
Extensions of an Integrated Approach for
Multi-Resource Shop Scheduling�

St�ephane Dauz�ere-P�er�esay Claire Pavageaub

a Department of Finance and Management Science

Norwegian School of Economics and Business Administration

Helleveien 30

N-5035 Bergen-Sandviken, Norway

b Department of Automatic Control and Production Engineering

Ecole des Mines de Nantes

La Chantrerie, BP 20722

F-44307 Nantes Cedex 03, France

E-mail: fStephane.Dauzere-Peres, Claire.Pavageaug@emn.fr

June 30, 1999

Abstract

In a previous work, we proposed an integrated approach for a rather general shop

scheduling problem, with multi-resource, exibility and non-linear routings. In this

paper, we want to overcome some of the limitations of the approach. In particular,

an operation that needs several resources might not need all the resources during its

entire processing time. Our �rst extension allows a resource to be released before

the end of the operation. The second extension considers the fact that, for a given

operation, one might have to prevent a set of incompatible resources to be chosen.

1 Introduction

This paper considers a rather general shop scheduling problem in which, as in many
practical applications, an operation may need several resources to be processed, and each
of these resources may be chosen in a given set. Moreover, the routing of the products
in the shop-oor is not necessarily linear, i.e., an operation can have more than one
predecessor and/or more than one successor on the routing. This is for instance the
case in assembly or disassembly systems. To keep the problem general, we use the word
resource instead of machine. A resource can perform only one operation at a time, and

�This research was partially supported by the CRITT Pays de la Loire Productique
yon leave from IRCyN/Ecole des Mines de Nantes

1

preemption is not allowed, i.e., once started, an operation cannot be interrupted. The
duration of an operation depends on the resources on which it is assigned, i.e., resource-
dependent processing times. The processing times are assumed to be integer and known
in advance, and the set-up times between operations are either negligible or included in
the processing times (sequence independent).

We are thus considering three types of extension to the standard scheduling problem:
multi-resource, resource exibility, and nonlinear routing.

2 Multi-resource: an operation may need several resources at the same time to be
performed.

2 Resource exibility: a resource may be selected in a given set.

2 Nonlinear routing: in a standard job-shop, the routing is linear. Here, the number
of predecessors and the number of successors of an operation in the routing may be
larger than one.

The problem is thus to both determine an assignment and a sequence of the operations
on the resources that minimize some criterion.

Being an extension of the standard job-shop scheduling problem, this problem is clearly
NP-hard. Few results are available in the literature, even for the simpler job-shop schedul-
ing problem with resource exibility, but with only one resource per operation and linear
routings (Brucker and Schlie [3] were among the �rst to address this problem). The �rst
papers mainly focus on the scheduling part ([3], [2], [7], [8]).

In all of the approaches mentioned above, the assignment of operations to resources and
the sequencing of operations on the resources are treated separately. Either directly, i.e.,
assignment and sequencing are considered independently, or indirectly in a local search
algorithm where reassignment and resequencing are two di�erent types of transitions. The
method in [4] is based on a new way of moving an operation so that reassignment and
resequencing are not di�erentiated. In [5], the methodology was extended to the more
general case where multi-resource and nonlinear routings are allowed.

Note that the scheduling problem considered in this paper, like any scheduling prob-
lem, can be seen as a special case of the Resource Constrained Project Scheduling Problem
(RCPSP) ([6]) where multiple modes are allowed (see [1] for instance). A mode corre-
sponds to a subset of resources on which an operation can be processed. The notion of
mode implies that subsets of resources will not be allowed for the operation. In [5], this
was not explicitely handled, since it was supposed that every combination of some sets
of resources was possible. In this paper, we extend the approach to deal with forbidden
combinations of ressources. It should be noted that general solving procedures for the
RCPSP are usually not well suited to shop scheduling problems.

To tackle even more realistic real-worl problems, we need to relax two important
assumptions behind the approach proposed in [5]. The �rst one is that an operation starts
only when all its assigned necessary resources are available, and releases these resources
simultaneously. The processing time of an operation corresponds to the maximum of the
processing times on all the assigned resources. This is clearly now always the case in
practice, where a resource (often human) might be released and start another operation
before the operation is completed. Not considering this case might lead to a poor schedule
where bottleneck resources are under-utilized. The second assumption, already discussed,

2

is that any possible grouping of necessary ressources, each one taken in a given set, is
possible. Again, this might not be allowed or wanted in a practice, because some resources
are too far from one another or any other qualitative reasons that the workshop manager
might have.

Our problem is described, and the notation is introduced in Section 2. The integrated
approach introduced in [4] and [5] is recalled in Section 3. Then, Section 4 shows how this
approach can be extended to tackle di�erent processing times on the necessary resources.
Forbidden sets of necessary resources are dealt with in Section 5. Finally, areas of future
research are discussed in Section 6.

2 Description of the problem

A set of operations (O) has to be processed on a set of resourcesR. As nonlinear routings
are permitted, PR(i) and FR(i) respectively denote the set of predecessors and the set
of successors of operation i on the routing. To be processed, an operation i 2 O requires
m(i) resources simultaneously and Rk

i is the resource subset in which the kth resource
(1 � k � m(i)) must be selected. The Rk

i subsets are not necessarily disjoint, i.e., a
resource may belong to several subsets.

Solving the assignment problem means determining a mapping a: O�N ! R, where
a(i; k) is the kth resource assigned to i, a(i; k) 2 Rk

i . Moreover we noteMa
i the subset of

resources operation i is assigned to:

Ma
i = fm 2 R j 8k � m(i); a(i; k) = mg

As the Rk
i subsets are not necessarily disjoint, one must take care of not assigning a

resource twice to the same operation, i.e., 8 i; k; k0 (k 6= k0), a(i; k) 6= a(i; k0).
Together with an assignment a, the sequence of operations on each resource has also

to be determined. We note ps(i; k) the predecessor of i on its kth resource and fs(i; k)
its successor. Then, for a given assignment a, let PS(i) = [ps(i; 1); :::; ps(i;m(i))] be
the index set of predecessors of operation i in a feasible sequence, and let FS(i) =
[fs(i; 1); :::; fs(i;m(i))] be the index set of its successors. All the operations do not have
to be distinct in PS(i) or in FS(i). Finally, P(i) = PR(i) [PS(i) denotes the set of all
predecessors of i, and F(i) = FR(i) [FS(i) denotes the set of all its successors.

A large class of shop scheduling problems can be handled using this modeling. In
[5], the possibility of having di�erents modes, like in the Resource Constrained Project
Scheduling Problem (RCPSP) (see [1] for instance), is not considered. The advantages of
our modeling is that our subsets of resources are very natural in shop scheduling, since
they are often associated to actual pools of identical resources, and hence are de�ned for
more than one operation. Moreover, less data are required if the cardinals of the subsets
are large since, in the usual RCPSP modeling, a mode (i.e., a subset of resources) has
to be created for every possible combination. However, the drawback is that a priori all
groupings of ressources (one taken in each set) are allowed, and this is clearly not always
the case in industry where some assignment may be forbidden. For instance, it might be
preferable not to assign an operator on some of the machines for geographical reasons,
or to associate two given operators on a task for personal reasons. In this paper, we will
show how to extend the approach to deal with forbidden sets of necessary resources.

3

In the job-shop scheduling problem, the processing time of an operation is �xed. In
the multiprocessor job-shop ([4]), the duration of an operation i depends on the resource
l on which it is assigned. In the general case considered here, this duration also depends
on the subset k, and is noted pli;k where l 2 Rk

i . Hence, for a given assignment a,

p
a(i;k)
i;k is the duration of operation i on its kth resource. In [5], pi was de�ned as the

total processing time and such that pi = max
k2[1;m(i)]

p
a(i;k)
i;k . This supposed that all assigned

ressources have to be ready before starting an operation, and that they will all be released
simultaneously. Again, in actual workshops, the operation might be started on some
resources before others are available and, more often, might be released as soon as the
operation is completed on that resource. Again, we will extend the approach of [5] to
manage these conditions. To do so, let us de�ne start(i; k) which is equal to 1 if operation
i needs to start on its kth necessary resource when all other necessary resources are ready,
and 0 otherwise. Similarly, let end(i; k) be equal to 1 if operation i is only released on
its kth necessary resource when all other necessary resources are already released, and 0
otherwise. We are making the assumption that, for any given operation i and any of its
necessary resource k, either start(i; k) = 1 or end(i; k) = 1. This is not restrictive since if
an operation can start and end on one of its necessary resource independently of all the
other resources, then it can and will better be modeled as another operation.

3 The integrated approach

In [5], the classical disjunctive graph representationG = (N;A;E) was extended to handle
resource exibility, multi-resource and nonlinear routings. N is the set of nodes in the
graph (all the operations plus dummy start and �nish operations 0 and ?). A is the set of
conjunctive arcs between every two consecutive operations in a routing. El is the set of
disjunctive arcs between pairs of operations that may be processed on l, and E =

S
l El.

Note that two operations may be assigned to common resources, and there will be as
many disjunctive arcs between these operations as the number of common resources.

It is shown in [5] how to characterize a complete selection S which is (roughly) deter-
mined by choosing an assignment for each operation and a direction for each associated
disjunctive arc, i.e., by replacing a disjunctive arc with a conjunctive arc. Let Sl be the
subset of S associated to resource l. A sequence of operations on the resources is feasi-
ble if the complete selection induces an acyclic (with no cycle) directed graph (N;A; S).
Every operation is then linked by a conjunctive arc to all the operations processed on the
same resource. In a complete acyclic selection S, and because the transitivity property is
satis�ed ((i; j), (j; k) 2 Sr) (i; k) 2 Sr), all the redundant arcs can be deleted to obtain
an acyclic graph where, in S, m(i) (and only m(i)) arcs will end up at i, and m(i) (and
only m(i)) arcs will start from i. More details can be found in [5].

An important but somehow restrictive assumption made in [5] is that the resources
are released simultaneously when the operation is �nished, i.e., as shown before, the
processing time of an operation is the maximum of the processing times on the selected
resources.

Example 1 Let us consider for instance an operation i that requires a machine and a
human operator to be performed. The machine has to be Machine M1, but the operator
has to be chosen between two Operators O1 and O2. The processing of operation i requires

4

p1 time units on M1, and p2 time units on either O1 or O2. Hence, pi = max(p1; p2).
This is illustrated on Figure 1.

i

s

q

k

h

t

r

l

j

M
AX

(p
1,

p2
)

MAX(p1,p2)

MAX(p1,p2)

M1

O2

O1

Sequence of operations
in the routing

Sequence of operations
on Machine M1

Sequence of operations
on Operator O1

Sequence of operations
on Operator O2

Figure 1: Example of exibility and multi-resource

Operations h and j are the predecessor and successor of i in its routing, respectively.
Operation i is sequenced between operations k and l on Machine M1, and between op-
erations q and r on the selected Operator O1. Hence, operation i is not scheduled on
Operator O2.

When a neighborhood is explored, a move consists in selecting an operation i on a
resource l and inserting it between two operations s and t on a resource l0, l0 being equal
or not to l. For this move to be valid, it should not induce a cycle in the resulting graph.
In the previous example, operation i on Resource O1 is selected, and is reassigned on
Resource O2, and is sequenced between operations s and t (see Figure 1).

To verify that no cycle is created when choosing a move, the following theorem is used.

Theorem 1 [5] No cycle is created by moving operation i on its kth resource between s

(s 62 F(i)� ffs(i; k)g) and t (t 62 P(i)� fps(i; k)g), (s; t) 2 Sl0 and l0 2 Rk
i , if:

1. rs < min
f2F(i)�ffs(i;k)g

(rf + pf)

2. rt + pt > max
p2P(i)�fps(i;k)g

rp

Because the same idea will be used in the extensions presented in the remainder of
this paper, it is important to sketch the proof of Theorem 1. It is based on the idea that,
if a cycle is created after completing a move, then, in the graph before the move, there

5

was a path either between an operation after i (except fs(i; k)) and s, or between t and
an operation after i (except ps(i; k)). The �rst situation is prevented by Conditions 1,
and the second by Conditions 2 (see details in [5]). These conditions can be checked very
quickly, and the neighborhood, although large, can be rapidly explored since moves do
not have to be performed to check their feasibility. This theorem is actually coupled with
another theorem that allows a move to be evaluated without making it.

The neighborhood structured induced by the conditions of Theorem 1, is connected,
i.e., an optimal solution can be reached from any starting solution in a �nite number
of steps (see [5]). The proof is partly based on the fact that, for the classical job-shop
scheduling problem, the well-known pairwise interchange move leads to a connected neigh-
borhood structure (see [9]). This move uses the fact that exchanging the direction of a
disjunctive arc on the critical path does not create a cycle. However, this is true only if,
when an arc is on a critical path, there is not another path parallel to this arc. To be
more precise, if the arc between operation i and j is on the critical path, then there is
not another path between i and j since, by exchanging the direction of the arc, a cycle is
created. We know that this cannot happen if all arcs leaving a node (i.e., an operation)
have the same weight (i.e., in our case, same processing time on all the resources). This
is true in our example since the processing time is max(p1; p2).

Note that Theorem 1 is still valid in a graph where all arcs leaving a given node
do not always have the same weights. However, in this case, we cannot prove that our
neighborhood structure is connected any more.

4 Di�erentiating processing times on necessary re-

sources

Suppose now that the processing times on the various necessary resources have to be dif-
ferent. For instance, the operator needs only several minutes at the start of the operation
to check if nothing is wrong on the machine, and the remainder of the operation can be
performed only by the machine (in our example, p2 � p1). The operator is free as soon
as his work is completed, and can perform other operations. Taking this case into account
might be crucial if the operator is the bottleneck resource. This could be modeled by al-
lowing di�erent weights on the arcs leaving the node of the operation. The weight of the
arc, between the node and the next node in the sequence of the operator, will be equal to
the processing time of the operator. The resulting graph ensures that the next operation
of the operator starts after the start time of the operation plus the processing time of the
operator. However, as discussed in Section 3, connectivity of our neighborhood structure
is not guaranteed any more.

Hence, we would like to model the fact that a resource might be released before the
end of the operation, while ensuring that all arcs leaving a node have the same weight.
This is done by duplicating the nodes of the graph associated to operations that need
several resources, so that a node now is coupled with only one necessary resource of
one operation. This new representation also allows di�erent start times on each of the
necessary resources. An operation i is related to m(i) nodes denoted i1; :::; im(i). Re-
call that start(i; k) is equal to 1 if operation i starts on its kth necessary resource when
all other necessary resources are ready, and 0 otherwise, and that end(i; k) is equal to
1 if operation i is not released on its kth necessary resource before all other necessary

6

resources are released, and 0 otherwise. Because start times of an operation might
di�er between necessary resources, ri;k will denote the start time of operation i on its
kth necessary resource. Moreover, let us de�ne pk(i; k) (resp. fk(i; k)) the number of
the necessary resource of ps(i; k) (resp. fs(i; k)) which is before (resp. after) the kth

necessary resource of i. The de�nitions of PS(i) and FS(i) are updated accordingly.
PS(i) (resp. FS(i)) now contains the pair (ps(i; k); pk(i; k)) (resp. (fs(i; k); fk(i; k)))
for every k 2 [1;m(i)], i.e., PS(i) = f(ps(i; 1); pk(i; 1)); :::; (ps(i;m(i)); pk(i;m(i)))g and
FS(i) = f(fs(i; 1); fk(i; 1)); :::; (fs(i;m(i)); fk(i;m(i)))g. PS(i; k) and FS(i; k) corre-
spond to the pair (ps(i; k); pk(i; k)) and (fs(i; k); fk(i; k)) respectively.

For every two successive operations i and j in the routing (i 2 PR(j) and j 2 FR(i)),
there is an arc from every node associated to i (i1; :::; im(i)) to every node associated to j
(j1; :::; jm(j)). Let us now consider two consecutive operations i and j in the sequence of a
resource l, the k1th necessary resource of i (k1 2 [1;m(i)]) and the k2th necessary resource
of j (k2 2 [1;m(j)]), i.e., (i; k1) 2 PS(j) and (j; k2) 2 FS(i). There is an arc between
ik1 and jk2, but also between ik1 and every node jk of operation j (k 6= k2) such that
start(j; k) = 1, since it means that j can only start on its kth necessary resource when all
necessary resources are available. Moreover, if end(i; k1) = 1, there is an arc from every
node of i (i1; :::; im(i)) to node jk2, but also to every node jk of operation j (k 6= k2) such
that start(j; k) = 1, since the k1th necessary resource of i is only released when all other
necessary resources of i are released.

More formally, an arc will be added from node ik1 to node jk2 if

� (1) j 2 FR(i) (or equivalently i 2 PR(j))

� or (2) 9(k3; k4) 2 [1;m(i)]� [1;m(j)] such that (j; k4) 2 FS(i) and (i; k3) 2 PS(j)
(i.e., (j; k4) = FS(i; k3) and (i; k3) = PS(j; k4)), and

[(k1 = k3 and k2 = k4)

or (k1 6= k3 and k2 = k4 and end(i; k1) = 1)

or (k1 = k3 and k2 6= k4 and start(j; k2) = 1)

or (k1 6= k3 and k2 6= k4, end(i; k1) = 1 and start(j; k2) = 1)]

i1

i2

j1

j2 Sequence of operations
on a resource

start(j,2)=1

end(i,1)=1

end(i,1)
=1 and start(j,

2)=1

Figure 2: Example of new modeling between two operations

7

Figure 2 illustrates the conditions for creating arcs between nodes of two operations i
and j with two necessary resources each. In this �gure, we suppose that, in the sequence
of a resource, operation i on its 1st necessary resource is sequenced before operation j on
its 2nd necessary resource (node i1 before node j2).

Note that there might have several arcs between two nodes.

Remark 1 Recall that we suppose (and it was not restrictive) that, for any given oper-
ation i and any of its necessary resource k, either start(i; k) = 1 or end(i; k) = 1. This
assumption implies that there is always a path between the node associated to operation
ps(i; k) on its necessary resource pk(i; k) and the node associated to operation fs(i; k0)
on its necessary resource fk(i; k0), 8(k; k0) 2 [1;m(i)] � [1;m(i)]. If start(i; k0) = 1,
then there is an arc from node ps(i; k)pk(i;k) to node ik0, which gives the path with the arc
from ik0 to fs(i; k0)fk(i;k0). If end(i; k0) = 1, then there is an arc from node ik to node
fs(i; k0)fk(i;k0), which gives the path with the arc from ps(i; k)p(i;k) to ik.

Let us illustrate how start and end times are di�erentiated using the new modeling.

Example 2 Using again Example 1, two nodes will be associated to operation i: Node i1
for the �rst necessary resource, and Node i2 for the second necessary resource. Node i1 is
assigned to Machine M1, and Node i2 to Operator O1 (see Figure 3).

i1

q

k

h

r

l

j

M1

O1

Sequence of operations
in the routing

Sequence of operations
on Machine M1

Sequence of operations
on Operator O1

i2

p1

p2

p1

p2

p2

Figure 3: Di�erentiating end times on Ressources M1 and O1

Arcs (k; i1) and (k; i2) ensure that operation i will not start before Machine M1 is
available, and Arcs (q; i1) and (q; i2) that operation i will not start before Operator O1 is
available. Arcs (i1; l) and (i2; l) ensure that no operation starts on Machine M1 before
operation i is completed, and Arc (i2; r) that Operator O1 does not process another oper-
ation before completing operation i. This new modeling, by deleting Arc (i1; r), does not

8

force Operator O1 to be busy on operation i as long as Machine M1. Moreover, one can
check that all arcs leaving a node have the same weight. Note that adding Arc (i1; r) will
lead to a model that is equivalent to the previous one in Figure 1.

Let us show how we might allow for di�erent start times on the necessary resources.
For instance, suppose that, for operation i, Operator O1 can set-up the job before Machine
M1 is available. In this case, operation i still requires both resources, but operator O1 can
start operation i before Machine M1 becomes available (see Figure 4).

i1

q

k

h

r

l

j

M1

O1

Sequence of operations
in the routing

Sequence of operations
on Machine M1

Sequence of operations
on Operator O1

i2

p1

p2

p1

p2

p2

p1

Figure 4: Di�erentiating start times on Ressources M1 and O1

Using the new modeling, it is possible, at a price of an an increase in the number
of nodes and arcs, to di�erentiate the processing times of an opeartion on its various
necessary resources, and to better schedule the resources.

The move in the neighborhood structure needs to be updated accordingly. Moving
operation i on its kth necessary ressource from resource l to resource l0 (l0 being equal to
n or not) between operations s (k1th necessary resource) and t (k2th necessary resource)
is performed by updating PR and FR, and removing and adding arcs such that:

� ps(i; k) = s, pk(i; k) = k1, fs(s; k1) = i, and fk(s; k1) = k.

� fs(i; k) = t, fk(i; k) = k2, ps(t; k2) = i, and pk(t; k2) = k.

� ps(fs(i; k); fk(i; k)) = ps(i; k) and pk(fs(i; k); fk(i; k)) = pk(i; k).

� fs(ps(i; k); pk(i; k)) = fs(i; k) and fk(ps(i; k); pk(i; k)) = fk(i; k).

The �rst two items correspond to inserting operation i in the sequence of resource l0, and
the last two items to deleting operation i from the sequence of resource l.

9

i1

i2

j1

j2 Sequence of operations
on operator O1

s1

s2

t1

t2

Sequence of operations
on operator O2

Figure 5: Before performing a move

Figures 5 and 6 illustrate how a move is performed when operation i is reassigned to
operator O2. We suppose that operations s and t also have two necessary resources, that,
before the move, node s1 is sequenced just before node t1 in the sequence of operator O2,
and that end(s; 1) = end(i; 1) = start(t; 1) = 1.

i1

i2

j1

j2

s1

s2

t1

t2

Sequence of operations
on operator O2

Figure 6: After performing a move

Theorem 1 needs to be changed accordingly.

Theorem 2 No cycle is created by moving operation i on its kth resource between the k1th

necessary resource of s (s 62 FR(i) and (s; k1) 62 FS(i) � f(fs(i; k); fk(i; k))g) and the
k2th necessary resource of t (t 62 PR(i) and t 62 PS(i)� f(ps(i; k); pk(i; k))g), (s; t) 2 Sl0

and l0 2 Rk
i , if:

1. rs;k0 < min
f2FR(i)

min
k"2[1;m(f)]

(rf;k" + p
a(f;k")
f;k"), 8k0 2 [1;m(s)] such that k0 = k1 or

end(s; k1) = 1

10

2. rt;k0 + p
a(t;k0)
t;k0 > max

p2PR(i)
max

k"2[1;m(p)]
rp;k", 8k0 2 [1;m(t)] such that k0 = k2 or

start(t; k0) = 1

3. rs;k0 < min
(f;kf)2FS(i)�f(fs(i;k);fk(i;k)g

min
k"2[1;m(f)];

k"=kf or start(f;k")=1

(rf;k" + p
a(f;k")
f;k"), 8k0 2 [1;m(s)]

such that k0 = k1 or end(s; k1) = 1

4. rt;k0+p
a(t;k0)
t;k0 > max

(p;kp)2PS(i)�f(ps(i;k);pk(i;k))g
max

k"2[1;m(p)];
k"=kp or end(p;kp)=1

rp;k", 8k0 2 [1;m(t)] such

that k0 = k2 or start(t; k0) = 1

Proof: The proof uses the same principle that the one described in Section 3 for Theorem
1, i.e., prevent cycling by ensuring that, before the move, there was not a path between
an operation moved after s and s and between t and an operation moved before t. The
di�erence is that every operation now might be associated to several nodes, and that the
existence of arcs between nodes depends also on the values of the parameters start(i; k)
and end(i; k).
Hence, if a path is created between two nodes sk0 and fk00 in the graph obtained by moving
operation i, then a cycle can only be created if there was a path, on the graph before the
move, between fk00 and sk0 . This is only true if the length of the longest path from the
dummy start node 0 to node sk0 is larger than the one from 0 to fk00 plus its processing
time, or equivalently the release date of sk0 is larger than the one of fk00 plus its processing

time, i.e., rs;k0 >= rf;k00 + p
a(f;k00)
f;k00 . The opposite condition (rs;k0 < rf;k00 + p

a(f;k00)
f;k00) ensures

that this is not the case.
The problem is now to apply the previous condition only when an actual path is created
between nodes sk0 and fk00. We know that, by de�nition, there is an arc from every node
of operation i to every node of operations following i in the routing (2 FR(i)). Hence, a
path is created between every node of operation s linked to a node of operation i. This
is the case for every node sk0 such that k0 = k1 or if end(s; k1) = 1. In this case, the
cycle is prevented through Conditions 1. A similar analysis with operation t and nodes
of operations preceding i in the routing (2 PR(i)) leads to Conditions 2. The di�erence
is that a node of operation i is linked to node tk0 if k0 = k2 or start(t; k0) = 1.
The last two conditions use Remark 1. We know that there is a path between node sk0

and node fk00 if there is an arc from node sk0 to a node of operation i (same conditions
than for Conditions 1 and 2), and from a node of operation i to node fk00 . The latter is
true if 9kf , (f; kf) 2 FS(i)� f(fs(i; k); fk(i; k)g, such that k00 = kf or start(f; k00) = 1.
Cycles are then prevented using Conditions 3. Again, the same kind of analysis can be
performed with nodes tk0 and pk00 to derive Conditions 4. The di�erence in this case is that
there is an arc from node pk00 to a node of i if 9kp, (p; kp) 2 PS(i) � fps(i; k); pk(i; k)g
such that k00 = kp or if end(p; kp) = 1. 2

5 Forbidden sets of necessary resources

In some practical settings, it may very well happen that, although some exibility is given
on the choice of the necessary resources to select for a given operation, some combinations
are not allowed. For instance, if you have two workshops that are able to perform the

11

same type of operations, there is no possibility of assigning an operator of the �rst work-
shop with a machine in the second workshop and vice-versa, although several operators
and/or resources are available in each workshop, i.e., there is exibility in each workshop
(otherwise, each workshop could be considered as a single resource). In the move used
in the previous approach, an operation is resequenced or reassigned on only one of its
necessary resources at a time. Hence, it is clear that, if an operation has been assigned on
a machine and an operator in a workshop, the neighborhood structure will not allow the
operation to be assigned to resources in the other workshop. Again, the neighborhood
structure loses its connectivity property.

The solution we propose is to move the operation on all its necessary resources at a
time. In order to do that, and because we would still want to be able to check feasibility
without actually making a move, we need to extend the conditions of Theorem 1. This is
done in the following theorem.

Theorem 3 No cycle is created by moving operation i on all its necessary resources
between sk (sk 62 FR(i)) and tk (tk 62 PR(i)), (sk; tk) 2 Sl0 and l0 2 Rk

i , k = 1; :::;m(i),
if:

1. rsk < min
f2FR(i)

(rf + pf) 8k 2 [1;m(i)]

2. rtk + ptk > max
p2PR(i)

rp 8k 2 [1;m(i)]

3. rsk < rtk0 + ptk0 8(k; k0) 2 [1;m(i)]� [1;m(i)]; k 6= k0

Proof: The proof follows the ones of Theorems 1 or 2, except that all operations in the
sets PS(i) and FS(i) are changed. Hence, the path that might create a cycle has to
be checked for the new operations sk and tk, and not for the ones in PS(i) and FS(i).
Conditions 1 and 2 correspond to Conditions 1 and 2 in Theorem 1 restricted to opera-
tions in PR(i) and FR(i), and for all the new operations sk and tk. Conditions 1 and
2 in Theorem 1 for sets PS(i) and FS(i) are replaced by Conditions 3 for all pairs of
operations (sk,tk0, k 6= k0). 2

The neighborhood for a given operation i induced by the conditions of Theorem 3
includes the one where i is only moved on one resource. This is because, as shown in the
following proposition, when the operation is moved on only one of its necessary resources,
the conditions of Theorem 3 are equivalent to the conditions of Theorem 1.

Proposition 1 When operation i is only resequenced or reassigned on one of its necessary
resources, conditions of Theorem 3 reduce to the conditions of Theorem 1.

Proof: Suppose that operation i is moved on only one of its necessary resources, say
k1 (k1 2 [1;m(i)]). Hence, sk and tk, except for k = k1, are the same predecessors
and successors of i on its kth resource, i.e., sk 2 PS(i) and tk 2 FS(i), k 2 [1;m(i)],
k 6= k1. This implies that, for k 6= k1, Conditions 1 and 2 are satis�ed (since sk pre-
cedes i which in turn precedes f , 8f 2 FR(i), and tk follows i which in turn follows p,
8p 2 PR(i)). For the same reason, Condition 3 is also satis�ed for k 6= k1 and k0 6= k1.
Combining all Conditions 3 for k = k1 leads to rsk1 < min

tk2FS(i)�ffs(i;k1)g
(rtk + ptk)

12

which, together with Condition 1, is equivalent to Condition 1 of Theorem 1 (recall that
F(i) = FR(i) [FS(i)). Similarly, combining all Conditions 3 for k0 = k1 leads to
rtk1 + ptk1 > max

sk2PS(i)�fps(i;k1)g
rsk which, together with Condition 2, is equivalent to Con-

dition 2 of Theorem 1 (P(i) = PR(i) [PS(i)). 2

Because of Proposition 1, we know that any solution that can be attained with the
neighborhood de�ned by the conditions of Theorem 1 can also be attained with the
neighborhood using the conditions of Theorem 3. However, the opposite is not true,
since the conditions on moving an operation i on all its necessary resources m(i) are less
restrictive than to performm(i) di�erent moves. It is then possible to �nd moves that will
more quickly lead to a large decrease of the makespan. However, this is clearly done at
the expense of a larger neighborhood. Hence, because the neighborhood is considerably
enlarged, we propose to only perform this type of move only when necessary, i.e., only
when an operation has forbidden sets of necessary resources.

6 Conclusion

We extended an integrated approach for multi-resource shop scheduling to two di�erent
realistic cases. We �rst model the fact that an operation might have di�erent processing
times on its necessary resources, and might then release resources at di�erent times, by
using several nodes to represent the operation in the graph. The original move is extended
to take this change into consideration. A very interesting by-product of the new modeling
is that it also allows di�erent start times for the operation (not possible if there is only one
node per operation). In the second case, we consider that some combinations of necessary
resources might be forbidden. To avoid being stuck in poor local optima, we also extend
the original move.

The latter case was dealt with by extending the conditions of Theorem 1. Because
the move is rather di�erent (an operation is moved on several of its necessary resources
simultaneously), it might be worth �nding new conditions, for preventing a cycle in the
graph after a move, not directly related to the ones in Theorem 1.

It should also be very interesting to develop the approach for other criteria than
the makespan. Although due dates can be rather easily taken into consideration if one
wants to minimize the maximum lateness (can be transformed to an equivalent makespan
problem), criteria such as the (weighted) sum of the lateness might be harder to handle.

References

[1] Bianco, L., Dell'Olmo, P., and Speranza, M.G. \Nonpreemptive scheduling of inde-
pendent tasks with prespeci�ed processor allocations", Naval Research Logistics 41,
(1994) 959-971.

[2] Brandimarte, P., \Routing and scheduling in a exible job shop by tabu search",
Annals of Operations Research 41 (1993) 57-183.

[3] Brucker, P., and Schlie, R.,\Job-shop scheduling with multi-purpose machines",
Computing 45 (1990) 369-375.

13

[4] Dauz�ere-P�er�es, S., and Paulli, J., \An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search," Annals
of Operations Research 70 (1997) 281-306, J.C. Baltzer A. G..

[5] Dauz�ere-P�er�es S., Roux W., and Lasserre J.B., \Multi-Resource Shop Scheduling
with Resource Flexibility," European Journal of Operational Research 107 (1998)
289-305.

[6] Herroelen, W., and Demeulemeester, E., \Recent advances in branch-and-bound pro-
cedures for resource-constraint project scheduling problems", in Scheduling theory
and its applications, Chr�etienne, P. et al. (eds.) (1995) 259-274, John Wiley & Sons,
Chichester.

[7] Hurink, J., Jurisch, B., and Thole, M., \Tabu search fo the job-shop scheduling
problem with multi-purpose machines", OR Spektrum 15 (1994) 205-215.

[8] Paulli, J.,\A hierarchical approach for the FMS scheduling problem", European Jour-
nal of Operational Research 86 (1995) 32-42.

[9] van Laarhoven, P.M., Aarts, E.H.L., and Lenstra, J.K., \Job shop scheduling by
simulated annealing", Operations Research 40 (1992) 113-125.

14

