FOR 122008

ISSN: 1500-4066
JUNE 2008

Discussion paper

Gibbard-Satterthwaite and an Arrovian Connection

BY
EIVIND STENSHOLT

Gibbard-Satterthwaite and an Arrovian Connection

Eivind Stensholt
Norwegian School of Economics and Business Administration Helleveien 30, 5045 Bergen Norway
email: eivind.stensholt@nhh, telephone: +47559592 98, fax: +4755959647

Abstract

A very close link of G-S, the Gibbard-Satterthwaite theorem to Arrow's "impossibility" theorem is shown. G-S is derived as a corollary: from a strategy-proof singleseat election method F is constructed an election method G that contradicts Arrow's theorem.

Assumptions F is a preferential election method for v voters and n candidates, $\mathrm{n}>2: \mathrm{R}=\mathrm{F}(\Omega)$ where R is the social preference relation determined by the profile $\ell=\left(R_{1}, \ldots, R_{v}\right)$ and R_{i} is the ballot preference relation of voter i. Let P and P_{i}, I and I_{i} be the relations of strict preference and indifference associated with R and R_{i}. Assume that
(i) each R_{i} is freely chosen as one of the n ! linear orderings of the candidates;
(ii) there are two I-classes, a singleton class with the unique F -winner $\mathrm{W}_{\mathfrak{q}}$ and the rest;
(iii) for every candidate X there are profiles \mathbb{Q} so that $\mathrm{X}=\mathrm{W}_{\mathbb{R}}$;
(iv) F is nondictatorial in the sense that no fixed d has $W_{\mathbb{R}}$ top-ranked in R_{d} for all Ω. Theorem (Gibbard 1973, Satterthwaite 1975) F is not strategy-proof.

This means that i and $\mathbb{a}=\left(R_{1}, \ldots, R_{i}, \ldots, R_{v}\right)$ exist so that i 's preference as expressed by R_{i} is better served by another relation R_{i} and profile $\mathbb{R}^{\prime}=\left(\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{i}}, \ldots, \mathrm{R}_{\mathrm{v}}\right)$, thus $\mathrm{W}_{\mathbb{R}}, \mathrm{P}_{\mathrm{i}} \mathrm{W}_{\mathfrak{R}}$. The switch from R_{i} to R_{i} is a strategic vote for i . The following proof by contradiction constructs another voting method G so that $Q=G(\Omega)$ would be linear with the same winner as $R=F(R)^{1}$. Proof: Assume F is strategy-proof. Choose by (iii) profiles $\&$ and g so that $\mathrm{W}_{\&} \neq \mathrm{W}_{g}$. Change the profile stepwise from s to \mathscr{I}, one voter switching at a time, and pick a step from \cup to ϑ ' where voter i by switching from R_{i} to R_{i} causes a change: $\mathrm{W}_{\mathscr{U}} \neq \mathrm{W}_{\chi}$. Consider 3 possibilities:

[^0](a) $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}} \mathrm{W}_{U}$ and $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{W}_{U}$; (b) $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}} \mathrm{W}_{\mathscr{U}}$ and $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{W}_{\mathscr{U}}$; (c) $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}} \mathrm{W}_{U}$ and $\mathrm{W}_{थ} \mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{W}_{\mathcal{U}^{\prime}}$.

The switch from (a) R_{i} to R_{i}^{\prime}; (b) R_{i}^{\prime} back to R_{i}; (c) R_{i} to R_{i} is a strategic vote for i. Hence $\mathrm{W}_{\mathscr{U}} \mathrm{P}_{\mathrm{i}} \mathrm{W}_{\mathscr{U}}$ and $\mathrm{W}_{\mathscr{U}} \mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{W}_{U}$. Thus, to get rid of the F-winner W_{U},
$\left(^{*}\right)$ at least one i must switch from $\mathrm{W}_{\chi} \mathrm{P}_{\mathrm{i}} \mathrm{X}$ to $\mathrm{XP}{ }_{\mathrm{i}} \mathrm{W}_{\chi}$ for some X , i.e. let X overtake W_{U}. For given \mathbb{a} and any candidate pair $\{\mathrm{A}, \mathrm{B}\}$, raise A and B to the top two places in each ballot so that none of them passes the other. If A becomes F-winner, write AQB. Define YQY for all Y and set $\mathrm{G}(\Omega)=\mathrm{Q}^{1}$. To complete the proof, observe the consequences C1-C8 [reason in brackets].

C1: If A is on top of every ballot of \mathbb{Q}, then A is the F-winner W_{Q}.
[By (iii), choose \& so that $\mathrm{A}=\mathrm{W}_{s}$, raise A to the top of every ballot and rearrange the other candidates to obtain \mathfrak{a}. Nobody overtakes A in any ballot. By (*) A remains F-winner.]

C2: If all top r ballot places are occupied by $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{r}}$, one of them is the F-winner.
[If $\mathrm{X} \notin\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{r}}\right\}$ is F-winner, raise A_{1} to the top in all ballots. By C1, A_{1} becomes F -winner, but X is not overtaken in any ballot and $\left(^{*}\right)$ is contradicted.]

C3: If A is the F -winner, then A is also G -winner: AQX for every other candidate X .
[Raise A and any X to the top two places in every ballot so that none of the two passes the other.
Nobody overtakes A in any ballot, thus A remains F-winner and AQX.]
C4: Q is linear, i.e. reflexive, complete and antisymmetric.
[Apply the definition of Q and C 2 with $\mathrm{r}=2$.]
C5: G is IIA, "independent of irrelevant alternatives" (Arrow 1963).
[Apply the definition of Q and C 2 with $\mathrm{r}=2$. Rearranging ballot positions $3, \ldots, \mathrm{n}$ will not change the F-winner. The partition $\left\{\mathrm{i}: \mathrm{AP}_{\mathrm{i}} \mathrm{B}\right\} \cup\left\{\mathrm{i}: \mathrm{BP}_{\mathrm{i}} \mathrm{A}\right\}$ of the voter set determines if AQB or BQA .]

C6: $\mathrm{Q}=\mathrm{G}(\mathbb{Q})$ is transitive.

[^1][If $G(R)$ has a cycle $X_{1} Q X_{2} \mathrm{QX}_{3} Q X_{1}$, raise X_{1}, X_{2}, X_{3} to the top 3 places in each ballot, so that no X_{i} overtakes an X_{j}. By C5, the cycle persists, which contradicts C 2 and C 3 .]

C7: G satisfies the Pareto condition.
[If $\mathrm{AP}_{\mathrm{i}} \mathrm{X}$ for all i , then AQX by the definition of Q and C 1 .]
C8: G is nondictatorial.
[A dictator d in G is by (iv) not dictator in F. If d prefers $Y \neq A=W_{a}$, C3 contradicts the dictatorship of din G.]

Thus the assumption of a strategy-proof F implies the existence of G with properties ($\mathrm{C} 4, \mathrm{C} 5$, C6, C7, C8) which are mutually incompatible by Arrow's impossibility result.

References

Arrow, 1963 K. J. Arrow, Social Choice and Individual Values, Cowles Foundation Monograph 12, Yale University Press

Gibbard, 1973 A. Gibbard, Manipulation of Voting Schemes: A General Result, Econometrica 41, 587-601.

Satterthwaite, 1975 M. A. Satterthwaite, Strategy Proofness and Arrow’s conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions, Journal of Economic Theory 10, 187-21.

Schmeidler and Sonnenschein, 1978 D Schmeidler and H Sonnenschein, Two Proofs of the Gibbard-Satterthwaite Theorem on the Possibility of a Strategy-poof Social Function, in Decision Theory and Social Ethics, ed. by Hans W Gottinger and Werner Leinfellner 227234, Reidel Publishing Company.

[^0]: 1. The proof has 2 steps similar to that of Schmeidler and Sonnenschein (1978), with a more powerful conclusion (*) to step 1 and a simpler G in step 2.
[^1]: 1. For intuitive understanding, say that " F and \mathbb{Q} give A an advantage over B " when AQB.
