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Abstract A very close link of G-S, the Gibbard-Satterthwaite theorem to Arrow’s

"impossibility" theorem is shown. G-S is derived as a corollary: from a strategy-proof single-

seat election method F is constructed an election method G that contradicts Arrow’s theorem. 

Assumptions F is a preferential election method for v voters and n candidates, n>2: R = F( )

where R is the social preference relation determined by the profile  = (R1, ..., Rv) and Ri is the

ballot preference relation of voter i. Let P and Pi, I and Ii be the relations of strict preference and

indifference associated with R and Ri. Assume that  

(i)   each Ri is freely chosen as one of the n! linear orderings of the candidates ; 

(ii)  there are two I-classes, a singleton class with the unique F-winner W  and the rest ;  

(iii) for every candidate X there are profiles so that X = W   ;  

(iv)  F is nondictatorial in the sense that no fixed d has W   top-ranked in Rd for all .  

Theorem (Gibbard 1973, Satterthwaite 1975)  F is not strategy-proof. 

This means that i and  = (R1, ..., Ri, ..., Rv) exist so that i’s preference as expressed by Ri is

better served by another relation R’i and profile ’ = (R1, ..., R’i, ..., Rv), thus W ’PiW The

switch from Ri to R’i is a strategic vote for i. The following proof by contradiction constructs

another voting method G so that Q=G( ) would be linear with the same winner as R=F( )1.

Proof: Assume F is strategy-proof. Choose by (iii) profiles  and  so that W W  . Change

the profile stepwise from  to , one voter switching at a time, and pick a step from  to ’ where

voter i by switching from Ri to R’i  causes a change: W W ’ . Consider 3 possibilities: 

1. The proof has 2 steps similar to that of Schmeidler and Sonnenschein (1978), with a more powerful 
conclusion (*) to step 1 and a simpler G in step 2. 
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(a) W PiW  and W Pi’W  ; (b) W PiW  and W Pi’W   ; (c) W PiW  and  W Pi’W .  

The switch from (a) Ri to R’i ; (b) R’i back to Ri ; (c) Ri to R’i is a strategic vote for i. Hence

W PiW   and W Pi’W  . Thus, to get rid of the F-winner W  , 

(*)  at least one i must switch from W PiX to XP’iW  for some X, i.e. let X overtake W  . 

For given  and any candidate pair {A, B}, raise A and B to the top two places in each ballot so

that none of them passes the other. If A becomes F-winner, write AQB. Define YQY for all Y

and set G( )=Q1. To complete the proof, observe the consequences C1-C8 [reason in brackets]. 

C1:   If A is on top of every ballot of , then A is the F-winner W . 

[By (iii), choose so that A = W  , raise A to the top of every ballot and rearrange the other

candidates to obtain . Nobody overtakes A in any ballot. By (*) A remains F-winner.] 

C2:   If all top r ballot places are occupied by A1, ..., Ar,  one of them is the F-winner. 

[If X {A1, ...,Ar} is F-winner, raise A1 to the top in all ballots. By C1, A1 becomes F-winner,

but X is not overtaken in any ballot and (*) is contradicted.] 

C3:   If A is the F-winner, then A is also G-winner: AQX for every other candidate X. 

[Raise A and any X to the top two places in every ballot so that none of the two passes the other.

Nobody overtakes A in any ballot, thus A remains F-winner and AQX.]    

C4:   Q is linear, i.e. reflexive, complete and antisymmetric.  

[Apply the definition of Q and C2 with r=2.] 

C5:   G is IIA, "independent of irrelevant alternatives" (Arrow 1963).  

[Apply the definition of Q and C2 with r=2. Rearranging ballot positions 3, ..., n will not change

the F-winner. The partition {i: APiB}U{i: BPiA} of the voter set determines if AQB or BQA.] 

C6:   Q=G( ) is transitive. 

1. For intuitive understanding, say that "F and give A an advantage over B" when AQB.  
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[If G( ) has a cycle X1QX2QX3QX1, raise X1, X2, X3 to the top 3 places in each ballot, so that

no Xi overtakes an Xj. By C5, the cycle persists, which contradicts C2 and C3.]  

C7:   G satisfies the Pareto condition. 

[If APiX for all i, then AQX by the definition of Q and C1.]     

C8:   G is nondictatorial. 

[A dictator d in G is by (iv) not dictator in F. If d prefers Y A=W  , C3 contradicts the

dictatorship of d in G.] 

Thus the assumption of a strategy-proof F implies the existence of G with properties (C4, C5,

C6, C7, C8) which are mutually incompatible by Arrow’s impossibility result.  
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