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Abstract

The classical St. Petersburg Paradox is discussed in terms of doubling

strategies. It is claimed that what was originally thought of as a \paradox"

can hardly be considered as very surprising today, but viewed in terms of

doubling strategies, we get some results that look paradoxical, at least to

the practically oriented investor.
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1 Introduction

In the early days of the calculus of probability it was taken as granted that the
value, and hence the \fair price" of a gamble was the mathematical expectation
of the gain. Thus this price would be

EfXg =

Z
x dF (x)

if X represents the gains of the gamble having cumulative probability distribu-
tion function F . Applied to insurance this means that the fair premium p for a
risk described by the non-negative random variable X would be

p =

Z
1

0
x dF (x):

The Bernoulli Principle

Daniel Bernoulli (1738) published an example, originally presented to him by
his cousin Nicolas Bernoulli, where the above method does not work simply
because the integral above does not converge. The example has been known
as the St. Petersburg Paradox, and deals with a game where a coin is tossed
until it shows heads. If the �rst head appears at the n'th toss, a prize of 2n
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is paid. The expected gain in this gamble is +1, and Daniel argued that no
rational person would be willing to pay an arbitrary large amount for the right
to participate in this gamble. He is in fact more explicit about it, and writes
that \there should be no sensible man who would not be willing to sell his right
to this gain for 20 ducats".

As an alternative to the expected gain, Daniel Bernoulli suggested that a
person would assign the \moral value" of log(x) to a gain of x. The value of
the gamble was then suggested to be the \moral expectation"

EflogXg =

Z
1

0

logx dF (x) = log2
1X
n=1

n(
1

2
)n = 2 log2;

a �nite number. Daniel Bernoulli regarded the \paradox" as resolved, and
assigned this �nite number as the \price" of the lottery. This is of course a
very ad hoc solution, which would e.g., not help if the gain was changed to 22

n

instead of 2n, which was also realized at the time. This solution is not related
to any law of large numbers either. Anders Martin-L�of (1985) has discussed
and developed a law of large numbers for the St.Petersburg game, which we will
come back to below.

Although the subsequent discussion of the \moral value" of a gain seems
rather arbitrary today, this discussion gave the starting point of the expected
utility theory, where a more general utility function u(x) replaces logx.

In fact expected utility is not at all used in the manner indicated above,
and we �nd it useful to demonstrate below how the vonNeuman-Morgenstern
expected utility theory may be used in the pricing of lotteries, and why Daniel
Bernoulli's solution is wrong. But �rst we mention some statistics.

The Law of Large Numbers for the St. Petersburg Game

Bu�on seems to be the only researcher in the 1700 who really tried to play a
large number M of plays and calculate the empirical mean SM

M
:= 1

M

PM

k=1 Yk,
where Yk is the payo� in play no. k. Here the lottery Y pays a gain of
one ducat if heads shows in the �rst trial, two ducats if �rst heads appears
in the second trial, 4 in the third, 8 in the fourth, etc. He let a child play
2048 = 211 rounds and found that the number of plays of length 1; 2; 3; : : :
was 1061; 494; 232;137; 56; 29; 25; 8;6:The expected values of these numbers are
211�k; k = 1; 2; 3; : : : i.e., 1024; 512; 256;128; 64; 32; 16; 8; 4;2;1; : : : . The total
gain was 10057 yielding an average of SM

M
= 4:91. One may wonder if this is

close to any fair price of this lottery. LetM = 2n. Then Feller (1968) has shown
that SM

M
=n2 ! 1 in probability as n!1, so there is not much hope to �nd any

�nite value as the price of the game.
Anders Martin-L�of (1985) has been much more speci�c, and found a proba-

bility distribution F (x) such that

P (
SM
M

�
n

2
� x)! F (x); M = 2n; n!1:
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Furthermore he showed that with good approximation 1�F (x) � 2�m form � 5
so that P (SM

M
> n

2 +2m) � 2�m. By the help of this approximation he suggests
that one could determine a premium per game which has some credibility. If
one requires a probability of 10�3 � 2�10 the fee should be n

2 + 210 = n

2 + 1024
per game. He also comments that \n2 is small compared to 2m for reasonable
values of n, so that in practice it is possible to determine a premium per game
independent of n, just as we are used to for games having �nite values". The
impressive results of Anders Martin-L�of more or less concludes the probabilistic
analysis of this game.

In the next sections we turn to a rather di�erent way of valuing lotteries,
and in particular the St. Petersburg game.

2 Certainty Equivalents

In this section we indicate how one may possibly use utility functions to obtain
individual values of lotteries. There are other pricing theories which are much
more involved, using concepts of equilibrium, but we may in fact get somewhere
by simply doing the following: Consider an individual having a wealth w0 (a real
number) and facing a lottery with payo� Y . The individual has a Bernoulli util-
ity function, sometimes called a Bernoulli index, u : R ! R. By this we mean
the following: Let � be a preference relation on the set of random variables,
where � and � are derived from � in the usual way. If this binary relation sat-
is�es a certain set of axioms, where the independence axiom is the most famous,
the preference relation can be shown to have a von Neuman-Morgenstern ex-
pected utility representation: W1 4 W2 , Efu(W1)g � Efu(W2)g for random
wealths W1 and W2.

Let us assume that u is increasing and concave. A certainty equivalent for
a lottery Y and initial wealth w0 is the real number w� satisfying

u(w�) = Efu(w0 + Y )g:

It is natural to de�ne the price (the \bid price") of the lottery by

p = w� � w0: (1)

This de�nition may be motivated from common trade. As the owner of some
good the price equals the cash balance after the transaction minus the initial
cash balance. Here the good corresponds to the lottery Y and the initial and
�nal cash balances are respectively w0 and w�. The above de�nition thus applies
the natural de�nition of a bid price to a lottery. Here we may emphasize that
the bid price p de�ned above is actually the minimum price demanded by the
individual to sell the lottery.

Finally let us de�ne the risk premium � of the lottery as follows:

� = EY � p:

The risk premium tells us how much compensation a risk-averse person re-
quires in order to accept a risk. For a risk-averse person the function u is strictly

3



concave and the risk premium is positive, while for a risk-lover u is strictly con-
vex and � is negative. A risk-neutral individual has a linear Bernoulli index u,
and the corresponding risk premium is zero. The risk neutral case is thus the
one referred to at the beginning.

It is obvious that if an individual's preferences over probability distribu-
tions can be represented by von Neuman-Morgenstern expected utility with
the associated Bernoulli utility function u(w), then an a�ne transformation
au(w) + b; a > 0; b 2 R represents the same preferences. A consequence of
this should be that the certainty equivalent, and hence the bid price, does not
depend upon a or b. This latter fact is easily demonstrated:

Proposition 1 Consider two individuals with same initial wealth w0 facing

the same lottery Y . Assume one has Bernoulli index u1(w), the other u2(w).
Then if u2(w) = au1(w) + b; they assign the same price to the lottery for any

a > 0; b 2 R

Proof : The bid prices p1 and p2 are de�ned respectively by

u1(w0 + p1) = Eu1(w0 + Y ) (2)

and

u2(w0 + p2) = Eu2(w0 + Y ) (3)

Using the a�ne structure of u2 in equation (3), we get

au1(w0 + p2) + b = aEu1(w0 + Y ) + b;

which implies by equation (2) that u1(w0 + p2) = u1(w0 + p1). Since u1(w) is
assumed strictly monotonic, it follows that p1 = p2. �

We notice that only the requirement a 6= 0 is actually used in the above.
Now we can immediately recognize why Daniel Bernoulli's theory is not in

agreement with this use of expected utility. An individual with Bernoulli utility
index u(x) = logx should, according to Proposition 1, assign the same value to
the St. Petersburg game as an individual having index u(x) = 2 logx+100, but
in Daniel's theory the �rst would charge 2 log2, the other (4 log2 + 100), etc.

We may now ask what value should be assigned to this lottery according to
this principle. Before we attempt an answer, it may be an advantage to take a
new look at the St. Petersburg game.

3 The St. Petersburg Paradox as an Arbitrage

Let us here turn to the following interpretation of the St. Petersburg game,
suggesting why it can still be considered as a \paradox" 1. Consider an agent
using the same \doubling strategy" as above, where the agent pays for the

1The fact that a randomvariableX in not a member of L1 can hardly in itself be considered

as a \paradox", where L1 = fX ;Efj X jg < 1g.
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sequence of fair games as he goes along until head appears for the �rst time.
Denote the net gain from the game by X. If e.g., heads appeared for the �rst
time on the third trial, he would by then have paid 1 in the �rst trial, 2 in the
second, 4 in the third, so by the beginning of the third trial he would have paid
7 altogether. If heads then turns up, he is paid 23 = 8, and has hence a net gain
of 1, after which he quits the game. The net gain will always be the same, and
equal to one, if the game ends with heads, and since the probability that this
will happen eventually is equal to one, one seems to have something starting to
resemble a real \paradox". This is indeed an \arbitrage possibility", sometimes
called a \free lunch" in �nancial terminology.

To see this, consider the state space 
 = fe1; e2; : : :g, where e1 = H, e2 =
TH, e3 = TTH etc., i.e., en = f�rst head happens in the n'th trialg. Then

Probability of eventual success =
1X
n=1

P (feng) =
1X
n=1

(
1

2
)n = 1:

In other words it seems as if playing this game will lead the agent to a certain
net gain of 1. This seems puzzling since the sequence of games is fair, so one
would believe that the seller of the game would just break even in the long run.

The game can clearly be considered as a stopping problem, where the optimal
strategy exists. The problem is it may take a very long time 2.

Since it may take a long time before heads turns up for the �rst time, the
agent must in reality have an unbounded fortune (or unbounded credit).

If Daniel Bernoulli had looked at the game this way, he might have come to
the conclusion that the game should cost 1, using the expected value principle,
since this also is the net expected gain of the game, i.e., EfXg = 1. Also note
that P [X = 1] = 1.

Bid and Ask Prices

Consider a seller (a casino) having a certain wealth w0, and Bernoulli utility
index u(x) = logx. The casino would face the payo� Y = �X, where X is
the payo� from the St. Petersburg game as explained above. The certainty
equivalent w� for the seller of this game is then computed from

logw� = E log(w0 �X) =

1X
k=1

log(w0 � 1)(
1

2
)k = log(w0 � 1);

which implies that w� = (w0 � 1). Thus the (seller's) price p for this lottery is
p = (w� �w0) = �1, and the risk premium � = (EY � p) = 0.

The interpretation is as follows: Suppose a casino is obliged to o�er the
game. It is then willing to pay (at most) one unit to someone else to get rid of
this obligation.

2If the game continues long enough, time will clearly be a constraint, since each game must

be presumed to take at least a certain minimum amount of time to carry through, and no

agent has an unlimited time to his disposal.
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It can also be interpreted as the price charged from someone, having an
in�nite fortune or credit limit, to play this game. The risk premium is zero
since there is no risk for the seller, so the price is the same as the one obtained
under risk neutrality, i.e., the premium that Daniel Bernoulli presumably would
have suggested.

A buyer's price pb of any lottery Y could now be de�ned as follows:

u(w0) = Eu(w0 � pb + Y ): (4)

This price is then the maximal amount a buyer, having a certain fortune w0 and
utility function u, would be willing to pay for the lottery Y . With this entrance
fee the buyer is indi�erent between his present level of expected utility and the
level he obtains after accepting the game at price pb.

In the present situation the buyer has access to in�nite credit, and faces the
St. Petersburg game. We �nd that pb = 1 by a computation similar to the one
above 3. In this case there is no risk for the buyer to pay the entrance fee of 1
unit, and then start playing. With this fee in place the arbitrage possibility of
course disappears.

4 A more realistic version of the St. Petersburg

Game: Finite credit

Let us look at the game in more realistic terms, and assume that the agent has
a �nite fortune N at his disposal 4. For simplicity assume N := Nm = (2m� 1)
for some positive integer m. Denote the net gain from this game by Xm. First
observe that the sequence of random variables fXm;m � 1g converges to X in

probability as m !1 (notation: Xm

P
! X), and also almost surely (notation:

Xm

a:s:
! X). Now, for any m

EfXmg = 1 �
mX
n=1

P (feng)� Nm

1X
n=m+1

P (feng) = 0:

Thus the entrance fee for playing this game should be 0, at least according to
the \expected value principle", we have no longer a free lunch and are back in
the real world. Still the agent has a relatively large probability of winning 1 if
m is large, but he has the small probability (12 )

m of loosing his entire fortune
Nm, a very large quantity if m is large enough.

Let us now see what happens if his fortune N increases beyond any limit.
Will we then come back to the \free lunch"- situation described above? Since
EfXmg = 0 for all m, clearly

0 = lim
m!1

EfXmg 6= Ef lim
m!1

Xmg = EfXg = 1;

3One may notice that we abstract from the time depreciation of money, since it may take

some time before the certain gain of 1 is realized.
4Discussions with Fr�oystein Gjesdal are greatly acknowledged on this issue.
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which means that we are not back! This might seem puzzling at �rst: By start-
ing with a large, but �nite fortune, it is not possible to get from the situation
with \no free lunch" to the situation with arbitrage possibilities by simply in-
creasing this fortune beyond any limit. One has to start at the outset with this
unbounded fortune in order to obtain a \free lunch".

In mathematical terms we have found a situation where we may not pass the
limit inside the expectation: Here the sequence of random variables fXm;m �
1g converges to X in probability, but the sequence fXm;m � 1g does not
converge in L1-norm. In other words, the sequence fXm;m � 1g cannot be
uniformly integrable, because if it were, we would have been able to pass the
limit inside the expectation above. A mathematician would again not call this a
paradox, but rather a neat counterexample. It illustrates that while mathemati-
cians may treat limits and in�nity with great ease 5, when applied to practical
situations one has to be really careful; that is where philosophy enters.

The Bid Price

Let us now apply our pricing theory outlined above to this case. First consider
the seller (a casino): Here the lottery Y = �Xm, and the certainty equivalent
w� satis�es

logw� = E log(w0 �Xm) (5)

=
mX
k=1

log(w0 � 1)(
1

2
)k + log(w0 + (2m � 1))(

1

2
)m:

Thus if the success occurs before the m-th play, the seller has to pay 1 unit to
the player, but in the case where the player's fortune runs out before the �rst
heads appears, the casino keeps his entire fortune N . It follows that

w� = (w0 � 1)(1�(
1

2
)m)(w0 +N )(

1

2
)m : (6)

From this expression and the de�nition of the bid price in equation (1) we can
infer that the price p of the casino is in (�1; 0). This means that the price the
casino charges, �p, is here less than 1, the price in the previous case, since it is a
possibility that the casino can net the amount N on the game - if luck runs out
for the player. Also the price �p > 0 simply because of risk aversion, since the
utility function of the seller is assumed to be u(x) = logx, a concave function.

The Ask Price

Finally consider the buyer. Again making the same assumptions as before re-
garding preferences, we must now assume that his certain fortune w0 > N + pb
in order for the expected utility to be well-de�ned. His price pb is determined

5in e.g., nonstandard theory
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by the equation

logw0 = E log(w0 � pb +Xm) (7)

=
mX
k=1

log(w0 � pb + 1)(
1

2
)k + log(w0 � pb � (2m � 1))(

1

2
)m:

We �nd that pb must satisfy the equation

w0 = (w0 � pb + 1)(1�(
1

2
)m)(w0 � pb � N )(

1

2
)m : (8)

From this we observe that the buyers price pb is smaller than 0, the price under
risk neutrality. A negative value of pb means that the buyer must be o�ered

at least a positive side-payment of (�pb) > 0 to play the game, and happens
because the expected payo� is not large enough to compensate the risk averse
buyer for the risk involved.

Notice that we have not found a market price in this case. Even if the seller
is risk-neutral, the buyer would not accept. The buyer must in fact be risk-
neutral in order to accept this gamble at the \fair price" of zero, and he must
be risk-loving to accept the gamble described above.

5 Concluding Remarks

In daily life some �rms (investment banks or other �nancial institutions) seem
to routinely play this game from time to time. On a few occasions the results
of such games also make the headlines of newspapers around the world. These
�rms, or the dealers who trade on behalf or the �rms, seem to believe to be
playing the �rst game, the one with unbounded credit, usually represented by
the fortunes of the owners of the �rms. In doing so, they have only been able
to spot the seemingly \risk-less" pro�ts lurking in the background.

In reality they have been playing the risky game with �nite fortune N <
1, unfortunately possessing no \free lunch", and with a small, yet discernibly
positive probability of a large loss. Such events sometimes materialize, at least
according to theory, and history has con�rmed that they also do in real life.
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