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Abstract

In this paper we prove a sufficient maximum principle for general stochastic differential

Stackelberg games, and apply the theory to continuous time newsvendor problems. In the

newsvendor problem a manufacturer sells goods to a retailer, and the objective of both

parties is to maximize expected profits under a random demand rate. Our demand rate is

an Itô-Lévy process, and to increase realism information is delayed, e.g., due to production

time. We provide complete existence and uniqueness proofs for a series of special cases,

including geometric Brownian motion and the Ornstein-Uhlenbeck process, both with time

variable coefficients. Moreover, these results are operational because we are able to offer

explicit solution formulas. An interesting finding is that more precise information may be a

considerable disadvantage for the retailer.
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Main variables:

w = wholesale price per unit (chosen by the manufacturer)

q = order quantity (rate chosen by the retailer)

R = retail price per unit (chosen by the retailer)

D = demand (random rate)

M = production cost per unit (fixed)

S = salvage price per unit (fixed)

1 Introduction

The one periodic newsvendor model is a widely studied object that has attracted increasing

interest in the two last decades. The basic setting is that a retailer wants to order a quantity

q from a manufacturer. The demand D is a random variable, and the retailer wishes to select

an order quantity q maximizing his expected profit E[Πr(q,D)]. When the distribution of D is

known, this problem is easily solved. The basic problem is very simple, but appears to have a

never ending number of variations. There is by now a huge literature on such problems, and for

further reading we refer to the survey papers by Cachon (2003) and Qin et. al (2011) and the

numerous references therein.

The (discrete) multiperiod newsvendor problem has been studied in detail by many authors,

Matsuyama (2004), Berling (2006), Bensoussan et. al (2007, 2009), Wang et. al (2010), just

to quote some of the more recent contributions. Two papers that come somewhat close to the

approach used in our paper are Kogan (2003) and Kogan and Lou (2003) , where the authors

consider continuous time scheduling problems.

In many cases the demand is not known and the parties gain information through a sequence

of observations. There is a huge literature on cases with partial information, e.g., Scarf (1958),

Gallego & Moon (1993), Bensoussan et. al (2007), Perakis & Roels (2008), Wang et. al (2010),

just to mention a few. When a sufficiently large number of observations have been made, how-
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ever, the distribution of demand is fully revealed and can be used to optimize order quantities.

This approach only works if the distribution of D is static, and leads to false conclusions if the

demand changes systematically over time. In this paper we will assume that the demand rate

is a stochastic process Dt and we seek optimal decision rules for that case.

In our paper a retailer and a manufacturer write contracts for the size of a delivery rate.

The manufacturer is the leader and decides the wholesale price. Based on the given wholesale

price, the retailer decides the size of the delivery rate. We assume a Stackelberg framework,

and hence ignore cases where the retailer can negotiate the wholesale price. The contract is

written at time t − δ, and goods are received at time t. It is essential to assume that infor-

mation is delayed. If there is no delay, the demand rate is known, and obviously the retailer

puts his order rate equal to the demand rate. Information is delayed by a time δ. One justifica-

tion for this is that production takes time, and orders cannot be placed and effectuated instantly.

Multiperiod newsvendor problems with delayed information have been discussed in several

papers, but none of these papers appears to make the theory operational. Bensoussan el. al

(2009) use a time-discrete approach and generalizes several information delay models, however,

under the assumption of independence of the delay process from the inventory, the demand,

and the ordering process. They write that removing this assumption would give rise to inter-

esting as well as challenging research problems, and that a study of computation of the optimal

base-stock levels and their behavior with respect to problem parameters would be of interest.

Computational issues are not explored in their paper, and they only consider decision problems

for inventory managers, disregarding any game theoretical issues.

Calzolari et. al (2011) discuss filtering of stochastic systems with fixed delay, indicating that

problems with delay leads to non-trivial numerical problems even when the driving process is

Brownian motion. In our paper solutions to general delayed newsvendor equilibria are formulated

in terms of coupled systems of stochastic differential equations. Our approach may hence be

useful also in the general case where closed form solutions cannot be obtained.

3



Figure 1 shows a sample path of an Ornstein-Uhlenbeck process which is mean reverting

around a level µ = 100. Even though the long time average is 100, orders based on this average

are clearly suboptimal. At, e.g., t = 30, we observe a demand rate D30 = 157. When the mean

reversion rate is as slow as in Figure 1, the information D30 = 157 increases the odds that the

demand rate is more than 100 at time t = 37. If the delay δ = 7 (days), the retailer should

hence try to exploit this extra information to improve performance.

δ

0 50 100 150 200 t

50

100

150

200

Dt

Figure 1: An Ornstein-Uhlenbeck process with delayed information

Based on the information available at time t− δ, the manufacturer should offer the retailer

a price per unit wt for items delivered at time t. Given the wholesale price wt and all available

information, the retailer should decide on an order rate qt and a retail price Rt. The retail

price can in principle lead to changes in demand, and in general the demand rate Dt is hence

a function of Rt. Such cases are hard to solve in terms of explicit expressions, however, and we

will also look at the simplified case where R is exogenously given and fixed. To carry out our

construction, we will need to assume that items cannot be stored. That is of course a strong

limitation, but applies to important cases like electricity markets and markets for fresh foods.

Assuming that both parties have full information about the demand rate at time t− δ, and

that the manufacturer knows how much the retailer will order at any given unit price w, we

are left with a Stackelberg game where the manufacturer is the leader and the retailer is the

follower. To our knowledge stochastic differential games of this sort have not previously been

discussed in the literature. Before we can discuss game equilibria for the newsvendor problem, we

must hence formulate and prove a sufficient maximum principle for general stochastic differential

Stackelberg games.
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The paper is organized as follows. In Section 2 we set up a framework where we discuss

general stochastic differential Stackelberg games. To keep the discussion simple, we only discuss

the problem in very broad terms. The details are technically demanding, and the complete proof

and formulation of our maximum principle is placed in Appendix A. In Section 3 we discuss a

continuous time newsvendor problem. As the newsvendor problem is a special case of the general

framework in Section 2, the results in Appendix A can be used to formulate explicit strategies for

finding equilibria of such problems. In Section 4 we consider the case where the demand rate is

given by an Ornstein-Uhlenbeck process, and are able to provide explicit solutions for the unique

equilibria that occurs in that case. Section 5 is devoted to geometric Brownian motion, and ex-

plicit solutions are provided for that case as well. The result in the constant coefficient case is

quite startling, as it leads to an equilibrium where the manufacturer offers a constant price w

and the retailer orders a fixed fraction of the observed demand rate. In Section 6 we compare the

dynamic approach with a static approach where both parties (wrongly) believes that the demand

rate has a static distribution. An interesting finding is that more precise information can be a

considerable disadvantage for the retailer. Finally in Section 7 we offer some concluding remarks.

As already mentioned above, parts of the paper are technically demanding. To make the

paper available to a larger public, complete proofs are in most cases placed in the Appen-

dices. Appendix A provides the full details for stochastic differential Stackelberg games, while

Appendix B contains all the rest of the proofs.

2 General stochastic differential Stackelberg games

In this section we will consider general stochastic differential Stackelberg games. In our frame-

work the state of the system is given by a stochastic process Xt. The game has two players.

Player 1 can at time t choose a control u1(t) while player 2 can choose a control u2(t). The

controls determine how Xt evolves in time. We will use bolded characters to denote functions,

e.g., u1 denotes the function u1(t), 0 ≤ t ≤ T . The performance for player i is assumed to be on

the form

Ji(u1,u2) = E
[∫ T

0
fi(t,Xt, u1(t), u2(t))dt+ gi(XT )

]
i = 1, 2 (1)

where f1, f2, g1, g2 are given functions.
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In our Stackelberg game player 1 is the leader, and player 2 the follower. Hence when u1 is

revealed to player 2, player 2 will choose u2 to maximize J2(u1,u2). Player 1 knows that player

2 will act in this rational way.

Suppose that for any given control u1 there exists a map Φ that selects u2 which maximizes

J2(u1,u2). Player 1 will hence choose u1 = u∗1 such that u1 7→ J1(u1,Φ(u1)) is maximal for

u1 = u∗1. In order to solve problems of this type we need to specify how the state of the system

evolves in time. We will work in a framework where Xt is a controlled jump diffusion on the

form

dXt = µ(t,Xt, u1(t), u2(t), ω)dt+ σ(t,Xt, u1(t), u2(t), ω)dBt

+
∫

R
γ(t,Xt, u1(t), u2(t), ξ, ω)Ñ(dt, dξ) (2)

X(0) = x ∈ R

where µ, σ, γ are given continuous functions, assumed to be continuously differentiable with re-

spect to the variables X,u1 and u2. More precise definitions are provided in Appendix A. See

also Øksendal and Sulem (2007) for more information about Lévy processes and controlled jump

diffusions. The framework defined by (2) is very general, and contains among many other things,

important special cases like the Ornstein-Uhlenbeck process and geometric Brownian motion.

To solve optimization problems related to processes on the form given in (2), one needs to

formulate Hamiltonians and write down and solve the adjoint equations. Anticipating that many

readers are unfamiliar with such optimization methods, these technical parts are discussed in

full detail in Appendix A. At this point it suffices to say that a sufficient maximum principle

can be found. In Section 3 we will consider the particular case of the newsvendor model. This

case is more explicit, and the machinery in Appendix A can be used to make a set of explicit

equations that can be applied without reference to the underlying details in Appendix A. It is

hence possible to understand and analyze large parts of this paper without venturing the depths

of Appendix A.
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3 A continuous time newsvendor problem

In this section we will formulate a continuous time newsvendor problem and use the results in

Appendix A to describe a set of explicit equations that we need to solve to find Stackelberg

equilibria. We will assume that the demand rate for a good is given by a (possibly controlled)

stochastic process Dt. A retailer is at time t − δ offered a unit price wt for items to be de-

livered at time t. Here δ > 0 is the delay time. At time t − δ, the retailer chooses an order

rate qt. The retailer also decides a retail price Rt. We assume that items can be salvaged at

a unit price S ≥ 0, and that items cannot be stored, i.e., they must be sold instantly or salvaged.

Remarks

The delay δ can be interpreted as production time, and it is natural to assume that wt and qt

should both be settled at time t−δ. In general the retail price Rt can be settled at a later stage.

The assumption that items cannot be stored is of course quite restrictive. There are still many

important cases leading to an assumptions of this kind, we mention in particular the electricity

market and markets for fresh foods.

Assuming that sale will take part in the time period δ ≤ t ≤ T , the retailer will get an

expected profit

J2(w,q,R) = E
[∫ T

δ
(Rt − S) min[Dt, qt]− (wt − S)qtdt

]
(3)

When the manufacturer has a fixed production cost per unit M , the manufacturer will get

an expected profit

J1(w,q,R) = E
[∫ T

δ
(wt −M)qtdt

]
(4)

Technical remark

To solve these problems mathematically, it is convenient to apply an equivalent mathematical

formulation: At time t the retailer orders the quantity t for immediate delivery, but the in-

formation at that time is the delayed information Ft−δ about the demand δ units of time ago.

Similarly, when the the manufacturer delivers the ordered quantity qt at time t, the unit price wt
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is based on Ft−δ. From a practical point of view this formulation is of course entirely different,

but leads to the same optimization problem.

3.1 Formalized information

We will assume that our demand rate is given by a (possibly controlled) jump diffusion on the

form:

dDt = µ(t,Dt, Rt)dt+ σ(t,Dt, Rt)dBt +
∫

R
γ(t,Dt, Rt, ξ)Ñ(dt, dξ); t ∈ [0, T ] (5)

D0 = d0 ∈ R

Brownian motion Bt and the compensated Poisson term Ñ(t, dz) are driving the stochastic

differential equation in (5), and it is hence natural to formalize information with respect to

these objects. We hence let Ft denote the σ-algebra generated by Bs and Ñ(s, dz), 0 ≤ s ≤ t.

Intuitively Ft contains all the information up to time t. When information is delayed, we instead

consider the σ-algebras

Et := Ft−δ t ∈ [δ, T ] (6)

Both the retailer and the manufacturer should base their actions on the delayed information.

Technically that means that qt and wt should be Et-adapted, i.e., q and w should be E-predictable

processes. In less technical terms E-predictable means that for each t it must be possible to

write down the value based on a limit of functions of the values of the Brownian motion and the

compensated Poisson term at times up to t− δ. As mentioned above, the retail price Rt can be

settled at a later stage. It is hence possible to consider a second delay δR < δ, and assume that

Rt is decided at time t− δR. We hence consider a second σ-algebra ERt := Ft−δR , t ∈ [δ, T ] and

will assume that R is ER-predictable.

3.2 Finding Stackelberg equilibria in the newsvendor model

Using the machinery developed in Appendix A, we can now write down a system of equations

defining Stackelberg equilibria for our newsvendor model. We will focus on the simplified case

where Dt does not depend on the retail price, and where Rt = R is exogeneously given and

fixed. In that particular case the resulting equations are quite transparent and the following
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theorem summarizes the result.

Theorem 3.2.1

Assume that Dt has a continuous distribution, that Dt does not depend on Rt and that Rt = R

is exogenously given and fixed. For any given wt with S < M ≤ wt ≤ R consider the equation

E
[
(R− S)X[0,Dt](qt)− wt + S|Et

]
= 0 (7)

Let qt = φ(wt) denote the unique solution of (7), and assume that the function

wt 7→ E [(wt −M)φ(wt)|Et] (8)

has unique maximum at wt = ŵt. If q̂t = φ(ŵt), then the pair (q̂, ŵ) is a Stackelberg equilibrium

for the newsvendor problem defined by (4) and (3).

Here X[0,Dt](q) denotes the indicator function for the interval [0, Dt], i.e., a function that has

the value 1 if 0 ≤ q ≤ Dt, and is zero otherwise. To see why (7) always has a unique solution,

note that wt is Et-measurable and hence (7) is equivalent to

E
[
X[0,Dt](qt)|Et

]
=
wt − S
R− S

(9)

Existence and uniqueness of qt then follows from monotonicity of conditional expectation. To

avoid degenerate cases we need to know that Dt has a continuous distribution. In the next

sections we will consider special cases, and we will often be able to write down explicit solutions

to (7) and prove that (8) has unique maxima. Notice that (7) is an equation defined in terms of

conditional expectation. Conditional statements of this type are in general difficult to compute,

and the challenge is to state the result in terms of unconditional expectations.

In Appendix A we offer a complete solution to the general case where Dt is a function of

Rt, and Rt is a decision variable. In the general case the equilibria satisfy a set of non-linear

stochastic differential equations. Theorem 3.2.1 will be sufficient for many of the applications

we have in mind, however.
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4 Explicit formulas for the Ornstein-Uhlenbeck process

In this section we offer explicit formulas for the equilibria that occur when the demand rate is

given by an Ornstein-Uhlenbeck process. We first consider the case with constant coefficients,

and then extend the results to the case with time dependent, deterministic coefficients.

4.1 Ornstein-Uhlenbeck process with constant coefficients

In this section we assume that Dt is an Ornstein-Uhlenbeck process with constant coefficients,

i.e., that

dDt = a(µ−Dt)dt+ σdBt (10)

where a, µ, σ are constants. The Ornstein-Uhlenbeck process is important in many applications.

In particular it is commonly used as a model for the electricity market. The process is mean

reverting around the constant level µ, and the constant a decides the speed of mean reversion.

The explicit solution to (10) is

Dt = D0e
−at + µ(1− e−at) +

∫ t

0
σea(s−t)dBs (11)

It is easy to see that

Dt = Dt−δe
−aδ + µ(1− e−aδ) +

∫ t

t−δ
σea(s−t)dBs (12)

Using that the last term is independent of Et with a normal distribution N(0, σ
2(1−e−2aδ)

2a ), it is

possible to find a closed form solution to (7). We let G[z] denote the cumulative distribution of

a standard normal distribution, and G−1[z] its inverse. The final result can be stated as follows:

Proposition 4.1.1

For each y ∈ R, let Φy : [M,R]→ R denote the function

Φy[w] = ye−aδ + µ(1− e−aδ) + σ

√
1− e−2aδ

2a
·G−1

[
1− w − S

R− S

]
(13)

and let Ψy : [M,R]→ R denote the function Ψy[w] = (w−M)Φy[w]. If Φy[M ] > 0, the function

Ψy is quasi-concave and has a unique maximum with a strictly positive function value.
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At time t− δ the parties should observe y = Dt−δ, and equilibrium is obtained at

w∗t =


Argmax[Ψy] if Φy[M ] > 0

M otherwise
q∗t =


Φy[Argmax[Ψy]] if Φy[M ] > 0

0 otherwise
(14)

Proof

See Appendix B. �

The condition Φy[M ] > 0 has an obvious interpretation. The manufacturer cannot offer a

wholesale price w lower than her production cost M . If Φy[M ] ≤ 0, it means that the retailer is

unable to make a positive expected profit even at the lowest wholesale price the manufacturer

can offer. When that occurs, the retailers best strategy is to order q = 0 units. When the

retailer orders q = 0 units, the choice of w is arbitrary. The choice w = M is, however, the only

strategy that is increasing and continuous in y.

Given values for the parameters a, µ, σ, S,M,R, and δ, the explicit expression in (13) makes

it straightforward to construct the deterministic function y 7→ Argmax[Ψy] numerically. Two

different graphs of this function are shown in Figure 2. Figure 3 shows the corresponding function

Φy[Argmax[Ψy]]. In the construction we used a delay δ = 7 and δ = 30, with the parameter

values

a = 0.05 µ = 100 σ = 12 R = 10 S = 1 M = 2 (15)

50 100 150 200 250
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6.5

7.0
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8.0

8.5

wt
*

50 100 150 200 250
Dt-∆

5.5

6.0

wt
*

δ = 7 δ = 30

Figure 2: w∗t as a function of the observed demand rate D = Dt−δ
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Figure 3: q∗t as a function of the observed demand rate D = Dt−δ

Note that the manufacturing cost M = 2 is relatively low, and Φy[M ] > 0 is satisfied for all

y > 0 in these cases. It is interesting to note that the equilibria change considerably when the

delay increases from δ = 7 to δ = 30 (notice the scale on the y-axis).

4.2 Ornstein-Uhlenbeck process with variable coefficients

We now consider the Ornstein-Uhlenbeck process with variable, deterministic coefficients, i.e.,

the case

dDt = a(t)(µ(t)−Dt)dt+ σ(t)dBt (16)

where a(t), µ(t), σ(t) are given deterministic functions. The increased flexibility is important

in applications since it allows for scenarios where the mean reversion level µ can have a time

variable trend. When the coefficients are constant, the equilibria can be found by simple look-up

tables as the ones shown in Figure 2 and 3. Moreover, the look-up tables are the same for all

values of t. This is no longer true in the case with variable coefficients. The equilibria can still

be found from look-up tables, but these tables are in general different for different values of t.

The basic result can be summarized as follows:

Proposition 4.2.1

For each t ∈ [δ, T ], y ∈ R, let Φt,y : [M,R]→ R denote the function

Φt,y[w] = ye−
R t
t−δ a(s)ds + µ̂(t) + σ̂(t)G−1

[
1− w − S

R− S

]
(17)

where

µ̂(t) =
∫ t

t−δ
a(s)µ(s)e−

R t
s a(u)duds σ̂(t) =

√∫ t

t−δ
σ2(s)e−2

R t
s a(u)duds (18)
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and let Ψt,y : [M,R] → R denote the function Ψt,y[w] = (w −M)Φt,y[w]. If Φt,y[M ] > 0, the

function Ψt,y is quasi-convave and has a unique maximum with a strictly positive function value.

At time t− δ the parties should observe y = Dt−δ, and equilibrium is obtained at

w∗t =


Argmax[Ψt,y] if Φt,y[M ] > 0

M otherwise
q∗t =


Φt,y[Argmax[Ψt,y]] if Φt,y[M ] > 0

0 otherwise

(19)

Proof

See Appendix B. �

As in the constant coefficient case, these formulas are sufficiently explicit to make the model

operational. The unique values Argmax[Ψt,y] are easily found numerically, and look-up tables

similar to the ones shown in Figure 2 and 3 can be constructed for each fixed t.

5 Explicit formulas for geometric Brownian motion

In this section we offer explicit formulas for the equilibria that occur when the demand rate is

given by a geometric Brownian motion. We first consider the case with constant coefficients,

and then extend the results to the case with time dependent, deterministic coefficients.

While geometric Brownian motion is probably the most commonly used model for stock

prices, it is not necessarily an obvious choice to model a demand rate. The Ornstein-Uhlenbeck

process is often the preferred choice allowing demand to fluctuate around a pre-determined

mean-reversion level. Ornstein-Uhlenbeck processes can, however, take on negative values with

positive probability, and that problem never occurs with geometric Brownian motion. If we

model demand by a geometric Brownian motion, we are basically assuming that demand is

growing proportional to the size of the market. That assumption may be unreasonable in a

settled market, but can be attractive in modeling emerging markets with newly introduced

brands.
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5.1 Geometric Brownian motion with constant coefficients

In this section we assume that Dt is a geometric Brownian motion with constant coefficients,

i.e., that

dDt = aDtdt+ σDtdBt (20)

where a, σ are constants. The explicit solution to (20) is

Dt = D0 exp
[(
a− 1

2
σ2

)
t+ σBt

]
(21)

and it is easy to see that

Dt = Dt−δ exp
[(
a− 1

2
σ2

)
δ + σ(Bt −Bt−δ)

]
(22)

The explicit form of (22) makes it possible to write down a closed form solution to (7):

Proposition 5.1.1

Let Φ : [M,R]→ R denote the function

Φ[w] = exp
[
(a− 1

2
σ2)δ +

√
δσ2 ·G−1

[
1− w − S

R− S

]]
(23)

and let Ψ : [M,R] → R denote the function Ψ[w] = (w −M)Φ[w]. The function Ψ is quasi-

concave and has a unique maximum with a strictly positive function value.

At time t− δ the retailer should observe y = Dt−δ, and equilibrium is obtained at

w∗t = Argmax[Ψ] (constant) q∗t = y · Φ[Argmax[Ψ]] (24)

Proof

See Appendix B. �

We see that the solution is quite different from the case with the Ornstein-Uhlenbeck process.
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In this case the manufacturer has an equilibrium price that is constant and need not observe

the demand rate to decide her price. The retailer should order a fixed fraction of the observed

demand rate at time t− δ.

5.2 Geometric Brownian motion with variable coefficients

In this section we assume that Dt is a geometric Brownian motion with variable deterministic

coefficients, i.e., that

dDt = a(t)Dtdt+ σ(t)DtdBt (25)

where a(t), σ(t) are given deterministic functions. The increased flexibility is of course attractive

in modeling, but like in the Ornstein-Uhlenbeck case, the solution is more complicated.

Proposition 5.2.1

For t ∈ [δ, T ], let Φt : [M,R]→ R denote the function

Φt[w] = exp
[
â(t) + σ̂(t) ·G−1

[
1− w − S

R− S

]]
(26)

where

â(t) =
∫ t

t−δ
a(s)− 1

2
σ2(s)ds σ̂(s) =

√∫ t

t−δ
σ2(s)dt (27)

and let Ψt : [M,R]→ R denote the function Ψt[w] = (w −M)Φt[w]. The function Ψt is quasi-

concave and has a unique maximum with a strictly positive function value.

At time t− δ the retailer should observe y = Dt−δ, and equilibrium is obtained at

w∗t = Argmax[Ψt] q∗t = y · Φt[Argmax[Ψt]] (28)

Proof

See Appendix B. �

If we compare with the case with constant coefficients, we see that the wholesale price w is no
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longer constant. Nevertheless we see that the equilibria are defined in terms of two deterministic

functions Argmax[Ψt] and Φt[Argmax[Ψt]]. The values for these functions are easily computed

numerically. To illustrate how this works, we used the parameter values

R = 10, S = 1,M = 2, δ = 7

together with the coefficients

a(t) = 0.02 (constant) σ(t) = 0.075 · (e−0.05 t + 1) (29)

Graphs for the functions Argmax[Ψt] and Φt[Argmax[Ψt]] are shown in Figure 4.
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Figure 4: Equilibrium prices and fractions for geometric Brownian motion

The dotted line shows the corresponding equilibrium price and fraction for the constant coeffi-

cient case with

a = 0.02 σ = 0.075 (30)

5.3 Geometric Lévy processes with ω dependent coefficients

In this subsection we handle geometric Lévy processes where one of the coefficients is ω de-

pendent. This case is important since it focuses some general problems, and also provide some

hints on how to address even more general cases. A geometric Lévy process is a solution of a

stochastic differential equation of the form

dD(t) = D(t−)
(
a(t, ω)dt+ σ(t, ω)dBt +

∫
R
γ(t, z, ω)Ñ(dt, dz)

)
(31)

In this equation Bt is Brownian motion and Ñ denotes a compensated Poisson random mea-
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sure, see Øksendal and Sulem (2007) for an introduction to stochastic calculus based on Lévy

processes. If we assume that D(0) = D0 > 0 and γ(t, z) ≥ −1, the solution satisfies Dt ≥ 0

for all t. The model in (31) is widely accepted as a good model for prices of financial assets.

The positivity property Dt ≥ 0 for all t, makes it suitable as a model for demand as well. If

γ(t, z, ω) ∈ [−1, 0] for all (t, z, ω), this corresponds to a situation with market corrections, i.e., at

random times demand is adjusted to a fraction of its previous value. This is an attractive way

to negate the exponential growth of geometric Brownian motion, keeping demand from growing

without limit.

The explicit solution of (31) is

Dt = D0 exp

[∫ t

0

(
a(s, ω)− 1

2
σ2(s, ω) +

∫
R0

log[1 + γ(s, z, ω)]− γ(s, z, ω)ν(dz)
)
ds (32)

+
∫ t

0
σ(s, ω)dBs +

∫ t

0

∫
R0

log[1 + γ(s, z, ω)]Ñ(ds, dz)

]

Now assume that

a(s, ω) = Bs(ω) σ(s, ω) = σ(s) γ(s, z, ω) = γ(s, z) (33)

i.e., that σ and γ are given deterministic functions, while the growth-rate a(s, ω) is depending

om ω as well as t. The expression in (32) is sufficiently explicit to admit a fair description of the

functions we need to solve to find Stackelberg equilibria. This description can be formulated as

follows:

For each fixed t, consider the random variable Xt given by

Xt = exp

[
δBt−δ + t(Bt −Bt−δ)−

∫ t

t−δ
sdBs

+
∫ t

t−δ

(
−1

2
σ2(s) +

∫
R0

log[1 + γ(s, z)]− γ(s, z)ν(dz)
)
ds (34)

+
∫ t

t−δ
σ(s)dBs +

∫ t

t−δ

∫
R0

log[1 + γ(s, z)]Ñ(ds, dz)

]

Let Ft denote the cumulative distribution of Xt, and for each fixed t let F−1
t denote the inverse
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function of Ft. Consider for each t ∈ [δ, T ], the functions

Φt[w] = F−1
t

[
1− w − S

R− S

]
Ψt[w] = (w −M)Φt[w] (35)

At time t − δ the retailer should observe both the demand rate y = Dt−δ and the growth

rate a = Bt−δ, and equilibrium is obtained at

w∗t = Argmax[Ψt] q∗t = y · eδa · Φt[Argmax[Ψt]] (36)

For a derivation of these results see Appendix B. We notice that the structure of the solution

is quite similar to the case covered in Proposition 5.2.1. The manufacturer has a pricing strategy

defined in terms of a deterministic function. The retailer should observe the demand rate, adjust

it by the observed growth rate, and multiply the adjusted number by a deterministic fraction.

A problem here is that the random variable in (34) is terribly complicated leaving little hope

of an analytic proof of a unique maximum. Apart from that, the expressions can still be handled

numerically, and maxima can be verified by visual inspection.

6 Numerical examples for the Ornstein-Uhlenbeck process

In this section we will compare the performance of the dynamic approach with a scenario where

the retailer believes that demand has a constant distribution D. A constant coefficient Ornstein-

Uhlenbeck process

Dt = D0e
−at + µ(1− e−at) + σe−at ·

∫ t

0
easdBs (37)

is ergodic in the sense that observations along any sample path will approach the distribution

N(µ, σ
2

2a ). Assuming that the retailer believes that the demand rate has a static distribution

D and that he has observed the demand rate a fair amount of time prior to ordering, he will

hence conclude that D is N(µ, σ
2

2a ). If the manufacturer knows that the retailer will make orders

according to a static N(µ, σ
2

2a ) distribution, she can compute a fixed value for w which optimizes

her expected profit.

To examine the performance of the dynamic and the static approch, we sampled paths of
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the Ornstein-Uhlenbeck process using the parameters

µ = 100 σ = 12 a = 0.05 D0 = 100 (38)

One such sample path was shown in Figure 1. Values for the accumulated profits

∫ T

δ
(R− S) min[Dt, qt]− (wt − S)qtdt

∫ T

δ
(wt −M)qtdt (39)

were computed for different values of δ using the values

R = 10 M = 2 S = 1 T = 100 + δ (40)

and using 4 different strategies:

• Dynamic approach as defined by Proposition 4.1.1.

• Static approach as defined above.

• Dynamic cooperative approach using wt = M .

• Static cooperative approach using wt = M .

We assume that sales takes place in time intervals [δ, 100 + δ]. The length of the sales period

hence is 100 regardless of the value on δ. This makes it easier to compare performance using

different values of δ. The results were averaged over 1000 sample paths and these averages are

reported in the tables below.
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Table 1: Performance of dynamic versus static strategies. Delay δ = 1.

Values over 1000 sample paths Manufacturer Retailer Supply chain

Average profit static approach 42 830 12 729 55 559

Average profit dynamic approach 61 356 4 073 65 429

Average profit static cooporation - - 73 251

Average profit dynamic cooporation - - 77 766

Table 2: Performance of dynamic versus static strategies. Delay δ = 7.

Values over 1000 sample paths Manufacturer Retailer Supply chain

Average profit static approach 42 830 12 457 55 286

Average profit dynamic approach 48 592 9 438 58 030

Average profit static cooporation - - 73 029

Average profit dynamic cooporation - - 74 838

Table 3: Performance of dynamic versus static strategies. Delay δ = 30.

Values over 1000 sample paths Manufacturer Retailer Supply chain

Average profit static approach 42 830 12 074 54 903

Average profit dynamic approach 43 225 11 882 55 106

Average profit static cooporation - - 72 648

Average profit dynamic cooporation - - 72 794

As we can see from these tables, the dynamic approach is favorable for the manufacturer,

and more favorable the shorter the delay. At δ = 30 the effect of the dynamic approach is close

to being wiped out. The same results apply for the supply chain, i.e., a dynamic approach offers

improved profits and the improvement is bigger when the delay is shorter. It is interesting to

note, however, that the retailer has a distinct disadvantage of the dynamic approach and that

this disadvantage is bigger the shorter the delay.

In a cooperative setting a dynamic approach can be favorable for both the retailer and the

manufacturer. Profits can be shared leading to an improved position for both parties. In a

non-cooperative equilibrium more precise information can be a disadvantage for the retailer.
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This is due to the Stackelberg structure of the game. With more precise information, the leader

is in more control and can take a bigger share of the profits. In the limit δ → 0, the leader is in

full control. The retailer will then order the observed demand rate no matter what the price is.

The manufacturer offers a price marginally close to R taking all profit in the limit.

7 Concluding remarks

This paper has two main topics. First we develop a new theory for stochastic differential Stack-

elberg games and apply that theory to continuous time newsvendor problems. Second we make

our theory operational by providing explicit solution formulas for important special cases.

In the continuous time newsvendor problem we offer a full description of the general case

where our stochastic demand rate Dt is a function of the retail price Rt. The wholesale price

wt and the order rate qt are decided based on information present at time t− δ, while the retail

price can in general be decided later, i.e., at time t − δR where δ > δR. This problem can be

solved using Theorem A.2 in the appendix. The solution is defined in terms of a coupled system

of stochastic differential equations, however, and admittedly such systems are very hard to solve.

To be able to solve our problem in terms of explicit expressions, we need to consider the

simplified case where Rt is exogenously given and fixed. We offer closed form solutions for the

Ornstein-Uhlenbeck process and Geometric Brownian motion both with time-variable, deter-

ministic coefficients. We also offer formulas for a Geometric Lévy process, i.e., a process with

jumps. Although we do not state that result explicitly, the discussion in Subsection 5.3 really

shows how to solve all cases where the Geometric Lévy process has time-variable, deterministic

coefficients.

From an applied point of view we believe that the numerical results in Section 6 are of general

interest. We demonstrate that the retailer suffers a distinct disadvantage of more information,

and that this disadvantage is bigger the more precise the information is. Such issues may have

important political implications, in particular in electricity markets, and we believe that our

model may offer new insights into the mechanisms governing equilibria in such markets.
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8 Appendix A

In this appendix we offer a full discussion and complete proofs for general stochastic Stackelberg

games. To improve readability we repeat some definitions given in the main body of the paper.

We will assume that the state of the system is given by a controlled jump diffusion on the form:

dXt = µ(t,Xt, u(t), ω)dt+ σ(t,Xt, u(t), ω)dBt

+
∫

R
γ(t,Xt, u(t), ξ, ω)Ñ(dt, dξ) (41)

X(0) = x ∈ R

where the coefficients µ(t, x, u, ω) : [0, T ]×R×U×Ω→ R, σ(t, x, u, ω) : [0, T ]×R×U×Ω→ R,

γ(t, x, u, ξ, ω) : [0, T ] × R × U × R0 × Ω → R are given continuous functions assumed to be

continuously differentiable with respect to x and u, and R0 = R\{0}. Here Bt = B(t, ω); (t, ω) ∈

[0,∞) × Ω is a Brownian motion and Ñ(dt, dξ) = Ñ(dt, dξ, ω) is an independent compensated

Poisson random measure on a filtered probability space (Ω,F , {Ft}t≥0, P ). See Øksendal and

Sulem (2005) for more information about controlled jump diffusions. The set U = U1 × U2 is a

given set of admissible control values u(t, ω). We assume that the control u = u(t, ω) consists

of two components, u = (u1, u2), where Player 1 controls u1 and Player 2 controls u2. We also

assume that the information flows available to the players are given filtrations {E(1)
t }t∈[0,T ] for

control u1 and control u(1)
2 and {E(2)

t }t∈[0,T ] for control u(2)
2 , where u2 = (u(1)

2 , u
(2)
2 ) and

E(1)
t ⊆ E(2)

t ⊆ Ft for all t ∈ [0, T ]. (42)

For example, the case much studied in this paper is when

E(1)
t = E(2)

t = Ft−δ for all t ∈ [δ, T ]. (43)

for some fixed information delay δ > 0. We assume that u1(t) and u
(1)
2 (t) are E(1)

t -predictable,

and that u(2)
2 (t) is E(2)

t -predictable. Hence we assume there are three given families A(1)
E ,A(2,1)

E

andA(2,2)
E of admissable controls u1, u

(1)
2 , u

(2)
2 , contained in the set of E(1)

t , E(1)
t and E(2)

t -predictable

processes, respectively, and we put
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AE = A(1)
E ×A

(2)
E where A(2)

E = A(2,1)
E ×A(2,2)

E (44)

If a control u = (u1, u2) ∈ AE is chosen, the performance for Player i is assumed to be of the

form

Ji(u) = E
[∫ T

0
fi(t,Xt, u(t))dt+ gi(XT )

]
i = 1, 2 (45)

where fi(t, x, u) : [0, T ] × R × U → R and gi(x) : R → R are given profit rates and bequest

functions, respectively, assumed to be C1 with respect to x and u.

We now consider the following game theoretic situation:

Suppose Player 1 decides her control process u1 ∈ A(1)
E . At any time t the value is immedi-

ately known to Player 2. Therefore he chooses u2 = u∗2 ∈ A
(2)
E such that

u2 7→ J2(u1, u2) is maximal for u2 = u∗2. (46)

Assume the there exists a measurable map Φ : A(1)
E → A

(2)
E (a “maximizer” map) such that

u2 7→ J2(u1, u2) is maximal for u2 = u∗2 = Φ(u1) (47)

Player 1 knows that Player 2 will act in this rational way. Therefore Player 1 will choose

u1 = u∗1 ∈ A
(1)
E such that

u1 7→ J1(u1,Φ(u1)) is maximal for u1 = u∗1. (48)

The control u∗ := (u∗1,Φ(u∗1)) ∈ A(1)
E × A

(2)
E is called a Stackelberg equilibrium for the game

defined by (41)-(45). In the newsvendor problem studied in this paper Player 1 is the manufac-

turer who decides the wholesale price u1 = w for the retailer, who is Player 2, and who decides

the order rate u(1)
2 = q and the retailer price u(2)

2 = R. Thus u2 = (q,R). We may summarize

(46) and (48) as follows:

max
u2∈A(2)

E

J2(u1, u2) = J2(u1,Φ(u1)) (49)
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and

max
u1∈A(1)

E

J1(u1,Φ(u1)) = J2(u∗1,Φ(u∗1)) (50)

We see that (49) and (50) constitute two consequtive stochastic control problems with partial

information, and hence we can use the maximum principle for such problems (see, e.g., Framstad

et. al (2004) and Baghery and Øksendal (2007)) to find a maximum principle for Stackelberg

equilibria. To this end, define the HamiltonianH2(t, x, u, a2, b2, c2(·)) : [0, T ]×R×U×R×R×R →

R by

H2(t, x, u, a2, b2, c2(·)) = f2(t, x, u) + µ(t, x, u)a2 + σ(t, x, u)b2 (51)

+
∫

R
γ(t, x, u, ξ)c2(ξ)ν(dξ);

where R is the set of functions c(·) : R0 → R such that (51) converges. The adjoint equation for

H2 in the unknown adjoint processes a2(t), b2(t), and c2(t, ξ) is the following backward stochastic

differential equation (BSDE):

da2(t) = −∂H2

∂x
(t,X(t), u(t), a2(t), b2(t), c2(t, ·))dt (52)

+ b2(t)dBt +
∫

R
c2(t, ξ)Ñ(dt, dξ); 0 ≤ t ≤ T

a2(T ) = g′2(X(T )) (53)

Here X(t) = Xu(t) is the solution to (2) corresponding to the control u ∈ AE . Next, for a given

map φ : R→ R define the Hamiltonian Hφ
1 (t, x, u1, a1, b1, c1(·)) : [0, T ]×R×U1×R×R×R → R

by

Hφ
1 (t, x, u1, a1, b1, c1(·)) = f1(t, x, u1, φ(u1)) + µ(t, x, u1, φ(u1))a1 (54)

+ σ(t, x, u1, φ(u1))b1 +
∫

R
γ(t, x, u1, φ(u1), ξ)c1(ξ)ν(dξ)

The adjoint equation (for Hφ
1 ) in the unknown processes a1(t), b1(t), c1(t, ξ) is the following

BSDE:
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da1(t) = −∂H
φ
1

∂x
(t,X(t), u1(t), φ(u1(t)), a1(t), b1(t), c1(t, ·))dt (55)

+ b1(t)dBt +
∫

R
c1(t, ξ)Ñ(dt, dξ); 0 ≤ t ≤ T

a1(T ) = g′1(X(T )) (56)

HereX(t) = Xu1,φ(u1)(t) is the solution to (41) corresponding to the control u(t) := (u1(t), φ(u1(t)));

t ∈ [0, T ], assuming that this is admissible.

We can now formulate our maximum principle for Stackelberg equilibria:

Theorem A.1 (Sufficient maximum principle)

i) Suppose the following bullet points hold:

• H2(t, x, u1, u2, a2, b2, c2(·)) is concave with respect to x and u2, for each t, u1, a2, b2, c2(·).

• g2(x) is concave.

• There exists a function φ = φ(u1) = φ(u1, t, ω) : U1 × [0, T ] × Ω → U2 such that for all

u1 ∈ A(1)
E ,

max
v2∈U2

E
[
H2(t, X̃(t), u1(t), v2, ã2(t), b̃2(t), c̃2(t, ·))

∣∣E(2,j)
t

]
(57)

= E
[
H2(t, X̃(t), u1(t), φ(u1(t)), ã2(t), b̃2(t), c̃2(t, ·))

∣∣E(2,j)
t

]
; j = 1, 2

where X̃(t) = Xu1,φ(u1)(t) and (ã2, b̃2, c̃2) is the solution of (52)-(53) corresponding to

u = (u1, φ(u1)).

•

E

[∫ T

0
(X̃(t)−Xu(t))2

(
b̃22(t) +

∫
R
c̃22(t, ξ)ν(dξ)

)
dt (58)

+
∫ T

0
ã2

2(t)
(
σ2(t,Xu(t), u(t)) +

∫
R
γ2(t,Xu(t), u(t), ξ)ν(dξ)

)
dt

]
<∞

for all u = (u1, u2) ∈ AE .
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Define

(Φ(u1))(t, ω) = φ(u1(t, ω)); u1 ∈ A(1)
E (59)

Suppose Φ(u1) ∈ A(2)
E . Then

max
u2∈A(2)

E

J2(u1, u2) = J2(u1,Φ(u1)); u1 ∈ A(1)
E (60)

ii) With φ as in i), assume in addition that the following bullet points hold:

• Hφ
1 (t, x, u1, a1, b1, c1(·)) is concave with respect to x and u1, for all t, a1, b1, c1(·).

• g1(x) is concave.

• There exist u∗1 ∈ A
(1)
E such that

max
v1∈U1

E
[
Hφ

1 (t, X̂(t), v1, â2(t), b̂2(t), ĉ2(t, ·))
∣∣E(1)
t

]
(61)

= E
[
Hφ

1 (t, X̂(t), u∗1(t), â2(t), b̂2(t), ĉ2(t, ·))
∣∣E(1)
t

]

for all t ∈ [0, T ], a.s. Here X̂(t) = Xu∗1,φ(u∗1)(t) and â1(t), b̂1(t), ĉ1(t, ·) is the solution of

(55)-(56) corresponding to u1 = u∗1.

•

E

[∫ T

0
(X̂(t)−Xu1,φ(u1)(t))2

(
b̂21(t) +

∫
R
ĉ21(t, ξ)ν(dξ)

)
dt (62)

+
∫ T

0
â2

1(t)
(
σ2(t,Xu1,φ(u1)(t), u1(t), φ(u1(t)))

+
∫

R
γ2(t,Xu1,φ(u1)(t), u1(t), φ(u1(t)), ξ)ν(dξ)

)
dt

]
<∞

for all u1 ∈ A(1)
E .

Then (u∗1,Φ(u∗1)) ∈ A(1)
E ×A

(2)
E is a Stackelberg equilibrium for the game.

Proof

Part i) is proved by applying the maximum principle for optimal stochastic control with respect

to u2 ∈ A(2)
E of the state process Xu1,u2(t) for fixed u1 ∈ A(1)

E , as presented in Baghery and
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Øksendal (2007). See also Framstad et. al (2004), Øksendal and Sulem (2007). Similarly, part

ii) is proved by applying the same maximum principle for optimal stochastic control with respect

to u1 ∈ A(1)
E of the state process Xu1,φ(u1)(t), for the given function φ.

�

8.1 Applications to the newsvendor problem

We now apply our general result for stochastic Stackelberg games to the newsvendor problem.

In the newsvendor problem we have the control u = (u1, u2) where u1 = w is the wholesale

price, and u2 = (q,R) with q the order rate and R the retail price. Moreover Xt = Dt,

f1(t,X(t), u(t)) = (wt −M)qt, g1 = 0, (63)

f2(t,X(t), u(t)) = (Rt − S) min(Dt, qt)− (wt − S)qt, and g2 = 0. (64)

Therefore by (51)

H2(t,Dt, qt, Rt, wt, a2, b2, c2(·)) = (Rt − S) min(Dt, qt)− (wt − S)qt (65)

+ a2(t)µ(t,Dt, Rt) + b2(t)σ(t,Dt, Rt)

+
∫

R
γ(t,Dt, Rt, ξ)c2(ξ)ν(dξ)

Similarly by (54) , with u2 = φ(u1) = (φ1(w), φ2(w)) = (q(w), R(w))

Hφ
1 (t,Dt, wt, a1(t), b1(t), c1(t, ·)) (66)

=(wt −M)φ1(wt) + a1(t)µ(t,Dt, φ2(wt)) + b1(t)σ(t,Dt, φ2(wt)) (67)

+
∫

R
c1(t, ξ)γ(t,Dt, φ2(wt), ξ)ν(dξ) (68)

Here we have assumed that the dynamics of Dt only depends on the control Rt = φ2(wt) and

has the general form
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dDt = µ(t,Dt, Rt)dt+ σ(t,Dt, Rt)dBt (69)

+
∫

R
γ(t,Dt, Rt, ξ)Ñ(dt, dξ); t ∈ [0, T ]

D0 = d0 ∈ R (70)

To find a Stackelberg equilibrium we use Theorem A.1. Hence by (57) we first maximize

E
[
H2(t,Dt, qt, Rt, wt, a2(t), b2(t), c2(t, ·))

∣∣E(2;j)
t

]
(71)

with respect to u
(j)
2 , j = 1, 2, where u(1)

2 = q, u
(2)
2 = R. The first order conditions give the

equations

E
[
(R̂t − S)X[0,Dt](q̂t)− wt + S

∣∣E(2,1)
t

]
= 0 (72)

and

E
[

min(Dt, q̂t) + a2(t)
∂µ

∂R
(t,Dt, R̂) (73)

+b2(t)
∂σ

∂R
(t,Dt, R̂) +

∫
R
c2(t, ξ)

∂γ

∂R
(t,Dt, R̂, ξ)ν(dξ)

∣∣∣E(2,2)
t

]
= 0

for the optimal values q̂t, R̂t. Let q̂t = φ1(wt), R̂t = φ2(wt) be the solution of this coupled system.

Next, by (61) we maximize

E
[
Hφ

1 (t, D̂t, wt, a1(t), b1(t), c1(t, ·))
∣∣E(1)
t

]
(74)

=E
[
(wt −M)φ1(wt) + a1(t)µ(t,Dt, φ2(wt))

+b1(t)σ(t,Dt, φ2(wt)) +
∫

R
c1(t, ξ)γ(t,Dt, φ2(wt), ξ)ν(dξ)

∣∣∣E(1)
t

]
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with respect to wt. This gives the first order condition

(ŵt −M)φ′1(ŵ) + φ1(ŵt) + φ′2(ŵ)E
[
a1(t)

∂µ

∂R
(t,Dt, φ2(ŵt)) (75)

+b1(t)
∂σ

∂R
(t,Dt, φ2(ŵt)) +

∫
R
c1(t, ξ)

∂γ

∂R
(t,Dt, φ2(ŵt), ξ)ν(dξ)

∣∣∣E(1)
t

]
= 0

for the optimal value ŵt. The processes ai(t), bi(t), ci(t, ξ) are given by (52)-(53) for i = 2 and

(55)-(56) for i = 1.

We summarize what we have proved in the following theorem.

Theorem A.2

Let q̂t = φ1(wt), R̂t = φ2(wt) be the optimizers of (71). Assume that φi ∈ C1 and that the

conditions of Theorem A.1 are satisfied. Let ŵt be the optimizer of (74). Suppose

u∗ = (ŵt, (φ1(ŵt), φ2(ŵt))) ∈ A(1)
E ×A

(2)
E

Then u∗ is a Stackelberg equilibrium for the newsvendor problem with state Xt = Dt given by

(69) and performance functionals

J1(w, (q,R)) = E
[∫ T

δ
(wt −M)qtdt

]
(manufacturer’s profit) (76)

J2(w, (q,R)) = E
[∫ T

δ

(
(Rt − S) min(Dt, qt)− (wt − S)qt

)
dt

]
(retailer’s profit) (77)

In other words

max
(q,R)∈A(2)

E

{J2(w, (q,R))} = J2(w, (φ1(w), φ2(w))) (78)

and

max
w∈A(1)

E

{J1(w, (φ1(w), φ2(w)))} = J1(ŵ, (φ1(ŵ), φ2(ŵ))) (79)

Remark

Note that if R is fixed and cannot be chosen by the retailer, then (73) is irrelevant and we are

left with (72) leading to the much simpler equations that we reported in Theorem 3.2.1.
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9 Appendix B

In this appendix we give complete proofs for all unproved statements given in Section 4 and 5.

We start with a non-trivial estimate for the standard normal distribution, which will be crucial

in the proofs of unique maxima.

Lemma B.1

In this lemma G[x] is the cumulative distribution function of the standard normal distribution.

Let 0 ≤ m ≤ 1, and for each m consider the function hm : R→ R defined by

hm[z] = z(1−m−G[z])−G′[z] (80)

Then

hm[z] < 0 for all z ∈ R (81)

Proof

Note that if z ≥ 0, then hm[z] ≤ h0[z] and if z ≤ 0, then hm[z] ≤ h1[z]. It hence suffices

to prove the lemma for m = 0 and m = 1. Using G′′[z] = −x · G′[z], it is easy to see that

h′′m[z] = −G′[z] ≤ 0. If m = 0, it is straightforward to check that h0 is strictly increasing, and

that limz→+∞ h0[z] = 0. If m = 1, it is straightforward to check that h1[z] is strictly decreasing,

and that limz→−∞ h1[z] = 0. This proves that h0 and h1 are strictly negative, completing the

proof of the lemma.

�

Details for Proposition 4.1.1

From (12), we easily see that the statement qt ≤ Dt is equivalent to the inequality

qt −
(
Dt−δe

−aδ + µ(1− e−aδ
)
≤
∫ t

t−δ
σea(s−t)dBs (82)

The left hand side is Et-measurable, while the right hand side is normally distributed and
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independent of Et. Using the Itô isometry, we see that the right hand side has expected value

zero and variance σ2(1−e−2aδ)
2a . It is then straightforward to see that

E
[
X[0,Dt](q̂t)|Et

]
= 1−G

qt − (Dt−δe
−aδ + µ(1− e−aδ)

)√
σ2(1−e−2aδ)

2a

 (83)

and (13) follows trivially from (9). It remains to prove that the function Ψy has a unique

maximum if Φy[M ] > 0. First put

ŷ =
y · e−aδ + µ(1− e−aδ)

σ
√

1−e−2aδ

2a

(84)

and note that Ψy is proportional to

(w −M)
(
ŷ +G−1

[
1− w − S

R− S

])
(85)

We make a monotone change of variables using z = G−1
[
1− w−S

R−S

]
. With this change of

variables we get that Ψy is proportional to

(R− S)
(

1−G[z]− M − S
R− S

)
(ŷ + z) (86)

Put m = M−S
R−S , and note that Ψy is proportional to

(1−m−G[z])(ŷ + z) (87)

Φy[M ] > 0 is equivalent to ŷ + G−1[1 − m] > 0, and the condition w ≥ M is equivalent to

z ≤ G−1[1 −m]. Note that if S ≤ M ≤ R, then 0 ≤ m ≤ 1. For each fixed 0 ≤ m ≤ 1, ŷ ∈ R

consider the function

fm[z] = (1−m−G[z])(ŷ + z) on the interval − ŷ ≤ z ≤ G−1[1−m] (88)

If ŷ +G−1[1−m] > 0, the interval is non-degenerate and non-empty, and

f ′m[z] = −G′[z](ŷ + z) + (1−m−G[z]) (89)
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Note that f ′m[−ŷ] > 0, and that fm[−ŷ] = fm[G−1[1 − m]] = 0. These functions hence have

at least one strictly positive maximum. To prove that the maximum is unique, assume that

f ′m[z0] = 0, and compute f ′′m[z0]. Using G′′[z] = −z · g′[z], it follows that

f ′′m[z0] = z0(1−m−G[z0])− 2G′[z0] < z0(1−m−G[z0])−G′[z0] < 0 (90)

by Lemma B.1. The function is hence quasi-concave and has a unique, strictly positive maxi-

mum. That completes the proof of Proposition 4.1.1.

�

Details for Proposition 4.2.1

In this case the statement qt ≤ Dt is equivalent to the inequality

qt −
(
Dt−δe

−
R t
t−δ a(u)du +

∫ t

t−δ
a(s)µ(s)e−

R t
t−δ a(u)du

)
≤
∫ t

t−δ
σ(s)e−

R t
t−δ a(u)dudBs (91)

Again the left hand side is Et-measurable, while the right hand side is normally distributed and

independent of Et. The calculations in the proof of Proposition 4.1.1 can be repeated line by

line for each fixed value of t, proving the general case in Proposition 4.2.1.

�

Details for Proposition 5.1.1

From (22), we easily see that the statement qt ≤ Dt is equivalent to the inequality

ln
[

qt
Dt−δ

]
− (a− 1

2
σ2)δ ≤ σ(Bt −Bt−δ) (92)

The left hand side is Et-measurable, while the right hand side is normally distributed and

independent of Et. It is then straightforward to prove that

E
[
X[0,Dt](q̂t)|Et

]
= 1−G

 ln
[

qt
Dt−δ

]
− (a− 1

2σ
2)δ

√
σ2δ

 (93)

32



Hence it follows from (9) that

qt = Dt−δ · exp
[
(a− 1

2
σ2)δ +

√
δσ2 ·G−1

[
1− w − S

R− S

]]
(94)

With this order quantity, the expected profit for the manufacturer is

E[Dt−δ · (wt −M) exp
[
(a− 1

2
σ2)δ +

√
δσ2 ·G−1

[
1− wt − S

R− S

]]
(95)

In general wt can be a random variable. If w∗ = Argmax[Ψ], where

Ψ[w] = (w −M) exp
[
(a− 1

2
σ2)δ +

√
δσ2 ·G−1

[
1− w − S

R− S

]]
(96)

we have, however, that

E
[
Dt−δ · (wt −M) exp

[
(a− 1

2
σ2)δ +

√
δσ2 ·G−1

[
1− wt − S

R− S

]]]
≤ E[Dt−δ] ·Ψ[w∗] (97)

with equality if wt = w∗. Hence w∗ is optimal. It remains to prove that Argmax[Ψ] is unique.

If we put b =
√
δσ2, it follows that Ψ is proportional to a function of the form

w 7→ (w −M) exp
[
bG−1

[
1− w − S

R− S

]]
(98)

where b > 0. Make a monotone change of variables using z = G−1
[
1− w−S

R−S

]
. With this change

of variables we get that Ψ is proportional to

(R− S)
(

1−G[z]− M − S
R− S

)
exp[b z] (99)

Put m = M−S
R−S , and note that Ψ is proportional to a function

(1−m−G[z]) exp[b z] (100)

For each fixed 0 ≤ m ≤ 1, b > 0 consider the function

fm[z] = (1−m−G[z]) exp[b z] on the interval −∞ < z ≤ G−1[1−m] (101)
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We have

f ′m[z] = −G′[z] exp[b z] + (1−m−G[z])b exp[b z] (102)

Note that limz→−∞ fm[z] = 0, fm[G−1[1−m]] = 0, and f ′m[G−1[1−m]] < 0. The function hence

has at least one strictly positive maximum. To see that the maximum is unique, find z0 s.t.

f ′m[z0] = 0. Using G′′[z] = −z ·G′[z], we can simplify the expression to get

f ′′m[z0] = (z0 − b)G′[z0] exp[b z] (103)

From Lemma B.1 and f ′m[z0] = 0 we get

(1−m−G[z0])b = G′[z0] > (1−m−G[z0])z0 (104)

Hence if f ′m[z0] = 0, we must have z0 < b, which implies f ′′m[z0] < 0. The function is hence quasi-

concave and has a unique, strictly positive maximum. That completes the proof of Proposition

5.1.1.

�

Details for Proposition 5.2.1

In the case with variable coefficients, we have

Dt = Dt−δ · exp
[∫ t

t−δ
µ(s)− 1

2
σ2(s)ds+

∫ t

t−δ
σ(s)dBs

]
(105)

Put

µ̂(t) =
∫ t

t−δ
µ(s)− 1

2
σ2(s)ds σ̂2(s) =

∫ t

t−δ
σ2(s)ds (106)

Since the exponent in (105) is normally distributed and independent of Et, we get

E
[
X[0,Dt](q̂t)|Et

]
= 1−G

 ln
[

qt
Dt−δ

]
− µ̂(t)

σ̂(t)

 (107)

Hence it follows from (9) that

qt = Dt−δ · exp
[
µ̂(t) + σ̂(t) ·G−1

[
1− w − S

R− S

]]
(108)
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With this order quantity, the expected profit for the manufacturer is

E
[
Dt−δ · (wt −M) exp

[
µ̂(t) + σ̂(t) ·G−1

[
1− w − S

R− S

]]]
(109)

The calculations in the proof of Proposition 5.1.1 can now be repeated line by line for each fixed

t proving the general case in Proposition 5.2.1. �

Details for subsection 5.3

From (32) it follows that

Dt = Dt−δ exp

[∫ t

t−δ

(
Bs(ω)− 1

2
σ2(s) +

∫
R0

log[1 + γ(s, z)]− γ(s, z)ν(dz)
)
ds (110)

+
∫ t

t−δ
σ(s)dBs +

∫ t

t−δ

∫
R0

log[1 + γ(s, z)]Ñ(ds, dz)

]

= Dt−δ · exp
[∫ t

t−δ
Bs(ω)ds

]
(111)

· exp

[∫ t

t−δ

(
−1

2
σ2(s) +

∫
R0

log[1 + γ(s, z)]− γ(s, z)ν(dz)
)
ds (112)

+
∫ t

t−δ
σ(s)dBs +

∫ t

t−δ

∫
R0

log[1 + γ(s, z)]Ñ(ds, dz)

]

The problem here is the second term exp
[∫ t
t−δ Bs(ω)ds

]
which is not independent of Et. Integrate

by parts to see that

exp
[∫ t

t−δ
Bs(ω)ds

]
= exp

[
δBt−δ + t(Bt −Bt−δ)−

∫ t

t−δ
sdBs

]
(113)

from which it follows that

Dt = Dt−δ · exp [δBt−δ] ·Xt (114)

where Xt is given by (34). Here the first two terms are Et-measurable, while the last term is

independent of Et. It is then straightforward to see that (35) follows from (9).

�
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