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Abstract. Banks and other financial institutions raise hybrid
capital as part of their risk capital. Hybrid capital has no ma-
turity, but, similarily to most corporate debt, includes an embed-
ded issuer’s call option. To obtain acceptance as risk capital, the
first possible exercise date of the embedded call is contractually
deferred by several years, generating a protection period. The ex-
istence of this call feature affects the issuer’s optimal bankruptcy
decision, in addition to the value of debt. We value the call feature
as a European option on perpetual defaultable debt. We do this by
first modifying the underlying asset process to incorporate a time
dependent bankruptcy level before the expiration of the embedded
option. We identify a call option on debt as a fixed number of
put options using a modified exercise price on a modified asset,
which is lognormally distributed, as opposed to the market value
of debt. To include the possibility of default before the expira-
tion of the option we apply barrier options results. The formulas
are quite general and may be used for valuing both embedded and
third-party options. All formulas are developed in the seminal and
standard Black-Scholes-Merton model and, thus, standard analyt-
ical tools such as ’the greeks’, are immediately available.

1. Introduction

Banks and other financial institutions issue risk capital to meet reg-
ulatory capital requirements, reflecting the risk of their business. This
risk capital may, in addition to equity, include subordinated debt, and
some intermediary instruments, commonly denoted hybrid capital. The
purpose of such risk capital is to protect customers/depositors by re-
ducing the issuer’s probability of default and bankruptcy. Similar to
debt, hybrid capital has a fixed principal and coupon, and priority be-
fore equity. Also, similar to most corporate bonds, hybrid capital is
issued with an embedded issuer’s call option. To qualify as risk capi-
tal, however, hybrid capital cannot have any fixed expiration date, and
has to absorb losses without the right to declare bankruptcy, see Com-
mittee on Banking Supervision (1988). To obtain acceptance as risk
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Figure 1. Illustrative call structures in debt contracts.

capital, the first possible exercise date of the embedded call is contrac-
tually deferred by several years. We refer to this deferral period as the
protection period.

Regular corporate debt usually includes callability for issuer from is-
sue until maturity, see case A in Figure 1. This call may be exercised by
the issuer at any coupon date and is thus of Bermudian type, although
commonly modeled as an American option. Such callability has been
analyzed extensively in the literature, see, e.g., Ingersoll (1977a), In-
gersoll (1977b), Brennan and Schwartz (1977), Acharya and Carpenter
(2002).

As mentioned above, in the case of hybrid capital the first possible
call date is contractually deferred for the instrument to qualify as risk
capital, as illustrated by case B in Figure 1. As far as we know, no
debt-like instruments with a protection period has been studied in the
literature before.

For parsimony we simplify the structure further and disregard the
conventional callability also after time T , as illustrated in case C in Fig-
ure 1. Although hybrid capital contracts typically include callability
after the protection period, such contracts also include incentives for
exercising the call at the first possible date. In addition, market prac-
tice1 indicates that these calls actually are exercised at the first exercise
date. Disregarding the callability feature after time T is therefore not
likely to have a major impact on the market value of this contract, and
we believe that our model yields reasonable values.

The scope of this paper is to provide valuation formulas for embedded
options including default risk in the underlying defaultable perpetual

1Due to the extraordinary market conditions in 2008/2009, however, there are
some examples of contracts which have not been called at the first possible date.
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debt before the exercise date. We use defaultable perpetual continu-
ous coupon paying Black and Cox (1976)-debt as the underlying asset.
Infinite horizon corresponds to the contractual horizon of hybrid capi-
tal. We could alternatively include callability in the underlying asset,
but, as argued above, we do not expect this property to have a signif-
icant valuation impact on the option. The exercise date of the option
coincides with the end-date of the protection period, and is given in
the contract, and reflects relevant risk capital regulation. The option
is naturally of European type. We account for the time-varying influ-
ence of the embedded option on the issuer’s bankruptcy decision during
the protection period by allowing the issuer’s bankruptcy barrier to be
time dependent during the protection period. The economic explana-
tion is that the value of a finitely lived option changes as it approaches
its maturity (this time effect is called the option’s theta using financial
jargon). For analytical tractability we assume an exponential structure
of the bankruptcy barrier. The parameters of the bankruptcy barrier
are exogenous in our formulas. The optimal bankruptcy barrier is a
somewhat subtle topic, which, e.g., requires a full specification of the
issuer’s capital structure and, thus, is outside the scope of this paper.
Note that our formulas are valid for any choice of input parameters,
also the parameters representing the optimal barrier.

For a given capital structure our formulas allow for calculation of
the optimal bankruptcy barrier. In this paper we develop the option
formulas without imposing assumptions regarding a company’s capital
structure. Applications, including such assumptions, are addressed in
another paper, Mjøs and Persson (2005).

The fundamental source of uncertainty in our model is an EBIT
(earnings before interest and taxes) process which determines the value
of firm assets. The underlying instrument of the option is classified as
debt, whose value then is determined by the value of the firm assets.
By assumption the EBIT process is lognormal, causing the firm asset
value to be lognormal as well. However, the market value of debt
is not lognormal, and debt may not be used as the underlying asset
in the standard Black-Scholes-Merton option formulas. We show how
one call option on defaultable perpetual debt must be valued as a fixed
number of put options on a modified (solves time dependency), different
(’reinstates’ lognormality) asset in order to fit into the standard model.
Analogously, one put option on debt must be valued as a fixed number
of call options on the modified asset. Furthermore, results from barrier
options are used to include default risk before the expiration of the
option similar to the approach by Toft and Prucyk (1997).

We assume a constant riskfree interest rate. When applied to, e.g.,
hybrid capital, our formulas may be used to calculate coupon rates
including bankruptcy risk. Market practise indicates that issuers typi-
cally pay a fixed credit margin on top of a market reference rate, and
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may thus hedge their exposure to the nominal interest rate. Subtract-
ing the riskfree rate from the coupon rate yields a credit spread. Even
though this spread is based on a constant interest rate model, and
disregards potential correlation effects between the company’s EBIT
process and more general interest rate dynamics, it may serve as a
benchmark.

We develop the option pricing formulas sequentially: We first derive
formulas for European plain vanilla options on defaultable perpetual
debt, disregarding default-risk before expiration. Secondly, compara-
ble to Johnson and Stulz (1987) and Jarrow and Turnbull (1995), we
acknowledge the bankruptcy risk of the issuer of the option and, im-
plicitly, of the underlying security at time T by including a bankruptcy
asset barrier. Such options are denoted vulnerable options in the lit-
erature. Finally, we also include bankruptcy risk before time T by in-
cluding a time-dependent bankruptcy barrier Bt before time T , using
a barrier option approach following Björk (2004). These formulas for
embedded options allow us to study the effect of the protection period
on prices and bankruptcy decisions when the counterparty risk of the
option and the default risk in the underlying security are inseparable.

This paper is organized as follows: Section 2 presents the model and
basic results. In Section 3 we present the valuation formulas for dif-
ferent European options. Section 4 contains some numerical examples.
Finally, Section 5 concludes.

2. The model and basic results

We consider the standard Black and Scholes (1973) and Merton
(1973) economy and impose the usual perfect market assumptions:

• All assets are infinitely separable and continuously tradeable.
• No taxes, transaction cost, bankruptcy costs, agency costs or

short-sale restrictions. All agents have costless and immediate
access to all information.
• There exists a known constant riskless rate of return r.

2.1. The EBIT-based market value process. We analyze options
on debt issued by a limited liability company with financial assets. In
line with Goldstein, Ju, and Leland (2001), we assume that the assets
generate an EBIT (earnings before interest and tax) cashflow denoted
δt given by the stochastic differential equation

(1) dδt = µδtdt+ σδtdWt,

where µ and σ are constants representing the drift and volatility pa-
rameters respectively, and δ0 is the fixed initial cashflow level. Here
Wt is a standard Brownian motion under a fixed equivalent martingale
measure. The total time t market value Ât of the assumed perpetual
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EBIT stream from the assets equals

Ât = EQ
t

[∫ ∞
t

e−r(s−t)δsds

]
=

δt
r − µ

(2)

This formula is some places known as Gordon’s formula (where the
discount rate naturally equals the riskfree interest rate using a risk
neutral set-up). The market value of this EBIT stream is the solution
to the stochastic differential equation

dÂt = (rÂt − δt)dt+ σÂtdWt

= µÂtdt+ σÂtdWt.(3)

The quantity Â is elsewhere in the literature referred to as the unlevered
value of the firm’s assets.

In this setting there is a level of Ât where it is optimal for the com-
pany to stop paying debt coupons and declare bankruptcy. In the
classic case this level is independent of time, i.e., constant.

2.2. The standard Black and Cox (1976) results. The time 0
market value of defaultable perpetual debt with continuous constant
coupon payment is

(4) D(A) =
cD

r
− (

cD

r
− Ā)(

A

Ā
)−β,

where c is the constant coupon rate, D is the par value of the debt-
claim and cD is the continuous coupon payment rate. The term (A

Ā
)−β

may be interpreted as the current market value of one monetary unit
paid upon bankruptcy, i.e., when the process Ât hits the bankruptcy
level Ā. Here β solves the ordinary partial differential equation

(5)
1

2
σ2β(β + 1)− βµ− r = 0,

and is given by

(6) β =
µ− 1

2
σ2 +

√
(µ− 1

2
σ2)2 + 2σ2r

σ2
> 0.

Expression (4) for the market value of debt carries a nice intuition.
Observe that cD

r
is the current market value of perpetual default-free

debt. Upon bankruptcy the debtholder looses infinite stream of coupon
payments which at the time of bankruptcy have market value cD

r
. On

the other hand the debtholder, under the absolute priority rule, receives
the remaining assets with a value equal to Ā. We can therefore interpret
( cD
r
− Ā) as the debtholder’s net loss upon bankruptcy. The time 0

market value of this net loss, ( cD
r
− Ā)(A

Ā
)−β, therefore represents the
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reduction of the time 0 total market value of debt due to default risk.
The default risk is the only source of risk for debt in this model.

The value of equity as the residual claim on the assets is determined
by

(7) E(A) = A−D(A) = A− cD

r
+ (

cD

r
− Ā)(

A

Ā
)−β

In the classic case of a constant bankruptcy level, Black and Cox
(1976) determine the optimal bankruptcy level for a given capital struc-
ture (E, D) from the perspective of the equityholders (found by differ-
entiating expression (7) with respect to Ā) as

(8) Ā∗ =
β

β + 1

cD

r
,

where the star (∗) indicates optimality.

2.3. The exogenous time dependent bankruptcy barrier and
the modified market value process. Due to the finite horizon of
the embedded option, the bankruptcy level of the issuer depends on
remaining time to maturity of the option. In order to include this
aspect we assume a time-dependent exponential bankruptcy asset level
Bt,

Bt = Beγt,

for a given time 0 level B and a constant γ. The time of bankruptcy
is given by the stopping time τ defined as

τ = inf{t ≥ 0, Ât = Bt}

where Ât is given in expression (2).
By modifying the asset process this stopping time can equivalently

be expressed as
τ = inf{t ≥ 0, At = B},

where At is

(9) dAt = (µ− γ)Atdt+ σAtdWt,

Compared to equation (2), the modified process has a drift adjustment
of γ. Although γ determines the curvature of the time dependent ex-
ponential bankruptcy level, it can formally be interpreted as a constant
dividend yield on At. Again formally, this transformation allows us to
analyze the simpler setting of a constant bankruptcy level B, although
no economic fundamentals are changed.

3. Option formulas for finite options on defaultable
perpetual debt

We develop formulas for European options applying the standard
approach from financial economics. We denote the maturity date of
the options by T .
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3.1. The generalized debt dynamics. We rewrite the market value
of debt in terms of the modified process as

(10) Dt =
cD

r
− JFt,

where

Ft = (
eγtAt
Ā

)−β

and J represents the net loss upon bankruptcy. Furthermore, At is
given in expression (9). Before we explain this expression, observe that
the parameter choices J = cD

r
− Ā and t = 0 yield the time zero value

of standard Black and Cox (1976) debt, identical to expression (4).
To incorporate the time dependent bankruptcy level, as explained

above, we work with a modified asset value process {At, t ≥ 0} in

expression (9). Observe that ÂT = eγTAT , thus the parameter γ allows
us to express the time T actual option payoff in terms of the modified
asset value process.

We study finitely lived European options embedded in perpetual
debt contracts. The general time T payoff of such a call option with
exercise price K is

(
cD

r
− JFT −K)+1{eγTAT > Ā}1{τ > T}.

The first factor represents the payoff (DT−K)+ of a plain vanilla option
disregarding any default risk. The first indicator function cancels the
time T payoff when eγTAT is less than the time T bankruptcy level Ā.
The second indicator function cancels the time T payoff upon earlier
default, i.e., if inf0,T At ≤ B. The similar payoff for a put option is

(K − cD

r
+ JFT )+1{eγTAT > Ā}1{τ > T}.

In some applications it is natural to require continuity of the bank-
ruptcy barrier at time T , i.e., BT = BeγT = Ā. In this case the first
indicator function in the two above expressions is redundant.

3.2. Properties of Dt and Ft. Applying Itô’s lemma on expression
(10) shows that

(11)
dDt

Dt

= (r − cD

Dt

)dt+ σβ(
cD

rDt

− 1)dWt

which is not a geometric Brownian motion (the right-hand side depends
on Dt), and is thus not lognormally distributed. Options on Dt can
therefore not be valued directly using standard option pricing formulas.

By applying Itô’s lemma on Ft using expressions (9) and (5) we get

(12) dFt = rFtdt− βσFtdWt,
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which we recognize as a geometric Brownian motion. It has drift pa-
rameter r and volatility parameter −βσ. Furthermore, Ft is a function
of At, and can therefore also be interpreted as a tradable asset.

The use of FT as underlying asset allows us to use the standard
option approach even in the case of options on debt and is, as such,
fundamental to our results.

3.3. European call and put options. First we consider the ’plain
vanilla’ version of standard European put and call options. These call
and put options have time T payoffs

(DT −K)+ = (
cD

r
− JFT −K)+ = J(X − FT )+,

and

(K −DT )+ = (K − cD

r
+ JFT )+ = J(FT −X)+

respectively, where the modified exercise price is

X =
cD
r
−K
J

.

We have shown that the payoff from one call option on debt with
exercise price K is equivalent to the payoff from J put options on FT
with a modified exercise price X. Similarly, the payoff from one put
option on debt with exercise price K is equivalent to the payoff from
J call options on FT with a modified exercise price X.

From the above expression for the payoffs of the plain vanilla call
and put options, we see that the value of AT

(13) Ȧ = θe−γT Ā

where

θ =

(
J

cD
r
−K

) 1
β

produces payoffs of zero for both the plain vanilla put and call options.
Note that K represents the exercise price relative to DT , and Ȧ simi-
larly can be interpreted as the exercise price relative to AT , see Figure
2. The factor e−γT scales Ā down to the modified At-process. If θ > 1,
the exercise price Ȧ is greater than the ’discounted’ bankruptcy level
e−γT Ā. If θ < 1, the exercise price Ȧ is less than the ’discounted’
bankruptcy level.

In general our valuation formulas depend on

• four asset process parameters (µ, γ, σ, δ0),
• four debt parameters (c, D, J , Ā),
• three option parameters (K, T , B),

in addition to r, in total 12 parameters.
For notational simplicity we write the pricing formulas as functions

of A and K only.
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Proposition 1. The time zero market prices of European plain vanilla
call and put options on defaultable perpetual continuous coupon paying
debt claims as described above are

CD
0 (A,K) = JP F

0 (F0, X)(14)

= (
cD

r
−K)e−rTN(−d2)− J(

A

Ā
)−βN(−d1),

and

PD
0 (A,K) = JCF

0 (F0, X)(15)

= J(
A

Ā
)−βN(d1)− (

cD

r
−K)e−rTN(d2)

where

d1 =
ln( Ā

A
)− 1

β
(ln( cD

r
−K)− ln J)− (µ− 1

2
σ2 − σ2β)T

σ
√
T

,

d2 = d1 − σβ
√
T

and A = δ0
r−µ .

Proof. We have shown how the payoff at maturity of one call [put]
option on DT equivalently can be seen as the payoff at maturity of
J put [call] options on FT with a modified exercise price. Under no-
arbitrage assumptions the market value of one call [put] option must be
equal to the market value of J put [call] options on FT at any point in
time before expiration. Options on FT can immediately be calculated
by the Black-Scholes-Merton formulas, using F0 = (A

Ā
)−β as the time

0 market value of the underlying asset, | − βσ| = βσ as the volatility
parameter2, X as the exercise price, and expression (5). �

Compared to the payoffs from regular options, the payoffs at matu-
rity T from options on defaultable perpetual debt are non-linear, not
piecewise linear, functions of AT . The payoffs at maturity T for plain
vanilla options are illustrated in Figure 2.

These option pricing formulas do not take into account that the
issuer of the underlying security may be bankrupt at time T , i.e., if
AT is below e−γT Ā or if At has hit B during the protection period,
i.e., before time T . The formulas are still useful building-blocks in the
following formulas which include both types of default risk.

2Option prices on assets with negative volatility, as Ft, are, in this setting, cal-
culated by inserting the absolute value of the volatility parameter into the option
pricing formula, see e.g., Aase (2004).
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Payoff

Put

Call

r
ATȦ

Figure 2. The payoff at maturity for plain vanilla put and
call options on defaultable perpetual debt as functions of the
time T market value of the firm AT .

3.4. European call and put options with time T default risk.
Denote the time T cash flow of a European call option on DT with
exercise price K and expiration at time T by CD

T (AT , K). The option
only has positive payoff if the issuer of the underlying security is not
bankrupt at time T , i.e., if AT > e−γT Ā. Similarly to the plain vanilla
case, the time T call option cashflow is

CD
T (AT , K) = (DT −K)+1{AT > e−γT Ā}(16)

= J(X − FT )+1{AT > e−γT Ā} = JP F
T (FT , X).

The time T cash flow of a European put option on DT with exercise
price K and expiration at time T is

PD
T (AT , K) = (K −DT )+1{AT > e−γT Ā} =(17)

= J(FT −X)+1{AT > e−γT Ā} = JCF
T (FT , X).

To develop option pricing formulas which reflect that the issuing
company may be bankrupt at time T , it is useful to distinguish between
the cases where θ > 1 and θ < 1, cf. equation (13).

Proposition 2. In the case when θ > 1 the time zero market prices
of European call and put options on defaultable perpetual continuous
coupon paying debt claims, with positive payoff only when AT > e−γT Ā,
are

C0(A,K)θ = CD
0 (A,K) = (

cD

r
−K)e−rTN(−d2)− J(

A

Ā
)−βN(−d1),

(18)

where CD
0 (A,K) is given in expression (14), and
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(19)

P0(A,K)θ = PD
0 (A,K)−

(
J(
A

Ā
)−βN(f1)− (

cD

r
−K)e−rTN(f2)

)
,

f1 =
ln( Ā

A
)− (µ− 1

2
σ2 − σ2β)T

σ
√
T

,

f2 = f1 − σβ
√
T ,

and PD
0 (A,K) is given in expression (15).

Proof. In the case of the put option we must calculate the time 0 market
value of the ’chopped’ claim with the payoff

(K −DT )+1{AT > e−γT Ā}.
First observe that

(K −DT )+1{AT > e−γT Ā} =

(K −DT )+ − (K1 −DT )+ − (K −K1)1{AT ≤ e−γT Ā},
i.e., as a difference between two plain vanilla put options from which a
constant is subtracted for values of AT less than e−γT Ā. See Figure 4.
Here K1 is a modified exercise price calculated as follows: The second
put option must have zero payoff for values of AT > e−γT Ā, and we
therefore choose the exercise price, denoted by K1, so that Ȧ = e−γT Ā.
From expression (13) this is

K1 =
cD

r
− J.

The constant K − K1 represents the net difference in the payoff of a
long position in the first and a short position in the second option for
values of AT less than e−γT Ā. The above identity is then verified.

The market value of the above claim is easily calculated and the
result given by the formula P0(A,K)θ above.

The call formula has a strictly positive payoff for values of AT > Ȧ.
In this case θ > 1, so Ȧ > e−γT Ā, thus the inclusion of time T default
risk has no effect on the payoff, see Figure 3. �

Proposition 3. In the case when θ < 1 the time zero market prices
of European call and put options with positive payoff only when AT >
Āe−γT on defaultable perpetual continuous coupon paying debt claims
are

(20) C0(A,K)θ = (
cD

r
−K)e−rTN(−f2)− J(

A

Ā
)−βN(−f1).

(21) P0(A,K)θ = 0,



12 A. MJØS AND S.-A. PERSSON

r r
AT

Payoff

e−γT Ā Ȧ

Figure 3. The payoff at maturity for a call option on de-
faultable perpetual debt when e−γT Ā < Ȧ (θ > 1), as a func-
tion of the firm value AT . In this case the payoff is identical
to a plain vanilla call option.

r r
r

AT

Payoff

e−γT Ā Ȧ

Figure 4. The payoff at maturity for a put option on de-
faultable perpetual debt when e−γT Ā < Ȧ (θ > 1), as a
function of the firm value AT . Compared to the plain vanilla
put option this payoff is chopped for values of AT below
e−γT Ā.

Proof. In the case when θ < 1, Ȧ < e−γT Ā, so the chopped put option
does not have positive payoff for any values of AT .

The time T payoff of the chopped call option is

(DT −K)+1{AT > e−γT Ā}.
This can be written as

(DT −K1)+ + (K1 −K)1{AT > e−γT Ā},
where K1 is given in the proof of Proposition 2. See also Figure 5.
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r r
r

AT

Payoff

e−γT ĀȦ

Figure 5. The payoff at maturity for a call option on de-
faultable perpetual debt when e−γT Ā > Ȧ (θ < 1), as a
function of the firm value AT . Compared to the plain vanilla
call option this payoff is chopped for values of AT below
e−γT Ā.

The market value of the above claim is easily calculated and is given
by the formula C0(A,K)θ above. �

3.5. Down-and-out barrier call and put options. The previous
section includes the possibility of default at the exercise time T . In
this section we also include the possibility of an earlier default. We
assume that the issuing company defaults if the market value process
At drops below the constant B before time T .

We treat the following cases separately. We assume that B < e−γT Ā.

• Case 1: θ > 1, B < e−γT Ā < Ȧ.
• Case 2: θ < 1, B < Ȧ < e−γT Ā or Ȧ < B < e−γT Ā.

The time T cashflows of down-and-out barrier call and put options
on defaultable perpetual debt with barrier B for the asset-process At
and exercise price K are
(22)

Cdo
T (AT , K) = (

cD

r
− J(

eγTAT
Ā

)−β −K)+1{mA
T > B}1{AT > e−γT Ā},

and
(23)

P do
T (AT , K) = (K − cD

r
+ J(

eγTAT
Ā

)−β)+1{mA
T > B}1{AT > e−γT Ā},

where 1{·} represents the usual indicator function and the minimum
function mA

T = min{At; 0 ≤ t ≤ T}.
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The payoff at maturity from barrier options is not only dependent on
the asset level AT as plain vanilla options, but also on the two relevant
bankruptcy barriers, B for t < T and e−γT Ā for t = T .

3.6. Case 1: Down-and-out barrier options when θ > 1.

Proposition 4. The time zero market values of the down-and-out bar-
rier call and put options on defaultable perpetual continuous coupon
paying debt claims, with B < e−γT Ā < Ȧ(θ > 1) and exercise price K
are, respectively

(24) Cdo
1 (A,K) = CD

0 (A,K)− (
B

A
)(

2(µ−γ)

σ2 −1)CD
0 (
B2

A
,K)

and

(25) P do
1 (A,K) = P0(A,K)θ − (

B

A
)(

2(µ−γ)

σ2 −1)P0(
B2

A
,K)θ.

Proof. The results follow immediately from Theorem 18.8 in Björk
(2004). �

3.7. Case 2: Down-and-out barrier call and put options when
θ < 1.

Proposition 5. The time zero market values of down-and-out barrier
call and put options on defaultable perpetual continuous coupon paying
debt claims, with B < Ȧ < e−γT Ā and exercise price K are

(26) Cdo
2 (A,K) = C0(A,K)θ − (

B

A
)(

2(µ−γ)

σ2 −1)C0(
B2

A
,K)θ,

and

(27) P do
2 (A,K) = P0(A,K)θ = 0.

Proof. The formulas follow immediately from Theorem 18.8 in Björk
(2004). �

The option formulas in the this section are also applicable in situ-
ations where third parties trade options on corporate defaultable per-
petual debt. In such situations the existence of an option contract will
neither influence the pricing of the debt nor the issuing company’s own
optimal choice of bankruptcy level. The option pricing formulas above
can thus be applied by third parties using B = e−γT Ā and γ = 0.
Recall that Ā represents the constant bankruptcy level, for the origi-
nal asset process in expression (3), in the case of defaultable perpetual
debt claims with no embedded call option.
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δ0 3 Initial value of EBIT
µ 2 % Drift of EBIT
σ 25% Volatility of EBIT
r 5 % Riskfree interest rate
γ 0.002 Curvature of protection period barrier
D 70 Face value of debt
c 8% Coupon rate
T 10 Expiration date of option
A0 100 Total asset value at time 0, see Proposition 1
Ā 57.91 Long-run bankruptcy level, from expression (8)
B 56.76 Initial protection period bankruptcy level, B = e−γT Ā
θ 1.27 From expression (13)

Table 1. Base case parameters, all rates are annualized.

Option type Eq. Call Eq. Put
Plain vanilla (14) 6.95 (15) 11.61
Time T risk (18) 6.95 0% (19) 0.45 −96%
Barrier options (24) 5.85 −16% (25) 0.06 −99%

Table 2. Numerical examples of option values using input
parameters from Table 1.

4. Numerical examples

Below we present some numerical valuation examples.
Table 2 demonstrates how the market values of the options decrease

compared to the plain vanilla options when, first, time T default risk,
and, subsequently, also protection period default risk, are included.
Consistent with Figures 4 and 3 the value reduction from including
time T default risk of the put is larger than for the call option.

Figure 6 shows the market values of the six options from Table 2 for
increasing EBIT volatility σ. The put values are increasing, whereas
the call values are decreasing. In our model the EBIT volatility enters
three of the ’Black-Scholes parameters’, see the proof of Proposition
1. An increased σ leads to 1) decreased Black-Scholes volatility, 2)
decreased initial price of the underlying asset F0 for smaller values of σ
and increased initial price of the underlying asset F0 for larger values
of σ, 3) reduced exercise price X. For the call option on debt, which is
priced using a Black-Scholes put option formula, each of these effects
reduce the value of the option for large and increasing values of σ (but
the overall effect, for smaller σ, is an increasing value given our choice
of parameters). For the put option on debt, which is priced using a
Black-Scholes call option formula, effect 2) for larger σ and 3) increase
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Figure 6. The graph shows the market values of the six op-
tions from Table 2 for increasing EBIT volatility. The solid lines
represent the call options. The dashed lines represent the put op-
tions. The upper lines represent the ’plain vanilla’ options, the
middle lines (coincides with the plain vanilla option for the call)
represent options including time T default risk, the lower lines rep-
resent barrier options. In the graph Ā, B and θ are recalculated
for each value of σ. The remaining parameters are given in Table
1.

the value of the option, whereas effect 1) and 2) for smaller σ also in
this case reduces the value of the option. The combined effect given
our choice of parameters for the put option is an overall increase in
value as σ increases.

5. Concluding remarks

We have developed some option formulas for embedded options where
the underlying asset is defaultable perpetual debt. The formulas are
motivated by the embedded options in hybrid capital which have a con-
tractually defined long protection period, necessary for approval as risk
capital. Our main contribution is to quantify the effect of a protection
period on the value of embedded options and the bankruptcy decision
of the issuer. We do this by first modifying the underlying asset process
to incorporate a time dependent bankruptcy level before the expiration
of the embedded option. We then circumvent the non-lognormality of
the market value of debt by considering a call option on debt as a fixed
number of put options with a modified exercise price on a different
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asset, which possesses the required lognormal property. To include the
possibility of default before the expiration of the option we apply bar-
rier option results. The formulas are quite general and may be used
for valuing both embedded and third-party options. All formulas are
developed in the seminal and standard Black-Scholes-Merton model,
thus, standard analytical tools such as ’the greeks’, are immediately
available.

Our results may be applied to value the embedded options in a large
class of perpetual financial instruments which incorporates elements of
both debt and equity, collectively denoted ”hybrid capital”. Issuances
in the USD 260 Bn (2005, source: Lehman Brothers) global market of
hybrid capital are often motivated by capital requirements for financial
institutions. The Bank for International Settlements (BIS) has devised
the fundamental requirements for how hybrid capital may qualify as a
part of core (”Tier 1”) regulatory capital for banks. Our results facil-
itate both pricing of these instruments and provide insights regarding
the bankruptcy impact of embedded options and are also relevant in a
policy perspective. Our formulas may also be used to value third party
options.
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