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Abstract 

A non-linear dynamic model in two state variables, two controls and three cost terms is presented 

for the purpose of finding the optimal combination of exploitation and capital investment in optimal 

renewable resource management. Non-malleability of capital is, in other words, incorporated in the 

model through an asymmetric convex cost-function of investment, and investments can be both 

positive and negative. Exploitation is controlled through the utilisation rate of available capital. A 

novel feature in this model is that there are fixed costs associated with the available capital whether 

it is utilised or not. In contrast to most of the previous literature both state variables enter the 

objective function. 

 

Keywords: irreversible investments, non-malleable capital, renewable resources. 
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Introduction 

Many renewable resources are characterized by overexploitation combined with excessive 

exploitation capacity. As the existing capacity has a tendency to put additional pressure on the 

resource, it is more and more agreed upon that models for optimal management should include 

capital dynamics as well as resource dynamics. By capital is here meant physical capital that can be 

used for the purpose of exploitation of the resource.  

 

Smith (1968) was the first to consider capital accumulation in resource economics within a model 

with two capital stocks, biological and physical. The analysis of irreversible investments in physical 

capital, however, was initiated by the pioneering work by Clark, Clarke and Munro (1979). They 

developed a model to analyse the effects of irreversibility of capital investments upon optimal 

exploitation policies for renewable resource stocks. This is a deterministic linear model with bang-

bang policies, and the main conclusion is that whereas the long-run optimal steady state is 

unaffected by the assumption about irreversibility the short-term optimal policies may depend 

significantly upon this assumption. McKelvey (1985) studied the same problem within an open 

access regime and found the results of Clark, Clarke and Munro to hold there as well. Charles 

(1983) and Charles and Munro (1985) perform stochastic analyses of the same problem and find 

that the effects of uncertainty can go either way with respect to investment. Boyce (1995) was the 

first to consider non-linearities in the objective function. He presents a model with a general non-

linear utility of harvest and cost of investment functions. Neither of these functions, however, 

includes the resource stock, implying that all cases where the resource stock significantly affects the 

operating costs are ignored.  
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In this article we extend these ideas by presenting a deterministic non-linear dynamic model in two 

state variables, two controls and three cost terms. There is a cost of investment function that mimics 

the second-hand market for capital. That is, instead of imposing non-negativity constraints on 

investment to account for irreversibility, investments can take any real value but the unit price is 

higher when capital is bought (investment) than when it is sold (disinvestment). Non-malleability of 

capital is, in other words, incorporated in the model through an asymmetric convex cost-function of 

investment. Exploitation is controlled through the utilisation rate of available capital. In addition, a 

novel feature in this model is that there are fixed costs associated with the available capital whether 

it is utilised or not. Typically such costs are insurance, interest on capital, etc. Further, in contrast to 

most of the previous literature both state variables enter the objective function. 

 

The combination of non-linearities in capital investments and fixed costs associated with capital 

makes this model unique and fairly realistic, which makes this a valuable extension of previous 

work on investigation of irreversible investments in renewable resource economics. In the 

following, the model is presented and investigated analytically.  

 

The Model 

The model is a dynamic optimization model with two state variables and two control variables that 

are strongly connected to each other. It is assumed that the objective is to maximise net present 

revenue. The fleet is characterized by total physical capital k, while the renewable resource is 

characterized by total biomass, x. The instrument used to control the capital is investment, I, and the 

instrument used to control the exploitation of the natural resource is the capital utilisation rate, 

]1,0[∈ϕ . The situation with no exploitation is represented by 0=φ , and 1=φ  represents the 
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situation with exploitation at full capacity utilisation. When 10 << φ  there is exploitation at 

reduced capacity utilisation. The harvest function is defined as 

 

kqxh φ=     (1) 

 

where q is an exogenous coefficient. The net revenue function has the form: 

 

( , , , ) ( , ) ( ) ( ),x k I x h C I K kϕ πΠ = − −   (2) 

 

where ),( hxπ  is the net revenue associated directly with the exploitation activity, x is the stock 

biomass and h is the harvest rate. The term )(IC  comprises costs (or revenues) associated with 

investment (or disinvestment) I.  In other words: 

 

0, 0
( ) 0, 0

0, 0

I

C I I

I

> >�
�= =�
�< <�

 

 

The fixed costs associated with the total level of available capital, k, whether it is utilised or not, are 

denoted )(kK . The net revenue function is assumed to be a twice continuously differentiable 

function, and it is further assumed that1 

 

0'',0''

,0,0,0

,0',0',0,0

≥>
≥≤<

>>≥≥

KC

KC

xhxxhh

xh

πππ
ππ

  (3) 

                                                
1 Functional dependence is depressed for readability when it does not cause any confusion. 
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where subscripts denote partial derivatives. The convexity of the investment cost function, C, 

accounts for the non-malleability of investment. There is an asymmetric relationship between the 

buying price and the selling price of capital due to the assumption 0'' >C  on ),( ∞−∞∈I . When 

0>I  we are buying capital, and the marginal price of capital, 'C , is higher then the marginal price 

we receive when 0<I  and we are selling and equivalent amount of capital. In other words, the 

marginal price of capital is continuously increasing in investment whether it is positive or negative. 

The degree of malleability in this model can be controlled through the convexity of the investment 

cost function. By adjusting C we can have anything from almost completely malleable capital to 

completely non-malleable capital. As investment/disinvestment can take any value on the real axis, 

optimality in this control variable is an inner optimality.  

 

The variables x and k are state variables, while I and φ are controls. The state equations for stock 

and capital are assumed to have the simple forms: 

 

hxfx −= )(
.

   (4) 

bkIk −=�    (5) 

 

where )(xf  is the biological growth function and b is the depreciation factor for capital. 

 

The optimization problem for the managing authority is given as follows: 

 

( )
,

0

max ( ), ( ), ( ), ( ) , ( ) [0,1], ( )t

I
e k t x t I t t dt t I t Rδ

φ
φ φ

∞
− Π ∈ ∈�  (6) 
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subject to the dynamic constraints (4) and (5) and subject to 

 

.0,),0,0(),(),(lim ** ≥≠=
∞→

xkxkxk
t

 

 

The latter states that the management regime is obliged to establish a long term sustainable 

equilibrium. The current value Hamiltonian for this problem becomes: 

 

[ ] [ ]( , , , , , ) ( , , , ) ( )H k x I k x I I bk f x qx kφ λ µ φ λ µ φ= Π + − + −  (7) 

 

For simplicity we assume that the Mangasarian sufficiency theorem for infinite horizon is satisfied2. 

Hence our formulated problem has a solution. The basic properties of the functions involved are: 

 

Basic Assumptions. 

The net profit function Π  is twice continuously differential in its arguments. In addition to the 

properties given in (3) it is assumed that current Hamiltonian is concave in ( , , , )x k Iϕ for non-

negative values of λ and µ . 

 

The first-order derivatives of the Hamiltonian are: 

 

                                                
2 See e.g. Seierstad and SydSæther, 1987. 
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The dynamic equations for the shadow prices λ and � become: 

 

( )

.)'(

,]['

.

.

x

h

fqk
x
H

qxKb
k
H

Π−−+=
∂
∂−=

−−++=
∂
∂−=

µφδδµµ

φµπλδδλλ
                                (9) 

 

As investments can take any real value, the rate I that maximizes H must be a critical point and 

hence 

0'>= Cλ .    (10) 

 

As the utilisation rate is constrained by 10 ≤≤ φ , it gives rise to three natural regions for :0>⋅ xk  

 

Region A: 0<φH  ( ,0)h xµ π>  0=φ  

Region B: 0=φH  ( , )h x hµ π=  10 << φ  

Region C: 0>φH  ( , )h x hµ π<  1=φ  

 

In the following I is defined as gross investment whereas the actual change in the capital level, 
.

k , is 

defined as net investment. Further, the terms over-/undershooting will be used to describe situations 
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where the variables have local maxima/minima. We then state some general results based on the 

outline above: 

 

Proposition 1. 

In regions where the capital is not fully utilised (A and B) gross investment will be increasing and 

there will never be overshooting with respect to capital.  

 

Proof: In A and B the dynamic equation for the shadow price of capital is given by 

.

( ) 'b Kλ δ λ= + +  from (9). From (10) we get 
. .

'' ( ) ' ' 0C I b C Kλ δ= = + + > , implying 0
.

>I  given 

the assumptions in (3). Further, inserting 0=k�  in the expression for k�� , we see that 

0
''
>==

C
Ik

λ�
��� . Hence any local extreme points with respect to )(tk  are necessarily local minima. 

 

The intuition behind this is that in the case of over-capitalization, disinvestment will take place at a 

decreasing rate and positive investment at an increasing rate. In other words, it is best to accelerate 

sale of capital and postpone investment. Due to the non-linearity of C this will not be a bang-bang 

operation. 

 

Proposition 2. 

In steady state the capital is fully utilised. 

 

Proof:  In steady state 0
..

== Ik  by definition. Hence, from Proposition 1 the steady state can not be 

in A or B; it must be in C.  
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The intuition behind this is that it will always be wasteful to have unutilised capital in steady state 

even if the fixed costs of capital 0)( =kK , as there will be a cost associated with the depreciation 

of the capital. If 0)( >kK , there will be an additional cost associated with the idle capital.  

 

Proposition 3. 

The shadow price � is positive everywhere if the condition 'f
x
f >+δ  holds in steady state. 

Further, in steady state 'f−δ  and 'f
x
f −+δ  will have the same sign.  

 

Proof: In steady state we have from (9): xfqk Π=−+ µφδ )'( . Further, as 0
.

=x  and 1=φ  we 

have qxkfh == . This yields xf
x
f Π=−+ µδ )'(  in steady state. As 0>Π x  from (3), we have 

that 0>µ  in steady state when 'f
x
f >+δ . From (9) we have 0

.

<µ  when 0=µ , hence � can not 

go from negative to positive. As � is positive in steady state, it must always be positive. The last 

part of Proposition 3 follows from 0)()'(0)'( >−+=−⇔>Π=−+
x
f

ff
x
f

hxx µππµδµδ  as 

µπ >h and 0
f
x

>  in steady state. 

 

As 0>λ  from (10) we know that both shadow prices are positive. Further, note that the condition 

'f
x
f >+δ  is always fulfilled for concave growth functions like the logistic.  The results in 

Proposition 3 turn out to be useful later.  
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In the following it is assumed that the shadow prices are positive everywhere, that is equivalent to 

0'>− fδ  in steady state which is a reasonable assumption. 

 

Proposition 4. 

The shadow price on the stock, �, decreases when 'f<δ . 

 

Proof: From (6) we have ( )
.

( ') ( ') 0x hf qk fµ δ µ π π µ φ δ µ= − − − − ⋅ < − <  as 0>µ  and 

( ) 0h qkπ µ φ− ⋅ ≥ . 

 

Letting ),( xkV  be the value function, i.e. the shadow prices are given by kVλ =  and xVµ = .  

It is  reasonable to assume that V is concave and 0>kxV . This will be used in the next propositions: 

 

Proposition 5. 

In regions where the capital is not fully utilised and the stock is decreasing, capital too must be 

decreasing. 

 

Proof: From the properties of the value function we get 
. . . . .

''k kk kxV C I V k V xλ= = ⋅ = +  and 

. . .

'' / 0kx kkk C I V x V� �= ⋅ − <� 	

 �

 given the assumptions above. 

 

It follows from Proposition 5 that if capital is not decreasing, we must either have full utilisation of 

the capital or the stock is not decreasing (or both). Therefore capital will typically be increasing 

when the stock is increasing and/or the capital is fully utilised. 
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We now introduce some useful definitions. Let S be defined as:  

 

)1,,,(),( bkxkxkS Π≡ .  

 

This is equivalent to the net revenue when the physical capital is fully utilised and fixed. With this 

definition we can state the following proposition: 

 

Proposition 6. 

When the capital is fixed and fully utilised we have hkk
k
S µδλ +=⋅

∂
∂

. 

 

Proof: When 1=φ  and bkI =  we have )()(),(),( kKbkCqkxxxkS −−= π . As 0
.

=λ  according to 

(10) when capital is fixed, we have )(')('),( kKbkCbqxqkxkqx −⋅−=+ πµδλ . The proposition 

then follows from 
k
h

qx = . 

 

The interpretation of Proposition 6 is that when the capital is fixed and fully utilised, the marginal 

return on capital shall equal the alternative return on capital plus the marginal return on the 

biological stock. The term 
k
S

∂
∂

 is the rate of return and this is multiplied by the capital level on the 

left-hand side. The alternative rate of return is �, and this is multiplied by the capital evaluated at its 

shadow price � plus the harvest (which is the return on the stock) evaluated at its shadow price �. 

Note also that Proposition 6 can be used to characterize the steady state where )(xfh = . 
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The marginal revenue from exploitation at a fixed stock level is given by ))(,( xfxhπ  which is a 

function in x only. Integrating with respect to x we get dxxfxh� ))(,(π , and this can be interpreted 

as the value of a stock evaluated by its marginal revenue (relative to an arbitrary reference 

value/point). When this is multiplied by �, we get the alternative rate of return on the stock. On the 

other hand, ))(,( xfxπ  is the actual rate of return on the stock when  it is fixed. This leads to the 

definition of a new term, B, which is the difference between the alternative rate of return and the 

actual rate of return on the stock: 

 

( ) ( , ( )) ( , ( ))hB x x f x dx x f xδ π π≡ −� . 

 

This function turns out to be extremely useful. First, note, for example, that the classical golden rule 

(See e.g. Clark, 1990)  used to determine a steady state is simply given by 0)(' =xB . This can be 

generalized to include capital and investment by defining 

 

( ) '( ) ( ) '( )f bf
qx qxMC x K b Cδ≡ + +  

 

and  

 

( ) ( ') /( )
f

x f qx
x

η δ≡ + − . 

 

The next proposition is useful for determining the biological stock in steady state: 

 

Proposition 7 (Generalized Golden Rule) 



14 

The biological stock in steady state is found by solving the ordinary (algebraic) equation: 

)()()(' xMCxxB ⋅= η . 

 

Proof: Proposition 7 follows from (10) and 0
...

=== λµx  inserted into Proposition 6.  

 

If there is more than one solution, the preferred one is the one with highest rate of return that is the 

one that maximizes ),( xkS . Proposition 7 is a generalization of the classical Golden Rule for 

renewable resources (Clark, 1990; Sandal and Steinshamn, 1997). The terms derived from � is the 

classical Golden Rule, ( ) xhf ππδ =− ' .  It is readily seen that capital costs and investment costs 

enter the equation in the same manner as positive terms. Thus larger investment costs may cause the 

same kind of changes on the equilibrium stock. In addition, capital costs may possibly have large 

influence on the optimal paths, especially in region A and B.  

 

It is well known that the resource stock is typically increasing with higher operational costs in 

models without capital dynamics. It is therefore relevant to ask if this also applies to capital and 

investment costs. This leads to the next proposition: 

 

Proposition 8. 

If and only if MCBx ⋅−≡ ηψ ')(  is increasing as a function of x at 0=ψ , the steady state standing 

stock will increase with higher capital and investment costs. 
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Proof: Let MC depend on a cost parameter �, );( αxMCMC = , such that 0>
∂
∂

MC
α

. From 

MCB ⋅= η'  in steady state it can be deducted that [ ]
α

η
α

η
∂

∂⋅=
∂
∂⋅⋅−

∂
∂ MCx

MCB
x

'  and hence 

0>
∂
∂
α
x

 if  and only if  0>
∂
∂

x
ψ

 in equilibrium.  

 

The condition that ψ  is increasing when it is zero is by far the most common case. For example, in 

case of the widely applied logistic growth function it can be shown that this is always fulfilled. The 

result that the standing stock increases with higher capital and investment costs is quite intuitive. It 

shows, however, that increased convexity in the cost of investment function calls for a more 

conservative utilisation pattern. 

 

The dynamics when the capacity is fully utilised. 

 

In this paragraph we look at the dynamics when the capital is fully utilised, that is in region C. As it 

is known that the steady state must be in region C, this is in other words an analysis of the dynamics 

in the vicinity of steady state. In order to do so, we use a reduced state-space analysis; reduced in 

the sense that it is not valid outside region C. 
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Figure 1.  

Phase-diagram when the capital is fully utilised. In the left-hand panel the k� -isocline is increasing 

whereas in the right-hand panel it is decreasing. The shaded areas depict areas from where it is 

impossible to approach the steady state. 

 

The graph defining 0
.

=x  is easily found as 
qx

xf
xk

)(
)(1 = . This is typically a downward sloping 

curve, for example, if f is concave it will be downward sloping everywhere. We assume that f is 

concave in the vicinity of steady state, and therefore concentrate on downward sloping k1. The 

graph defining 0
.

=k , on the other hand, is a bit more difficult to find explicitly, and we therefore 

look at some alternatives. Let us call this curve )(2 xk . In principle, we have two possibilities: 2k  

can be increasing or decreasing. If 2k  is increasing in x, the phase-space can be divided in eight sub 

regions as illustrated in the left panel of Figure 1 as alternative 1. As 
.

x  is negative to the right of 1k  

and positive to the left of 1k ,  and as 
.

k  is negative above 2k  and positive below 2k , it is only 

possible to reach the steady state from four of these sub regions as seen from the arrows in the 
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figure. It is not possible to reach the steady state from the shaded areas such as the area between 1k  

and *x  below *k . This is also quite intuitive. If we, for example are on *x  but below *k , the stock 

is already at its steady state level, but the capital is too small to keep the stock at this level even if 

fully utilised. Hence the stock will grow for a while, and the capital has to increase too in order to 

make the exploitation sufficiently large to drive the stock back to its steady state level. This is an 

example of overshooting with respect to the biological stock. In the first quadrant there may be 

overshooting with respect to capital. 

 

If, on the other hand, if 2k  is decreasing like 1k , there are in principle two possibilities: 2k  can 

intercept 1k  from below or from above. However, interception from above is impossible as shown 

in the proof of the next proposition. We are therefore left with only one possibility, and this is 

illustrated as alternative 2 in the right panel of Figure 1. Again the total area is divided in eight sub 

regions, but, unlike alternative 1 where  the four quadrants were divided in two areas each, now 

quadrants II and IV are divided in three sub regions each whereas quadrants I and III are not 

divided. In quadrants II and IV it is only possible to reach the steady state from the areas between 

1k  and 2k . The steady state can in this case be reached from the whole of quadrants I and III unlike 

in alternative 1. This leads to the following proposition: 

Proposition 9:  

Let f(x) be concave at steady state. Then there will exist four sectors close to steady state from 

which steady state cannot be reached and there will be sectors in all quadrants from which the 

steady state can be reached. 

 

The validity of this proposition is seen directly from the arrow-directions in Figure 1. It is therefore 

sufficient to prove that 2k  cannot intercept 1k  from above. The proof for this is given in appendix.  
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Summary and conclusions 

This article introduces a general convex cost/revenue function for investment/disinvestment of 

capital in the exploitation of renewable resources. This function mimics the second-hand market for 

capital and is therefore a more realistic representation of irreversible investments than simple non-

negativity constraints. Further, the exploitation of the resource is a function of the utilisation rate of 

the available capital and there is one cost associated with the capital that is actually used and one 

cost associated with the total available capital whether it is utilised or not. As a result of this both 

state variables enter the objective function.  

 

The result is that both the steady state and the paths leading to steady state are affected by these 

novel features. Typically both the convexity of the cost of investment and the cost of capital will 

call for more conservative utilisation of the resource. It is also shown that depending on the initial 

conditions it is possible to approach the steady state in a variety of ways, and it is also possible to 

define regions from which the steady state can not be approached directly and therefore there will 

be so-called over- or undershooting along the paths. Actually, it is possible to have over- and 

undershooting in all of the four quadrants from which the steady state can be approached. This 

contrasts some earlier findings, e.g. Boyce (1995). 

 

Appendix 

In this appendix it is shown that 2k  cannot intercept 1k  from above in Figure 1. 

00
..

=�=�= IbkIk  and further 0'
.

=�= λλ C . Equation (9) for the shadow price � now 
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yields: 
qx

MC
qx

kMC
qx

kKbkCb
hh −=�=++=− πµδµπ )()(')(')(

. Inserted into the equation for 

the shadow price �, this yields: 

( )

( ) ( ) ( ) MC
qx

hf
MCfMC

qx
fqk

f

x
k

MC
qx

MC
fx

qx
MC

qk

xhxh

xhhhhx
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.

2,

.

'
'

'

'

−+−−−=−+−−−=

⋅−−
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�
�
�

�
−−=


�

�
�
�

�
++=

ηππδδππδ

ππδππµ
 

or 

[ ] ( ) MCfxqk xhhhhx ηππδππ −−−=+ '
.

,, . 

Expanding this in h at f, we get to the second order in 
.

xfh −=− : 

( ) )('')()(
2.

,,

.

,,

.

xOMC
qx

fxx
x
f

x
fh

hxhh
fh

hhhx +

�

�
�
�

�
−−−−+=
�

�
��

� +⋅
==

ηππδψππ  

where ( )( ) '( ) ( )x B x x MC xψ η≡ −  as defined in Proposition 8. To the second order in 
.

x  we have 

( )
.

( ) ( ), ( ) ' ( , ) ' 0h

f
A x x x A x f x f MC x

x qx
ηψ δ π� �− = = − + − + >� 	


 �
. 

This can alternatively be written 

)(
)(

)(
)(

)()(
)(

)(
)(

)( 12 xqxA
x

xk
xqxA

x
qx

xf
xkkqkx

xA
x

xfh
ψψψ +=+==⇔=+= . 

As the requirement on )(xψ  is that it changes sign from negative to positive when passing 

through *xx = , it has been established that )(2 xk  intercepts )(1 xk  locally from below. 
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