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In the deregulated Norwegian electricity market a zonal transmission pricing system is used
to cope with network capacity problems. In this paper we will illustrate some of the problems
that the zonal pricing system, as implemented in Norway, has. With the use of small network
examples we illustrate the difficulties involved in defining the zones, the redistribution effects
of the surplus that a zonal pricing system has, as well as the conflicting interests concerning
zone boundaries that are present among the various market participant. We also show that a
zone allocation mechanism based on nodal prices does not necessarily lead to a zone system
with maximal social surplus. Finally, we formulate an optimization model that when solved
yields the zone system that maximizes social surplus given a pre-specification of the number
of zones to be used.
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A zonal approach to managing congestion has been adopted in the Norwegian scheduled

power market. The trading process works approximately as follows:

1) Based on the supply and demand schedule bids given by the market participants, the

market is cleared while ignoring any grid limitations. This produces a system price �  of

energy.

2) If the resulting flows induce capacity problems, the nodes of the grid are partitioned into

zones.

3) Considering the case with two zones defined, the zone with net supply is defined as the

low-price area, whereas the net demand zone is determined the high-price area.

4) Net transmission over the zone-boundary is fixed when curtailed to meet the violated

capacity limit.
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5) The zonal markets are now cleared separately giving one price for each zone, 
/

�  being the

low price and 
+

�  the high price. If the flow resulting from this equilibrium still violates

the capacity limit, the process is repeated from step 4). If any new limits are violated the

process would be repeated from step 2), possibly generating additional zones.

6) The revenue of the grid-company, (from capacity charges), is equal to the price difference

times the transmission across the zone-boundary.

An assumption made in the six steps given above is that a zone boundary should cut the link

with the capacity problem. In a large network this still leaves the grid-company, Statnett, with

a huge flexibility when defining the zone-boundaries. According to Statnett [11] the

Norwegian system can be interpreted as inflicting a positive capacity charge 
/

�� −  in the low

price area and a negative charge 
+

�� −  in the high price area (relative to the system price of

energy). This means that withdrawals are charged in the high price area and compensated in

the low price area. For net injections the opposite is valid.

As pointed out above it is not exactly clear how the number of zones and zone-boundaries are

to be determined. Stoft [12], [14] shows that the partition of the network into zones generally

is not obvious1, but states that it should be based on price differences, the reason being that

the dead-weight loss resulting from erroneous prices is generally proportional to the square of

the pricing error. Walton and Tabors [15] also focus on price differentials and suggest that it

might be possible to use statistical methods using the standard deviation of nodal price

distributions as a criterion to determine the number of zones and which nodes belong to/do

not belong to the different zones.

In this paper we will show the multitude of possible cuts, representing zone-boundaries, that

exists even in a small example and study the resulting welfare effects. Different zone

allocations will affect both the overall efficiency and the allocation of social surplus. We will

also illustrate that the partition of the network into zones based on absolute values of optimal

nodal price differences does not necessarily lead to a zone system with maximal social

surplus. Gaming is not considered since we assume nodal markets to be competitive when

                                                
1 Networks are generally not zonable.
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calculating the market outcomes. The gaming possibilities in a zone price system, as the

Norwegian one, will be studied in a forthcoming paper.

��� ������	�����������	

�

We consider real power in a lossless and linear “DC”-model with all line-reactances equal to

1. When the number of zones �  ( �� ≤ , where � is the number of nodes in the network) and

the allocation of nodes to zones 
.

�� ,,1 �  are determined, the optimal zonal prices can be

found by solving the following problem:
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L
��  is the demand function of node �  and G

L�  is the quantity of real power

consumed. )( V

L

V

L
��  is the supply function of node � , while V

L
�  is the quantity of real power

produced. 
LM


  is the capacity of link �� , LM�  is the power flow over the link from �  to � , and

N=
�  is the price in zone 

N
� .
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The objective function (2-1) expresses the difference between consumer benefit (the area

under the demand curve) and the cost of production (the area under the supply curve).

Equations (2-2) correspond to Kirchhoff’s junction rule, and there are 1−�  independent

equations. Equations (2-3) represent Kirchhoff’s loop rules where ),,( 11 +−=
QP




 �

represents a set of independent loops (Dolan and Aldous [2]), and 
O


  is the set of directed arcs

in a path going through loop 	. Equation (2-4) stands for conservation of energy, while

inequalities (2-5) are the capacity constraints. Equations (2-6) guarantee that prices are

uniform over nodes belonging to the same zone.

Solving (2-1) (or alternatively (2-1)-(2-4) to obtain line flows) gives the unconstrained

dispatch and the system price. Problem (2-1)-(2-5) corresponds to the optimal dispatch

problem from which optimal nodal prices are found (see Schweppe et al. [9], Hogan [7], Wu

et al. [16] or Chao and Peck [1]). Solving (2-1)-(2-6) provides us with the optimal zonal

prices. It is obvious that the social surplus of the optimal dispatch is less than or equal to the

unconstrained social surplus and greater than or equal to the social surplus of the zonal

solution. Moreover, it is obvious that a finer partition of the grid (dividing a zone into two or

more “subzones” by allowing more prices) will increase social surplus or leave it unchanged.

In practice we would not solve problem (2-1)-(2-6) to find the zonal solution, because this

would be equally complicated as solving the optimal dispatch problem. A practical algorithm

based on the described procedure of the Norwegian system could be based on curtailment of

the unconstrained dispatch. When capacity limits are violated, the grid is partitioned and

trades between zones are curtailed until limits are restored. Zonal markets are then cleared

separately and new flows are calculated. If these flows still violate the constraints, the flows

are curtailed further and we repeat the process. Following the description of the Norwegian

system, defining high price and low price areas, we could alternatively lower the price in the

low price area and increase the price in the high price area until balance is restored. We will

discuss possible problems pertaining to these procedures in relation to the examples of the

next section.
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The network considered contains 5 nodes connected by 8 edges like the grid of Figure 3-1. In

every node there is both production and consumption, and we assume quadratic cost and

benefit functions implying linear supply and demand curves. Demand in node �  is given by

G

LLLL
���� −= , where 

L
�  is the price in node �  and 

L
�  and 

L
�  are positive constants. Supply

is given by V

LLL
��� =  where 

L
�  is a positive constant. In the specific example considered, we

assume identical demand curves in every node, while the cost functions vary as shown in

Table 3-1.

�
�����������
����������

In the unconstrained dispatch we get a uniform nodal price of 16.393 (the system price of

energy). Net injections, G

L

V

LL
��� −= , and line flows are shown in Figure 3-2 part A. Line 1-2

is assumed to have a capacity of 15 units and is overloaded in the unconstrained dispatch.

Taking into account the flow limit, we get the optimal dispatch shown in Figure 3-2 part B.

In the following we will examine zonal pricing. Even if we are restricted to use only two

zones in the example, several allocations are possible. In practical zonal implementations2, the

nodes at the endpoints of the congested line would typically be allocated to different zones.

However, as is shown later, this is not necessarily optimal when there are more than one

congested link. When restricting the attention to the case where the endpoints of the congested

                                                
2 Consider for instance the WEPEX (Western Power Exchange) proposal discussed by Stoft [14].
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CONSUMPTION PRODUCTIONNODE

L
�

L
�

L
�

1 20 0.05 0.1
2 20 0.05 0.5
3 20 0.05 0.2
4 20 0.05 0.3
5 20 0.05 0.6
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link are allocated to different zones, there would be 8 different zone allocations in the

example. They are all exhibited in Figure 3-3.

�
��������� ��
�����
!���"#

�
���������$�����%���"��
��!

S5=16.393
T5=-44.809

S1=16.393
T1=91.803

S2=16.393
T2=-39.344

S3=16.393
T3=9.836

S4=16.393
T4=-17.486

20.03

33.5138.25 13.47

2.914

1.821

4.736

16.39

S5=16.494
T5=-42.628

S1=14.892
T1=46.774

S2=17.695
T2=-10.703

S3=16.494
T3=12.352

S4=16.894
T4=-5.795

6.724

15.0025.05 8.276

2.523

7.527

10.05

10.79

Social Surplus:
3606.557

Social Surplus:
3550.954

Part A:
Unconstrained Dispatch

Part B:
(Constrained) Optimal Dispatch

C1 C2 C3 C4

C5 C6 C7 C8
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Generally, if we consider a single congested line in an � - node network, and if we assume

that the endpoints of the congested link are to be allocated to different zones, the number of

allocations to two zones is equal to3

∑
−

=





 −2

0

2Q

L
�

�
.

It may be questioned whether all these cuts are meaningful, if not, this is an “at most” number.

For instance, as regards cut C3, the zone containing nodes 1 and 4 is not connected, so it can

be argued that the network has in practice 3 zones and should be treated accordingly. In the

given example, introducing 3 different prices would increase total social surplus from

3439.552 to 3536.556. The grid revenue, equal to the merchandizing surplus (see Wu et al.

[16]) would increase from –86.111 to 88.762.

In Table 3-2 and Table 3-3 we show the results for the different zone allocations C1-C8. In

addition, we show the results for the constrained (OD) and unconstrained (UD) optimal

dispatch. In the first part of Table 3-2 total social surplus and grid revenue are exhibited. The

next parts show the results for the different nodes, i.e. prices �, quantities (generation ��	
,

consumption ���
, and net injection �) and surpluses (��	
 for the producers and ���
 for the

consumers with a total of � to the region as a whole). Table 3-3 shows how individual line

flows vary with different zone allocations (a negative entry in row 
� −  implies that power

flows from node 
  to node � ). The highest and lowest zonal surpluses are in boldface types,

and so are also the maximal and minimal (zonal) line-flows.

                                                
3 Allowing nodes 1 and 2 to be in the same zone would add 7 more possibilities in the example. In an �-node

network the total number of different allocations to two zones is equal to ∑
−

=





 −2

0

1Q

L
�

�
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UD OD C1 C2 C3 C4 C5 C6 C7 C8
Total 3606.557 3550.954 �	�)�	
* 3503.220 3439.552 3506.243 3424.065 3498.269 �����	�� 3470.630
Grid 0.000 90.092 **�)�� 59.194 -86.111 -78.663 -61.359 -59.881 ��
��)	� -119.092

NODE 1 UD OD C1 C2 C3 C4 C5 C6 C7 C8
� 16.393 14.892 14.531 14.957 14.516 14.897 15.102 15.369 15.018 15.693

��	
 163.934 148.925 145.311 149.569 145.160 148.972 151.020 153.689 150.184 156.933
��	
 1343.725 1108.927 1055.764 1118.544 �+	��	
) 1109.638 1140.359 1181.015 1127.767 ������,	
���
 72.131 102.151 109.378 100.862 109.681 102.055 97.959 92.622 99.631 86.134
���
 130.073 260.869 299.089 254.329 �++�)�
 260.382 239.899 214.471 248.160 �*	��),
� 91.803 46.774 35.933 48.707 35.479 46.917 53.061 61.067 50.553 70.798
� 1473.797 1369.797 1354.853 1372.873 ��	����� 1370.020 1380.259 1395.486 1375.927 ���
�*)�

NODE 2 UD OD C1 C2 C3 C4 C5 C6 C7 C8
� 16.393 17.695 17.001 17.573 17.852 17.493 18.710 18.126 18.588 19.576

��	
 32.787 35.391 34.001 35.145 35.703 34.985 37.420 36.252 37.175 39.152
��	
 268.745 313.124 �*,�+�	 308.800 318.682 305.989 350.067 328.557 345.499 �*����+
���
 72.131 46.094 59.985 48.546 42.967 50.149 25.799 37.477 28.248 8.480
���
 130.073 53.116 *,�,	
 58.918 46.153 62.873 16.639 35.114 19.949 ��),*
� -39.344 -10.703 -25.984 -13.401 -7.263 -15.164 11.622 -1.225 8.927 30.672
� 398.818 366.240 378.981 367.718 364.835 368.862 366.706 �
��
)+ 365.448 �*	�+�*

NODE 3 UD OD C1 C2 C3 C4 C5 C6 C7 C8
� 16.393 16.494 17.001 14.957 17.852 17.493 15.102 15.369 18.588 15.693

��	
 81.967 82.470 85.004 74.784 89.258 87.463 75.510 76.844 92.938 78.466
��	
 671.862 680.138 722.562 		,��)� 796.706 764.974 570.180 590.507 *
��)�* 615.697
���
 72.131 70.118 59.985 100.862 42.967 50.149 97.959 92.622 28.248 86.134
���
 130.073 122.914 89.956 �	����, 46.153 62.873 239.899 214.471 �,�,�, 185.479
� 9.836 12.352 25.018 -26.078 46.292 37.314 -22.449 -15.778 64.690 -7.668
� 801.935 803.052 812.518 813.601 842.859 827.846 810.079 804.979 **��
,
 *+���)


NODE 4 UD OD C1 C2 C3 C4 C5 C6 C7 C8
� 16.393 16.894 17.001 17.573 14.516 17.493 15.102 18.126 15.018 15.693

��	
 56.645 56.315 56.669 58.576 48.387 58.309 50.340 60.420 50.061 52.311
��	
 447.908 475.707 481.708 514.666 �	���*, 509.982 380.120 	�)�	,� 375.922 410.465
���
 72.131 62.110 59.985 48.546 109.681 50.149 97.959 37.477 99.631 86.134
���
 130.073 96.441 89.956 58.918 �++�)�
 62.873 239.899 �	���� 248.160 185.479
� -17.486 -5.795 -3.316 10.030 -61.294 8.160 -47.619 22.943 -49.570 -33.824
� 577.981 572.148 	)��

� 573.584 
	��,�	 572.855 620.019 582.708 624.082 595.944

NODE 5 UD OD C1 C2 C3 C4 C5 C6 C7 C8
� 16.393 16.494 17.001 17.573 17.852 14.897 18.710 15.369 15.018 15.693

��	
 27.322 27.490 28.335 29.288 29.753 24.829 31.183 25.615 25.031 26.155
��	
 223.954 226.713 240.854 257.333 265.569 �*��,�+ �,��)�� 196.836 187.961 205.232
���
 72.131 70.118 59.985 48.546 42.967 102.055 25.799 92.622 99.631 56.134
���
 130.073 122.914 89.956 58.918 46.153 �
+��*� �
�
�, 214.471 248.160 185.479
� -44.809 -42.628 -31.651 -19.258 -13.214 -77.227 5.385 -67.007 -74.601 -59.979
� 354.027 349.626 330.810 316.251 311.722 ��	���� �+*��
� 411.307 436.121 390.711
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FLOW UD OD C1 C2 C3 C4 C5 C6 C7 C8
1-2 33.515 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
1-3 20.036 6.724 1.022 17.990 0.322 -3.132 ���
)+ 14.495 �	���, 19.181
1-5 38.251 25.050 19.911 15.717 20.157 35.049 ����,� 31.572 �+�,,� 36.618
2-3 -13.479 -8.276 -13.978 2.990 -14.678 -18.132 *�
)+ -0.505 ��+���, 4.181
2-4 2.914 2.523 -1.917 -2.108 17.258 -2.081 18.560 ����,� 18.374 �,�*)�
2-5 4.736 10.050 4.911 0.717 5.157 20.049 �+�
+* 16.572 �	�,,� 21.618
3-4 16.393 10.799 12.061 �	�+,* 31.936 16.051 9.890 -1.787 �*�*�� 15.693
4-5 1.821 7.527 6.828 2.824 -12.101 �����, ��,��
* 18.864 7.617 1.744

0��
��
��!�
����������"
���������!

As can be seen from Table 3-2, the zonal allocations show considerable variations when it

comes to total social surplus. C1 is best with total surplus of 3537.568, only 13.386 below

optimal dispatch (a difference of 0.376%). The poorest allocation is C7 with a surplus of

3422.521, which is 115.047 below C1 or 3.616% below optimal dispatch.

%���"��
����/�������!����1��
2
�����%����!

For individual agents the outcome is heavily influenced by the allocation to zones. In the

example, the greatest difference is experienced by the grid-company, which would prefer C1

with a merchandizing surplus of 88.741, which is 351.494 greater than the –262.753 of C7.

For the individual producers and consumers the difference in surplus between the best and

worst allocation can be several hundreds, for instance the surplus of producer 3 in C7 is

304.476 greater than the surplus attained in C2. Likewise consumers 3, 4 and 5 preferring C2,

C3 and C4 respectively, will be better off by more than 200 compared to their least favorable

allocation. It is also evident from the tables that between producers and consumers there is a

conflict of interest, the allocation preferred by the producer is the allocation ���	� favored by

the consumer, and the contrary.

Based on these observations it is questionable that the grid-company shall have this power to

effect the distribution of surplus among the participants in the market. Also since the selection

of zone boundaries affect the surplus allocation to the grid-company, there might be a conflict

of interest between the grid-company and the market participants. One way to handle this

conflict of interest could be to specify a rule for selecting zone boundaries, for instance a
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regulation specifying that the grid-company shall select zone boundaries in order to maximize

total social surplus. This would in the example mean C1. However, such a regulation is

dependent on well-behaved players, i.e. suppliers and consumers must truthfully reveal to the

system operator their cost and demand schedules. As pointed to by Wu et al. [16] there are

strong incentives for players not to behave in this way.

If the zonal pricing system is to be based on pre-specified zones, which is not the case in the

current Norwegian system, one could base the zone allocation on some form of bargaining

mechanism based on results from a typical load flow situation. This approach is something

that we are currently investigating.

-
������.!

As displayed in Table 3-3, line-flows vary greatly from one zone definition to another. In

some cases lines may be heavily loaded while other allocations leave the links practically

unused. In addition, the direction of the line-flows depend on which cut is considered. This

may have the effect that lines that are not congested in optimal dispatch may be congested in

the zonal solution, i.e. additional limitations may be introduced.

Consider for instance the case where there is a flow limit of 15 on line 2-5. This constraint

does not bind, neither in the unconstrained solution nor in (the constrained) optimal dispatch.

Choosing a zone definition corresponding to C4 however (or C6, C7 or C8) activates the

constraint. Holding on to zone definition C4, it is not possible to find ��� zonal prices that

clear the zonal markets and induce a feasible flow in the given example. Adding a third zone

by separating nodes 1 and 5 solves the problem, and the partition of the network with new

zonal prices is shown in Figure 3-4 part A. Due to the new constraint requiring 3 zones, social

surplus has increased, also compared to C1.

Figure 3-4 part B illustrates that the degree of improvement depends partly on the system

operator being allowed to make an efficient redispatch. As is also discussed by Stoft [12],

restricting the system operator to redispatch only until congestion is relieved (implying

1525 =� ) might reduce social surplus. Moreover, line-flows that are left at its limit may

constitute a security threat.
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In Table 3-2 there are several examples of negative merchandizing surplus. This is closely

related to line-flows varying as a consequence of choosing different zone allocations.

Consider for instance C7, letting area I consist of nodes 1, 4 and 5, while nodes 2 and 3 belong

to area II. In unconstrained dispatch, area I is a surplus area with a combined net injection of

29.508 which is exported to area II. In C7 however, flow over the zone-boundary from area I

to area II has been reduced to –73.618, i.e. there is net flow from the high price area to the low

price area, with the result that the revenue from the grid is equal to

816.262)018.15588.18(618.73 −≈−⋅− .

Changing the parameters of the example, for instance by reducing the capacity of line 1-2 to 1

unit, gives a negative merchandizing surplus even for the best cut (which is still C1). Even if

so in Table 3-2, the best cut does not necessarily give the maximal merchandizing surplus.

S5=16.513
T5=-42.226

S1=14.616
T1=38.482

S2=17.115
T2=-23.473

S3=17.115
T3=27.871

S4=17.115
T4=-0.653

0.058

15.0023.42 14.94

1.955

10.37

8.424

12.98

S5=15.599
T5=-62.026

S1=14.775
T1=43.254

S2=17.329
T2=-18.773

S3=17.329
T3=33.213

S4=17.329
T4=4.332

1.746

15.0030.00 16.74

2.026

17.02

15.00

14.72

Social Surplus:
3540.715
Grid Revenue:
70.728

Social Surplus:
3529.683
Grid Revenue:
3.155

Part A:
Optimal Redispatch

Part B:
Restricted Redispatch
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This is illustrated in Figure 3-5 where we assume two congested lines, 1-2 with a capacity of

15 units and 4-5 with a capacity of 5 units. The figure displays optimal nodal prices as well as

zonal prices in the case of three (upper part) and four (lower part) zones. Only zone

allocations corresponding to maximal social surplus and maximal grid revenue are exhibited.

�
�������	��.��3����!����-
��!�6
�#��#�������������$���!

&��"�
"���1����������
��!

The results of Table 3-2 and Table 3-3 are based on optimizing the zonal prices. A question

that may be raised is whether the practical procedures outlined at the end of section 2 will

converge to these prices. We can think of two possible problems.

��
�	����������	

An algorithm relying on price adjustments may run into problems because prices are not to be

changed in the expected direction. In the example of Figure 3-6 (with input data in Table 3-4),

line 1-2 has a capacity of 20 and is overloaded in unconstrained dispatch. Assuming nodes 1,

3 and 4 to be in one zone and node 2 to be in the second, node 2 is a surplus area and therefore

16.977

14.645

16.707

16.06714.72616.53114.949

16.70816.713

16.44614.885

Optimal Dispatch Maximal Social Surplus Maximal Grid Revenue

Social Surplus: 3548.742
Grid Revenue: 84.496

17.750

17.927

Social Surplus: 3538.234
Grid Revenue: 107.948

17.262

16.41914.895

Social Surplus: 3549.923
Grid Revenue: 97.606

17.766

16.511

Social Surplus: 3541.779
Grid Revenue: 109.231

17.216

Social Surplus: 3549.941
Grid Revenue: 97.808
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defined to be the “low-price area”. Choosing the optimal zonal prices corresponding to this

partition however requires node 2 to have the highest price. This implies that a procedure of

adjusting prices in the supposed direction from the system price will not converge. Since the

surplus area does not necessarily have the lowest price, the interpretation of Statnett on

positive and negative charges is not general. However, if the validity of this interpretation is

used as a criterion for choosing zone allocations, it will guarantee a positive revenue from the

grid.

����������1����������/�����7����89�����

CONSUMPTION PRODUCTIONNODE

L
�

L
�

L
�

1 20 0.05 0.1
2 20 0.05 0.2
3 20 0.05 0.4
4 20 0.05 0.5

�
�������
�:-�.�&�
"�:�;�"���!�<
�#�&�
"�

�1=16.080
�1=82.412

�2=16.080
�2=2.010

�3=16.080
�3=-38.191

�4=16.080
�4=-46.231

29.14

7.035

31.14

53.26

�1=15.847
�1=75.399

�2=16.777
�2=19.425

�4=15.847
�4=-51.374

20.00

4.026

39.42

55.39

Unconstrained Dispatch Zonal Solution

�3=15.847
�3=-43.450
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A procedure based on curtailing flow over the zone-boundary may also run into problems. If

for instance a zone contains both the congested link and the nodes adjacent to it, the procedure

must curtail �����-zonal flows to make progress. We have already stated that practical

implementations typically place the endpoints of a congested line in different zones. However,

as can be seen from the example of Figure 3-5, this may not be optimal. Both in the three and

four zone optimal solutions, nodes 4 and 5 are in the same zone and the congested link 4-5 is

intra-zonal. This example shows that restricting attention to zones where zone boundaries

should cut congested links, as is done in the current Norwegian system, might lead to a non-

optimal solution.

��� ������		�
���
������	����������

�����

As already mentioned in the beginning of the chapter, both Stoft [12], [14] and Walton and

Tabors [15] focus on nodal price differences when evaluating zonal proposals. As the

examples of Stoft clearly illustrate, if two nodes have different prices in optimal dispatch, they

should in principle belong to different zones. It is however also stated that if a zonal approach

renders significant simplification it is no doubt worth some loss of efficiency. The question is

then how to allocate nodes to zones such that the loss of social surplus is minimal.

The statistical methods used by Walton and Tabors aim at identifying zones that should be

split or combined from means and variances of optimal nodal prices within zones. More

specifically, it is reported that a difference-of-the-means test is applied to examine the

probability that two zonal samples are, in fact, part of a single sample. Moreover, within each

zone outliers are identified (having values further than two standard deviations from the

mean), i.e. Walton and Tabors are comparing nodal prices with the average nodal prices in the

zones.

Returning to the example at the beginning of section 3, assuming line 1-2 is congested, we

have varied the line capacity and changed supply and demand data such that line 1-2 is still
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congested4. In this case it seems like the best zonal division, C1, is quite robust to changes.

Also, C1 corresponds to allocating nodes based on absolute price differences, i.e. placing

nodes 1 and 2 in different zones and then allocating node �  to zone 1 if 21 ����
LL
−<−

and to zone 2 otherwise.

If line 1-2 is the only congested line, it follows from nodal price theory that 1�  would be the

lowest price and 2�  the highest, and that 
L

�  can be found as a weighted average of 1�  and

2�  (Stoft [14] or Wu et al. [16]). In the “DC” approximation the exact weights are constants

depending on network characteristics only (though 1�  and 2�  depend on the exact capacity

and cost and benefit data). Introducing the dual price 
LM

µ  of capacity on line �
 , prices can be

related by applying load factors (Chao and Peck [1]). Since 012 >µ  and 120 ≠∀= �

LM

µ ,

LM

LM
�� 1212βµ+=

where LM

12β  is the load factor of line 1-2 of a trade from �  to 
 .

In the example

LL

LL
������ 1

12121
1
1212111 βµβµ =−+=−=−

and

LL

LL
������ 2

1212
2

12122222 )( βµβµ −=+−=−=−

i.e. 5 21 ����
LL
−<−  if 2

12
1
12

LL ββ < . Choosing node 2 as the reference point, the condition

can be written L

12
1
12 2ββ < , meaning that whether the price of node �  is closest to 1�  or 2�

depends only on network characteristics and can be decided before any bids are received.

                                                
4 Without being in any way exhaustive.
5 Note that ML

NO

LM

NO ββ −= , and with node �  being the reference node, M

NO

L

NO

MP

NO

LP

NO

LM

NO βββββ −=−= .
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Since ),,,0,( 5
1

15
2

5
1

15
7

12 =β  it is easily seen that according to a rule based on (absolute) price

differences, nodes 3, 4 and 5 would be allocated to zone 2.

The interpretation is that since price differentials are based on electrical distances and

influences (through distribution factors), it is natural that node 2 has a stronger influence on

nodes 3, 4 and 5 than node 1 has. Similarly, if only line 4-5 is congested (in direction 4 to 5,

i.e. 045 >µ ) we find that 54 ����
LL
−<−  if L

45
5
45

4
45 2βββ <+  (node 2 still being the

reference node). Since ),,,0,( 15
4

15
4

15
1

15
1

45 −−=β  and 05
45

4
45 =+ ββ , node 1 is allocated to 5,

node 3 is allocated to 4, and node 2 can be allocated to either, which is also expected since

node 2 is equally “far” from both nodes 4 and 5.

Consider now both lines 1-2 and 4-5 to be congested, with 012 >µ  and 045 >µ . Now the

general Chao-Peck-expression for relating prices is

LMLM

LM
�� 45451212 βµβµ ++= .

Examining the relationship between prices of nodes 1 and 2 now give

12
4545

12
121212 βµβµ +=− �� , and since 012

12 >β  while 012
45 <β , the size and also the sign of

12 �� −  depend on load factors ��� the size of 12µ  and 45µ , and therefore on the specific

input data, i.e. line capacities and cost and benefit data. By considering the other pairs of

nodes, some qualitative statements can be made, and they are given in Table 4-1. For instance,

the entry of row 3�  and column 5�  is <, implying that 53 �� < . A question mark indicates

that the relationship cannot be decided without knowledge of shadow prices. The given

relationships could possibly be used to assess zone definitions, at least in a heuristic sense.
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Allocating nodes to zones based on optimal nodal prices requires clustering techniques. An

overview over cluster analysis is given by Hansen and Jaumard [5], in which the steps of a

clustering study are discussed. In particular, different criteria for evaluating homogeneity and

separation are reviewed, together with algorithms for different clustering types. In our setting,

the criterion to base zone allocations on, is of special interest.

In the example of Figure 3-1 it seems useful to allocate nodes to zones based on price

differentials. In general however, optimal nodal price differentials are in themselves not

indicative of the best zone allocation. As exhibited in the example of Figure 4-1 the best zone

allocation (Z1 or Z2) varies with the capacity of line 4-5 (all the other parameters are fixed)6.

When the capacity is equal to 4.2, Z1 is the best partition, allocating node 5 to node 2.

Reducing capacity by 0.1 to 4.1, Z2 is best, allocating node 5 to nodes 3 and 4. A capacity of

4.14858 makes Z1 and Z2 equally good when it comes to total social surplus, although, as

exhibited in and Figure 4-1 and Table 4-2, the allocation of surplus to individual agents vary

considerably.

This switch of best zone allocation occurs even if price differentials are almost identical in the

two cases. Both with capacity equal to 4.1 and 4.2, 5�  is closer to 2�  than 3�  and 4�  are,

and more so when capacity is 4.1 than when capacity is 4.2. However, in both cases 5�  is

closer to 3�  and 4�  (or their average) than to 2� .

                                                
6 Note that the Z2 solutions are identical under the exhibited capacities of line 4-5, the reason being that this
constraint is not binding in Z2.
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16.74314.60916.32515.132

16.64116.782

16.43014.883

Optimal Dispatch Zone Allocation Z1 Zone Allocation Z2

Social Surplus: 3541.184
Grid Revenue: 57.745

17.767

18.332

Social Surplus: 3540.439
Grid Revenue: 104.923

17.233

Social Surplus: 3549.198
Grid Revenue: 99.406

16.74314.60916.29915.155

16.63316.791

16.42814.882

Social Surplus: 3539.706
Grid Revenue: 53.335

17.769

18.383

Social Surplus: 3540.439
Grid Revenue: 104.923

17.233

Social Surplus: 3549.091
Grid Revenue: 99.577

16.74314.60916.31215.144

16.63716.783

16.42914.882

Social Surplus: 3540.439
Grid Revenue: 55.507

17.768

18.358

Social Surplus: 3540.439
Grid Revenue: 104.923

17.233

Social Surplus: 3549.143
Grid Revenue: 99.495

4.200 4.200 3.299

Capacities: Line 1-2: 15; Line 4-5: 4.2

Capacities: Line 1-2: 15; Line 4-5: 4.1

Capacities: Line 1-2: 15; Line 4-5: 4.14858

4.100 4.100 3.299

4.149 4.149 3.299
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 ���
 �Node
OD Z1 Z2 OD Z1 Z2 OD Z1 Z2

1 148.823 151.436 146.086 102.353 97.128 107.828 46.470 54.308 38.258
2 35.536 36.716 34.466 44.642 32.841 55.345 -9.106 3.875 -20.879
3 82.146 81.558 83.715 71.417 73.766 65.140 10.728 7.792 18.575
4 55.457 54.372 55.810 67.257 73.766 65.140 -11.800 -19.394 -9.330
5 27.977 27.186 28.721 64.270 73.766 55.345 -36.293 -46.580 -26.623

��	
 ���
 �Node
OD Z1 Z2 OD Z1 Z2 OD Z1 Z2

1 1107.421 1146.642 1067.057 261.904 235.847 290.671 1369.325 1382.489 1357.728
2 315.698 337.015 296.968 49.823 26.963 76.575 365.521 363.978 373.544
3 674.791 665.177 700.819 127.511 136.037 106.082 802.302 801.214 806.900
4 461.324 443.451 467.212 113.088 136.037 106.082 574.412 579.489 573.294
5 234.822 221.726 247.474 103.266 136.037 76.575 338.088 357.763 324.049

The rationale for using price-differences when evaluating zone allocations can be illustrated

by comparing the unconstrained and constrained dispatch in a two-node example with

consumption in node �  and production in node 
 , the nodes being connected by a line of

limited capacity. For simplicity we still assume linear supply and demand functions.

�
��������������6�
�#��-�!!

�

E

D

C’

C

B’

B

A

M
�

�*�

*
L

�

*
M

�

L
�

M
�

�

L
�

L
�−

�̂
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In Figure 4-2 unconstrained dispatch is given by point A. Because of the limited capacity of

the line connecting nodes �  and 
 , this cannot be attained, and optimal dispatch is given by B

and B’, *
L

�  and *
M

�  being the optimal prices inducing a production of *�  equal to the capacity

of the line. The reduction of social surplus resulting from the capacity limit is equal to the area

of triangle ABB’. Points C and C’ correspond to deviating from the optimal prices. In the

single line case considered, the resulting equilibrium does not fully utilize the capacity of line

�
. In a larger and more general network involving loop flow, the congested line could still be

fully utilized even if prices are not optimal.

The reduction of social surplus, or dead-weight loss, resulting from the price error can be

expressed as a function of prices. Comparing with unconstrained dispatch, the reduction

corresponds to triangle ACC’ and is equal to

))(())(())(( 2
1

2
1

2
1 ������������

MLML
−−+−−=−−

))(())(( 2
1

2
1

M

M

M

M

L

LL

L

L

L �

�

�
�

��
�

��

�

��
�� −−+

−
−

−
−=

2
2
12

2
1 )()(

MFLE
����

ML
−+−= ,

showing that the reduction of social surplus in a node due to the capacity limit ��� price error

is proportional to the square of the difference between the (unconstrained) system price � and

the prevailing price.

Alternatively we could consider the reduction in social surplus from choosing non-optimal

prices only. This is equal to the area of trapezium BCC’B’, i.e.

))(( ***
2
1 ������

MLML
−−+−

))(())(())(( *****
2
1**

2
1 ������������

MLMMLL
−−+−−+−−=

))(())(()()( ***
2
1***

2
12*

2
12*

2
1

MMMLFLLMLEMMFLLE
������������

MLML
−−+−−+−+−=

))(())(( **
2
1**

2
1

MLMMFMLLLE
��������

ML
−−+−−= .
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This is also a function of price-differences, involving optimal nodal prices and the prevailing

prices 
L

�  and 
M

� .

The example also illustrates why a uniform market price is not possible without rationing

producers or consumers. Raising the price from �  in the example reduces consumption, and

at point B the total quantity demanded can be handled by the capacitated line. However, at this

point suppliers prefer quantity �̂ , which is greater than *� , and production must be curtailed

or rationed by some mechanism. Using price *
M

�  in node �  is of course one alternative, the

price constituting the rationing mechanism, but this implies that prices are no longer uniform.

Another alternative is �	
���
��

������, buying off some production by compensating

producers with the difference between *
L

�  and their cost of production. The cheapest way to

implement this would be to compensate the costlier producers. In the given example this

would imply a cost equal to the area of triangle BB’D. In general, consumers could also take

part in this process, in which case optimal dispatch is attainable by transferring ABE to the

least valued demand and AB’E to the most expensive suppliers. Moreover, in a network

involving loop flow we should take into account the effect of individual agents on the

congestion considered. For producers generating counter-flows and consumers relieving

congestion this could imply being compensated for ���
������ output. In general, finding the

least cost redispatch involves solving an optimization problem of the same possible

complexity as the optimal dispatch problem (Fang and David [3], [4] and Singh et al. [10]).

In principle, this arrangement corresponds to the Swedish system of managing congestion,

where the cost of counter-purchases is recovered through the fixed network charges7. Also the

(real time) regulation power markets of both Norway and Sweden manage congestion by

redispatching based on incremental and decremental bids. The exact curtailment procedure

determines the allocation of social surplus to individual agents. In the discussion above we

assumed competitive markets, however, as is illustrated by Stoft [13], a counter-purchase

arrangement is vulnerable to gaming.

                                                
7 Note that attaining optimal dispatch by counter-purchases involves a �	�� on the hands of the grid-company,
whereas under optimal nodal pricing a positive revenue (merchandizing surplus) is collected (Wu et al. [16]).
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Generally in a meshed network, possibly containing both production and consumption in each

node, some agents may loose while others are better off due to price errors. However, the

dead-weight loss can also in this case be expressed as a function of prices. If *
L

�  is the optimal

nodal price of node �  and 
L

�  is the zonal price resulting from a given zone allocation, the

difference between surplus in optimal dispatch and in the zonal solution is equal to

∑ −++
L

LLLLFE
����

LL

))()(( **
2
1

2
1 ,

assuming linear demand and supply functions. Each part of the expression can be positive or

negative depending on the sign of )( *
LL

�� − , which again depends on the exact zone

allocations that determine 
L

� . It is far from obvious how to construct zones from this

expression.

The best allocation of nodes to a given number of zones �  in the presence of a capacity

constraint on line ��  (in direction �  to � ) can be formulated as a non-linear mixed integer

program.

����� [ ]∑∑ −+
L M

V

LMM

G

LMML
����� 2

1
2
1 )(max

����� s.t. ∑⋅=
M

V

LMLL
��� �� ,,1�=

����� ∑⋅−=
M

G

LMLLL
���� �� ,,1�=

�����
LM

V

LM
�� δ1≤ ���� ,,1;,,1 �� ==

�����
LM

G

LM
�� δ2≤ ���� ,,1;,,1 �� ==

���	� ∑ =
M

LM
1δ �� ,,1�=
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Here, 
LM

δ  is a binary variable, which is equal to 1 if node �  belongs to zone �  and 0

otherwise. It can be interpreted as an indicator of whether node �  is allocated to zonal market

� . Production in node �  when allocated to zone �  is V

LM
�  and total production in node �  is

∑ M

V

LM
� . Consumption G

LM
�  is similar, and 1� - 4�  are arbitrarily large positive constants (“big

Ms”).

Assuming linear cost and demand functions the objective function (4-1) expresses the

difference between consumers’ willingness to pay and the cost of production. Constraints

(4-2) and (4-3) define the price in node � , (4-6) allocates each node to exactly one zone, and

(4-4) and (4-5) guarantee that only V

LM
�  and G

LM
�  corresponding to 1=

LM
δ  can be strictly

positive. (4-7) and (4-8) set 
LM

�� =  if 1=
LM

δ , otherwise they put no restriction on the

relationship between 
L

�  and 
M

� . Constraint (4-9) balances total supply and demand. (4-10) is

the capacity constraint, where the left hand side, multiplying load factors and net injections, is

equal to the flow over link ��  in direction from � to �. Finally, (4-11) and (4-12) specify

V

LM
� / G

LM
�  and 

LM
δ  as non-negative and binary variables, respectively.

Due to the non-linear and discrete nature of the problem, it is difficult to solve. However the

non-linearity occurs in the objective function only. Hansen et al. [6] have studied zonal

pricing in relation to facility location and developed solution methods for this related problem.
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We are currently investigating if the optimization problem stated above can be solved using an

equivalent solution approach.

��� �����	
���
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��	�	�����
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From the analyses of this paper, it is evident that

•  Zonal pricing is second-best

•  Zone allocations affect the surplus of individual agents, thus possibly emphasizing

conflicts of interest

•  Merchandizing surplus may be negative even if the zone allocation is optimal

•  The best partition may not have the maximal merchandizing surplus

•  The best zone allocation may or may not separate the endpoints of congested lines

•  Optimal nodal price differences may or may not be indicative of the best partition

It has also been demonstrated that zonal pricing and zone allocation is difficult if it is to be

optimal. This raises the question whether a zonal approach to managing congestion is really a

useful simplification of nodal pricing. It may be so if the main point of managing congestion

is to obtain feasibility, or if it can be established that the disadvantages of not finding the

optimum is outweighed by the perceived simplicity of having only a few prices.

This paper has also identified a number of interesting topics for future research, including

developing solution methods for the non-linear mixed integer program given by (4-1)-(4-12).

Moreover, there may be a need for further investigation of whether it is useful to base zone

allocations on optimal nodal prices, in which case the specific clustering criteria must be

identified. In this context we should look for possibilities of making judgements on the error

resulting from using optimal nodal prices as the basis for allocating nodes to zones.

In Norway there has recently started a discussion on changing the current flexible zonal

pricing system into a system with a few a priori determined zones. The findings in this paper

indicate that it is very important to make a thorough investigation on the number of zones

needed in a fixed zone system, if the fixed zones shall be the same in all load situations or
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different according to some pre-specified criteria. Given that a fixed zone system is to be

used, there is also a need to investigate the redistribution effects the zone system has on the

various market participants and take this into account when defining the fixed zones. Hence,

even though a fixed zone system is simpler to handle and may make it easier to develop a

market for transmission capacity reservation trading, it is far from obvious that a fixed zone

system would be efficient.
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