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Abstract

In this paper, the problem of calculating covariances and correlations
between time series which are observed irregularly and at di�erent points
in time, is treated. The problem of dependence between the time stamp
process and the return process is especially highlighted and the solution
to this problem for a special case is given. Furthermore, estimators based
on di�erent interpolation methods are investigated. The covariances are
in turn used to estimate a simple regression on such data. In particular,
the di�erence of �rst order integrated processes, I(1) processes, are con-
sidered. These methods are relevant for stock returns and consequently
of importance in e.g. portfolio optimization.

Keywords: Irregularly spaced time series, covariance, correlation, �nan-
cial returns

1 Introduction

In many application of time series analysis, the problem of irregularly spaced
observations has to be dealt with. A presently very interesting example is the
increased use of intraday data from �nancial markets (e.g. Dacorogna et al.,
2001; Campbell et al., 1997). Financial assets are certainly not traded at any
prede�ned time points and neither are di�erent assets traded at the same time
points. A typical illustration of such a problem is given in Figure 1.

If we would like to calculate the correlation between two return series dur-
ing, say, one day, we have to make sure that we have time series where the
observations can be considered to origin from the same points in time. Take
for example stock A and stock B and consider every second of the trading day.
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Figure 1: Illustration of the problem
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If these two stocks are not traded very frequently, we will not have any ob-
servations which origin from exactly the same time. Does it still make sense
to calculate a correlation between the returns of them? Of course it does! It
is just that we have to assume a relationship between di�erent points in time
in order to have quantities which we consider realistic to assume coming from
the same points in time. An eloquent way of dealing with the situation with
independence between the processes governing the observations and the time
stamps is presented in De Jong and Nijman (1997). An important issue that
will be emphasized in the present paper, is the possibility that the processes
governing the observations and the time stamps are dependent. An example
of this is when one consider a stock price. Imagining an underlying price, only
observed occasionally. A possible reason for dependency is that an observation
is more likely to occur if this underlying price make a large movement than if
it makes a small one. This would imply that the duration between two trades
would, on average, be smaller if the underlying price make large movements
than if it makes small ones. This, in turn, implies a dependency between the
two processes. In the next section, assumptions on the data generating process
are stated. In Section 3 the problem studied in the paper is formulated. Section
4 reviews three di�erent ways of doing this from a rather heuristic point of view
by means of three interpolation methods. In Section 5 the consequences for
the estimates of covariances and correlations when the interpolation methods
in Section 4 are used, are studied. A method to calculate correlations directly,
using the assumption that the returns are martingale di�erences and allowing
for a dependency between the processes governing the observations and time
stamps, is presented in Section 6. It is furthermore compared with a previous
method (De Jong and Nijman, 1997) that does not allow for the possibility of
such a dependency. In Section 8, the properties of the estimators are studied
for cases where it is not possible to calculate them analytically. The conclusions
are summarized in Section 9.
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2 Assumption on the data generating process (DGP)

The application mainly thought of in this paper is the relationship between two
�nancial asset prices and therefore, the type of processes that I will consider are
of the type {

xt = µx + xt−1 + δt

yt = µy + yt−1 + εt
(1)

where the error term processes{δt} and {εt} is a simultaneously covariance sta-
tionary process with covariance function

Cov(δt, εt−k) =
{

γk if −K ≤ k ≤ K
0 otherwise

,

possibly with conditional heteroskedasticity. {δt} can always be written

δt =
∞∑

k=0

gkat (2)

where
∞∑

k=0

g2
k < ∞ (3)

and {at} in turn can be written

at = ηtσt (4)

where

σ2
t = α0 +

p∑
i=1

αiat−i +
q∑

j=1

βjσ
2
t−j (5)

and {ηt} is a sequence of independent identically distributed stochastic variables.
The statements about {δt} above is also true for {εt}. In this setting, a natural
example of x and y is that they represent the logs of two asset prices.

Finally, assume that irregularly spaced observations on two such time series
which are correlated xs1 , xs2 , ..., xsTx

and yt1 , yt1 , ..., ytTy
are available and let

T = max(Tx, Ty)

3 Description of the problem

In order to give a sense of the problem at hand we consider the �rst di�erences
of the observed data {

∆xi = µxdx
i +

∑si

s=si−1+1 δs

∆yj = µydy
j +

∑tj

t=tj−1+1 εt
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where ∆xi = xsi
− xsi−1 and ∆yi = ytj

− ytj−1 . We also de�ne the durations
between observations dx

i = si − si−1 and dy
j = tj − tj−1. The reasons for this

notation is that we want to study the quantity that later will be used to estimate
the covariances and correlations, namely Cov(∆xi,∆yj). Furthermore, the �rst
di�erences of the data will be referred to as returns using �nance terminology.
The covariance can now be written as

Cov(∆xi,∆yj) = µxµyCov
(
dx

i , dy
j

)
+ µxCov

dx
i ,

tj∑
t=tj−1+1

εt


+µyCov

 si∑
s=si−1+1

δs, d
y
j

 + Cov

 si∑
s=si−1+1

δs,

tj∑
t=tj−1+1

εt


Here we can see that this quantity is determined by three sources, the covari-

ance between the durations of the two series, the covariance between the returns
of the two series and by the covariance between the duration of one series and
the return of the other.

Furthermore, if we look at the expression of the variance of a return, V ar(∆xi),
we see that also this is a�ected by the duration.

V ar(∆xi) = µ2
xV ar(dx

i ) + V ar

 si∑
s=si−1+1

δs

 + 2µxCov

dx
i ,

si∑
s=si−1+1

δs


The e�ect on estimation of the last term of this expression will be studied

later in this paper.

4 Interpolation methods

The obvious quick-�x for irregularly spaced data is to interpolate between ob-
servations of the two series in order to obtain data which, seemingly, origin from
the same points in time. This seems like a natural thing to do. Most �nancial
asset prices, after all, behave in a rather smooth manner so given reasonably
frequent observations, an interpolation appear harmless. In the following, three
di�erent interpolation methods will be investigated in terms of how they a�ect
estimation of covariances and correlations.

4.1 Step function

Since a process of the type described above is a martingale process, i.e. it has
the property

E[xt|Ft−k] = xt−k (6)

where Ft = {x0, x1, ..., xt}, the guess of the type �the process does not change
between observations� seems sensible. From a forecasting point of view, this is
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Figure 2: Step function interpolation

arguably the only reasonable guess since {at} is assumed to be an unpredictable
process. A typical plot of two such processes can be seen in Figure 2 where
horizontal lines of length larger than one unit of time is the consequence of this
type of interpolation.

4.2 Linear interpolation

If we are not interested in forecasting, we could use values located after the
point in time we want to interpolate a value for as well as values before. A
common approach here is to interpolate linearly in time. Say that we have a
gap in our time series between the times t and t + m. A linear interpolation is
performed so that the value xt+k, where k < m is estimated by

x̂t+k = xt + k
xt+m − xt

m
(7)

A graph of two interpolated series is plotted in Figure 3. The same data as
in Figure 2 is used.

4.3 Spline interpolation

The third interpolation method that will be considered is the interpolating cubic
spline. This method produces more variation between the observations than the
step function- and linear interpolation does. A cubic spline basis in s consists
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Figure 3: Linear interpolation

of the functions 1, s, s2, s3, (s− ξ1)+, ..., (s− ξb)+ where the ξ's are called knots

and are all located between (or at) the minimum and maximum of the observed
argument values, smin and smax. The function (s)+ gives the maximum of s and
zero. The data points xs1 ,...,xsTx

are then �tted to the basis with the ordinary
least square method. The resulting trajectory of x seen as a function of s then
obtain a continuous second order derivative. This property is contradictory
with much of asset pricing theory which often use models based on Brownian
motions which trajectories do not even have �rst order derivatives. However,
for the purpose of estimating correlations and covariances, I will investigate this
method as well as the other two interpolation methods in the sequel of this
paper. The same data as for the two other interpolation techniques have been
used in Figure 4 to exemplify the cubic spline interpolation.

5 Consequences under di�erent interpolation meth-
ods

It is obvious, just by considering �gures 2, 3 and 4, that a calculation of variance
of or covariance between the �rst di�erences of two series generated by a process
within the class (1)-(5), will depend on how the interpolation is made. In this
section, I will consider these di�erences. The process under study are denoted

xt = xt−1 + δt (8)
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Figure 4: Cubic spline interpolation

and
yt = yt−1 + εt (9)

where the covariance and correlation between the white noise processes δt and
εt are γ and ρ, respectively. The variances of δt and εt are σ2

δ and σ2
ε . The

problem is thus to estimate ρ. Assume, for simplicity, that the number of time
points are the same for the two variables. Some stylized examples of irregularly
spaced observations will be studied by imposing one �missing value�. For this,
we have observations say x1, ..., xk−1, NA, xk+1, ..., xT , where NA stands for
missing value and y1, ..., yk−1, yk, yk+1, ..., yT . The task is now to estimate ρ by

r =
∑T

t=1 ∆xt∆yt√∑T
t=1(∆xt)2

∑T
t=1(∆yt)2

(10)

where some values of ∆x are substituted by interpolated values. Correlations
between two observations at the exact same time point, is ρ and causes no
particular problems. Therefore, correlation between an observed value of one
variable and an interpolated value of the other will be considered. Since we are
considering the returns and thereby the �rst di�erences of {xt} and {yt} there
will for the missing value xk be two missing values in {∆xt}, ∆xk and ∆xk+1.
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5.1 Step function interpolation

Since xk is missing, the �rst di�erences that have to be replaced are ∆x̂k = 0
and ∆x̂k+1 = xk+1 − xk. These can, for the step function interpolation, be
written ∆x̂k = 0 and ∆x̂k+1 = δk + δk+1, respectively. Considering cross-
products of these observations with the ones in the y-series �rst we observe that
Cov(∆x̂k,∆yk) = Cov(∆x̂k,∆yk+1) = 0 and Cov(∆x̂k+1,∆yk) = Cov(∆x̂k+1,∆yk+1) =
γ. Additionally, the variances of these observations are zero and 2σ2

δ , respec-
tively. Thus, the expected value of the estimator

γ̂STEP =
1

T − 1

T∑
t=2

∆xt∆yt

is

E(γ̂STEP ) =
T − 2
T − 1

γ (11)

Furthermore

V ar(∆x̂k) = 0

and

V ar(∆x̂k+1) = 2σ2
δ

implying

E(ρ̂STEP ) ≈ T − 2
T − 1

ρ (12)

5.2 Linear interpolation

According to the linear interpolation scheme we �estimate� xk by

x̂k =
xk−1 + xk+1

2

which implies

∆x̂k = ∆x̂k+1 =
1
2
(xk+1 − xk−1)

or

∆x̂k = ∆x̂k+1 =
1
2
(δk + δk+1)

Thus

V ar(∆x̂k) = V ar(∆x̂k+1) =
1
2
σ2

δ ,

Cov(∆x̂k,∆yk) = Cov(
1
2
(δk + δk+1), εk) =

1
2
γ
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and, according to the same argument

Cov(∆x̂k+1,∆yk+1) =
1
2
γ

Since V ar(∆yk) = V ar(∆yk+1) = σ2
ε , then

Corr(∆x̂k,∆yk) = Corr(∆x̂k+1,∆yk+1) =
1√
2
ρ

Consequently, the expectation of the estimator

γ̂ =
1

T − 1

T∑
t=2

∆xt∆xt

is

E(γ̂) =
(T − 2)
T − 1

γ

and the expectation of the variance estimator

σ̂2
δ =

1
T − 1

T∑
t=2

(∆xt)2

is

E(σ̂2
δ ) =

(T − 1)
T

σ2
δ

implying

E(ρ̂LIN ) ≈
√

T − 2
T − 1

ρ. (13)

5.3 Discussion on interpolation methods

In Section 8 the interpolation methods will be investigated in more general
situations by means of a Monte Carlo study. Nevertheless, a brief discussion
will here be made about the consequences of interpolation on covariance and
correlation estimates. As formulas and show, the e�ect of a limited number of
�missing values� will cause the estimates to be biased downwards. In addition,
this will be more so for the step interpolation than for the linear interpolation.
If there were m missing values instead of just and those were located with at
least two observations between each one, the formulas corresponding to (12)
and (13) would be

E(ρ̂STEP ) ≈ T −m− 1
T − 1

ρ

and

E(ρ̂LIN ) ≈
√

T −m− 1
T − 1

ρ.
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The situation with several missing values in a row is more di�cult to analyze
analytically and therefore this is done by means of Monte Carlo simulations
in Section 8. A possible explanation for the relative superiority of the linear
interpolation ,that will be investigated further in Section 8, is that it imposes
a variation �between observations� that better corresponds to the DGP. The
suspicion that even the linear interpolation does not capture the full variation
of the DGP makes one believe that the cubic spline might do a better job.

6 Exact methods

Instead of interpolating the prices one can use the, reasonably weak, assumption
that the return process is a martingale di�erence outlined in Section 2. By
considering the observations xs1 , xs2 , ...xsTx

and yt1 , yt2 , ...xtTy
and their �rst

di�erences, rewriting them as

∆xi =
si∑

k=si−1−1

δk

and

∆yj =
tj∑

l=tj−1−1

εl

we can calculate Cov(∆xi,∆yj) by evaluating which time intervals in the x-
and the y-sequences that are overlapping each other.

Cov(∆xi,∆yj) = E(∆xi∆yj) =
K∑

k=−K

γkχij(k) (14)

where
χij(k) = max(min(si, tj + k)−max(si−1, tj−1 + k), 0)

where the zero occur when the intervals are not overlapping.

6.1 An unbiased method for K = 0

From (14), an unbiased estimator of γ can be derived regardless of dependence
between the processes governing the observations and the time stamps or not.

γ̂ =
1
M

Tx∑
i=2

Ty∑
j=2

∆xi∆yj

χij(0)
(15)

just ignoring the terms where χij(0) = 0 . M is the number of overlapping
intervals. The variances for {xt} and for {yt} are estimated by

σ̂2
x =

1
Tx − 1

Tx∑
i=2

(∆xi)2

∆si
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and

σ̂2
y =

1
Ty − 1

Ty∑
i=2

(∆yi)2

∆ti
.

Finally, the estimator of ρ is given by

ρ̂ =
γ̂

σ̂xσ̂y
(16)

Above, it was assumed that there are no correlation between δs and εt for s 6= t.

6.2 A method accounting for K 6= 0

(De Jong and Nijman, 1997; De Jong et al., 1998) presented an eloquent method
which more directly uses equation (14) and thereby accounting for the possibility
that K 6= 0, namely

Cov(∆xi,∆yj) = E(∆xi∆yj) =
K∑

k=−K

γkχij(k)

By creating zij = ∆xi∆yj , the regression

zij =
K∑

k=−K

γkχij(k) + ξij

where E(ξij) = 0 can be used to estimate the γk's. The problem that occur here
is that it implicitly assumes no dependence between the price and time stamp
processes, manifested in no correlation between the χ(k)'s and ξij .

7 Estimating a simple regression with irregularly
spaced data

An application of the analysis above could be to estimate a simple regression
model for data observed irregularly and with di�erent points in time for the x-
and y- variables. This could e.g. be wished in order to obtain the β-value of a
stock. In this case ∆yt would be the log-return of an individual stock and ∆yt

the log-return of a market index. The model is

∆yt = α + β∆xt + ut, (17)

where{ut} is white noise. The parameter of interest is

β =
Cov(∆xt,∆yt)

V ar(∆xt)

and is estimated by plugging in the estimators of the nominator and denomi-
nator, but we could also estimate the intercept by using sample versions of the
moments involved in

α = E(∆yt)− βE(∆xt).

11



8 Simulation study

The simulation study performed in this section was made in order to understand
a few things that would have been di�cult, if not impossible, to investigate by
analytic methods. Those are, how the estimators are a�ected by a dependence
between the processes governing the observations and the time stamps, by a very
large fraction of missing values realistic for an asset price if time is measured in
seconds (this would be a very complicated combinatorial problem indeed) and
by small samples. For illustrative purposes, the presentation here here refers to
a stock market.

Regularly spaced data (intrinsic prices) from two random walks with di�erent
correlations between the error terms (ρ = ±0.2,±0.5,±0.8) was �rst generated.
In order to create irregularly spaced series, two methods were exploited:

1. 20% of observations are kept (de�ned as trades) on the basis of two inde-
pendent random drawings. This implies independence between the process
driving returns and the process driving time of trade.

2. A change in the underlying, partly unobservable, process (intrinsic price)
outside the quartile range has probability 0.6 of resulting in observation
(trade). Otherwise, this probability is 0.2. This imposes a dependency
between the two processes.

The number of replicates was 1000 and the number of observations of the un-
derlying, partly unobserved, process studied were 100 and 1000, respectively,
implying the actual number of observations are approximately 20 and 200, re-
spectively. The simulation study was performed using the R-language (R De-
velopment Core Team, 2005). Both the interpolation methods and the exact
methods were studied.

8.1 Estimation of the correlation coe�cient

Table 1 show the Monte Carlo means for the case with independence. The
columns show, from left to right, the number of observations of the underlying
process, the true value of ρ and the Monte Carlo means of the �ve estimators.
As can be seen, the results for the step function (no change) and linear interpo-
lations methods are disastrous. Even for the sample size 1000, the estimators
are severely biased towards zero. The results for the spline interpolation are,
however, more promising. Some simulations with sample size 10000 indicated
that the estimator might be consistent but this have to be studied more by ana-
lytical tools. Compared with the exact methods, however, this estimator comes
out unfavourably. Concerning the two exact methods, there is no obvious sys-
tematic di�erence. The estimator 16 is by construction approximately unbiased
so this should not be an issue. The results also indicate that also the OLS-based
estimator is unbiased. The Monte Carlo standard deviations of the two exact
estimators are similar, as can be seen in Table 2. The most interesting obser-
vation in this table is that the spline estimator have the smallest Monte Carlo
standard deviations. This is di�cult to explain and must be studied further.
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T ρ No change Linear Spline Exact Unbiased Exact OLS

100 0.2 0.022 0.093 0.127 0.208 0.213
100 0.5 0.065 0.220 0.307 0.456 0.473
100 0.8 0.102 0.356 0.509 0.776 0.721
100 -0.2 -0.029 -0.086 -0.127 -0.196 -0.172
100 -0.5 -0.062 -0.222 -0.303 -0.468 -0.496
100 -0.8 -0.092 -0.362 -0.512 -0.812 -0.786
1000 0.2 0.022 0.094 0.172 0.207 0.205
1000 0.5 0.058 0.233 0.429 0.498 0.499
1000 0.8 0.090 0.373 0.690 0.802 0.788
1000 -0.2 -0.022 -0.091 -0.173 -0.200 -0.199
1000 -0.5 -0.059 -0.235 -0.432 -0.502 -0.496
1000 -0.8 -0.091 -0.373 -0.695 -0.798 -0.805

Table 1: Monte Carlo mean of correlation estimates for the case of independence
and no dependence between value and time stamp process.

The table 3 and 4presents the Monte Carlo means and standard deviations
when the processes governing the observations and time stamps are dependent
in the sense explained above. The spline estimator still does a good job and
have small standard deviations. The functionality of the OLS-based method
now breaks down while the unbiased method, as expected, work properly. The
standard deviations, again, are similar.

8.2 Estimation of parameters in a simple regression

A simulation exercise was also performed on a simple regression model, thought
to resample the situation of estimating a β-value of a stock. In this case, only the
exact estimators were used. The DGP here was equation 17 with parameters
α = 1and β = (0.5, 1, 1.5). The results, presented in tables 5 and 6, show
the same pattern as the results for the correlation coe�cients. The results
are similar for the two estimators when no dependence are present but when
such dependence is part of the DGP, the results for the OLS-based method are
unfavourable.

9 Conclusions

In this paper, two di�erent strategies to estimate covariances and correlations
between unsynchronised, irregularly spaced time series, given an underlying
martingale process, have been investigated. Within those strategies, respec-
tively three and two di�erent modi�cations have been looked upon. The �rst
strategy, interpolating between observations, turned out to be very dependent
on the interpolation technique. Interpolation with a step function and linear
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T ρ No change Linear Spline Exact Unbiased Exact OLS

100 0.2 0.107 0.153 0.351 0.515 0.509
100 0.5 0.116 0.145 0.327 0.519 0.465
100 0.8 0.122 0.136 0.304 0.520 0.456
100 -0.2 0.107 0.150 0.341 0.488 0.475
100 -0.5 0.116 0.146 0.337 0.511 0.500
100 -0.8 0.118 0.136 0.291 0.492 0.519
1000 0.2 0.032 0.050 0.183 0.165 0.162
1000 0.5 0.035 0.045 0.148 0.162 0.160
1000 0.8 0.039 0.044 0.104 0.166 0.185
1000 -0.2 0.031 0.047 0.182 0.171 0.167
1000 -0.5 0.036 0.048 0.157 0.167 0.171
1000 -0.8 0.039 0.044 0.111 0.166 0.185

Table 2: Monte Carlo standard deviation of correlation estimates for the case
of independence between value and time stamp process.

T ρ No change Linear Spline Exact Unbiased Exact OLS

100 0.2 0.074 0.114 0.163 0.191 0.148
100 0.5 0.178 0.281 0.407 0.472 0.388
100 0.8 0.304 0.463 0.664 0.764 0.611
100 -0.2 -0.072 -0.114 -0.158 -0.192 -0.155
100 -0.5 -0.181 -0.286 -0.426 -0.483 -0.387
100 -0.8 -0.300 -0.464 -0.666 -0.780 -0.617
1000 0.2 0.073 0.114 0.185 0.192 0.149
1000 0.5 0.187 0.289 0.466 0.485 0.375
1000 0.8 0.303 0.469 0.756 0.785 0.600
1000 -0.2 -0.074 -0.113 -0.178 -0.191 -0.147
1000 -0.5 -0.186 -0.288 -0.473 -0.482 -0.376
1000 -0.8 -0.304 -0.469 -0.757 -0.784 -0.599

Table 3: Monte Carlo mean of correlation estimates for the case of dependence
between value and time stamp process.
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T ρ No change Linear Spline Exact Unbiased Exact OLS

100 0.2 0.105 0.113 0.350 0.243 0.238
100 0.5 0.105 0.104 0.307 0.240 0.263
100 0.8 0.114 0.103 0.231 0.236 0.269
100 -0.2 0.101 0.113 0.349 0.247 0.237
100 -0.5 0.106 0.106 0.295 0.235 0.238
100 -0.8 0.114 0.097 0.219 0.230 0.250
1000 0.2 0.031 0.036 0.182 0.080 0.083
1000 0.5 0.033 0.034 0.148 0.075 0.078
1000 0.8 0.037 0.031 0.084 0.074 0.079
1000 -0.2 0.032 0.034 0.181 0.074 0.079
1000 -0.5 0.033 0.033 0.144 0.074 0.080
1000 -0.8 0.036 0.032 0.083 0.075 0.079

Table 4: Monte Carlo standard deviation of correlation estimates for the case
of dependence between value and time stamp process.

T DEP α β Unbiased α OLS α Unbiased β OLS β

100 no 1 0.5 0.8235 0.9062 0.5260 0.5401
100 no 1 1.0 0.8300 0.9287 1.1861 1.1170
100 no 1 1.5 0.8398 0.9086 1.5513 1.5595
100 yes 1 0.5 0.9543 0.9702 0.4759 0.3725
100 yes 1 1.0 0.9582 0.9740 0.9929 0.7867
100 yes 1 1.5 0.9512 0.9647 1.5101 1.2355
1000 no 1 0.5 0.9863 0.9918 0.4778 0.4605
1000 no 1 1.0 0.9808 0.9882 0.9882 0.9722
1000 no 1 1.5 0.9803 0.9885 1.4804 1.5027
1000 yes 1 0.5 0.9975 0.9989 0.4865 0.3807
1000 yes 1 1.0 0.9968 0.9982 0.9759 0.7476
1000 yes 1 1.5 0.9970 0.9981 1.4648 1.1394

Table 5: Monte Carlo mean of parameter estimates in simple regression model
for the case of independence between value and time stamp process.
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T DEP α β Unbiased α OLS α Unbiased β OLS β

100 no 1 0.5 0.4261 0.3896 2.4958 2.5506
100 no 1 1.0 0.4644 0.4342 2.4569 2.4985
100 no 1 1.5 0.4721 0.4624 2.4103 2.5197
100 yes 1 0.5 0.1795 0.1827 0.7783 0.9172
100 yes 1 1.0 0.1996 0.2008 0.8042 0.9180
100 yes 1 1.5 0.2423 0.2321 0.8796 1.0374
1000 no 1 0.5 0.0614 0.0642 0.7036 0.8076
1000 no 1 1.0 0.0731 0.0741 0.7332 0.8290
1000 no 1 1.5 0.0874 0.0888 0.7854 0.8902
1000 yes 1 0.5 0.0463 0.0460 0.2361 0.2882
1000 yes 1 1.0 0.0533 0.0526 0.2428 0.2941
1000 yes 1 1.5 0.0666 0.0643 0.2538 0.3119

Table 6: Monte Carlo standard deviation of parameter estimates in simple re-
gression model for the case of dependence between value and time stamp process.

interpolation gave catastrophic results while a cubic spline worked better in the
Monte Carlo study performed. The hypothesis of this author is that the reason
is the inability of interpolation methods to capture the true variation of the un-
derlying martingale process. In this respect, the cubic spline does the best job of
the investigated methods. Performing much better, while more computationally
expensive, are the two methods based directly on the martingale assumption.
This might not be a surprise since they explicitly exploit the underlying DGP.
The main contribution of the paper is the method which is unbiased even when
there is a dependency between the processes governing the observations and the
time stamps, a situation relevant for applications to �nancial markets.
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