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Abstract

We consider the problem of optimal consumption and portfolio in a jump diffusion market
consisting of a bank account and a stock, whose price is modelled by a geometric Lévy process.
We show that in the absence of transaction costs, the solution in the jump diffusion case has
the same form as in the pure diffusion case solved by Merton [M]. In particular, the optimal
portfolio is to keep a constant fraction of wealth invested in the stock. This constant is smaller

than the corresponding optimal fraction in the pure diffusion case.
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1 Introduction

In this paper we study the problem of optimal consumption and investment policy in a jump
diffusion market consisting of a bank account and a stock, whose price is modelled by a geometric
Lévy process.
Suppose the bank account gives a fixed interest rate r > 0. Then the price P (t) of this asset is
given by
dPy(t) = rPy(t)dt fort >0; Pi(0)=p; >0. (1)
Let P»(t) denote the price of the stock at time ¢. Assume that P,(¢) is a cadlag process satisfying

the following stochastic differential equation

dP(t) = aPa(t)dt + o Pe(t)dW (t) + Pa(t™) /_010 nN (dt,dn); P,(07) = pg > 0. (2)

Here « and o are positive constants, W (t) is a Wiener process (Brownian motion) on a filtered

probability space (2, F, F;, P) and
N(t,U) = N(t,U) = tq(U); t>0,U € B(~1,00)

is the compensator of a homogeneous Poisson random measure N(t,U) on RT x B(—1,00) with
intensity measure E[N(t,U)] = tq(U), where dg(n) is the Lévy measure associated to N. We denote

by B(—1,00) the Borel g-algebra on (—1,00). We assume that

/ °° Inla(dn) < oo. 3)

Note that since we only allow jump sizes n which are bigger than —1, the process P»(t) will remain
positive for all ¢ > 0, a.s. See e.g. Bensoussan and Lions [BL|, Jacod and Shiryaev [JS]| and Protter
[P] for more information about such stochastic differential equations.

We assume that at any time ¢ the investor can choose a rate ¢(t) > 0 of consumption taken from
the bank account. We also assume that we can transfer money at any time from one asset to the
other without transaction costs. Let X (¢),Y (¢) denote the amount of money invested in bank and

stock respectively. Let

u(t) = (4)



be the fraction of the total wealth invested in stock at time ¢.
Define the performance criterion by

oz, y) = B [ /0 N e“”%(t)dt] 5)

where § > 0,y € (0,1) are constants and E*Y is the expectation with respect to the probability law
P%Y of (X(t),Y (t)) when (X(07),Y(07)) = (z,y) € R2 The problem is to find V and (c*,u*) € A
such that

V(z,y) = sup J%z,y)=J"" (z,y) (6)
(c,u)eA

where A is the family of admissible controls (see Section 2). In the special case when the stock price
is a geometric Brownian motion (i.e., N = 0) this problem was first studied by Merton [M]. He

proved that if

o] )

5>7[7’+7202(1_7)

then the value function Vy(z,y) is given by
Vo(z,y) = Ko(z +y)” (8)

where

Moreover, the corresponding optimal consumption ¢ is given (in feedback form) by

cy(z,y) = (Kov) 7 (z + ) (10)

and the corresponding optimal portfolio is to keep the fraction Y (¢) /(X (¢) +Y (¢)) of wealth invested

in the stocks constantly equal to the value

uy = ﬁ at all times. (11)

In other words, it is optimal to perform transactions in such a way that the state (X (¢),Y(¢)) is
*

always situated on the line y = z in the (z,y)-plane (the Merton line).

*
0



In Section 2 we extend the results of Merton to the case when the stock price is a geometric
Lévy process (i.e., given by (2)) We prove that the value function V(z,y) still has the same form,
namely

Viz,y) = K(z +y)” (12)

but with a different constant K (under an assumption similar to (7). The corresponding optimal
consumption c* is given by

1

(x,y) = (Kv)71 - (z +y) (13)

and the optimal portfolio is to keep the fraction Y (¢)/(X (¢) + Y (¢)) constantly equal to a value u*
(see Theorem 2.3).

We also prove that if N # 0 then V(z,y) < Vo(z,y), ¢*(z,y) > cj(z,y) and u* < uf (see Figure
1).

Actually, the introduction of the jump term involving the integral with respect to N has the
same effect on the solution as increasing the volatility o.

Our work is also inspired by the paper [Z], where an optimal stopping problem for a jump
diffusion process is solved.

After this paper was written, we became aware of a paper by K.Aase [Aa]. He actually solves
the same optimal consumption and portfolio problem, albeit in a slightly different jump diffusion

market.

2 Optimal portfolio and consumption
As in Merton [M] we reduce the dimension of the problem by introducing the total wealth process
Z(t)=X(t)+Y(t) (14)

as a new state variable and by representing the portfolio by the fraction



of the wealth invested in stock at time ¢. Using (1-2) we see that the dynamics of Z(¢) is given by

dZ(t) = ([r(1 —u(t)) + au(t)]Z(t) — c(t))dt + ou(t) Z(t)dW (t)

+uZ(t") /O: nN(dt,dn), Z(0 )=z=xz+y > 0. (16)
We now consider (c¢(t),u(t)) as our control and we call it admissible and write (c(t),u(t)) € A if:
(i)  the processes ¢(t),u(t) are predictable,
(ii) c(t,w) >0 for a.e. (t,w),
(iii)  wu(t,w) €10,1] for a.e. (t,w),
(iv)  If the initial endowment z € S, then Z(t) € S for all ¢ > 0, where S is the solvency region:

S={zeR;z>0}.

Remark 2.1. The constraint u(t) € [0, 1] is necessary to ensure that Z(¢) remains nonnegative.

The problem can now be formulated as follows: Find the function V(z) and the corresponding

optimal strategy (c*(t),u*(t)) € A such that

V(z)= sup JO%(z)=J " (2) (17)
(c(t),u(t))EA
where
00 2
J(2) = B [ / e“c—(t)dt] . (18)
0 Y

Note that the generator A of the time-space process dZ(t) = (dt,dZ(t)) when applying the

(Markov) control (¢, u) is given by

i 0 dp 1 8°
Ap(s,z) = (9_(:: + ([r + (@ —r)ulz - c)a—f + 502“2226—;20

b et ) = o(s,2) = G205 2z dao

Therefore we can formulate a Hamilton-Jacobi-Bellman (HJB) verification theorem as follows (see

e.g. |BL| or |[F,Th.III.4] for a proof).



Theorem 2.2. Verification theorem.

a) Let v(z) : [0,00) — [0,00) be a twice continuously differentiable function such that

H(c,u,z) := %07 —ov(2) + ([r + (o — r)ulz — c)v'(2)
+%U2U2ZZU”(Z) + /O:[U(z + uzn) —v(z) — o' (2)uzn]dg(n) <0 (19)

forallc¢>0, wel0,1].
Then
v(z) > V(2). (20)

b) Suppose, in addition to (19), that for all z > 0 there exist c¢*(z) > 0,u*(z) € [0,1] such that
H(c*(z),u"(z),z) = 0. (21)
Suppose (c*,u*) € A and that
Rli_l;rgo E?[e TRy (Z*(TR))] = 0 for all;z >0 (22)

where Tp = min(R, inf{t > 0;|Z*(t)| > R}) and Z*(t) is the wealth process obtained by using the
control (¢*,u*). Then

v(z) =V(z) for all z >0
and the control (¢*,u*) is optimal.
Our main result is the following:

Theorem 2.3. Let u* be the mazimum point over the interval [0,1] of the function

1 0
h(u) := (= r)uy — 502u27(1 -) +/ [(1+un)” — 1 —wuynldg(n);u € [0,1] (23)
-1
and assume that
Ai=06—ry—h(u*) >0, (24)
a>rand |q|| = [ dg(n) < oo, (25)



and

- uyfa v gl - | °° ndg(n)] — h(u) > 0. (26)

K= % (“%)1_7. (27)

Then the value function V(z) for problem (17) is given by

Set

V(z)=K2". (28)
The corresponding optimal consumption rate s
¢ (2) = (K9)772 (29)

and the optimal portfolio is to keep the fraction u constantly equal to the maximum point u* of the

function h(u) defined in (23).

Proof. The first order conditions for maximality of H(c,u,z) as a function of ¢ is

A7t —v'(2) =0 (30)
c=c"(z) = (V' (2))71,if v'(2) > 0 (31)

Let us try to put
v(z) = C27 (32)

for some constant C'. By (31) this gives
¢*(2) = (O7) 77 (33)

and

Substituted into (19) and (21) this gives

SUPyc[0,1] {%(C’y)ﬁ —6C+ [r+ (a—rulyC — io%u?y(1 —v)C

+C 101+ un) = 1= wynda(n) | = 0.

7



The first order condition for maximality of the function h defined in (23) is

gu)ima—r ==y~ [ 1= 1+ u) oda(a) =0, (35)

Since g(0) = a—r > 0and g(1) = a —r —o?(1 —v) = [[1 — (1 + 1)~ ndg(n), we see that if
g(1) <0, ic. if

0<a=r<ofl=m+ [ L=+ ndatn), (36)

then there exists u* € (0,1) such that g(u*) = 0. Otherwise the maximum point u* of h(u) over

the interval [0, 1] is either u* = 0 or u* = 1. Note that «* is constant, both with respect to ¢ and x.

With this choice u = u* substituted into (34) we get

11— o
Y

where

* ]' * > * *
A==+ (o= ruly + o (W) y(1 - ) - /1 [(L+u™n)? =1 —u’ynldg(n).  (38)
When A > 0, i.e. when

o0

#> [+ (=l = 5ot =) + [ 0w — 1= da), (69

(which is (24)), then (37) has the solution
1/1-~y\""
C=K:="- (—7> : (40)
0% A
With this choice of C' we see that the function
v(z) := K27 (41)

satisfies (19). We conclude that

V(z) < Kz for all z > 0. (42)

Moreover, by our choice of ¢*,u* we also have that (21) holds. So the proof is complete if we can

verify that (22) holds, i.e., that

lim E*[e”*T®(Z*(Tg))"] = 0 for all z > 0. (43)

R—o0



To this end, note that by (16) we have
dZ*(t) < u*aZ*(t)dt +u* o Z* (t)dW (t) + Z* (t " )u* / ndN (dt, dn).
—1
Therefore, by well-known comparison principles we get
Z*(t) < L(t) forall t > 0

where L(t) is the geometric Lévy process given by

oo ~
dL(t) = w*aL(t)dt + u o L)W (t) + Lt )u’ / nd N (dt, dn),

-1

with initial value L(07) = Z*(07) = z.

The solution of (44) is

L(t) = zexp{(u*a — %(u*a) — gt + utoW (¢ / / n(1+ wn)N(ds, dn)}

where [lg|| = ¢(—1, 00).

In general we have that

Elexp} /TR / (1+ h(s,m) N(ds, dn)}] = Elexp{ /OTR /Th(s,mq(dn)ds}]

assuming the integrals exist). If Y > 0 is a constant we can write
g g
ylll(]. + h(S,T])) = lIl(]_ + (]_ + h(S,U)),y - ].),

and hence

Tr 00
Elexp{ /0 / v In(1+ (s, ) Nds,dn)}) =

Tr 00
Elexp| / / (1 BT = Daldn)ds)]

Using this in (45) we get

E[L(Tr)"] = 2" Elexp{y(u’a - %(U*U)2 —ulql)Tr

oo

470V T+ [ (L) = g(dn) - Te))

-1

9

(44)

(45)



Hence

Ele TR (Z*(Tg))"] < 2"Elexp{(—6 +yu*a - %(u*a)%(l =) —yulal

+ [ ) - Dalan) Tl
—1

which tends to 0 as R goes to 0o, because by (26) the coefficient of T in the exponent is negative. [

We compare our solution V' (z), ¢*, u* in the jump diffusion case to the Merton solution Vj(2), ¢, ug

in the pure diffusion case (N = 0):

Corollary 2.4. Assume that the conditions of Theorem 2.3 hold and let V (z),c*,u* be as given
there. Let Vy(z),ch,uy be the corresponding solution when there are no jumps, i.e., when N = 0.
Then we have

V(z) <W(z) Vz2>0
c*(z) > c¢y(z) Vz>0

and

u* < ug.
Proof. Let h(u) be as in (23) and let ho(u) be the corresponding function with ¢ =0, i.e.,

2

hofu) = (o= Py — 50%*y(1 — ).

Then

h(0) = ho(0) = 0 and

W(w) =fa—r = tult =)~ [ T[l (1 ) ndg(n)

and therefore we see that

W (u) < hg(u) for all u € [0,1].

We conclude that

10



the Merton line

\j
8

Figure 1: Optimal policy in the jump diffusion and the pure diffusion market

and

h(u”) < ho(up).

Therefore, if X is as in (24) and )\ is the corresponding constant for ¢ = 0, i.e.,

Ao =0 —ry — ho(ug)

then

Therefore, by (27),

Hence by (28)

and by (29)

O

Remark 2.5. The results of Corollary 2.4 show that the effect of introducing jumps in the model

is the same as the effect of increasing the volatility: the value function decreases, the optimal

11



consumption rate (as a function of the current wealth) increases and the optimal fraction of the
wealth to be kept in the risky investment decreases.

The first two statements may appear contradictory, because the value funtion is by definition
the expected value of the discounted utility of the optimal consumption rate. However, since
the consumption rates ¢*(z) and ¢j(z) are given in feedback form (Markovian controls) the actual
consumption rates are given by

c¢*(Z*(1)) and c5(Z5 (1))

respectively, where Zj(t) is the optimal wealth process when ¢ = 0. And since we may have
Z*(t) < Z§(t) we may well have

" (Z7(t)) < cp(Z5(1))

even though

c*(z) > c¢p(z) for all z > 0.

The problem with transaction costs is treated in a forthcoming paper [FOS].
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