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Abstract

This paper explores the possibility of using the Normal Inverse

Gaussian (NIG) distribution introduced by Barndor�-Nielsen (1997)

in various problem areas in �nance where distributions often are

found to be non-normal due to skewness and fat tails. More

speci�cly we discuss problems of risk analysis and portfolio choice

in a NIG context. We also brie
y look into some aspects of

NIG-modelling and estimation, but numerics and empirics will

be pursued elsewhere.
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1 Background

In empirical �nance it is frequently observed that asset returns have distri-

butions with fat tails, and they are often skew. 1 Moreover certain nonlinear

dependence structures occur. Other features are observed as well, depend-

ing on the context. In order to model �nancial data we need a repertoire

of distributions and modelling techniques which are able to represent these

stylized facts, and which are at the same time analytically tractable. The

literature is by now immense, within three interconnected areas:

1. Distributions (stable Paretian, generalized beta of second kind etc)

2. Time series model (GARCH, SVM etc)

3. Process models (Di�usion and jump processes etc)

Recently a new family of distributions named normal inverse Gaus-

sian (NIG) is brought to the attention of workers in empirical �nance by

Barndor�-Nielsen. Research so far is promising. It �ts data very well, is an-

alytically tractable, and may be basis for (state space) time series modelling

and process modelling as well, see Aase (1997).

In the next section we summarize some of the features of the NIG family,

with emphasis on properties that can be useful in the �nancial context. In

the following sections we develop some results which may be of use in risk

analysis.

2 The normal inverse Gaussian distribution

The normal inverse Gaussian distribution is characterized by 4 parameters

(�; �; �; �), where � is related to steepness, � to symmetry, and � and �

are related to location and scale respectively, for short referred to below as

the location and scale parameter. The distribution arises as the marginal

distribution of X in (X;Z) where 2

X j Z = z � N(�+ �z; z)

Z � IG(�;
q
�2 � �2) where 0 �j � j< �

1See for instance the scienti�c review paper on Value at Risk by Du�e (1997) and

worries from practice in CreditMetricsTM .
2Here N(�; z) is the normal distribution with variance z and IG(�; 
) is the inverse

Gaussian distribution with density given in Johnson et. al. (1995).
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Its moment generating function is

MX(u) = exp(u� + �(
q
�2 � �2 �

q
�2 � (� + u)2))

from which we can derive (let 
 =
p
�2 � �2 for short)

EX = � + � � �



varX = � � �
2


3

Skewness = 3 � �
�
� 1

(�
)1=2

Kurtosis = 3 � (1 + 4(
�

�
)2) � 1

(�
)

It is well worth noting that

� = EX � �(1� (
�

�
)2)varX

It is also seen that a sum of independent NIG-variates with common � and

�, but di�erent location and scale parameters, is itself NIG obtained by

summing the location and scale parameters and keeping the others �xed.

We illustrate the feasible (�; �)-combinations in Figure 1.

We see that � = 0 gives symmetric distributions where

MX(u) = exp(u�+ �(��
p
�2 � u2))

The Cauchy distribution is obtained 3 for � = 0 and the normal distribution

is obtained as � ! 1. The latter is seen by letting � ! 1 and � ! 1
so that �=� ! �

2. In fact there is no need for � to be zero to achieve

a normality limit. Even when � itself follows a limiting process, we get a

normal limit as long as � tends to a �nite limit �1. The normal limit then

corresponds to N(�+ �1 � �2; �2).
The NIG(�; �; �; �) density is given by

g(x;�; �; �; �) = a(�; �; �; �)q(
x� �

�
)�1K1(��q(

x� �
�

))e�x

3Seen by looking at the characteristic function MX(it).
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Figure 1: The feasible (�; �) map.

where q(x) =
p
1 + x2 and a(�; �; �; �) = �

�1
�exp(�

p
�2 � �2���) and K1

is the modi�ed Bessel function of second kind (by some called third order)

and index 1. 4 The distribution has semiheavy tails, ie.

g(x;�; �; �; �)� const j x j�3=2 e��jxj+�x as x! �1
A homogeneous (i.e stationary increment) Levy process (i.e. continuous

in probability) Xt with NIG(�; �; �; �) marginals can be de�ned by

Mt(u;�; �; �; �) = M(u;�; �; �; �)t

= M(u;�; �; �t; �t)

and may be replaced by a random time change of Brownian motion, that is

Xt = �t + BZt

where Bt is Brownian motion with drift � and di�usion coe�cient 1 and Zt
is a homegenous Levy process with IG(�;

p
�2 � �2) marginals.

Barndor�-Nielsen has shown that Xt is a superposition of weighted in-

dependent Poisson processes with small jumps dominating. He has also ex-

plored a class of processes with NIG marginals and IG-marginals of Ornstein-

Uhlenbeck type with background driving process being a homogeneous Levy

4See Ambramowitz & Stegun (1972).
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process. This may be useful for modelling in continuous time, say of �nan-

cial processes. However the likelihood analysis of discrete observations from

the processes is challenging, as it is for the common stochastic di�erential.

It is fairly easy to simulate NIG-variates, see Appendix.

3 NIG-returns and its convenience utility

The trade-o� between high return and risk is important in �nance. So

called mean-variance analysis has its theoretical basis in the case of normal

variates and/or quadratic utility function, or special cases of matching utility

functions and distributions (e.g. log utility and lognormal distribution).

Knowing that these assumptions are unrealistic it is still widely use for

convenience, see Levy & Markowitz (1979) and Kroll, Levy & Markowitz

(1984).

If we model returns by the NIG-family of distributions a convenient

alternative may be to start from a utility function of constant absolute risk

aversion, a desirable property according to Arrow (1971). This means that

U(X) = 1� exp(��X)

The expected utility of X being NIG(�; �; �; �) becomes

EU(X) = 1�Eexp(��X)

= 1� exp(���+ �(
q
�2 � �2 �

q
�2 � (� � �)2))

where we have to add the restriction �+� > �. We see that NIG-prospects

may be ranked by their value of the expression

H(�; �; �; �; �) = ��� �(
q
�2 � �2 �

q
�2 � (� � �)2)

In the case of no skewness � = 0 this is reduced to

H(�; �; 0; �; �) = ��� �(��
p
�2 � �2)

In the normal case the corresponding well known formula is 5

H = ��� 1

2
�
2
�
2 = �(�� 1

2
��

2)
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Figure 2: Feasible combinations of (�; �)

The parameter restrictions now in e�ect are illustrated in Figure 2.

Roughly 6 the restriction can be interpreted as those return distributions

for which increase in return level can compensate increased risk for the

given level of risk aversion We see that increased risk aversion requires more

steepness unless the distribution has a minimum asymmetry towards longer

right tails.

A better understanding of how H depends on the various parameters

involved is obtained by deriving a �rst order approximation. We get

H � �(�+ �
�



)� �2 1

2

�




= �(EX � �1
2
(1� (

�

�
)2)varX)

For the normal case the approximate formula is exact. We see that ap-

proximately the ranking amounts to a trade-o� between expectation and

variance, the latter having a correction depending on the steepness param-

eter � and the symmetry parameter �. For a given variance a higher ex-

pectation is required to compensate a smaller � and a higher �. However

a discussion of the dependence on the parameters based on the latter for-

5The certainty equivalent � � 1

2
��2 applies in a total "all or nothing" context. In a

market context, the �rst order marginal condition implies the certainty equivalent ����2.
6Roughly since the expectation and variance formulae are somewhat more involved.
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mula may be misleading, since the expectation and variance depend on these

parameters.

An interesting borderline case is � = 2� (dotted above) where

H(2�; �; �; �; �) = � � � = 2��

i.e. the utility is not a�ected by � and � at all. This may seem odd, but

recalling the formula for � in terms of expectation and variance we again get

the approximate formula for H above as an exact formula, so that volatility

does matter.

We can now examine the indi�erence curve relationships. Let the curves

be indexed by the level h. In the normal case we have

� =
h

�
+
1

2
�
2
�

i.e. straight lines in the (�; �2) plane with slope increasing with the risk

avension, or parabolas in the (�; �) plane. In the close to normal (symmetric)

case the indi�erence curves are approximated by

� =
h

�
+
1

2

�

�
�

i.e. increased volatility in the � sense is compensated by increased steepness.

For skew distributions in the neighborhood of the normal, the indi�erence

curves are close to

� =
h

�
+
1

2

�

�
(�� 2�)

i.e. increased volatility in the � sense is compensated by increased positive

skewness.

4 Independent portfolio NIG-returns

We will be interested in r joint returns X = (X1; X2; : : : ; Xr) and the return

Y = w
0
X on a portfolio w = (w1; w2; : : : ; wr). In the case of independent

NIG-returns with common � and � parameter, and equal weights we have

that

Y = �X � NIG(r�; r�; ��; ��)

This means that
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Skewness = 3 � �
�
� 1

(��
)1=2
� 1p

r

and furthermore

�� =
h

�
+
1

2

��

r�
(�� 2r�)

In the case of non-equal weights we do not have exact NIG. Hopefully we

catch the main features by approximating as follows 7

Y � NIG(�w; �w; �w; �w)

where

�w =
X
i

wi�i

�w =
X
i

wi�i

�w =

P
i wi�iP

iw
2
i �i�

�1

i

�w =

P
iwi�i�i�

�1

iP
i w

2
i �i�

�1

i

In the case of equal �'s and �'s we have the simpler formulas

�w =

P
iwi�iP
i w

2
i �i

� �

�w =

P
iwi�iP
i w

2
i �i

� �

It will be of interest to investigate how well this approximate the exact

distribution. Whether it is useful in a �nancial context, will depend on the

available alternatives, one of them is not use any information on skewness

and heavy tails at all.

7The approximation is obtained by matching terms (admittedly somewhat ad hoc) in

the expressions for the expectation and the exponent of the momentgenerating function.
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5 Multivariate returns and portfolios

In order to model vector correlated returns X we may turn to the family of

multivariateNIG (� , � , � , � , �) distributions where � and � are scalars,

� = (b1; b2; : : : ; br) and � = (�1; �2; : : : ; �r) are vectors and � = (�ij) is

positive de�nite matrix with determinant 1.

The moment generating function is

MX(u) = exp(u0� + �(

q
�2 � �0�� �

q
�2 � (� + u)0�(� + u)))

The properties of marginalization, conditioning and linear transformation

are given in Bl�sild (1981). The marginal and linear combinations are both

univariate NIG. However, we note that independent univariate NIG-variates

are jointly not multivariate NIG in the sense above!

We are mainly interested in the return Y = w
0
X on a portfolio w. The

moment generating function is

MY (u) = MX(uw)

= exp(uw0� + �(

q
�2 � �0�� �

q
�2 � (� + uw)0�(� + uw)))

This is one-dimensional NIG(�w; �w; �w; �w) where

�w = w
0�

�w = �w � � where �w = (w0
�w)1=2

�w = �
�2
w w

0
��


w = �
�1
w (�2 � �0��)1=2

�w = (
2w + �
2
w)

1=2

The marginal distribution of the component Xi's are obtained by letting

wi = 1 and wj = 0 for j 6= i. We then get �w = �i and (note that �2i = �ii)

�i = �i � �
�i = �

�2

i

X
j

�ijbj


i = �
�1

i (�2 � �0��)1=2
�i = (
2i + �

2
i )

1=2

Note that the alfa-scalars here do not correspond to an alfa-parameter com-

mon to all the marginals. We see that the marginal�is are a�ected jointly by
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� and �. This makes it di�cult to interpret parameters and a bit awkward

to establish a joint model speci�cation from given marginal speci�cations.

The covariance matrix of X is 8

� = �(�2 � �0��)�1=2(�+ (�2 � �0��)�1���0�)

Consequently � relates to the covariance in a fairly complicated manner

involving all other parameters as well. Among others we see that� diagonal

is not su�cient for � to be diagonal. Some insight is gained by looking at

special cases. If � is the unity matrix we get

� = �(�2 � �0�)�1=2(I+ (�2 � �0�)�1� �0)

Consequently �ij 's are a�ected by �j�k and � is diagonal in this case only

if the �'s are zero. Then � = �
�
I, which is in agreement with the limiting

case of �=�! �
2. If �0�� is negligible compared to �2

� =
�

�
(�+

1

�2
���0�) � �

�
�

because then the only omitted term is likely to be negligible as well. Then

� diagonal corresponds to approximate uncorrelated returns.

It is of interest to explore how the parametes change from the individual

marginal to the resulting weighted combination. In general we have

D =
�w

�i
=
�w

�i
= F

G =

w


i
= (

�w

�i
)�1 = F

�1

C =
Skewness

Skewnessi
=
�w=�i

�w=�i
=
B

A

where the de�nitions of A, B, C, D, F and G are self-explanatory. We

see that the change in skewness depends on the change in � and � alone.

Moreover it follows that the change in standard deviation, here denoted by

S, becomes S = AF
2, which is equal to F in the symmetric case.

In �nance analysts are used to so-called (�; �) maps, among others to

illustrate e�cient frontiers. It would be of interest to see if something similar

8The covariances is most easily obtained from the cumulant generating function.
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Figure 3: A (�; �) map for given � and �

pertains with NIG-parameters. Some insight may be gained by looking at

the bivariate case. 9

� =

 
�
2
1 �1�2�

�1�2� �
2
2

!

where again �2i = �ii and � is introduced in order to mimic variance and

correlation. However with the convention that det� is equal to 1 we have

�
2
1�

2
2 = (1� �2)�1. We now get

�
2
w = w

2
1�

2
1 + w

2
2�

2
2 + 2w1w2�1�2�

and note that the cases � = �1 lead to a complete square.

In the symmetric case when � = 0 we have �w = 0, �w = 
w = �
�1
w �

and �w = �w�. Now EY = �w = w1�1 + w2�2 and varY = �
2
w
�
�
while

varXi = �
2
i
�
�
. If we let � = �( �

�
)1=2 we see that a (�; �) map, for �xed

� and �, will have essentially the same features as the common (�; �) map

in terms of expectation and standard deviation, see Figure 3. However our

parameters correspond with the usual ones only in the symmetric case. In

order to take skewness into account, we could modify the required � by an

additive factor. The results of the previous section suggest the factor � � �2.
9Admittedly the use of greek letters here con
icts with the use of beta and gamma in

the portfolio literature.
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If we stick to the common (�; �) map in terms of expectation and stan-

dard deviation, and want to take into account the skewness, we may scale up

the required expectation for given standard deviation by an additive factor.

The preceeding section suggests that as a �rst approximation we may use

the factor �1

2
( �
�
)2�2. This depends on �, but a possible "parameter free"

choice is � = 2 � �. It remains to be seen how this works and whether it is

useful at all.

It would clearly be of interest to see how well the approach of this section

match with valuation schemes based on economic equilibrium considerations,

for instance extensions of CAPM to accomodate skewness, see Kraus &

Litzenberger (1976), (1983).

6 Portfolio choice and equilibrium considerations

We will consider equilibrium conditions for a portfolio of multivariate NIG-

returns in conjunction with a riskfree asset using the exponential utility

above. onsider �rst the case of an individual investor. Let the initial wealth

be W0 and �nal wealth be

W = W0(1 +
rX
i=0

wiRi)

where

R0 = return on the riskfree asset

Ri = returns on risky asset no.i

The problem of maximizing the expected utility EU(W ) = 1�Eexp(��W )

subject to the budget restriction is now seen to be equivalent to maximizing

�(w0R0 +w
0�)� �((�2 � �0��)1=2 � (�2 � (� � �w)0�(� � �w))1=2)

subject to

w0 +w
0
e = 1

The Lagrangian becomes (with � being the Lagrange multiplier)

L = �(w0R0+w
0�)��((�2��0��)1=2�(�2�(���w)0�(���w))1=2)��(w0+w

0
e�1)

By putting the expressions obtained by di�erentiating with respect to the

wi's equal to zero we get that �R0 = � and

� �R0e = �(�2 � (� � �w)0�(� � �w))�1=2�(�w� �)
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If we introduce the shorthand  = �(�w� �), with components  i we get

�i � R0

�j � R0

=
 i

 j

This ratio does not depend on � and �. Note also that we can write

�i �R0 =
�
2

�w
(�2w � (�w � �)2)�1=2 i

Here the subscripts w refer to the portfolio of the risky assets with formulae

given in the previous section (but now with sum of weights one minus the

fraction invested in the riskfree asset). The corresponding terms obtained

by dividing the weights by 1 � w0 will be denoted by subscript P , and

consequently �w = w
0� = (1� w0)�P . We now write

�R = w0R0 +w
0� = w0R0 + (1� w0)�P

and note that �R � R0 = (1� w0)(�P � R0). From the above we now get

�i � R0

�R � R0

=
 i

 w

where  w = w
0
�(�w� �).

We also take a brief look at the market equilibrium conditions for the

case of investors having identical probability beliefs. The exponential utility

then leads to identical compositions of risk portfolios 10.

For the market to clear, the optimal proportions of risk assets for each

investor must be those of the market risk asset portfolio m. This leads to

�i �R0 =
 i

 m

(�m � R0)

where the  's are given by the formulae above, but with components of m

summing to one and � replaced by (1� w0)�. To characterize the solution

we may just leave out (1� w0).

The above formulae parallels the classic ones, but recall again that �'s

are not expectations in the skew case. The formulae may be explored from

di�erent viewpoints, and we will only make some brief comments here. In

10Cass & Stiglitz have shown that a neccessary and su�cient condition for this is that

each invetors risk tolerance is a linear function of wealth, that is �U
0

i =U
00

i = ai+ bWi with
the same cautiousness b for all investors, in our case b = 0.
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the case of an equally weighted market portfolio of r assets having all com-

ponents of � equal to b, we get

 i

 w

=
r
P

j �ijP
ij �ij

=
r�

2
i�iP

i �
2
i �i

which does not depend on � and b at all. Note however that the individual

skewnesses may di�er through di�ering �'s.

7 Exchangeable returns

Of some interest (at least for exploring the aspects of NIG modelling) is the

exchangeable case where � = (b; b; : : : ; b) and

� =

0
BBBB@

d cd cd � � � cd

cd d cd � � � cd

...
...

...

cd cd cd � � � d

1
CCCCA

The matrix can be written � = d(cE+ (1� c)I) where I is the rxr identity
matrix and E is the rxr matrix of ones. In order to have det� = 1 we must

have

det� = d
r(1� c)r�1(1 + c(r� 1)) = 1

We see that a neccessary requirement is c > �1=(r�1). For given c we then

have

d = (1� c)�1(1 +
c

1� cr)
�1=r

which tends to

d = (1� c)�1exp(� c

1� c) as r !1:
In the exchangeable case

�0�� = rpdb
2

���0� = p
2
d
2
b
2
E

where p = 1 + (r � 1)c. If we assume equal weights we have

�
2
w = w

0
�w = pdr

�1

w
0
�� = pdb

�w = br

�i = bp
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Moreover set dp2b2��2 = t
�1. Then

�w = d
�1=2(rp�1)1=2�

�i = d
�1=2(1 + t

�1(1� rp�1))1=2�

We see that 11

B =
�w

�i
= rp

�1
> 1

A =
�w

�i
= (rp�1)1=2(1 + t

�1(1� rp�1))�1=2 > 1

C =
Skewness

Skewnessi
= (rp�1(1 + t

�1(1� rp
�1))1=2 > 1

Moreover G = B
1=2, F = B

�1=2 and that now S = AF
2 = A=B. The

inequalities for B and C came as a surprise. By letting r!1 we get

B ! c
�1

A ! c
�1(c+ (1� c)(

�i

�i
)2)1=2

C ! (c+ (1� c)(
�i

�i
)2)�1=2

S ! (c+ (1� c)(
�i

�i
)2)1=2

It is at �rst sight somewhat surprising that A does not tend to in�nity and

C does not tend to zero. However we knew that S would not tend to zero

for correlation.

It is of interest to explore how the natural parameters of the joint dis-

tribution are determined from the natural marginal parameters and the

covariance structure. In general this is not easy, but some insight is gained

in the exchangeable case.

With r and c given, p and d is determined. The common individual beta

determines b = p
�1
�i, which in turn determines �w = br without knowledge

of other parameters. The common individual alpha determines

� = d
1=2(�2i � p

2
b
2(1� rp

�1))1=2

which in turn determines �w = d
�1=2(rp�1))1=2�.

11In case of A this is seen by noting that x = 1 and x = t solves the equation x(1 +
t�1(1 � x)) = 1 and looking at the cases t > 1 and t < 1. Similarly for C.
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Going back to the expression for the covariance matrix, we see that the

o�-diagonal elements in the exchangeable case are (here 
 = (�2�rpdb2)1=2)

�

�1(cd+ 


�2
b
2
d
2
p
2)

while the diagonal elements are

�

�1(d+ 


�2
b
2
d
2
p
2)

The correlations therefore become

c+ 

�2
b
2
dp

2

1 + 
�2b2dp2

For c = 0, that is diagonal �, the correlation is positive. Zero correla-

tions requires negative c. Note however that this does not correspond to

independence.

8 Estimation of NIG-parameters

The estimation of parameters of the NIG distribution from sampled data

may be based on the likelihood-function. The expression becomes fairly

complicated, and the numerical and programming challenges are demand-

ing, but may be handled, see Bl�sild & S�rensen (1992) and later exten-

sions. Another possibility is to use the the method of moments, which here

amounts to equatiing the expressions in section 2 for the mean, variance,

skewnwss and kurtosis in section 2 to their empirical counterparts. We then

get four equations which may be solved for the four parameters, in fact exact

expressions are easily obtained.

Given its simple expression, it seems worthwhile to explore estimation

schemes based on the momentgenerating function, see for instance Epps,

Singleton & Pulley (1982). One possibility is the generalized method of

moments (GMM), which is adaptable to numerous di�erent situations, and

well known to workers in �nancial econometrics.

We consider here only the case of n independent NIG-variatesX1; X2; : : : ; Xn.

Our moment equations will be

1

n

nX
i=1

e
uXi = exp(u�+ �(

q
�2 � �2 �

q
�2 � (� + u)2))
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Now let the logarithm of the left hand side be denoted by v(u). By choosing

four di�erent u = ui(i = 1; 2; 3; 4) and letting vi = v(ui) we get the following

four estimating equations for the four unknowns:

ui�+ �(
q
�2 � �2 �

q
�2 � (� + ui)2) = vi i = 1; 2; 3; 4

These equations may be written on the following generic form:

1 + au� bv = r with r = r(c; d) =
p
1� cu� du2

and where the coe�cients a; b; c; d in terms of NIG-parameters are a = �=�
,

b = 1=
�, c = 2�=
2, d = 1=
2 and To prepare for the numerical solution,

it may be worthwhile to reduce the four equations to two by eliminating a

and b. If we introduce the following shorthand notation

pij = 1� uivj

ujvi

qij = 1� ri � ui

uj
(1� rj)

we get after some simple algebra

q12

p12
=
q13

p13
=
q14

p14
= v1b = 1� r1 + au1

Since qij = qij(c; d), the two �rst equalities may be used to solve for c and

d. The last two equalities give a and b after resubstitution of c and d
12.

Given a; b; c; d, we can now obtain the estimates of the NIG-parameters by

substitution in � = a=b, � = b
�1
d
1=2, 
 = d

�1=2, � = 1

2
cd

�1 and �nally

� =
p

2 + �2. The numerics and estimation on simulated and real data

will be pursued elsewhere, in order to see how well this procedure is a viable

alternative to using the likelihood directly.

12Note that the subscript in the last two expressions is the common �rst index of the

�rst three, and that we alternatively could have provided identities in terms of 2, 3 or 4
as the �rst subscript.
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Appendiks: Simulation of NIG-variates

Let V be a chisquare variate with 1 degree of freedom and compute the roots

with respect to Z of

V =
(
Z � �)2

Z

They are given by

Z =
�



+

1

2
2
(V �

q
V 2 + 4
�V )

Let Z1 and Z2 be the minus and plus root respectively, and note that

Z2 = �
2
=Z1.

Let

Z = Z1 with probability
�

� + Z1

= Z2 with probability
Z1

� + Z1
=

�

� + Z2

Then Z is IG(�; 
) 13 and consequently we get a NIG(�; �; �; �) variate by

taking 
 =
p
�2 � �2 and generate a U being N(0; 1) and then compute

X = � + �Z +
p
Z � U

13See Michael et. al. (1976)
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