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Abstract

There is an extensive literature claiming that it is often difficult

to make use of arbitrage opportunities in financial markets. This

paper provides a new reason why existing arbitrage opportunities

might not be seized. We consider a world with short-lived securities,

no short-selling constraints and no transaction costs. We show that

to exploit all existing arbitrage opportunities, traders should pay

attention to all financial markets simultaneously. It gives a general

result stating that failure to do so will leave some arbitrage oppor-

tunies unexploited with probability one.
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1 Introduction

One of the fundamental concepts in finance is arbitrage, defined as the simultaneous pur-

chase and sale of the same, or essentially similar, security in two different markets for

advantageously different prices, see Sharpe and Alexander (1990). The efficient market

hypothesis relies to a large extent on the assumption that, whenever present, arbitrage

opportunities will be exploited quickly. The behavioral finance literature as in Shleifer

(2000), p. 2, questions this hypothesis:

The key forces by which markets are supposed to attain efficiency, such as

arbitrage, are likely to be much weaker and more limited than the efficient

markets theorists have supposed.

In reality arbitrage opportunities are limited by a number of factors like the existence

of transactions costs, short-selling contraints, or mispricing of securities deepening in the

short run.

This paper claims that even under close to ideal circumstances, i.e. the case where

transactions costs are zero, short-selling constraints do not exist and securities are short-

lived so deepening of mispricing is impossible, existing arbitrage opportunities might not

be seized. We show that this is generally the case whenever traders restrict their attention

to a subset of the securities traded at a certain point in time. At the heart of our argument

is therefore the observation that attention is only available in limited amounts, following

Radner and Rothschild (1975).

Van Zandt (1999) argues that individuals are bounded not so much by the total amount

of information processing they can handle, as by the amount they can perform in a given

amount of time. This leads to parallel or distributed processing, where information process-

ing tasks are broken down into steps that are shared among the members of the organization

and where each of these steps takes time.

Limits to the capability of information processing are the main reasons for traders to

specialize to subsets of securities. In investment firms, for instance, analysts typically

concentrate on the stocks within a particular industry sector. In Vayanos (2003), this

feature is modeled by a processing constraint. Agents are assumed to analyze portfolio’s of

at most a fixed number of inputs, where an input can either be an asset examined directly,

or a subordinate’s portfolio.

In this paper we consider the finance version of a two-period general equilibrium model

with restricted market participation. The model is a special case of the restricted market

participation models of Siconolfi (1988) and Polemarchakis and Siconolfi (1997). As a con-

sequence of the two-period time horizon, all traded assets are short-lived. This is the most

favorable case for arbitrage, as it makes deepening of mispricing impossible. Investors can
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buy and sell assets in period 0 without being subject to short-selling constraints or trans-

actions costs. They are however subject to information processing constraints. An investor

is assumed to be unable to be active in the markets of all traded assets simultaneously.

Assets have payoffs in period 1, depending on the realization of the state of nature.

Asset payoffs are real, i.e. denominated in terms of the consumption good. Investors

consume in both periods. In this context, the usual definition of no-arbitrage is both the

absence of a costless portfolio with non-negative returns in each future state of nature and

strictly positive returns in at least one state, and of a portfolio yielding income in period 0

and with non-negative returns in each future state of nature.

Since investors restrict their attention to certain subsets of assets, they might not be

able to make use of certain arbitrage opportunities. One might expect, however, that,

under suitable assumptions, they are able to do so collectively. In particular, one might

expect that this is the case as long as the subsets of assets to which investors pay attention

overlap. This paper makes the point that this intuition is wrong. For almost all asset

structures, as soon as each investor is limited in his trading opportunities to some extent,

some arbitrage opportunities will be left unexploited, even at the collective level. Recall

from Geanakoplos and Mas-Colell (1989), for example, that for every asset market model

with real assets there is a corresponding model with nominal payoffs. Hence changes in

real payoffs can be seen resulting from changes of commodity prices.

Section 2 outlines our model and derives the appropriate no-arbitrage conditions. Sec-

tion 3 shows a first example that the no-arbitrage conditions in a restricted market par-

ticipation model may differ from the usual no-arbitrage conditions. Section 4 derives the

main result: this is typically the case, no matter how small the restriction in market

participation.

2 Arbitrage

We consider the case that is most favorable to arbitrage. All traded assets are short-lived,

which prohibits deepening of mispricing, transactions costs are absent, and short-sales are

not restricted, apart from restrictions that prevent bankruptcy. In particular, we consider

a model with two time periods, t = 0, 1, and one state of nature s out of S possible states

of nature realizing at t = 1. There is a finite number of investors i = 1, . . . , I and a single

good, called income, in each state.

At t = 0 investors allocate their money between consumption and investment in one of

the available assets j = 1, . . . , J. Throughout we restrict attention to the case J ≤ S. The

symbols I, J , and S denote the sets {1, . . . , I}, {1, . . . , J}, and {1, . . . , S}, respectively.

Assets pay off in period 1. The payoff of asset j in state s is given by Ajs. Investor i has
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a utility function U i and an initial income stream ωi ∈ RS+1
+ . The set of possible income

streams is given by X i = RS+1
+ .

Investor i has only access to a limited set of asset markets. Cognitive restrictions require

him to restrict attention to the set J i ⊂ J of assets.

Let q ∈ RJ denote the asset prices and θi ∈ RJ the net asset portfolio of agent i, i.e.

negative components of θi denote sales of the corresponding assets and positive components

denote purchases.

The optimization problem of investor i is given by

max
θi∈RJ , xi∈RS+1

+

U i(xi)

subject to

xi − ωi ≤
(
−q
A

)
θi,

θij = 0, j ∈ J \ J i.

Investor i has arbitrage opportunities if he can purchase a portfolio at no cost today,

with non-negative payoffs at each state s and a strictly positive payoff in at least one state,

or a portfolio yielding postive income in period 0 and non-negative payoffs at each future

state. For investor i this leads to the following no-arbitrage condition, which is labelled

NACi,

6 ∃θi ∈ RJ such that θij = 0, j ∈ J \ J i, and

(
−q
A

)
θi > 0. (NACi)

It is well-known that NACi is satisfied if and only if q ∈ Qi, where

Qi =
{
q ∈ RJ | ∃π ∈ RS++ such that for every j ∈ J i, qj =

∑
s∈S πsA

j
s

}
.

The following result follows immediately:

J i1 ⊂ J i2 ⇒ Qi2 ⊂ Qi1 .

Asset prices are said to satisfy the no-arbitrage condition NAC if the no-arbitrage condition

is satisfied for all investors. So asset prices q satisfy NAC if and only if NACi is satisfied

for every i ∈ I. This is easily seen to be equivalent to the statement that q ∈ Q = ∩i∈IQi.

3 Networks of Agents

Another interesting no-arbitrage condition is the one which follows if some omniscient

investor could oversee all the possibilities offered in the market. This leads to the market
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no-arbitrage condition NACm,

6 ∃θ ∈ RJ such that

(
−q
A

)
θ > 0. (NACm)

It is well-known that NACm is satisfied if and only if q ∈ Qm, where

Qm =
{
q ∈ RJ | ∃π ∈ RS++ such that q =

∑
s∈S πsAs

}
.

In this section it is examined under what circumstances NAC and NACm are the same,

i.e. under what conditions partly informed investors exploit all arbitrage possibilities

present.

The following lemma is easily shown.

Proposition 3.1 It holds that Qm ⊂ Q.

Proposition 3.1 states that NACm implies NAC. Of course, if some agent can trade in all

markets then the concepts of NAC and NACm coincide.

Proposition 3.2 If for some investor i ∈ I it holds that J i = J , then Qm = Q.

Investor i in the proposition is omniscient, so the result follows trivially.

A first intuition would be that if the J i overlap, then NAC implies NACm. The market

of asset j′ is said to be related to the market of asset j′′ if for some agent i ∈ I it holds

that j′, j′′ ∈ J i. The market of asset j′ is said to be indirectly related to the market of

asset j′′ if there is a sequence of markets j1, . . . , jn such that j1 = j′ and jn = j′′ and jk

and jk+1 are directly related for all k ∈ {1, . . . , n− 1}.
Neither direct relatedness nor direct relatedness of all markets is sufficient for the sets

Q and Qm to coincide. In fact, consider the following example where it holds that all

markets are directly related. Notice that one needs at least three assets for an interesting

example.

Example 3.3 Consider three investors all having strictly monotonic utility functions.

Suppose that

A =




2 1 1

1 2 1

1 1 2


 .

We will consider the case where investor i is assumed not to trade in asset i. So, J 1 = {2, 3},
J 2 = {1, 3} and J 3 = {1, 2}. Consider the asset price system q = (5, 3, 5). We claim that
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q /∈ Qm. Indeed, θ = (−1,−3,−1) is an arbitrage portfolio. However q belongs to Qm

because for J 1 = {2, 3}, π = (1/2, 1/6, 13/6), for J 2 = {1, 3}, π = (1, 2, 1) and for

J 3 = {1, 2}, π = (13/6, 1/6, 1/2) are state price vectors demonstrating the absence of

arbitrage opportunities.

The example is the strongest example possible in the sense that adding one market to one

agent gives equivalence between NAC and NACm by Proposition 3.2.

4 Limits to Arbitrage

This section shows that Example 3.3 is not an exceptional case. It makes the striking ob-

servation that in finance economies with restricted market participation, forgone arbitrage

opportunities are the rule rather than the exception. To make this statement more precise,

we use the following notation. Let A denote the set of (S × J)–matrices and

A+ =
{
A ∈ A | ∃θ ∈ RJ \ {0}, Aθ ∈ RS+

}
,

i.e. A+ is the set of asset return matrices for which there is a non-trivial asset portfolio

giving non-negative returns in each state. We will restrict attention to the set of asset

return matrices A+. Asset return matrices outside A+ are hardly interesting, as the next

result shows that there are no limits on asset prices imposed by arbitrage in that case.

Proposition 4.1 It holds that A ∈ A \ A+ if and only if Qm = RJ .
Proof: Let A ∈ A+ and choose θ ∈ RJ \ {0} and q ∈ RJ so that Aθ ∈ RS+ and qθ < 0.

Then there exists no π ∈ RS++ with q = πA. Hence, Qm 6= RJ .
To prove the converse inclusion, let A ∈ A\A+. Suppose there exists q ∈ RJ such that

{λq | λ > 0} ∩ {πA | π ∈ RS++} = ∅. By the separating hyperplane theorem, there exists

θ ∈ RJ \ {0} such that λqθ ≤ πAθ for all λ > 0 and π ∈ RS++. Taking the limit for λ ↓ 0,

we obtain 0 ≤ πAθ for all π ∈ RS++. Taking the limit for πs ↓ 0 for all s ∈ {1, . . . , S} \ {ŝ}
and πŝ → 1, we get 0 ≤ Aŝθ. Hence, Aθ ∈ RS+, so A ∈ A+, a contradiction. Q.E.D.

For all A ∈ A \ A+ it holds that Qm = RJ . Therefore, irrespective of the participation

structure, Qm = ∩i∈IQi.

The next result claims that in general arbitrage opportunities are left unexploited for

asset return matrices in A+.

Theorem 4.2 Suppose that for all investors i ∈ I it holds that J i 6= J . Then there

exists an open subset O of the set A+ with A+ \O having Lebesgue measure zero such that

Qm 6= ∩i∈IQi for all A ∈ O.
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Before proving Theorem 4.2, we introduce some extra notation. Let Θ+ and Θi
+, i ∈ I, be

closed convex cones defined by

Θ+ =
{
θ ∈ RJ | Aθ ∈ RS+

}
,

Θi
+ =

{
θ ∈ Θ+ | θj = 0 if j ∈ J \J i

}
.

Let C be a closed convex cone. A half–line L emanating from the origin is called an extreme

ray of C if L ⊆ C and every closed line segment in C with a relative interior point in L has

both endpoints in L. Let K be an arbitrary subset of RJ . Then the convex cone generated

by K is a subset of RJ containing zero and all those vectors which can be represented as

a linear combination with positive weights of finitely many points in K. The convex cone

generated by the empty set consists of the zero vector alone.

Let T denote the set of all those vectors θ ∈ Θ+ with ‖θ‖ = 1 such that the half–

line emanating from the origin and passing through θ is an extreme ray of the cone Θ+.

Lemma 4.3 is an immediate implication of Corollary 18.5.2 of Rockafellar (1997).

Lemma 4.3 Let A ∈ A+ have rank J. Then Θ+ is the convex cone generated by T .

Lemma 4.4 Let A ∈ A+ have rank J. Then the following conditions are equivalent:

(C1) ∩i∈IQi ⊆ Q,

(C2) Θ+ ⊆
∑

i∈I Θi
+,

(C3) T ⊆ ∪i∈IΘi
+.

Proof:

(C1) ⇒ (C2) Consider θ ∈ Θ+. If Aθ = 0, then θ = 0, and θ ∈ ∑i∈I Θi
+. Suppose that

Aθ ∈ RS+\{0}. By condition (C1), 0 < qθ for all q ∈ ∩i∈IQi. Therefore, 0 ≤ qθ for all

q ∈ cl(∩i∈IQi). Since the non–empty open set Q is contained in each of the sets Qi,

cl
(∩i∈IQi

)
= ∩i∈Icl (Qi),

see Rockafellar (1997), Theorem 6.5. Observe that

{
q ∈ RJ | ∃π ∈ RS+ such that for every j ∈ J i, qj =

∑
s∈S πsA

j
s

} ⊆ cl (Qi).

In fact, equality holds as well, but the inclusion ⊆ is sufficient for our purposes. Thus, the

inequality 0 ≤ qθ holds for all (q, π) ∈ RJ × RSI satisfying

qj =
∑

s∈S π
i
sA

j
s, for all i ∈ I, j ∈ J i,

0 ≤ πis, for all i ∈ I, s ∈ S.
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Farkas’ Lemma, see Rockafellar (1997), Corollary 22.3.1, implies that for all i ∈ I, j ∈ J i,

and s ∈ S there exist numbers θij and µis ≥ 0 such that
∑

j∈J i
Ajsθ

i
j − µis = 0, for all i ∈ I, s ∈ S, (1)

∑

{i∈I|j∈J i}
θij = θj, for all j ∈ J . (2)

Define θij to be zero for all i ∈ I and j ∈ J \J i, and let θi = (θi1, . . . , θ
i
J). Then θi ∈ Θi

+

and
∑

i∈I θ
i = θ.

(C2) ⇒ (C1) Let q ∈ ∩i∈IQi, and let θ ∈ RJ be such that Aθ ∈ RS+\{0}. We must show

that 0 < qθ. Indeed, using C2, for i ∈ I we can choose θi ∈ Θi
+ such that 0 ≤ qθi and∑

i∈I θ
i = θ. Moreover, there is some i0 ∈ I with Aθi0 ∈ RS+\{0}, so 0 < qθi0 , and therefore

0 < qθ.

(C2) ⇒ (C3) Let θ ∈ T . As θ is an element of Θ+, condition (C2) implies that there are

θi ∈ Θi
+ such that

∑
i∈I θ

i = θ. As θ is a non–zero vector, there is i0 ∈ I such that θi0

is a non–zero vector. Observe that the line segment with endpoints 2θi0 and 2
∑

i∈I\{i0} θ
i

contains the vector θ in its relative interior. Therefore, there exists a positive number t

such that 2θi0 = tθ. This implies that θ is an element of Θi0
+.

(C3)⇒ (C2) By Lemma 4.3, Θ+ is the convex cone generated by T . By Condition (C3),

it is contained in the convex cone generated by ∪i∈IΘi
+. Clearly, the latter is equal to∑

i∈I Θi
+. Q.E.D.

For each θ ∈ Θ+ with ‖θ‖ = 1, let S(θ) = {s ∈ S | Asθ = 0}. Denote by codim (θ) the

codimension of the linear subspace of RJ spanned by the vectors As, s ∈ S(θ). Observe

that codim (θ) ≥ 1. Moreover, the codimension of the linear subspace spanned by the

vectors As, s ∈ S(θ) together with vector θ equals codim (θ)− 1.

Lemma 4.5 Let A ∈ A with rank J and θ ∈ Θ+ with ‖θ‖ = 1 be given. Then θ ∈ T if

and only if codim (θ) = 1.

Proof: Let A ∈ A with rank J and θ ∈ Θ+ with ‖θ‖ = 1 be given. Let L denote a

half–line emanating from the origin and passing through the point θ.

Suppose that codim (θ) > 1. Then the codimension of the linear space spanned by

the vectors As, s ∈ S(θ), together with vector θ is non–zero. Hence, there exists a vector

ξ ∈ RJ\{0} such that Asξ = 0 for all s ∈ S(θ) and θξ = 0. As Asθ > 0 for all s ∈ S\S(θ),

there is an ε > 0 such that As(θ + tξ) > 0 for all t ∈ [−ε, ε] and s ∈ S\S(θ). Thus, the

closed line segment with endpoints (θ − εξ) and (θ + εξ) lies entirely in Θ+ and contains

vector θ in its relative interior. However, neither of its endpoints belongs to L. Therefore,

L is not an extreme ray of Θ+, and θ is not an element of the set T .

7



Suppose that codim (θ) = 1. Let θ′ and θ′′ be two points in Θ+ such that λθ′+(1−λ)θ′′ =

tθ for some λ ∈ (0, 1) and t ≥ 0. We must show that θ′ and θ′′ both belong to L.

Indeed, Asθ
′ ≥ 0 and Asθ

′′ ≥ 0 for all s ∈ S. If s ∈ S(θ), then Asθ = 0, and therefore

Asθ
′ = Asθ

′′ = 0. Thus, all three vectors θ, θ′, and θ′′ belong to a linear subspace orthogonal

to the span of the vectors As, s ∈ S(θ). As the dimension of this linear subspace is equal

to 1, there are real numbers t′ and t′′ such that θ′ = t′θ and θ′′ = t′′θ. If the number t′

were negative, θ′ would be a non–zero vector such that 0 ≤ Aθ′ = t′Aθ ≤ 0. This would

contradict the choice of A in the set of matrices A+ with rank J. Therefore, it follows that

t′ ≥ 0, and so θ′ ∈ L. It follows similarly that θ′′ ∈ L. Q.E.D.

The following example illustrates the set T.

Example 4.6 Suppose that I = 3, S = 4, J = 3, J i = J \{i} for i ∈ I, and

A =




1 1 1

2 1 1

1 2 1

4 2 1


 .

Observe that A is an element of the set A+ with rank J. Moreover, the matrix A is in

general position. Each 3×3 submatrix of A is non–singular. The set T consists of the four

elements reported in the Table 1.

Table 1: The elements of the set T

Element 1 Element 2 Element 3 Element 4

j = 1 0 1 -1 0

j = 2 1 0 2 -1

j = 3 -1 -1 0 2

Elements 1 and 4 of the set T belong to Θ1
+, element 2 belongs to Θ2

+, and element 3

belongs to Θ3
+. By Lemma 4.4 the sets Q and ∩i∈IQi coincide.

Corollary 4.7 Let A ∈ A with rank J and θ ∈ T be given. Then the set S(θ) consists of

at least J − 1 distinct elements.

Lemma 4.8 Suppose that J i 6= J for all i ∈ I. Then there exists an open subset A′ of

A with A\A′ having Lebesgue measure zero such that T ∩Θi
+ = ∅ for all i ∈ I and for all

A ∈ A′.
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Proof: For every j ∈ J and for every subset M of S with cardinality J − 1, define the

function FjM : A× RJ → RJ+1 as follows,

FjM(A, θ) =



Asθ, s ∈M
θ · θ − 1

θj


 .

Define the sets AjM as

AjM =
{
A ∈ A | there is no θ ∈ RJ such that FjM(A, θ) = 0

}
.

To see that AjM is open, let A(n) be the sequence of matrices in A\AjM converging to

some A ∈ A. Then there exists a sequence θ(n) in RJ such that FjM(A(n), θ(n)) = 0 for all

n. Since the sequence θ(n) is bounded, it has a convergent subsequence converging to some

θ ∈ RJ . Hence, FjM(A, θ) = 0, and the matrix A belongs to the complement of the set

AjM .

The partial derivatives of the function FjM with respect to θ and As, s ∈ M , are

represented in Table 2. For simplicity we take M equal to {1, . . . , J − 1}. It is easy to see

that for all (A, θ) ∈ F−1
jM(0) the matrix of the partial derivatives has full row rank. That

is, FjM is transversal to zero. The Transversality Theorem implies that the complement of

the set AjM has Lebesgue measure zero.

Table 2: Partial derivatives of the function FjM , M = {1, . . . , J − 1}.

θ A1 A2 . . . AJ−1

A1θ A1 θ 0 . . . 0

A2θ A2 0 θ . . . 0
...

...
...

...
. . .

...

AJ−1θ AJ−1 0 0 . . . θ

θ · θ − 1 2θ 0 0 . . . 0

θj e 0 0 . . . 0

The symbol e is a J–dimensional row–vector such that el = 0 for all l ∈ J \{j} and ej = 1.

Finally, define A′ as the set of matrices with rank J in the intersection of all sets AjM .
Then A′ is open and its complement has Lebesgue measure zero.

Let A ∈ A′ and θ ∈ T . Suppose that θ ∈ Θi
+ for some i ∈ I. Then θj = 0 for every

j ∈ J \J i. Corollary 4.7 implies that there is a subset M of the set S with cardinality

J − 1 such that Asθ = 0 for all s ∈ M . Therefore, FjM(A, θ) = 0 for every j ∈ J \J i, a

contradiction to A ∈ A′. Thus, we have proved that T ∩Θi
+ = ∅ for all i ∈ I and A ∈ A′.
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Q.E.D.

Proof of Theorem 4.2: Define the set O as the matrices with rank J in the intersection

of the sets A+ and A′. As both the set of matrices in A with rank J and the set A′ is

open in A, O is open in A+. Since both the set of matrices in A with rank J and the set

A′ have full Lebesgue measure, the set A+\O has Lebesgue measure zero. For all A ∈ O
the set T is non–empty, whereas its intersection with the collection of cones Θi

+ is empty.

By Lemma 4.4, ∩i∈IQi 6= Q. Q.E.D.
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