath-

Jarrow-Morton model to get the Cox-Ingersoll-Ross model

�f (t; s) = �
p
f(t; t)

@

@s
B(t; s)

=
4�2e(s�t)�

( + �+ �)(e(s�t) � 1) + 2
�2
p
f(t; t):

Finally, the drift, �f , is given by

�f (t; s) =
8�22e(s�t)(e(s�t) � 1)�

( + � + �)(e(s�t) � 1) + 2
�3 f(t; t)

with a little help from Mathematica.

4. Closed Form Solutions for Long Guarantees

A long or a one period guarantee guarantees the holder a minimum average return in the contract

period. As we demonstrate below, the payo�s of long guarantees are very similar to payo�s of Euro-

pean options. Thus, pricing formulas for long guarantees follow directly from known pricing results for

European options. Multi-period guarantees are treated in Section 5.

We work with two di�erent underlying assets for the long interest rate guarantees. First, a stock

market account is de�ned as

A�(t) = e�(t):

Let �(t) denote the cumulated return of the short-term interest rate process, i.e.,

�(t) =

Z t

0

rsds =

Z t

0

f(s; s)ds:(8)

The similar account corresponding to the stock market account involving the short-term interest rate is

de�ned as

A�(t) = e�(t)
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and is termed the savings account.

The payo�s including long guarantees on these accounts are given as

A�(t) _ egt;

where g represents the constant guaranteed minimum rate of return and � 2 f�; �g. Moreover, X _ Y =

max(X;Y ).

Now consider European call options on the stock market and savings accounts with payo�s at date t

�
A�(t)�K

�+
;

where K represents the constant exercise price and � 2 f�; �g. Furthermore, (Z)+ = max(Z; 0).

Observe the simple relationship between the European call option with maturity date t and the long

guarantee,

A�(t) _ egt = K +
�
A�(t) �K

�+
;(9)

where the exercise price of the option is K = egt and � 2 f�; �g. The date zero market price for the

European option payable at date t is

V � = EQ
�
e�
R
t

0
rsds

�
A�(t)�K

�+�
;(10)

according to the standard results of Harrison and Kreps (1979) and Harrison and Pliska (1981). Hence,

using equation (9), the market price of the long guarantee is

�� = P (0; t)egt + V �:(11)

For the rest of this section we assume that forward rates as well as stock market returns are Gaussian,

i.e., �f (t; s), 0 � t � s � T and �S(t), 0 � t � T are deterministic processes.

4.1. European Call Option and LongGuarantee on the StockMarket Account|Deterministic

Interest Rates. The �rst case we consider is a European call option on the stock market account payable

at date t, where the short-term interest rate rt is deterministic, i.e., �f (t; s) = 0, 0 � t � s � T . By this

assumption market prices of bonds are given by the formula P (t; T ) = e�
R
T

t
rsds.

From equation (2) and the assumption of deterministic interest rates the variance of the cumulated

return process �(t) is

�d(t)
2 =

Z t

0

�
�S(v)

�2
dv:

The price of this claim is well-known:

Proposition 4.1. The date zero market price of a European call option on the stock market account

payable at date t under deterministic interest rate is

V � = �
�� lnK � lnP (0; t)

�d(t)
+

1

2
�d(t)

�
�KP (0; t)�

�� lnK � lnP (0; t)

�d(t)
� 1

2
�d(t)

�
:

Proof. The payo� of this contract is identical to the payo� of a standard European call option where

the initial price of the stock is normalized to 1. The result follows from Black and Scholes (1973) or

Merton (1973).

The following corollary follows immediately from the stated relation (11) between the payo�s of European

call options and the long guarantees.
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Corollary 4.2. The market price at date zero of the claim A�(t) _ egt under deterministic interest rate

is

�� = �
��gt � lnP (0; t)

�d(t)
+
1

2
�d(t)

�
+ egtP (0; t)�

�gt+ lnP (0; t)

�d(t)
+
1

2
�d(t)

�
:

4.2. European Call Option and Long Guarantee on the Savings Account. The next case we

consider is the case treated by Persson and Aase (1997) involving the payo�
�
A�(t) � K

�+
. Using

equation (10), the date zero market value of a European call option on the savings account is

V � = EQ
�
e�
R
t

0
rsds

�
A�(t)�K

�+�
= EQ

��
1�Ke��(t)

�+�
:

Here we remark that

�(t) =

Z t

0
rsds = � lnP (0; t) +

1

2
��(t)

2 +

Z t

0

Z t

v

�f (v; u)dudWv;

where

��(t)
2 =

Z t

0

�Z t

v

�f (v; u)du
�2
dv

represents the variance of the cumulative return process �(t) for the savings account.

Proposition 4.3. The date zero market price of a European call option with expiration at date t on the

savings account is

V � = �
�� lnK � lnP (0; t)

��(t)
+

1

2
��(t)

�
�KP (0; t)�

�� lnK � lnP (0; t)

��(t)
� 1

2
��(t)

�
:

Proof. The result follows by straightforward calculations.

Corollary 4.4. The market price at date zero of the claim A�(t) _ egt is

�� = �
��gt � lnP (0; t)

��(t)
+
1

2
��(t)

�
+ egtP (0; t)�

�gt+ lnP (0; t)

��(t)
+
1

2
��(t)

�
:

4.3. European Call Option and Long Guarantee on the Stock Market Account|Stochastic

Interest Rates. The last case we consider is a European call option on the stock market account payable

at date t, where the short-term interest rate rt is stochastic.

From equation (2) and the assumption of stochastic interest rate the variance of the cumulated return

process �(t) is

��(t)
2 = �d(t)

2 + 2

Z t

0

�S(v)

Z t

v

�f (v; u)dudv + ��(t)
2:

Proposition 4.5. The date zero market price of a European call option with expiration at date t on the

stock market account under stochastic interest rate is

V = �
�� lnK � lnP (0; t)

��(t)
+

1

2
��(t)

�
�KP (0; t)�

�� lnK � lnP (0; t)

��(t)
� 1

2
��(t)

�
:

Proof. Cf. Merton (1973) and Amin and Jarrow (1992).

Corollary 4.6. The market price at date zero of the claim A�(t) _ egt under stochastic interest rate is

� = �
��gt � lnP (0; t)

��(t)
+
1

2
��(t)

�
+ egtP (0; t)�

�gt+ lnP (0; t)

��(t)
+

1

2
��(t)

�
:

Note the similar structure in corollaries 4.2, 4.4, and 4.6|only the � parameter changes. In all cases

the �2 parameter represents the variance of the accumulated return from date zero to the maturity of

the contract.
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5. Multi period guarantees

In this section we consider guarantees over more than one period. Imagine the time horizon T di-

vided into N sub-periods of length � with possibly a di�erent guaranteed return in each sub-period. A

sub-period typically corresponds to a year in potential applications. Only deterministic guarantees are

considered. However, the derived results will generalize to guarantees which are not known until the

beginning of the period where they become e�ective.

An investment of one unit of account at date zero into a general account with periodical returns �j

and periodical minimum guarantees gj, j = 1, : : : , n, will, at the end of period n, 1 � n � N , be

C�
n = e

Pn
j=1(�j_gj�):(12)

For n = 1 the multi period guaranteed payo� C�
1 is identical to the one period guaranteed payo�

A�(�) _ eg�.

Proposition 5.1. The market price at date zero of the claim C�
n from equation (12) is

��n =
X
!2


A!Q!(j(ij) > j(1� ij); j = 1; : : : ; n);

where
P

!2
 represents the sum over all elements of


 =
�
(i1; : : : ; in)

�� ij 2 f0; 1g; j = 1; : : : ; n
	
:

Moreover,

j(ij) =

8<
:
�j; if ij = 0;

gj�; if ij = 1;

A! = EQ[e
P

n
j=1

(j (ij)��j )];

and Q! is the pricing measure corresponding to using the security with price process A! as numeraire.

Proof. The price of the guaranteed investment C�
n can be derived as

��n = EQ[e�
Pn

j=1 �je
Pn

j=1(�j_gj�)]

=
X
!2


EQ[e�
Pn

j=1 �je
Pn

j=1(�j_gj�)1fj (ij)>j (1�ij); j=1;:::;ng]

=
X
!2


EQ[e�
Pn

j=1 �je
Pn

j=1 j (ij)1fj (ij)>j (1�ij); j=1;:::;ng]

=
X
!2


A!EQ[
e�

Pn
j=1

�j e
Pn

j=1
j (ij )

A!
1fj(ij )>j(1�ij); j=1;:::;ng]

=
X
!2


A!EQ[
dQ!

dQ
1fj (ij)>j (1�ij); j=1;:::;ng]

=
X
!2


A!Q!(j(ij) > j(1� ij); j = 1; : : : ; n):

Each element in the set 
 represents a particular sequence of j 's over the term of the contract, i.e.,

a speci�cation of periods in which the guarantees are e�ective. The pricing formula is a sum over all

possible sequences of j 's. In each term of this sum A! is a date zero market price of the �nancial asset
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with the return process corresponding to the particular sequence of j 's. Moreover, Q! is the pricing

measure corresponding to using A! as numeraire, cf. Geman, El Karoui, and Rochet (1995).

For the rest of this section we assume that forward rates and stock market returns are Gausssian in

order to get some more speci�c results.

5.1. Multi Period Guarantees on the Stock Market Account|Deterministic Interest Rates.

First consider the return of the risky asset in period n, 1 � n � N , under an equivalent martingale

measure,

�n = �(n�) � �((n� 1)�) =

Z n�

(n�1)�

�
rv � 1

2
�S(v)

2
�
dv +

Z n

n�1

�S(v)dWv:(13)

From this equation and the assumption of deterministic interest rates it follows that the variance of �n,

1 � n � N , is

(�nd )
2 =

Z n�

(n�1)�

�S(v)
2dv:

De�ne Fn = P (0;n�)
P (0;(n�1)�) . Observe that F1 = P (0;�). Thus, Fn may be interpreted as the forward price

at date zero of a unit discount bond expiring at date n� for delivery at date (n � 1)�.

Proposition 5.2. The market price at date zero of the claim C�
n described above under deterministic

interest rate is

��n =
nY
j=1

�
�(
�gj�� ln(Fj) +

1
2(�

j
d)
2

�
j
d

) + egj�Fj�(
gj�+ ln(Fj) +

1
2 (�

j
d)
2

�
j
d

)
�
:

Proof. The result follows by straightforward calculations using Proposition 5.1 with �j = �j.

A similar result for equity linked life insurance is independently derived by Hipp (1996) for the case

of constant interest rate, guarantee and volatility. Also observe that in this situation the futures price

equals the forward price since the interest rate is deterministic.

5.2. Multi PeriodGuarantees on the Savings Account. Now a similar claim on the savings account

is studied. Denote the return on the savings account in period n by �n, i.e.,

�n = �(n�) � �((n � 1)�) =

Z n�

(n�1)�

rudu:

Some calculations based on equation (8) and linearity of integrals yield

�n = � lnFn +
1

2
(�n�)

2 + cn

+

Z (n�1)�

0

Z n�

(n�1)�

�f (v; u)dudWv +

Z n�

(n�1)�

Z n�

v

�f (v; u)dudWv;

(14)

where

(�n� )
2 =

Z (n�1)�

0

�Z n�

(n�1)�
�f (v; u)du

�2
dv +

Z n�

(n�1)�

�Z n�

v

�f (v; u)du

�2
dv

represents the variance of �n, and

cn =

Z (n�1)�

0

�Z (n�1)�

v

�f (v; u)du

��Z n�

(n�1)�

�f (v; u)du

�
dv

represents the covariance between �n and �((n � 1)�). By de�nition c1 = 0.
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Observe that, in general, cn 6= 0, for n > 1, hence, di�erent �n's are not, in general, independent and

a simple closed-form solution as in the previous subsection is not immediately attainable.

In order to obtain some insights for the multi period case, we study the case n = 2. At the end of

period two an investment of one unit of account at date zero in the savings account is given by

C
�
2 = e(�1_g1�)+(�2_g2�):

Here �1 and �2 are bivariate normally distributed with expectations, variances, and covariance

(� lnP (0;�)+
1

2
(�1�)

2;� lnF2 +
1

2
(�2�)

2 + c; (�1�)
2; (�2�)

2; c);

respectively, where c = c2 and (�1�)
2; (�2�)

2, and c2 are given above.

Let �(a; b; p) denote the bivariate standard normal cumulative distribution function evaluated at the

point (a; b), of the bivariate standard normal probability density function with correlation coe�cient p.

The solution to the pricing problem is given in the following proposition.

Proposition 5.3. The market price at date zero of the claim C
�
2 described above is

�
�
2 = �(�a1;�b1; �) + F2e

g2����
1

��
2

��(�a2; b2;��)
+ P (0;�)eg1��(a3;�b3;��) + P (0; 2�)e(g1+g2)��(a4; b4; �);

where

� =
c

�1��
2
�

;

a1 =
g1�+ lnP (0;�)� 1

2(�
1
�)
2

�1�
; a2 = a1 + ��2� ; a3 = a1 + �1�; a4 = a1 + ��2� + �1�;

b1 =
g2�+ lnF2 � 1

2 (�
2
�)
2

�2�
� ��1�; b2 = b1 + �2�; b3 = b1 + ��1� ; b4 = b1 + ��1� + �2�:

Proof. Cf. Persson and Aase (1997).

Note that with the Gaussian assumptions the date zero futures price of a bond with expiration at date

2� for delivery at date � is given by G2 = F2e
���1��

2

� . Hence, the futures price naturally enters this

formula.

5.3. Multi Period Guarantees on the Stock Market Account|Stochastic Interest Rates. In

this case we consider the payo� given by equation (12) with �j = �j in a stochastic interest rate framework

for the special case n = 2.

Using the same methodology the date zero market value is calculated as

�2 = EQ[e��1��2e(�1_g1�)+(�2_g2�)]:

This calculation involves the four multinormallydistributed random variables (�1; �2; �1; �2) with variance-

covariance matrix 0
BBBB@

(�1�)
2 c (�1�)

2 + k1 c

c (�2�)
2 c+ k2 (�2�)

2 + k3

(�1�)
2 + k1 c+ k2 (�1� )

2 c+ k2

c (�2�)
2 + k3 c+ k2 (�2� )

2

1
CCCCA ;
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where

(�1� )
2 = (�1d)

2 + (�1�)
2 + 2k1;

(�2� )
2 = (�2d)

2 + (�2�)
2 + 2k3;

k1 =

Z �

0

�S(v)

Z �

v

�f (v; u)dudv;

k2 =

Z �

0

�S(v)

Z 2�

�

�f (v; u)dudv;

and

k3 =

Z 2�

�
�S(v)

Z 2�

v

�f (v; u)dudv:

We present the date zero market price in the following proposition.

Proposition 5.4. The market price at date zero under stochastic interest rates of the claim C�
2 described

above is

�2 = �(��a1;��b1; ��) + F2e
g2�����

1

��
2

��(��a2;�b2;���)
+ P (0;�)eg1��(�a3;��b3;���) + P (0; 2�)e(g1+g2)��(�a4;�b4; ��);

where

�� =
c+ k2

�1��
2
�

;

�a1 =
g1�+ lnP (0;�)� 1

2 (�
1
� )
2

�1�
; �a2 = �a1 + ���2� ; �a3 = �a1 + �1� ; �a4 = �a1 + ���2� + �1� ;

�b1 =
g2�+ lnF2 � 1

2 (�
2
� )
2

�2�
� ���1� ; �b2 = �b1 + �2� ;

�b3 = �b1 + ���1� ; �b4 = �b1 + ���1� + �2� :

Proof. See Appendix A.

Note again the similar structure in propositions 5.3 and 5.4|only the � parameter changes. In both cases

the �2 parameter represents the variance of the periodical returns. Note carefully that in this situation

F2e
����1��

2

� cannot be interpreted as the similar futures price as explained below Proposition 5.3.

6. Concluding remarks

We have introduced stochastic interest rates into a model dealing with minimum rate of return guaran-

tees using the very general Heath-Jarrow-Morton approach. This approach takes the initial term structure

of interest rates as given. Based on this information the future term structures of interest rates is modeled

as stochastic processes by no-arbitrage arguments. Well-knownmodels such as the Vasicek model and the

Cox-Ingersoll-Ross model are special cases of this model. This approach gave us the opportunity to study

single as well as multi period rate of return guarantees based on both stock market return processes and

short-term interest rate return processes in a consistent stochastic term structure of interest rate model.

In the paper, we have derived a number of pricing formulas for single and multi period guarantees

on both stock market return processes and short-term interest rate return processes. Despite the di�er-

ences in the underlying return processes, (i.e., stock market return processes are of unbounded variation,

whereas cumulated short-term interest rate processes are of bounded variation) the derived pricing formu-

las for the guarantees are remarkably similar. Moreover, for multi period guarantees, we have shown that
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the stochastic term structure of interest rate model introduce intertemporal dependencies in the period-

ical returns which complicates the pricing formulas considerably compared to the case of deterministic

interest rates.

We believe that our analysis is relevant for life insurance, since many real-life contracts include similar

guarantees to the ones treated here. Our results constitute a natural starting point for pricing such

guarantees. The various market prices (denoted by �'s with appropriate sub- and superscripts) minus

1 may be interpreted as option premiums for the guarantees and thus provide an economic explanation

(quanti�cation) for loadings often seen in actuarial literature. To fully incorporate these loadings in

premium calculations for life insurance contracts also mortality factors etc. must be included.

Apparently, current practice among life insurance companies does not involve the calculation of explicit

market values of such guarantees. In a companion paper Miltersen and Persson (1998) we investigate

how this observed practice may be consistent with economic pricing theory if we extend the model to also

include a surplus distribution (or bonus) mechanism between the customer and the insurance company.

Appendix A. Proof of Proposition 5.4

Following the recipe fromProposition 5.1 the four possible scenarios for the guarantees are enumerated.

Let ! be a sample point of the underlying space of possible outcomes 
. We de�ne

A1 = f! : �1 > g1�; �2 > g2�g;
A2 = f! : �1 > g1�; �2 < g2�g;
A3 = f! : �1 < g1�; �2 > g2�g;
A4 = f! : �1 < g1�; �2 < g2�g:

The event A1 corresponds to the situation where guarantees are not e�ective in any period, A2 represents

the situation where a guarantee is e�ective only in the second period, A3 represents the situation where

a guarantee is e�ective only in the �rst period, and A4 represents the situation where the guarantees are

e�ective in both periods. Let 1Ai
be the indicator function of the event Ai. We then write

�2 = EQ[e��1��2e(�1_g1�)+(�2_g2�)]

= EQ[e��1+�1��2+�21A1
] + eg2�EQ[e��1+�1��21A2

]

+ eg1�EQ[e��1��2+�21A2
] + e(g1+g2)�EQ[e��1��21A4

]:

We now proceed by a distinct change of probability measure for each of these four terms. For the �rst

term we de�ne the probability measure Q�� by the Radon-Nikodym derivative

dQ��

dQ
= e��1��2+�1+�2 :

For the second term we de�ne the probability measure Q�g by

dQ�g

dQ
=

e��1��2+�1

F2e�c�k2
:

Similarly, for the third and fourth terms the probability measures Qg� and Qgg are given by

dQg�

dQ
=

e��1��2+�2

P (0;�)
:

and

dQgg

dQ
=

e��1��2

P (0; 2�)
;
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respectively. We are now able to write

�2 = Q��(A1) + F2e
g2�����

1

��
2

�Q�g(A2) + P (0;�)eg1�Qg�(A3) + P (0; 2�)e(g1+g2)�Qgg(A4):

The expectations of (�1; �2; �1; �1) are calculated by Girsanov's theorem and are presented in Table 1.

Finally, the formula in Proposition 5.4 is obtained by recalling that �1 and �2 are bivariate normally

Table 1. Expectations of (�1; �2; �1; �1) under Q
gg , Qg�, Q�g and Q�� .

Qgg Qg� Q�g Q��

�1 � ln P (0;�)� 1

2
(�1� )

2
� c � ln P (0;�)� 1

2
(�1�)

2
� ln P (0;�) + 1

2
(�1�)

2
� c + k1 � ln P (0;�)+ 1

2
(�1�)

2 + k1

�2 � ln F2 �
1

2
(�2�)

2
� ln F2 +

1

2
(�2�)

2 + k3 � ln F2 �
1

2
(�2�)

2 + c + k2 � ln F2 +
1

2
(�2�)

2 + c + k2 + k3

�1 � ln P (0;�)� 1

2
(�1�)

2
� c� k2 � ln P (0;�)� 1

2
(�1�)

2
� ln P (0;�) + 1

2
(�1�)

2
� c� k2 � ln P (0;�) + 1

2
(�1�)

2

�2 � lnF2 �
1

2
(�2�)

2
� ln F2 +

1

2
(�2�)

2
� ln F2 �

1

2
(�2�)

2 + c + k2 � ln F2 +
1

2
(�2�)

2 + c + k2

distributed with variances (�1� )
2 and (�2� )

2, respectively and covariance c+ k2 under all the above proba-

bility measures. The probabilities Q��(A1); Q�g(A2); Qg�(A3); Qgg(A4) can be expressed by the standard

bivariate cumulative distribution by substituting to standard (zero mean, unit variance) random variables

and using symmetry properties of standard multivariate normal random variables.
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