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Abstract

Dynamic optimization problems cover a large class of problems in theoretical and

applied economics. A simple iterative algorithm with fast convergence is proposed. It

is demonstrated that the algorithm in a few steps produce excellent analytic (closed

form) approximations including error bounds to a class of nonlinear problems.The

algorithmic scheme is also well suited to produce numerical solutions. The notions

of dynamic and potential rents are operationalized. The algorithm is utilizing a

relation balancing these concepts. The result is particularly strong in the case of zero

discounting where the exact CU-optimal policy is determined in a single step.

Applying a particular seed in the general convergent scheme reproduces in a simple

way results (formulas) published in the last decade in bioeconomics.

JEL classification: A12, C61, C63, E10, Q00

Keywords: Closed form approximations; Contraction algorithm; Renewable re-

source economics; Capital dynamic modeling; Zero discounting and

optimality
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1 Introduction

A large class of theoretical and applied research problems can be modeled by a dynamic op-

timization process. The classical formulations, like Hamilton’s principle in mechanics, being

the variational approach and the optimal control theory in economics like the Pontryagin’s

maximum principle or the general dynamic programming approach.

In this account the exploitation of a renewable capital stock is rewritten into a form

suitable for marginal contribution interpretation by defining two new mappings (M and N)

which we label as dynamic rent and potential rent. The feasible policy that balances these

two rents represents the optimal policy in feedback form. Moreover, the balancing equation

gives rise to a contraction mapping. A simple iterative algorithm is shown to converge rapidly

to a solution. A remarkably simple error control is also provided. The algorithm can be used

as a tool to obtain closed form (analytical) feedback approximations. It is also efficient in

obtaining numerical solutions.

We start with the mathematical formulation of the model in section two. The main result

is also presented in this section. The account given is kept brief. Further explanations and

details needed to fully appreciate the ideas involved are given in appendices A and B for the

sake of readability. Basic definition, assumptions and proofs are laid out in an natural way

in these appendices to avoid cluttering the main exposition with technicalities. In section

three we revisit two real world examples from the literature and demonstrate that our new

solution procedure is working very well. The theorem derived is constructive and can be

used directly to produce numerical as well as analytical approximations. Moreover, it has a

nice property in the limit of vanishing discounting. In this limit it produces the exact (CU-)

optimal1 solution in a single ”iteration”.

The modeling approach and results presented in this paper are, however, of a more

general character than the special field of application we focus on here i.e. ideas from

natural renewable resource management2.

The main part of paper is divided into 4 sections followed by two appendixes. Following

the introduction, section 2 establishes the model. It outlines the feedback policy setting and

introduces the main concepts of dynamic and potential rents and their balancing equation

that constitutes the key contraction relation for iterations with given error bounds. In sec-

tion 3 we apply the theory on real world bioeconomic examples from the fishery management

literature and demonstrate that our new approach works well numerically as well as analyt-

1See Seierstad and Sydsæter (1999) for a definition of CU-optimality.
2See e.g. Arnason, Sandal, Steinshamn, and Vestergaard (2004); Sandal and Steinshamn (2001a, 2000);

Grafton, Sandal, and Steinshamn (2000); Sandal and Steinshamn (1998) and Clark (1990).
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ically. It generalizes earlier results found and provide well-defined error bounds where they

were not previously available. Section 4 is a brief summary and discussion. Key features are

a simple scheme, fast contraction3 and error control.

2 The Model

In managing renewable resources the following class of problems is of interest. Obtain

max
ũ∈U

∫ ∞

0
e−δtΠ(x(t), ũ(t))dt ,(1)

where x ∈ X, ũ ∈ U and X, U are intervals. Here Π is a twice differentiable and strictly

concave function of ũ. The discount rate δ is nonnegative. To avoid unnecessary technicalities

it is sufficient in our context to assume that x = x(t) and ũ = ũ(t) are piecewise smooth4

and x = x(t) is continuous. The maximization is to be performed subject to the constraining

state equation5

ẋ
def
=

dx

dt
= f(x)− ũ .(2)

Our main objective is not to derive existence or uniqueness results but to provide a simple

scheme for getting closed form approximations to a class of nonlinear real-world problems.

We may assume that some criteria for existence of an optimal solution are satisfied, e.g. that

of the Mangasarin sufficiency and uniqueness theorem for the Catching-Up optimality6. In

this work we take for granted the existence of at least one optimal policy and we focus solely

on conditions ensuring our approach to pick an optimal control path in state and policy

space. In the problems we have in mind x may be interpreted as a measure of the stock level

of a renewable resource, ũ the harvest rate and f(x) the natural surplus growth rate of the

resource.

In the next section we present an alternative formulation by introducing the notions of

dynamic and potential rent. These quantities play a similar role in our problem as potential

and kinetic energy do in classical mechanics.

3Only few iterations are needed for good approximations.
4The term is short for functions with a continuous derivative except at a finite number of points.
5The approach in this paper can be generalized to a larger class of state equations. We have chosen a

simple form to avoid cluttering the presentation and interpretations with too many technicalities.
6See e.g. theorem 13 on page 234 in Seierstad and Sydsæter (1999).
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2.1 The Feedback Approach

Here we consider the state and control space and treat time t as a redundant parameter. In

this space we examine piecewise continuously differential functions u = u(x), usually called

policies in feedback form7 or control paths. We allow for discontinuities in the derivative as

well as in the function itself at a finite number of points. The model can be formulated as

an integral equation

M(x, u) = Ñ(x)[u, α] ,(3)

where

M(x, u)
def
= Π(x, u) + Πu(x, u) {f(x)− u} − S(x) ,(4)

and

S(x)
def
= Π(x, f(x)) .(5)

Furthermore

Ñ(x)[u, α]
def
= K(α)− S(x) + δ ·

∫ x

α
Πu(s, u(s))ds ,(6)

where α and K(α) are parameters to be determined. We have by definition that M(x, f(x)) ≡
0. A derivation of Eq. (3) is offered in appendix A. The equation in simplified form reads

Π(x, u) + {f(x)− u} · Πu(x, u) = K(α) + δ ·
∫ x

α
Πu(s, u(s))ds .(7)

The formulation given in Eq. (3) is preferred due to the nice properties held by the operators

M and Ñ . Before establishing these properties we give some interpretations of the different

terms involved. Notice that M is an explicit given function while Ñ is a functional depending

on the state x, an interval in state space and a policy function u over the interval. More details

concerning the properties of M and Ñ are stated and proved through a series of propositions

and lemmas in appendix B. In the present setting Eq. (2) is actually redundant and only

serves the purpose of connecting the problem to the time domain. Interpretations of the

terms in Eq. (3) within a typical economic framework are the time rates

Π ∼ rent,

(f − u) · Πu ∼ saving/investments,

S(x) ∼ sustainable rent,

K(α) ∼ rent in a reference state,

7By definition u = u(x(t)) = ũ(t) and hence u = u(x) is the feedback form of the policy.
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δ ·
∫ x

α
Πu(s, u(s))ds ∼ running cost or gain in moving between α and x.

We observe that M is made up of the first three terms in the above list where the two

first terms represent the net total gain. The third term represents sustainable rent, that is

the rent obtained by freezing the situation, hence M can be interpreted as the net gain by

changing the state and we refer to it as dynamic rent. It follows directly from the definition

of M and the concavity of Π that the dynamic rent is non-negative. On the other hand Ñ is

made up by the last three terms on the list and is thereby a measure of the net accumulated

cost of changing the state by following a particular path and we refer to it as the potential

rent.

We have that M = Ñ is the point of balance in marginal contributions in time. Thus the

optimal policy corresponds to the case where we have a decreasing marginal contribution by

following an optimal policy in time, i.e. M → 0 with time as we are approaching a stationary

state. It is seen from the definition of the dynamic rent that it resembles the notion of kinetic

energy in physics by noticing that

M(x, u) = −Πuu(x, u)(f(x)− u)2 + o((f(x)− u)2) =
1

2
mẋ2 + o(ẋ2),

and m = −2Πuu(x, u) > 0 and ẋ represent the mass and velocity of a rigid body. Thus our

problem is similar to a physical situation where an object is moving towards an equilibrium

position in a manner such that the kinetic energy Ek = 1
2
mv2 associated with the dynamics

is decreasing over time. We are looking for a position to end motion by asking: Which states

(α-values) are possible ”parking” spots? In analogy with the physical picture it will be the

states with extreme potential energy which in our setting implies a state which maximize the

potential rent subject to being at rest or fixed. Restricting ourselves to an inner optimum

we obtain

α = arg max
α∈X

Ñ ⇒





K(α) = S(α) = Π(α, f(α)) ,

K ′(α) = δ · Πu(α, u(α)) = δ ∗ µ(α) ,

u(α) = f(α) ,

implying

S ′(α) = δ · µ(α) where µ(x)
def
= Πu(x, f(x)) .(8)

It has been shown by Sandal and Steinshamn (1997b) that relation (8) is the general equi-

librium condition. The term S ′(α) is the marginal change in the sustainable rent due to a

marginal change in stock/state level and δµ(α) represents the alternative rate of return this

change can earn. Eq. (8) is a compact form of the equilibrium relation in natural renewable
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resource economics and it is sometimes referred to as the Golden Rule. It simply states that

the marginal value added by not utilizing a unit of the resource is equal to the marginal

gain of utilizing it. If such a resource level exists, the management regime will be indifferent

whether to utilize the resource unit or not and hence the resource level becomes a settling

down state.

In the present context we assume that such a state exists and is determined by solving

Eq. (8). It is chosen to be our point of reference. We label it α = x∗δ . If there is more

than one solution we choose one that maximize S. Notice that it is sufficient that the scalar

function S̃(x) = S(x)− δ
∫

µ(x)dx is strictly concave for a unique equilibrium to exist. See

Sandal and Steinshamn (1997b) for further details.

2.2 Main Result

In order to present the main result in a compact way we list some key definitions and

assumptions.

The playground in state and control space is A∗ given by

A∗ def
= {(x, u) | (x− x∗δ)(f(x)− u) ≤ 0, x ∈ X, u ∈ U} ,(9)

Paths restricted to the set A∗ represents policies that do not move the state away from its

optimal stationary level. The following assumption is expected to hold throughout the rest

of the paper:

A1 The function Π(x, u) is twice differentiable in its arguments with Πu ≥ 0 and

0 < m1(x) ≤ −Πuu(x, u) ≤ m2(x) < ∞ on (x, u) ∈ A∗ ,

for a pair of integrable functions m1 and m2.

We also need the following relations

M(x, u) = Π(x, u) + Πu(x, u) {f(x)− u} − S(x)

N(x, u)
def
= S∗δ − S(x) + δ ·

∫ x

x∗
δ

Πu(s, u(s))ds = Ñ(x)[u, x∗δ ] ,(10)

S∗δ
def
= S(x∗δ) = Π(x∗δ , f(x∗δ)) ,(11)

Definition 1 Admissible Controls

Admissible controls (feedback policies) are u = u(x) ∈ PS(X) where PS(X) is the set of
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piecewise smooth and bounded functions such that (x, u(x)) ∈ A∗.

A sequence is called an admissible if all the terms in the sequence are admissible controls.

We can now state our main result in the following theorem:

Theorem 1 Convergence and Error Bounds

Any infinite admissible sequence {vn} produced by M(x, vn+1) = N(x, vn) for an arbitrary

seed v0, converge to the unique admissible solution u satisfying M(x, u) = N(x, u). Moreover,

if {vn} is a super-sub sequence (e.g. v0 = f(x)) then u = 1
2
(vn−1 + vn) + ε where |ε| ≤

1
2
|vn − vn−1|.

The proof of this theorem is rather tedious. Details are given in Appendix B. The core

in the proof is the construction of enveloping sequences that are alternating around the

unique solution (sub-super solutions). This construction is reflected in the error bound

given. The theorem is constructive in the sense that one can choose freely a seed function

or a collection of numerical points representing the function and start iterating. Any kind

of proper numerical integrator can be used in evaluating the right hand side in the iteration

scheme if one wishes to find numerical approximations/solutions. We will here emphasize

that the theorem gives an easy way to find analytic bounds on the solution and thereby

analytical (closed form) approximations to the solution.

Solutions are particularly easy to find when δ → 0.8 In this limit equation (7) becomes

the ordinary equation M(x, u) + S(x) = S∗0 for the feedback policy u(x). Formally this

limit can be interpreted as a generalized optimality. That is, even though different policies

may create infinite large utilities there are no value of a discount rate that can alter the

practical result that ”two dollars a day is better than one dollar a day for infinitely long

time”. Catching-Up optimality (CU-optimality) is a generalization along theses ideas. This

and other natural extensions of the notion of optimality can be found in e.g. Seierstad and

Sydsæter (1999). The formal solution of this equation is in fact a separatrix in phase space

going through the reference point x∗0. The equation itself is a convenient way of stating the

fact that the Hamiltonian is conserved in this special case.

8The zero discounting case is problematic in classical numerical infinite horizon approaches. The CU-
optimal feedback policy limit is also hard in modern viscosity solution approach. See e.g. Fleming and Soner
(1993) on page 371.
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3 Examples from Fisheries Management

In this section we exemplify the strength and applicability of our main result by reproducing

some published results. Both examples are illustrations of the potential power of theorem 1.

We revisit two important bioeconomic cases in fishery management. Both cases concern the

problem of determining the total allowable catch (TAC) quotas. Our main result is by no

means limited to this class of problem. Among others, the papers, Sandal and Steinshamn

(1998, 2000, 2001b) and McDonald, Sandal, and Steinshamn (2002) deal with models that

can be suitably handled with the procedure described in this paper.

3.1 A Northern Cod Fishery Model

This is a non-trivial illustration of the potential our procedure has to offer by producing

good analytical results without specifying a model in full details. In Grafton, Sandal, and

Steinshamn (2000) the collapse of the Canadian Northern Cod Fishery was investigated by

using a model defined by the economic relations

Π(x, u) = P (u) u− C(x, u) , P (u) =
a p1 + u p0

a + u
, C(x, u) = q

u

x
.(12)

The prices p0 and p1 are the minimum and the maximum prices, a the flexibility parameter

in the inverse demand function and q is the derived cost parameter measuring the cost per

unit output per unit biomass. The biomass is assumed to be updated according to

ẋ = f(x)− u = r x (1− x

K
)α − u(13)

where r is the intrinsic growth rate for the biomass and K is the stock’s carrying capacity in

terms of biomass. The parameter α is measuring how much the maximum sustainable yield

(MSY) is skewed to left or right of the MSY in the logistic model (at x = 0.5K for α = 1).

The problem is naturally restricted to the region x = [0, K]. Applying the appropriate

definitions we get

M(x, u) =
a2(p1 − p0)

a + f(x)
·
[
(f(x)− u)

(a + u)

]2

,(14)

S(x) = Π(x, f(x)) = (a p1 + f(x) p0)
f(x)

a + f(x)
− q

f(x)

x
,(15)

Πu(x, u) = p0 − q

x
+

(p1 − p0)a
2

(a + u)2
,(16)
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µ(x) = Πu(x, f(x)) ,

N(x, u) = S(x∗)− S(x) + δ p0(x− x∗)− δ q ln
(

x

x∗

)

+ δ (p1 − p0) a2
∫ x

x∗

ds

(a + u(s))2
(17)

= Ŝ(x) + δ (p1 − p0) a2
∫ x

x∗

ds

(a + u(s))2
.

The reference state x∗δ is the solution of S ′(x) = δ µ(x). It is worth pointing out that we

have an exact formula for the feedback policy in the limit of vanishing discounting. In

this case we must interpret the optimality in a generalized sense, e.g., the CU-optimality9.

The iteration scheme M(x, un+1) = N(x, un), can be started with the static optimal policy

making Πu(x, u0) = 0, which is the same as neglecting the discount rate in the first iteration.

Thus it gives the exact discount free solution. We get explicit closed form expression for

{u0, u1} from

Πu(x, u0) = p0 − q

x
+ (p1 − p0)

a2

(a + u0)2
= 0

and

Ŝ(x) = S(x∗)− S(x) + δ · p0 · (x− x∗)− δ · q · ln(x/x∗) =
a2(p1 − p0)

a + f(x)
·
[
f(x)− u1

a + u1

]2

The second iteration is for all practical purposes the solution. This is the same type

of solution we get if we use classical perturbation theory with the discount rate as the

perturbation parameter, see Sandal and Steinshamn (1997a,c). In our setting it is just a

result of a particular choice of seed in our general iteration scheme10. Notice that the system

becomes singular when p1 = p0, signaling that only the equilibrium point fits the equation.

This is in fact what we will expect since we then know that the optimal behavior is a bang-

bang policy with the switch at the equilibrium point. The CU -optimal policy in the limit

δ → 0 is given by u = u1,

u1(x) =
aΛ(x) + f(x)

1− Λ(x)
, Λ(x)

def
= sgn (x− x∗δ)

√√√√(a + f(x))Ŝ(x)

a2(p1 − p0)
,(18)

where the signum function stems from the definition of the region A∗.

9See Seierstad and Sydsæter (1999) for different extensions of the notion of optimality in the infinite
horizon case.

10An even better approximation is produced by using u0 = k x as seed, a line through two known points
on the true solution if k = f(x∗δ)

x∗
δ

.
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Figure 1: This figure shows the function f(x) = u0 (starts at (0, 0) and ends at (1, 0), and the
approximate optimal harvests u1, u2, u3. The common point for all curves is (x∗δ , u(x∗δ)), the
equilibrium point. Absolute error bounds after 1,2,3 iterations: 0.058, 0.00167, 0.0000577.
Discount rate is 5%. Considering the curves for x < x∗δ , the lower curve is u1, the upper
curve is u2 and u3 is the middle curve. This can be seen more clearly in the window where
a short portion of these curves are enlarged. The unique solution u∗ is located in between
u2 and u3. This demonstrates that u = 1

2
(u2 + u3) is a very good approximation. Stock and

harvest are scaled by the carrying capacity (K).

The above seed in the iterative process is only worth working with if we need a formula for

the solution. In the numerical analysis we can start with any function in the relevant region.

However, u0 = f(x) is an excellent choice since it is a super-sub solution.11 By applying

the parameter values from Sandal and Steinshamn (1997a) r = 0.3036, K = 3.2 × 106,

α = 0.3587, pmin = 200, pmax = 1250, a = 0.139× 106, q = 2.006× 108. We have plotted the

iterative solutions {u0, u1, u2, u3} for the case δ = 5%.

3.2 Bluefin Tuna

In the article McDonald, Sandal, and Steinshamn (2002), a bioeconomic model for Bluefin

Tuna in the Southern hemisphere is investigated. We illustrate our technique by applying it

11A super-sub solution is any function that is a super solution to the left of x = x∗δ , and a sub solution to
the right, i.e. it is not below the true solution to the left and not above it to the right of x = x∗δ .
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on this model. We summarize the basics in the following relations

Π(x, u) = γ(x) u− Γ(x) u2 − α(x) , ẋ = f(x)− u .(19)

The dynamic and potential rates are

M(x, u) = Γ(x)(u− f(x))2 ,

Πu(x, u) = γ(x)− 2 Γ(x) u ,

µ(x) = γ(x)− 2 Γ(x) f(x) ,

S(x) = γ(x) f(x)− Γ(x) (f(x))2 − α(x) ,

N(x, u) = S(x∗δ)− S(x) + δ
∫ x

x∗
δ

γ(s)ds− 2δ
∫ x

x∗
δ

Γ(s)u(s)ds

= Ŝ(x)− 2δ
∫ x

x∗δ
Γ(s)u(s)ds .

Hence the iterations can be explicitly calculated, giving

un+1(x) = f(x) + sgn (x− x∗δ)

√√√√ Ŝ(x)

Γ(x)
− 2δ

Γ(x)

∫ x

x∗
δ

Γ(s) un(s)ds .(20)

Using the myopic policy (the infinite discounting solution) as seed, i.e. u0 = γ(x)/(2 Γ(x)),

we get the exact zero-discounting solution in the first iteration which also was the case in

the former example. This behavior is a general property of our procedure.

In the appendix we prove the general statement that any super (sub) seed generates a

sequence alternating between super and sub solutions. In the above example we started

with a tight super solution (myopic or static policy) and next iterate is a tight sub solution

(exact zero discount solution). It should be rather obvious from a practical interpretation

of the problem that the myopic harvest is larger than the first best and the zero discounting

harvest is too conservative.

We state the basic input functions for the Bluefin Tuna problem given in McDonald,

Sandal, and Steinshamn (2002). The fish stock is modeled by a surplus growth function

with critical depensation12

Π = a · u− b · u2 − d

x
, f(x) = r · (x− k) · (1− x

K
) ,(21)

where the following parameter values are used: r = 0.2246, K = 0.565 × 106, a = 88.25,

12Critical depensation implies that the stock goes extinct by itself if the stock falls below a given level.
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Figure 2: This figure shows the function u0 = f(x) (ends at (1, 0)), and the approximate
optimal harvest u1, u2, u3. The common point for all curves is (x∗δ , u(x∗δ)), the equilibrium
point. Absolute error bounds after 1,2,3 iterations are: 0.041, 0.00289, 0.000246. Discount
rate was set to 5%. Considering the curves for x > x∗δ , the upper curve is u1 and u2 is
the lowest curve. Furthermore u3 is the middle curve. The unique solution u∗ is located in
between u2 nd u3. This demonstrates that u = 1

2
(u2 + u3) is a very good approximation.

Stock and harvest are scaled by the carrying capacity (K).

b = 9.0 × 10−4, d = 1.63 × 1011, k = 0.716 × 106. Results are plotted in figure 2. The

approximate optimal solutions displayed in figures 1 and 2 are in excellent agreement with

the cited references.

4 Summary

We have presented a novel procedure to solve a class of non-linear infinite horizon control

problems. By introducing the new general notions of dynamic rent and potential rent we

obtain an equation for the optimal feedback policy by balancing the two types of rents. This

balancing equation gives rise to a contraction mapping with extra nice properties that can

be utilized to make a robust iteration scheme for determining numerically as well as analyt-

ically the feedback policy with explicit error bounds. In the case of vanishing discounting

(the autonomous case) the balancing of the dynamic and potential rent yields and ordinary

(algebraic) equation for the Catching-Up optimal feedback policy.

The case with a single state and control is important. Lumped variables are often the
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best approach to many applications in bioeconomics because the policy tools in many cir-

cumstances are rough and on an accumulated level. This simplification may be a result of

practical limitations on how the policy can be implemented. A lot of fisheries around the

world are managed by setting the total annual catch (TAC). It is no point in having models

cluttered with more details than what are present in the real decision process on the real

decision level. The art of modeling is closely related to the ability to make models as simple

as possible and still capture the main features set out to be explored. It is a typical pitfall

to try to model as much as possible in a single approach. The result is loss of clarity and

causality. It becomes impossible to anchor the model in a proper way to the real world.

There is simply too much uncertainty floating around and too many parameters that can

not be resolved from data. In any case it is a good approach to check and evaluate more

complex models by how they perform compared to proper (preferable analytical) solutions

of some non-trivial degenerated cases of the model. Our approach picks up nonlinear effects

in an easy and transparent way. Thus we believe that our results can be of some value.

In the examples presented from the current literature, a few iterations are sufficient to

obtain an approximate solution of very high quality and accuracy. This is demonstrated in

a striking way in figures 1 and 2.

There are many interesting features in our formulation. The economic interpretations of

M as dynamic rent and N as potential rent and their properties are the most prominent.

Another basic feature is the source term in the iterations scheme, N (the integral term), which

is the only place where the discount rate, δ, enters explicitly. The fact that the discount rate

is typically a small quantity suggests that the exact solution for δ = 0 contains the proper

behavior that stems from the nonlinearity in the problem. This policy is straight forward

to obtain in our scheme (”a single iteration”). A small discount rate is mainly shifting the

policy slightly upwards. This statement does of course only hold for the policy. The value

function itself may change dramatically, i.e. become infinitely large in the limit of zero

discounting. In classical perturbational approach the discount rate may have a significant

impact on the speed of convergence as has been established in the referenced papers. In the

context of the present paper the classical perturbational (i.e an asymptotic series approach)

is just a consequence of a particular choice of seed in a general procedure. Hence it is a way

to check the quality of such asymptotic series.

The convergence rate can actually be investigated analytically and this analysis brings

forward this feature. We do not include the details of this analysis in the present account

because a numerical check of the accuracy is easily available due to simple error bounds. The

fact that very few iterations produce a sufficiently accurate solution offers the possibility to
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analytically determine an approximate solution. This is a much more powerful tool for

parameter adaption in any modeling procedure than any particular numerical solution can

offer.

Finally, we believe that the procedure and results outlined in this paper can be carried

over to the analogous finite horizon problems. By using the appropriate transversality con-

ditions it should be possible two pick out a point on the optimal policy which then serves

the role as our reference point and replaces α = x∗δ in the present exposition.

References

Arnason, R., L. K. Sandal, S. I. Steinshamn, and N. Vestergaard (2004): “Opti-

mal Feedback Controls: Comparative Evaluation of the Cod fisheries in Denmark, Iceland

and Norway,” American Journal of Agricultural Economics, 86(2), 531–542.

Bardi, M., and I. C. Dolcetta (1997): Optimal Control and Viscosity Solutions of

Hamilton-Jacobi-Bellman Equations, System Control. Birkhauser Boston Inc, Boston.

Clark, C. W. (1990): Mathematical Bioeconomics The Optimal Management of Renewable

Resources. New York, John Wiley & Sons, New York.

Fleming, W. H., and H. M. Soner (1993): Controlled Markov Processes and Viscosity

Solutions. Springer-Verlag.

Grafton, R., L. K. Sandal, and S. I. Steinshamn (2000): “How to improve the

management of renewable resources: The case of Canada’s northern cod fishery,” American

Journal of Agricultural Economics, 82(3), 570–580.

McDonald, D., L. K. Sandal, and S. I. Steinshamn (2002): “Implications of a nested

Stochastic/Deterministic Bio-Economic Model for a Pelagic Fishery,” Ecological Modelling,

149(1-2), 193–201.

Sandal, L. K., and S. I. Steinshamn (1997a): “A feedback model for optimal man-

agement of renewable natural capital stocks,” Canadian Journal of Fisheries and Aquatic

Sciences, 54, 2475–2482.

(1997b): “Optimal Steady State and the Effect of Discounting,” Marine Resource

Economics, 12, 95–105.

14



(1997c): “A Stochastic Feedback Model for Optimal Management of Renewable

Resources,” Natural Resource Modeling, 10, 31–52.

(1998): “Dynamic corrective taxes with flow and stock externalities: A feedback

approach,” Natural Resource Modeling, 11, 217–239.

(2000): “The Cost of Underutilization of Labour in Fisheries,” Annals of Operations

Research, 94, 1–13.

(2001a): “A Bio-economic model for Namibian Pilchard,” The South African Jour-

nal of Economics, 69(2), 1–24.

(2001b): “A simplified feedback approach to optimal resource management,” Nat-

ural Resource Modeling, 14(3), 419–432.

Seierstad, A., and K. Sydsæter (1999): Optimal Control Theory with Economic Appli-

cations, Advanced textbooks in Economics. North-Holland, Amsterdam, second edn.

15



A Balancing Dynamic and Potential Rents

A derivation of the relation, Eq. (3), is offered here. This equation is at the heart of our

approach. It expresses the balance between the dynamic and potential rents that must be

fulfilled by the optimal path.

Let H and λ be the current value representations of the Hamiltonian and the shadow price

respectively. The Hamiltonian formulation results in the following definitions and system of

equations

H(x, ũ, λ)
def
= Π(x, ũ) + λ · (f(x)− ũ) ,

ũ = arg max
ũ∈U

H , (Hũ = 0 for internal optimum)

ẋ = f(x)− ũ = Hλ ,

λ̇ = δ λ−Hx .

A consequence of these equations is

Ḣ = Hx ẋ + Hũ
˙̃u + Hλλ̇ + Ht = δ λ ẋ.

For the cases studied the term Hũ
˙̃u = 0, either because Hũ = 0 (internal optimum) or

otherwise because ˙̃u = 0. The equation above replaces the equation for the shadow price i.e.

the equation for λ̇. By integration in time and a substitution to the state and policy space

we get

H = K + δ
∫ t

t0
λ ẋdt = K + δ

∫ x

α
λ dx .

K is a constant of integration, which also represent the value of the optimal Hamiltonian

at an arbitrary point in state and policy space on the optimal policy path. At an inner

dynamical optimum we have λ = Πũ, and the result can be written as

H = K + δ
∫ x

α
Πu(z, u(z)) dz .

The feedback form of the policy, u = ũ(t) = u(x(t)) = u(x), has been used. This is Eq. (7)

which implies the main relation balancing dynamic and potential rents as expressed by Eq.

(3).

Observe that we switched from integration over t to integration over x because the first

order conditions for the current values are autonomous and t is a redundant parameter.

We may consider u = u(x) instead of ũ = ũ(t), where u(x) and ũ(t) are entirely different
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functions, although connected through the fact that they have the same value at any given

point in time. The equation for ẋ is of no use in the state-control space. In a way we can

formally think of x as being observed and u(x) is our response to this observation. That is,

we do not need the evolution equation for the ”observable state” x in order to react in an

optimal way. This is of course just a formal phrasing. We are dealing with a deterministic

system and hence we can in principle alway calculate the path in state space from a given

initial position. It is in this context we must interpret the statement that the ẋ-equation only

serve to connect the (x, u)-space to the time domain. We are simply studying the optimal

policy problem in phase space rather than investigating the trajectories parameterized by

time. In this setting a proper phase space analysis is indeed a feedback description.

B Derivation of Main Result

This appendix contains definitions, lemmas and propositions leading to a proof of our main

result as it is given in Theorem 1. We first state two important assumptions

Basic Assumptions

A1 The function Π(x, u) is twice differentiable in its arguments with Πu ≥ 0 and

−∞ < −m2(x) ≤ Πuu(x, u) ≤ −m1(x) < 0 on (x, u) ∈ A∗ ,

for some integrable functions m1 and m2.

A2 The scalar function ψ(x) is positive definite on x ∈ X and is defined by

ψ(x)
def
= S∗δ − S(x) + δ

∫ x

x∗
δ

µ(s)ds = S∗δ − Π(x, f(x)) + δ
∫ x

x∗
δ

Πu(s, f(s))ds.

The function ψ(x) ≡ N(x, f(x)) has a critical point at x = x∗δ , which is stated in Eq. (8).

We assume that this is representing a unique global minimum. Ψ plays the role of potential

rent gain and the stationary state is a state with no potential gain with the interpretation

that all potential rent is being continuously realized. Hence determination of the stationary

state x∗δ can be thought of as follows:

The preferred equilibrium state in a dynamic economic adjustment process is the state with

all potentials utilize and is determined by finding the global minimum of the scalar function

ψ(x).
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The following quantities play a key role in our proofs.

Q(x, u)
def
= M(x, u)−N(x, u) and (x, u) ∈ A∗(22)

A∗
L

def
= {(x, u)| (x, u) ∈ A∗ & x ≤ x∗δ} ,(23)

A∗
R

def
= {(x, u)| (x, u) ∈ A∗ & x ≥ x∗δ} .(24)

Notice that A∗
L ∪ A∗

R = A∗ and f(x)− u is not decreasing in A∗
L and not increasing in A∗

R.

We shall prove that Q(x, u) = 0 has a unique admissible solution such that

(x, u) ∈ B ∈ {A∗
L, A∗

R}. Moreover the iteration scheme M(x, un+1) = N(x, un) produces a

fast convergence to the solution for (x, un) ∈ B.

B.1 Some Basic Properties

The functional Q is well defined on the set of admissible feedback controls. The problems

stated in this paper are transferred to the problem of finding a feedback policy u∗(x) such

that Q = 0 and (x, u∗(x)) ∈ A∗. We will state and prove some basic inequalities and

monotonicity properties satisfied by the functional on A∗
L and A∗

R.

Lemma 1 Basic Inequalities

{f(x)− v} (Πu − Πv) ≤ M(x, u)−M(x, v) ≤ {f(x)− u} (Πu − Πv) .(25)

hold for all (x, u) and (x, v) in A∗ and Πw is short for ∂
∂w

Π(x,w). The function M(x, u) is

positive semidefinite.

Proof: These inequalities follow directly from the definition of M and the properties of Π.

From Eq. (4) we obtain

M(x, u)−M(x, v) = Π(x, u)− Π(x, v) + Πu(x, u) {f(x)− u} − Πv(x, v) {f(x)− v} ,

and the concavity of Π implies

Πu(x, u)(u− v) ≤ Π(x, u)− Π(x, v) ≤ Πv(x, v)(u− v)

and Eq. (25) is obtained. This proves the first part of the lemma. Putting v = f(x) and

using M(x, f(x)) ≡ 0 yields the semidefinite property of M .2

We can now state and prove the key monotonicity properties of the operators involved.
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Proposition 1 Main Monotonicity Properties

M(x, u), N(x, u) and Q(x, u) are all monotone in u on B ∈ {A∗
L, A∗

R}
Moreover,

1. (x− x∗δ)M(x, u) is non-decreasing in u on A∗,

2. (x− x∗δ)N(x, u) is non-increasing in u on A∗,

3. (x− x∗δ)Q(x, u) is non-decreasing in u on A∗.

Proof

We have Mu(x, u) = Πuu(x, u)(f(x)− u) and assumption A1 implies Mu ≤ 0 if u ≤ f(x)

and Mu ≥ 0 if u ≥ f(x).Hence M is monotone in B implying that (x− x∗δ)M(x, u) is

nondecreasing in A∗.

Let ∆uv be defined by

∆uv = ∆uv(x)
def
= Πu(x, u(x))− Πv(x, v(x)) .(26)

The concavity property of Π implies that ∆uv ≤ 0 when u ≥ v and vice versa. The

definition of the functional N(x, u) in Eq. (10) implies

(x− x∗δ)[N(x, u)−N(x, v)] = δ(x− x∗δ)
∫ x

x∗δ
∆uv(s)ds(27)

It follows directly that the left hand side of Eq. (27) has the sign of ∆uv when v ≥ u. Hence

(x− x∗δ)N(x, u) is non-increasing on A∗. The properties of Q follow from Q = M −N .2

We continue by investigating the iteration scheme and prove the general convergence result

given by Theorem 1.

B.2 Iteration Scheme

We are studying the equation Q(x, u) = 0, or

M(x, u) = N(x, u) for (x, u) ∈ A∗ .(28)

Introducing M as given by Eq. (4) has several advantages. The function M(x, u) measures

a potential gain of changing the state or moving in state space, i.e., there can be a beneficial

gain associated with changing the current state. It plays a role similar to the kinetic energy

in a mechanical system. The motion by itself has the potential of doing a physical work
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which can be viewed as advantageous. The functional N(x, u) as given by Eq. (10), can be

associated with potential energy. It has the potential to change the current state of motion.

The concavity property of Π(x, u) with respect to u, implies uniqueness of the solution of

Eq. (28) for (x, u) ∈ A∗.

Proposition 2 Uniqueness

Eq. (28) has at most one admissible solution.

Proof

Applying Eqs. (25-28) we get

{f(x)− v(x)}∆uv(x) ≤ δ
∫ x

x∗
δ

∆uv(s)ds ≤ {f(x)− u(x)}∆uv(x).(29)

Assume contrary to the proposition that u and v are two different solutions. If u 6= v in A∗

there exists an interval I bounded by x1 6= x∗δ and x∗δ such that u ≥ v in I and u > v in a

nonempty interval J ⊂ I. Let x = z be the center point in J . It follows that ∆uv(x) ≤ 0 in

I and strictly negative in J . We apply the natural restriction δ ≥ 0.

In A∗
L we have f(z) ≥ u(z) > v(z) implying

{f(z)− v(z)}∆uv(z) < 0, δ
∫ z

x∗
δ

∆uv(s)ds ≥ 0 and {f(z)− u(z)}∆uv(z) ≤ 0.

In A∗
R we have u(z) > v(z) ≥ f(z) and thereby

{f(z)− v(z)}∆uv(z) ≥ 0, δ
∫ z

x∗
δ

∆uv(s)ds ≤ 0 and {f(z)− u(z)}∆uv(z) > 0.

The proposition follows by noticing that both sets of inequalities above contradict the

relations in (29).2

In order capture some inherent properties of the structure defined in Eq. (28) we introduce

the concepts of super and sub solutions.

Definition 2 Super and Sub Solutions

An admissible control path in B ∈ {A∗
L , A∗

R} defined by u = u(x) such that u(x∗δ) = f(x∗δ)

is called a super solution if (x− x∗δ) Q(x, u) ≥ 0 and a sub solution if (x− x∗δ) Q(x, u) ≤ 0.

The monotonicity of the defining functional (Proposition 1) makes it a generalized ordering

of admissible feedback policies. It ensures that all admissible policy-paths are super

solutions if they are above the first best policy and sub solutions if they are below, i.e.

geometrical super (sub) solutions are formal super (sub) solutions.
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A main input to a model is the statement about (natural) growth or change. It is the

function f(x) in the present context. This key function is a super-sub function meaning

that it is super on the left side (A∗
L) and sub on the right side (A∗

R) as can be directly

verified by noticing that according to assumption A2 we have ψ(x) ≥ 0 and hence

(x− x∗δ)Q(x, f(x)) = −(x− x∗δ)ψ(x)




≥ 0, x < x∗δ
≤ 0, x > x∗δ

.

Indeed, this makes perfect sense given that any admissible policy is bounded from above by

f(x) in A∗
L and from below by f(x) in A∗

R and hence implying that f(x) is a geometrical

super-sub solution. A feedback solution which is both a super and sub solution on B must

coincide with the unique solution u∗.

We will later (Lemma 5) provide a result that makes it unnecessary to distinguish between

formal and geometric super or sub solutions.

In the next lemma we define main operators and summarizes their monotonicity.

Lemma 2 Core Monotonicity Properties

The following properties holds for admissible controls

1. TM(u)
def
= (x− x∗δ) ·M(x, u) is non-decreasing in u.

2. TN(u)
def
= (x− x∗δ) ·N(x, u) is non-increasing in u.

3. T (u)
def
= (x− x∗δ) ·Q(x, u) is non-decreasing in u.

This lemma is just a restatement of Proposition 1.2

We now define our solution procedure as an iteration scheme.

Definition 3 Iteration Scheme and Short Notation

Let {un} be a sequence of admissible policies. We denote

Mn
def
= M(x, un) and Nn

def
= N(x, un) .(30)

Iterations or iteration scheme is short for any admissible sequence defined by

Mn+1 = Nn.(31)
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The iterations converge right away if δ = 0. The exact solution is given by the first iterate

as the solution of the ordinary algebraic equation M(x, u1) = S(x∗0)− S(x). Basic structure

in the iteration scheme is revealed in next lemmas and propositions.

Lemma 3 Basic Alternating property

Let B ∈ {A∗
L, A∗

R} and x 6= x∗δ. Further let 3 represent a weak or strong inequality relation.

Then u3v implies V 3U where U and V are the first iterates of u and v. Moreover there is

at most one iterate for each given admissible function.

Proof

The result is a direct consequence of the monotonic properties of TM and TN :

TM(V ) = TN(v)3TN(u) = TM(U) ⇒ V 3U.

We have already pointed out that M(x, U) is strictly monotone in U for U 6= f(x) in B. It

means that the equation M(x, U) = K(x) ≥ 0 has at most one solution U = U(x). The

case K(t) = 0 for x = t is trivially given by U(t) = f(t). The implicit function theorem

ensures that M(x, U) = N(x, u) > 0 generates a function U = U(x) which is piecewise

smooth for any admissible function u. 2

Proposition 3 Alternating Sub-Super Sequences

The following properties hold for iterations in B ∈ {A∗
L, A∗

R}:

1. If there exist two consecutive elements un+1 ≥ un (less or equal), then un+1 is a super

(sub) solution and un is a sub (super) solution.

2. If an element in the sequence is a super or sub solution, the rest of the sequence will

alternate between sub and super solutions.

Proof

We will extensively utilize the following relations among the operators defined in Lemma 2:

TM(v) = TN(u) ⇒ T (u) = TM(u)− TM(v) and T (v) = TN(u)− TN(v)(32)

The first part or premise states that v is the iterate of u. Both implied relations follow

directly from the definitions of the iteration and the operators. Notice that the first

implied relation is a function of two points in A∗ while the second relation is not. The

latter depends on two paths. Inserting v = un+1 ≥ un = u in the first relation implies
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T (u) ≤ 0 and the second relation implies T (v) ≥ 0 or signs reversed if un+1 ≤ un. This

proves statement 1.

Let u = un be a super (sub) solution. The first implied relation in Eq. (32) gives

TM(u) ≥ TM(v) (or reversed inequality). This relation holds pointwise and the

monotonicity of TM ensures that v = un+1 is a sub (super) solution. Statement 2 is

established by reapplying the argument.2

Next lemma reveals a potential structure in super/sub sequences. They may contain two

subsequences of opposite monotonicity. The pattern is visualized in figure 3. More

precisely it reads:

Lemma 4 Increasing and Decreasing Subsequences

Let u0 > u2 for x 6= x∗δ. Then u2n > u2n+2 and u2n+1 < u2n+3 for x 6= x∗δ. In addition, if an

element is a super or sub solution the two subsequences {u2n} and {u2n+1} are bounded by

each other.

The results hold if all inequalities are reversed or in weak form.

Proof

Applying Lemma 3 to un and u2+n for n ∈ {0, 1, 2, 3, . . .} for each inequality relation

establishes the two subsequences with their monotonicity properties. We demonstrate it for

the relational operator ”>”:

Direct use of Lemma 3 yields u0 > u2 ⇒ u1 < u3 ⇒ u2 > u4 ⇒ u3 < u5 . . . implying

u0 > u2 > u4 > . . . and u1 < u3 < u5 . . .

Without loss of generality we may assume that u0 is a super solution and the sequence is

alternating between super and sub solutions according to Proposition 3. Hence

u0 > u2 > u4 > . . . is a sequence of super solutions and u1 < u3 < u4 < . . . a sequence of

sub solutions. Moreover, u2n ≥ u2n+1 and the boundedness is established. Thus both

sequences are monotone and bounded and hence they converge.2

The next lemma allows us to focus on geometric super or sub solution. All formal super

(sub) solutions become geometric sub (super) solutions after a single iteration. This result

is indeed important. It implies that the first best solution is always between consecutive

iterates of a formal super (sub) seed that we know from Proposition 3 produces an

alternating sequence of sub and super solutions. There is now available a strait forward

way to test for super/sub properties and produce feedback policies on either side of the

unknown first-best solution.

Lemma 5 Formal and Geometrical Super or Sub Solutions
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A formal super or sub solution becomes a geometric sub or super solution after a single

iteration in B ∈ {A∗
L, A∗

R}.

Proof

Let v = v(x) be the iterate of u = u(x) and u∗ = u∗(x) be the optimal feedback solution.

Applying Eq. (26) and assuming x 6= x∗δ we define η(x) by

η(x)
def
= TM(v)− TM(u∗) = TN(u)− TN(u∗) = δ(x− x∗δ)

∫ x

x∗
δ

∆uu∗(s)ds

Let us investigate a crossing between v and u∗ at x = z. Crossing means that there is a

x = z such that v 6= u∗ immediately to the right in A∗
R and to the left in A∗

L and hence

η(x) 6= 0 for x in an nonempty interval J . In this interval we have ∆uu∗(x) 6= 0 and the

sign of η in J is given by

η(x)

δ(x− x∗δ)
=

η(z)

δ(x− x∗δ)
+

∫ x

z
∆uu∗(s)ds =

∫ x

z
∆uu∗(s)ds

⇓
sgn (η) = sgn (∆uu∗).(33)

Let u be a super solution and thereby v is a sub solution in accordance with Proposition 3.

This implies that v ≤ u. If v is not a geometric sub solution, it must cross u∗ from below

moving away from x∗δ . Otherwise v will be a super solution in the neighborhood of x∗δ !

Hence we have an interval J where u ≥ v > u∗ and thereby ∆uu∗ < 0 in the interval. The

definition of η and Eq. (33) imply TM(v) < TM(u∗) in J which is contradicting the

assumption that J exists! The proof in the case with u being a sub solution is similar. 2

B.3 Convergence of Iterations

The iterations converge under quite general conditions. In this section we use a

constructive approach to prove this convergence. We start by proving the convergence for a

particular sequence starting from a geometric super-sub solution. Since there is no

convergence problems if δ = 0, we consider only the case δ > 0.

Let the function ρ be defined by the expression

ρ(x) =
δ| ∫ x

x∗
δ
m2(s)ds|

m1(x)|f(x)− f2(x)|(34)

where f2 is the second iterate of f(x) and m1 and m2 are defined in assumption A1. The
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expression need not be defined for all x ∈ X.

The seed u0 = f(x) generates a special super-sub sequence {f0 = f, f1, f2, . . .} that can be

shown to converge under mild conditions. We state the result in the next proposition.

Proposition 4 Convergence of a Special Sequence

The special sequence {f0, f1, f2 . . .} produced by f0 = f(x) in the iteration scheme converges

to the unique solution u∗ if ρ(x) < 1. The elements in the sequence are consecutive

geometric super and sub solutions and the unique solution is approximated by

u∗ =
1

2
(fn + fn+1) + ε where |ε| ≤ 1

2
|fn − fn+1| .

Proof

The construction of the admissible sequences ensures convergence at x = x∗δ and we are

therefor only considering x 6= x∗δ in the proof. We have in A∗
L that f0 > f2 and in A∗

R that

f0 < f2. The weak inequalities follow directly from the definition of A∗. The strict

inequalities come from

TM(f2) = TN(f1) = (x− x∗δ) · ψ(x) 6= 0 = TM(f) hence f2 6= f.

The nonzero condition is a result of assumption A2. By Lemma 4 we have two monotone

sequences f0 > f2 > f4 > . . . and f1 < f3 < f5 < . . . in A∗
L, where the first is a sequence of

geometric super solution and the second a sequence of geometric sub solutions. Both

sequences are monotone and bounded and hence they converge. The same holds in A∗
R

with reversed inequalities. We need to show that they converge to the same limit13, that is,

ruling out the existence of a period two cycle in the iteration scheme. It is done here by

proving that the iterations represent a contraction scheme. We have

|Mn+1 −Mn| = |Nn −Nn−1| = δ|
∫ x

x∗δ
[Πu(s, fn(s))− Πu(s, fn−1(s))]|

⇔ |Mu(x, θn)(fn−1 − fn)| = δ|
∫ x

x∗
δ

Πuu(s, φn−1(s))(fn(s)− fn−1(s)) ds|

⇔ |(f − θn)Πuu(x, θn)(fn−1 − fn)| = δ|
∫ x

x∗
δ

Πuu(s, φn−1(s))(fn(s)− fn−1(s))ds| .

The mean value theorem has been applied. θn and φn are between fn and fn+1. From the

first part of the proof we know that |f − θn| ≥ |f − f2| for n ≥ 1. Applying assumption A1

13The approximation formula holds even if there are no convergence to the same limit because u∗ is always
between consecutive iterates.
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we obtain

|f − f2|m1 |fn+1 − fn| ≤ δ

∣∣∣∣∣
∫ x

x∗δ
m2 · (fn − fn−1) ds

∣∣∣∣∣ ≤ δ

∣∣∣∣∣
∫ x

x∗δ
m2 ds

∣∣∣∣∣ · ||fn − fn−1|| .

The maximum norm have been applied. In particular we obtain at a x 6= x∗δ where

|fn+1 − fn| = ||fn+1 − fn|| the following

|f − f2|m1 ||fn+1 − fn|| ≤ δ

∣∣∣∣∣
∫ x

x∗
δ

m2 ds

∣∣∣∣∣ · ||fn − fn−1|| or ||fn+1 − fn|| ≤ ρ||fn − fn−1|| .

This shows that the particular sequence is contracting.2

In figure 3 we illustrate a typical way that our policy sequences converge. Finally the result

“Nye iterasjoner”

u
s

u
r

u
r 2+

u
r 1+

u
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u
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u
s 2+

u
s 3+

u

Figure 3: This figure shows schematically how the iterations work when started from a formal
super or sub seed with new iterations along the horizontal axis. Notice that the sequence
{us, us+2, us+4, · · ·} is monotonically decreasing whereas {ur, ur+2, ur+4, · · ·} is monotonically
increasing, converging to the same limit u∗.

can be generalize to an arbitrary sequence in A∗.

Proposition 5 General Convergence Result

Assume that the special sequence starting with u0 = f(x) converges. Then all admissible

infinite sequences converge.

Proof

Assume first that there exist an iterate uk bounded by f = f0 and f1. This implies by

repeated use of the weak inequality form of Lemma 3 that uk+n is bounded by fn and fn+1

and hence converge. Assume that there is an iterate uk not bounded by f1. Let us consider

an admissible policy ũ1 that bounds both uk and f1. On the left of the reference point we

must have ũ1 ≤ f1 ⇒ TN(ũ1) ≥ TN(f1) ⇒ TM(ũ2) ≥ TM(f2) ⇒ ũ2 ≥ f2 and reversed

inequalities to the right of the reference point. This means that the iterates of ũ2 are
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squeezed by the iterates of f0 and f2 and hence the sequence {ũ1, ũ2, ũ3, . . .} converge. In

turn this implies that the sequence with an element not bounded by f0 and f1 must

converge since it is squeezed between the iterates of f0 and ũ1.2

The last proposition ensures the general statement about convergence given in theorem 1.

The error bound given in the theorem must hold by the simple fact that the sequence {vn}
is an alternating geometrical super-sub sequence which implies that the optimal feedback

solution is between two consecutive iterations. This completes the proof of our main result.
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