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1 Introduction

In this paper we consider time dependent (non autonomus) systems. These are
firstly restricted to a class of problems having the explicite time dependency
described by a discount factor or current value multiplier of the usual exponen-
tial form used in economic applications. Secondly we also consider more general
forms with explicite time dependency.

We consider problems connected to management of renewable resources, for
example fish. In practical terms we often have the situation that observed data
of the amount of fish is the basic reason for action. Thus the observed estimated
amount of available fish determine the amount of harvest. In this context time
is not an interesting parameter. Therfore one may simplify the problem by
asking for solutions in phase-space instead of configuration space, that is one is
happy when obtaining a pure feedback form of the solution, where the harvest
or control u are completely determined by knowledge of the fish (stock) y. At
which point in time this happens is really uninteresting for many situations.

The first approach will be simple and serve as a guideline for the next steps.

2 An elementary approach

2.1 General considerations

Consider a problem with the following state equation

ef d
] = Ey(s) = g(s,y(s),u(s)), y€c QCR and uec U CR (1)
ys=t) = =z, scR", g:{AxQxU - R}. (2)

We have given a utility flow function (objective function) f subject to a control,
where U and Q are closed intervals. Time is in A = [0,7] where T' = oo is a
possibility. We define the value function, that we seek to maximize

V(z,t) = max/t Fs,y(s),u(s))ds, (3)

uelU
where f: {AXxQxU — IR}. The horizon T, has a predetermined value or
T = 0.
In order to avoid unnecessary complications, we consider the situation where
f, g and u are sufficiently regular for the Pontryagin Maximum Principle to
apply[1]. A Hamiltonian for this problem with a multiplier function (Lagrangian)
A is given by

H(s,y,u, A) = f(s,y(s),u(s)) + A g(s,y(s),u(s)), (4)
and the resulting Hamiltonian canonical equations are given as

i = S =gls.(s)uls). o)
5= -G = Al ) g, (0)

wr = argmax ff (7)



where u = u* is the optimal value of the control variable u. For the case of an
internal maximum Eq. (7) simplifies to

O 0= Fuls.0() u() + Aguls. y(5),us) (®)

Notice that Eq. (7) applies also when the extremum is not an internal point in
the control space U.

The equations above results from a general theory in variational computation
[1]. In the following we consider a problem with a constant discount rate r, and
for convenience we introduce F' and m by

F(s,y(s)u(s)) e f(s,y(s),uls)), 9)

m(s) = e”A(s) = As)=e"m(s). (10)
It is convenient to define a new Hamiltonian density by

(s, y(5),us)) + m(s) g(s.yls). u(s) = s,y N) . (1)

This way we obtain

OH
| = — 12
] o = W), (12)
m = rm-— %—7; ) (13)
ut o= arEmax g, (14)

where again v = u* is the optimal control. For the case when the extremum is
an internal point in the control space U !, as previously mentioned, Eq. (14)
above can be replaced by

Hy=Fy,+mg,=0. (15)

From Eq. (15) we then find
m(s) = M(y,u) = ——, (16)

where we have introduced M as a new functional form of m. We shall refer to
this as Problem A. We notice that g, = 0in Eq. (15) also implies that F,, = 0, so
this case needs special attention, and Eq. (16) as an equation defining M (y, u)
is not obvious although the limit may still exist. We consider this case in some
more detail by observing the following fact:

We factor out a function n(y, u) which is defined in such a way that at least
one of the functions f, and g, (see below) are different from zero for « € U and
y € Q. Thus we claim that we may write

Fu(y,u) + mgu(y, w) = n(y, w){f(y,0) + mgy, )} (17)

1H, = 0 applies to more general cases than internal maxima. See Seierstad and Sydsaether
[3] Note 3 p 86
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Then defining the new functions: hy(y,u) = n(y,w), Fu(y, h(y,u)) = fy, u)

and gn(y, h(y,u)) aef g(y,u). We restrict ourselves to cases covered by the

following form:
def -~ ~
H = F(y,h(u,y)) + mgly, h(u,y)), (18)
from which we obtain 5

and H, = 0, is satisfied by h,(y,u) = 0, regardless of m. First, consider the

special case, h(y,u) = ho(u), where ho(u) is a continuous function. In this case

o . . _d .
it is natural to switch to the new control variable @ </ ho(u). In the new setting

the new Hamiltonian results in Problem A, Eq. (16). Notice that in this case
the region of definition U is simply transformed to a new closed interval.
The general case may formally be rewritten by introducing a new control

e h(y,u) where @ : Q x U — U, which is a closed interval. In this way we
can reformulate this problem and observe that it again reduces to Problem A,
Eq. (16).

In the following we shall therefore restrict ourselves to problems having in-
ternal maxima 2 and focus on the straight forward case.

Then since F' and g are not explicitly dependent on time, it is convenient to
define a function P(y,u), which by using Eqs. (11) and (16) may be written as

def F, g 0 (F) (g )u

Q|

Ply,u) = H(y,m=M(y,U),U)=F—g—:g=—g—u% =, (20)

For the case of an internal optimum we have H, = 0 and in addition Hamilton’s
canonical equations results in the familiar equation

g

Q |=

IO (o), u(s)) + A gal, (), (o)) (21)

In the new variables this equation reads

H=Hs+rmg=Hs+rmy, (22)

(for details see Appendix A). .
We then consider Eq. (22) for ‘H with %—7: = 0, from which we obtain

. d
H:PnyrPud—Zg}:Herrmy:rmy, (23)
since H, = 0, thus
d
G{P,+ Puos —rm} =0. (24)
dy
When ¢ # 0 this gives (i.e. unless for an equilibrium or a turning point)
dP
d—yzrm:TM(y,u), (25)

where

2 A brief discussion on endpoint maxima is provided in Appendix B.



dP 0P OPdu
4P 4y OF | OF du (26)
dy Oy  Oudy

This result can be extended to cases where the control parameter is subject
to a constraint, say u € [a, 8] and where there is no internal optimum. See
Appendix B for details.

At points or intervals where y = 0 we may have:

1. ¥ = 0 and vh = 0 (equilibrium): These points are equilibrium points for
the system and therfore of no interest when a dynamic evolution is the
interesting scenario.

2. y = 0 and 1 # 0 (turning point): For this case in the situation we consider
we have
. daM du
n=M=—y=(M,+M,—)y, 27
thus this possibility is excluded. In our setting a turning point can exist
only for a discontinuous control u.

Notice also that %—Zf # %—I;. In fact %—Zf =0, but g_]; # 0 because P depends
on u also through M (y,u). Eq. (25) is now the only equation to be solved as a
first order differential equation for u = u(y). The additional equation

v=g(y,u), (28)

now has the function of determining y as function of s, and initial values s = ¢
and y(t) = =, when the differential equation, Eq. (25), determining v = u(y) is
solved, then u(t) = u(y(t)). Also notice that § =0 — ¢g=0 — H =P =0.

We have in mind applications where the state y is an observable quantity
that trigger the action, u. For example problems with pollution and renewable
resources.

Thus, as we focus on a solution where the optimal control u is determined
as a function of the state variable (stock) y it is important to bear in mined
that time ¢ becomes a more or less redundant parameter in this context. The
phase plane trajectory for the optimal control v = u* is all what is needed for
exercising the necessary control. However, if for some reason the time evolution
is of interest this can as mentioned, be found by solving Eq. (1) or Eq. (28)
with v = v* = u(y). So this determines y as well as v* as a function of ¢ if this
is of any interest.

In this connection it is interesting to notice that working the other way
around my result in unsurmountable problems. That is if we have found the
solution in the time domain, and want to eliminate time in order to find the
feedback form, this quickly becomes a nontrivial matter. This is can be illus-
trated by the example studied in Sec. 5. This problem can easily be solved in
the time domain. But starting from this solution and then eliminate time to
obtain the feedback form is a nontrivial project. Therfore to obtain the feedback
form of the solution the time domain should not be introduced.
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2.2 Results

We can formulate the results obtained in the following;:
Proposition: The shadow price (costate equation), Eq. (13)
m=rm-—"H,,
is automatically satisfied with m = M (y,u), Eq. (16), if Eq. (25) is satisfied.
Comment: Notice that from the above discussion we have excluded the case

7 = 0 & m # 0. The situation considered applies to a pure feedback solution:
u = u(y) with 4 = y% = g%.

dt
Proof:
Consider
- def . . du
M = Alyy+Muu:A1yg+Mu9d—
Y
du
= By =+ Mugg
dP du du
= —— —H,—P.— + M.g=—
dy Y dy y
du
= erHer{JWungufMug}d—y
= rM—H, (29)

where we have used the definition of P, Eq. (20), Eq. (25) and Eq. (26) in addition
to

He “ Fo4Mg.=o0, (30)
P. Y Fu4 Mg, + Mg, (31)
P. = Hua+ Mug= Muyg. (32)
The result in Eq. (29) shows that we obtain Eq. (13) by using Eq. (25) and the
definitions and relation listed above. Q.E.D.

2.3 Conclusions

We conclude that for the straight forward case as well as in the special cases outlined
in the discussion following Eq. (19) and Appendix B, we have that

dP du Fy,
is the only equation required to be solved, where P,, P, and M(y,u) = — % are known

functions. The solution of Eq. (33) will, however, determine u as a function of
y and not as a function of s. This is known as a specific feedback form and is
the ordinary phase plane solution mathematically speaking.

We also notice that Eq. (33) in the case of a small parameter r, offers itself
to a perturbation expansion. This problem is considered in detail in the next
section.

We also remark, that based on Eq. (22), we may formulate a perturbation
scheme for a more general time dependency than we considered here. We will
return to this problem later.



3 Different approaches

3.1 Discount rate as a parameter of smallness

There are basically two pronounced time scales in the problem we are discussing.
First we have the ”clock” associated with the state equation Eq. (5). Approx-
imating the time dependency by an exponential behavior exp(—~t), the char-
acteristic rate of change with time from this equation becomes v ~ %, where
g and g are typical values for these functions. This should be compared with
r, the discount rate. This is here considered to be much smaller, i.e. r << 7.
This assumption makes a straightforward perturbation expansion of Eq. (25)
tractable.

We notice here that for problems where the only time dependency occurs
through the discounting factor, g is a common factor and a change in time scale
seemingly only affects the discount rate r, however one must remember that Eq.
(25) also contains g from Eq. (5) explicitely, and thus is affected by a change of
time scale in Eq. (5). Let the discount rate r, be replaced by a characteristic
time 79 (r = 1/79) and introduce a non dimensional time 7 by a scale factor
to such that, { = tg7, and let 7 be a number of order unity, then rt — %T,
and the discount rate r would be replaced by a non dimensional discount rate
to/70, which is a small parameter provided ty << 79. As en example consider
the case of fish: One would expect the typical time change to occur over one
year, whereas a discount rate of 10% would correspond to 10 years and the
corresponding ratio to/79 would be 0.1.

An example using the theory given here is presented in Sec. 5.

3.2 Time dependent discount rate

We consider a more general class of problems where the discount rate may be
time dependent. Thus we consider a generalized discount rate as in the following
problem:

T
V{z,t) = max/ e ") f(s,y, u)ds, (34)
uwelU [,
subject to
J=gs), w0 =2, vl —c [ plridr, (35)
0

where € p(s) is the instantaneous rate and r(s) is the accumulated rate. If the
instantaneous rate is a constant rg, then the accumulated rate is rgs.
The corresponding Hamiltonian may be written as

H:eir(S)f(svyau)+)‘g(8ayau)v (36)
where A\ is a Lagrangian multiplier. We replace A by
m(s) < er). (37)
The current value Hamiltonian is now

C O H = f(s,9,u) + m(s) g(s,y,u) = H(s,y,m, ). (38)
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Then we restrict ourselves to internal extremum, and

H,=0 = H,=0. (39)
From Eq. (6) )
A=—-H,. (40)
It then follows that
mo o= rm+e N
— ep(s)m—H,. (41)
Furthermore
. dH .
HZE:ep(s)my—I—Hs. (42)

So far this approach is to general. We shall restrict ourselves to certain
classes of problems where all explicite time dependency occurs through € p(s)
ounly, i.e.

-od
Hs=0, = H:d—H:ep(s)myzep(s)mg. (43)

Further more we consider a € p(s) which is constant to leading order. Then to
leading order s is a redundant parameter which can be eliminated. In order to
reflect this fact explicitly we introduced M by Eq. (16) and the corresponding
new Hamiltonian P by Eq. (20) and we obtain the basic equation

Ply,u) = ep(s)M(y,u) g, (44)

or
Py(y, u)g + Puly, w)(uyd + us) = e p(s) M(y,u) 4, (45)
where we now consider u to be given as v = u(s,y) and & = uyy + us. Thus

in the case where us = 0, i.e. when » depend only on the state y, Eq. (45)
simplifies to

Py(y,uw) + Puly,w) uy = €p(s) M(y,u) , (46)

since g is a common factor.> Then if ep(s) << 1, Vs, we have a problem
formulation suitable for a perturbation expansion. We notice that whereas
H. = 0 we have P, = M, g # 0, when the system is not in an equilibrium. We
also notice that Eq. (46), for the case p =constant, is exactly Eq. (33).

Then consider the case with r(s) given as

r(s) = se + ag(s)e® + az(s)e® +--- (47)
then

ep(s) =7 = e+ da(s)e® + as(s)e® + - . (48)

For this expansion to be uniformly valid in s, it is necessary that ay(s) are
bounded for all k¥ and s € {tg, T}, where T' may be infinite if this is the range
for s in the actual problem.

3We notice that also in the case % # 0, ¢ is a common factor in Eq. (48), since we have,
Py =Hy + Myg = Mug = Muyy.
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We then have the following expansion scheme

P=Py+eP+0O(?), (49)
u = ug + eug + O(e?), (50)

{P'}o

0, — Py=Cy=const. — wp=up(yo;Co), (51)

{Py1 = {Py(y,u)y+ Puly,u)luyd + usl}r

- MO 3 (52)
{Py2 = {Py(y,uw)y+ Puly, w)[uyy + us]}o

= (M + da(s)Mo)y, (53)

b

and My = M(yo,uo), M1 = My (yo,uo)us. Although this procedure could in
principle work it becomes quickly rather complicated. We shall investigate a
different approach in the next section.

3.3 Alternative approach

An alternative approach turns out to be useful. In this approach we first inte-
grate Eq. (44)

P=cpMy,

and obtain

t y
P=Cte [ plo)Mluls)uls)ids = C e [ plrly DMty 7))y
0 x
(54)
where the last form of the integral requires that one can find a relationship
between y and ¢. For this purpose we use Eq. (5), ¥ = g(y,u) to define a new

quantity 7(y) as
def Y dyl
) /x 9 uly’)’ )
generally speaking this quantity may not be single valued, however, this is con-
nected to points where g(y,u) =0 1i. e. equilibrium or turning points.

The main focus here is the path towards the equilibrium and not the equi-
librium itself. Assuming that we do not integrate through or past any turning
points, multiple values are not an issue.

However, this approach does not lead anywhere in general, the trick here
is to make an expansion and solve the problem using one of the two integral
representation. Either way one has to solve the problem order by order. This
is outlined in sections 3.3.1 and 3.3.2.

3.3.1 First approach
In the first part of Eq. (54) we substitute
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P="DPy+eP +0O(?), ep(s)=en(s)+ n(s) + O(?),, (56)

and so onwards. Thus we obtain
Py+ehP —|—€2P2 +O(63) = Co+eCy +6202

+6LW@+%@)
x (Mo +eMi+ ) ([9lo + e[g]1)ds + O(®) .

The order by order solutions are:
First order:

P(y,uo(y)) = Co- (57)

This relation determines uwy = wuo(y; Cp) in terms of a constant of integration
Cy. We shall return to the determination of Cy. For the case of argument we
consider Cy as known in the following discussion.

Second order:

H:H%WM@ZQ+Am®MMMM%W%, (58)

where we needed to know y = y(s) in order to perform the last integration. This
information was obtained from path [y :

[9lo = g(y,uo(y; Co)) - (59)

Notice that the righthand side of Eq. (59) is now completely known, so as to
make the integration of this equation possible. If a solution can not be obtained
analytically, one can always resort to a numerically determined solution. Thus
the problem associated with the non autonomous systems of this kind, is that
we need to integrate only along the autonomous path (the non discounted path)
I'y. And in the higher order approximations we can relax the integration to a
known path. Thus in principle Eq. (58) now determines u; = u1(y; C1). And
again (' is a constant of integration that must be determined.

Higher order :

The process above can now be continued to determine the higher order solution,
and can in principle be continued. However, one must expect as usual for such
procedures an increase in complexity as the process is carried on. Therefore in
practical terms one may find great difficulties in performing such an expansion
scheme beyond the first order solution. In this respect we want to point out
that nonlinearities are kept even to zeroth order in this approach. This fact
will relax the need for carrying this procedure very far in order to obtain useful
approximations.

3.3.2 Second approach

In this approach we use the second part of Eq. (54) and handle Eq. (55)
differently i. e.
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and rewrite Eq. (54) as

P=CoteCi+ @Gt )+ [ plrly )My’

x

Please notice that P = P(u,y) is completely known as a function, however the
argument u is unknown. We now solve this problem order by order using the
following expansion scheme:

’LLO+€’LL1 +€2U2 +O(€3),
= Ttemtedn +(’)(63),

where
v o d
no- [ (60)
T g(UO,Z)
y
o= 7/ U Jult0,2) gu (10, 2) dz, (61)
. (0. 2)
where ug ,u1 , ... are determined from order by order solutions of the equation
1
P(u7y) = P(Uan)—i—eul P’U«(u07y)+€2{§P’U«’U«(u0?y)u%+P’U«(u07y) U2+O(€3)}

Yy

Cot e{Ch + / pl(70) M (g, )y}

x
Y

0+ / [0/ (7o) M (o, ) + p(70) Ma(ttg, 1) wa ]y} + O(€Y)

€T

From this equation we now obtain

up = uo(y,Co)
y
= {0+ [ ol Mo )y} s
y
uy = {O2+/ [ (70) 71 M (o, y) + p(70) My (10, y) ur]dy (62)
1 1
- _Puu ’ e .
2 (UO y)U1}P1L(u07 y)
This process can be continued and the problem is solved order by order.
However, one problem remain, that is, the constants Cy, Ci, Cs, ... are

still unknown.

Cy: To zeroth order we require the solution to be the same as in the corre-
sponding problem with zero discount rate. Now we have



fil: economi3.tex Notat av Berge/Sandal 23. juni 2000 ].3

P:POZP(:%UO):COZH(yamau)v (63)

and the maximum principle tell us that H(y, m, ) should be maximized.
In addition we consider a solution that asymptotically approaches equi-
librium (g(y,u) = 0) and since H(y, m,u) = f(y,u) + m g(y, u), we must
seek the maximum of f(y,u) with the constraint g{y,u) =0 or

Co™ max f(yu)
9(y,u)=0

Let this occur for y** € Q and v** € U.

This way Cy is uniquely determined.

C4: For the next step we notice that P, = M, g =0, for y = y** thus Eq. (62)
leave us with no other choice than

ok

@+ " (o) M(uo, y)dy} — 0

and since fxy p(10) M (uo, y)dy = fj p(To)M(uo,y)derf;** p(70) M (uo, y)dy
-C1 + fyy** p(10) M (ug, y)dy we find from Eq. (62)

1 /y
Pu(an y) y*=

By this choice u; is completely determined since y** now is defined by the
equilibrium solution found for Cy

1

U] = —————
! Pu(Uan)

ey " p(r0) M(uo, y)dy} =

max f(y,u) — (Y™, uy")
g(y,u)=0

Cy: Again P, = 0 for y = y**, in the denominator in Eq. (63) require that the
parenthesis

v 1
{Ca+ / [0 (10)T1 M (o, y) + p(10) Mu(uo, y) u1]dy — §Puu(u0,y)u%} =0

and this determines C5 and finally us by splitting the integral as above.

Y 1 Yy
Ug = —= {/ [0 (10)m1 M (o, y) + p(70) Mu(uo, y) ui]dy — |:§Puuu%:|
y y**
(64)
where [Q(y)]¥? = Q(y2) — Q(y1), and as before uy at the equilibrium
point y** is determined by the limit when approaching this point.
Now this process continues in the same way and the constants C,, can in

principle be determined to arbitrary order n.

pPM(y',uly'))dy' .
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Summary:
We now have
u = ug + euy + 2ug + O(e3) (65)

where

Zeroth order: We find g from the implicit relation P(y,uo) = Cp with Cy
given in Eq. (66) as

Co © ax fly,u). (66)

9(y,u)=0

Notice that P(y,w) is a known function of its arguments.

First order:

1 y
=g [ pM{y, uly))dy 67
! Pu(uo,y) /y**p (y (y )) Yy ( )
Second order:
0 /y[’<>M< )+ p(10) Moo, y) widy — | =Pt
Ug = Pu(uo,y) o P (70)7T1 Uo, Y P70 w (U0, Y) u1|AyYy 3 U

(68)

Conclusion: Above we have presented explicit algorithms for determining «
to O(e?). This procedure can in principle be carried on to any order. However,
for any practical purposes this is hardly interesting since the basic information
is contained in these first terms. We also want to point out that even the zeroth
order term contain the genuine nonlinearity of the problem. This is very basic
and powerful for this procedure that it is able to catch the nonlinear behavior
from the start.

In the case of zero discount rate (zeroth order), the equilibrium point may
be a saddle point, in which case one has to choose the ingoing separatrices. This
means that for y < y** we have g((y, uo(y)) > 0 and vice versa.

3.4 A general formulation by transformation

Consider the generic problem with an equation of state

¥y = g(s,y(s),u(s)), ye QCR and uc UCR (69)
ys=t) = =z, scRT. (70)
Given a utility function (objective function) f, that we seek to maximize subject

to the control w € U, where U C IR, is a given control space and s € A C IR.
We define a value function as

T
Vi) = mage [ F(s.us) u(s)ds. ()

}
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where f: {AxQxU — R} and g: {AxQxU — IR}. The horizon T has
a predetermined value.

Then consider a class of problems where g(s, y(s), u(s)), is sufliciently regular
and smooth so that we may define a new function @(s) by @(s) = g(s, y(s), u(s)).
By assumption this relation may be inverted so that u(s) = v(s, y(s), @(s)), in

principle is known when 4 is known.
By this change of control variable from an u(s) to a 4(s) representation, we
arrive at the following problem in the new setting:

T
Viz,t) = ma,x/t F(s,y(s),a(s))ds, g=u. (72)

uelU

The corresponding Hamiltonian is
H=F+MG=F+ Mu, (73)

and Hy = Fg + MGz = Fz + M = 0, and the condition for an internal op-
timum, gives M = —Fj5. Thus the corresponding P, which is H in the new
representation 4, is given by

P=F—iF;, (74)

where H = H transforms into
P=F,. (75)

Now make the following transformation

F=F+A(s,y)+ B(s,y)a, (76)
then
P = F—Fﬁa:F—i—A—l—Ba—(Fa—i—B)ﬂ:F—i—A—Faa,
P F— Fyi)+ A
Dt( )+
F.+ A + Bail — Byt + Ay
B,
= &(F—l—A—I—Ba)—Bsﬁ—I—Ayﬁ
F
or

P=F,, (77)

provided A, = B,. Thus the condition Ay(s,y) = Bs(s,y) makes Eq. (75)
invariant with respect to the transformation given by Eq.(76). The aim here
is to find a transformation where the right-hand side of Eq. (77) is zero or a
small quantity making this equation suitable for an expansion as a perturbation
problem as given in the preceding sections. See sections 3.3.1 and 3.3.2.

We consider an example

4This corresponds to a Legendre-transformation, see [2].
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Example 3.1 Let

F=—u’+(1+eg(y)t)u+hly) (78)
then
F=F+ A(t,y) + B(t,y)u, (79)
where
B(t,z) = —(1+e€g(y)t) , with A, = B, = —eg(y),
thus
A= —eG(y), where G'(y)=g(y), (80)
and
F= 4?1 h(y)—eGly), P=F,=0 = P =C (constant), (81)
where P = F — uF, = u? + h(y) — e G(y). From this we obtain
w=U(y;C). (82)
Furthermore
H=F—-uF,=F—uF,—A=C—-A=C+¢eG(y). (83)

On the other hand we also have H = F' + Ag. Then considering an equilibrium
point (g = 0), we obtain

C = Fluzo — Gy) < Cy). (84)

Now by choice, the constant C' is determined by the maximum value of C (y)-
This should be compared to the original F', (Eq. (78)), and the corresponding
H given by

H = —u?+ (1 +egly)thu+ h(y) + Iu. (85)
Thus

Hy,= 2u+14ep)t) +2=0, = X=2u—(1+e¥)t), (86)

and the corresponding P = F' — uF,, is given by

P=—u’ 4 (1+eg(y)tyu+2u® — (1+eg(y) hu = v + h(y),  (87)

from which we obtain

or
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Thus for this case this equation is easily integrated, giving the same result as
above. Note that frequently this rout to solution is easier than solving the
equivalent system

jZZH)\,
A=—-H,,

w= argmax fj.

3.5 More General Time Dependency

Starting from the basic equations Eq. (12) to Eq. (14) we have three equations
for determining three unknowns w, y, m. Eq. (22) is therefore not independent,
and we argue that it is convenient to use Eq. (22) instead of the costate equation
Eq. (13). Thus we start from (see Eq. (42)

H=Hs+ep(s)mg=Hs+ep(s) my, (90)

where the constant discount rate r is now replaced by 7(s) = ep(s). In addition
we have

i Lys) = glyls)uls).s). oY

Ha = Fuly(s),u(s),s) +m(s) gu(y(s),uls),s) =0.  (92)

We notice, however, that the last equation above, which is satisfied for any

internal stationary point, can be used for elimination of m from this system, i.e.

d F

ol Zu (93)
Ju

In this process we introduce a new function P which has the same values as the

Hamiltonian #, but a different functional dependency of its arguments.

m(s) = M(y(s), u(s), s)

def
Py(s),u(s),s) = H(y(s),u(s), M(y(s),u(s),s),s)
F,
= F— —= g, (94)
and Eq. (90) becomes
yPy+ 4P, +Ps=Hs+ep(s) Mg, (95)
or
yPy+ 4P, =Hs — Ps+ep(s) Mg, (96)
and in addition we have
y=9, (97)

where @ = Q(y(s),u(s),s) applies to g, P,, Ps, Py, M. Notice that we have
H, =0, but P, #0.
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Thus in this approach we are left with only two equations.
One may carry this one step further and consider the feedback type solution
i.e.

u=u(y,s), U= Yuy + us, (98)

that is u is determined by y, the state variable, but may also be a function of
time explicitly. We may then write Eq. (95) as

D 1 1 1
—P = ep(s)M+—-(Hs —Ps) — —usP, =ep(s)M — My — —usP,,
> ()M + < (s~ P) < (5 :
= ep(s)M — My — M, us,
DM D
_ _ — _r(s) L | omr(s)
M= 7= == 53 {e M} :
o D D
= JeT(s) = qe—r(s) —
Dy[e P+ Ds e M]=0 (99)

where now

Do o
Dy 0y Oyou’

and

D gy 0 Ou 0

Ds s Gsou’
Although Eq. (99) is compact and elegant it has so far not proved to useful for
practical purposes. We therfore list the more useful form

DEyP =ep(s)M — M, — éusPu, , (100)
where the basic assumption is that we have My = O(e) and us = O(¢). The
first of these assumptions is at our control when setting up the problem. The
second assumption has to be verified when the solution is found.

In summary we notice that if the explicite time dependency reflected by the
terms M, and us is weak, then these terms as well as the term containing ep(s),
may be treated like a perturbation on the system for a small €p(s). Then the
system is brought into a form suitable for a perturbation expansion in the small
parameter e.

We recover Eq. (25) by assuming no explicite time dependency in M in
the last term of Eq. (99), thus M, = us, = 0. The condition M, = 0 means

% (5) =0

Notice that several types of systems having explicite time depen-
dency are included even when this condition is satisfied.

Also notice that this formulation cover all the previously consid-
ered special cases. The details of finding explicite approximate so-
lution by perturbation techniques for this more general class of sys-
tems are similar to what is already presented, we are therefore not

repeating them here. However, one now must let the constants of
integration (previously called Cy, C4, ... ) be dependent on time ¢.
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3.6 The Hamilton-Jacobi-Bellman (HJB) equation

The preceeding discussion can also be viewed in the context of the HJB-equation.
The problem formulated, Eqgs. (1) - (3), can also be cast in the following form

Vi, t) + mach(t, z,u,A) =0. (101)
ue

where A =V, and H(t, z,u, A) = f(t,z,u) + Ag(t,x,u), or

V;(il?,t) + max [f(t,il?,’LL) + Vx(xat) : g(ta ZE,’LL)] =0. (102)

uelU

For an internal optimum we have

fut Vo gu=0. (103)

Since f and g are given this determines the value of V,, as a given function ¢, z, u.

We now restrict ourselves to the special case where the explicite time de-
pendency can be accounted for by a constant discount rate. In this case we
have

H=e"F(z,u) + \G(z,u). (104)

We then define the current value Hamiltonian by
1 O = Fla,u) + AG(z, ) (105)

where

F(z,u) = SLFL),  G(z,u) = g(.) and A L \edt = e, . (106)

We consider the following class of solutions (where now the only explicite

time dependency is due to a constant discount rate - the well known current
value approach):

) 1— —ot
Ve, t) = W(z;8) e + TGK(a) (107)
or .
5 e —1
etV (x,t) = W(x;6) + 5 K(6) (108)
where K(§) = Ko + 0K ... is constant with respect to ¢,z,u and W(z;d) =
Wo(z) + dWi(x) + .... Thus we impose the restriction of the existence of a

regular expansion of K and W in §. Also notice that by this choice of V(z,t)
we obtain in the limit § — 0

lim V(z,t) = Wo(x) + Ko t, (109)
50
where Wy =l W(z;0) and Ky =l e (0). Notice that the problem we obtain in
the limit of zero discount rate is the proper solution of the actual zero discount-
ing problem. In this limit V,, = W{.
For arbitrary ¢ we obtain from Eq. (101)

—0W + K + max H(z,u,A) =0 (110)
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with A = W’. An internal optimum now means

le F, 5
He=0=F,+AG, = Mz, u) L= - ="V (1), (111)
which is Eq. (16). Further more
W = K+ P(z,u), (112)
W' = M(z,u), (113)

where P(z,u) given by Eq. (20), has the same value as the optimal Hamiltonian,
even though it functionally is different. It is easily seen that Eqs. (112) and
(113) represent a first integral of Eq. (25).

Now we proceed by solving this problem by a regular perturbation expansion
order by order.

Zeroth order:

0 = Ko+ P(z,up), this is an algebraic Eq. determining uo(x), (114)
Wy = M(z,up), Wy is now a known function through ug(z). (115)

First order:

Wy = Kj+ Pu(x,up)uy, this determines wuq(z), (116)

Wi = Myu(z,up)u1, W/ is now a known function. (117)

in principle this procedure can now be continued. We shall stop and look at
some details. Notice that ug and w; also depend on the parameters Ky and K.
Also notice that ug and Wy corresponds to the solution of the problem with
zero discount rate.

0= Ko+ P(z,up(z)), (118)
or

Ko = —P() = —H}, (119)
where a * refers to the optimal solution, u* = wug(x), in this approximation

(6 =0). In the zero discount limit we have

H=H=F(z,uo(x)) + M(z,uo(x) - &. (120)
Suppose y = x is an equilibrium point then & = 0 and

Ko =—F(z,uo(z)) and G(x,uo(x)) =0, (121)

where the latter condition determines the set of equilibrium points, {Z}. Then
K and the proper equilibrium point y** € {Z}, is determined as the value that
maximizes H, or

ok def
Y= AR, F@,uo(w)) . (122)
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This way Ko = —F(y**, up(y**) is determined. Turning to u; we have

 Ja M(5,u0(9)dg — K
Py (z,ug(x) ’
where a is any suitable arbitrary chosen constant. Notice here that P, = H, +
HyM, = GM, = 0, at the zeroth order equilibrium point y** given by Eq.
(122) (known quantity). Then regularity of w1 at this point require

(123)

y**
/ M(G, uo(3)dj — Ky =0

or

e
K= [ M@u()ds. (124)
Finally we find

S M (G, u0())d3
P, '
This determines u1, and this way the procedure continues.

Looking back at Sec. 3.3.2 we observe that we now have reproduced the
same results, for the case of a constant discount rate, from the HJB-equation.

U = (125)

4 A game problem
Consider a game problem with n players described by n Hamiltonians that each
player tries to optimize subject to the same state condition

y=9y,u,t), z(0)=z u=u+us+...+u,, and t>0. (126)

Each player has its own utility function, and player number & has the utility
function fr. We then have a system of n Hamiltonians

Hy = fi + Ay, k=12 ...,n, (127)
with
e = ——=—=)_ -, (128)
Ox = Ou; Ox

. OHj,
= == 129
y YA (129)
O _ 0, necessary condition. (130)

Ouy,

Eq. (128)is selected by choice, this can be done because A, is arbitrary. The
implication of this choice is Eq. (130), as a necessary condition for a stationary
value of Hy. We then obtain
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H, = —H A
k o k+a B iy, + ayy Iy k‘FZ
ot Tor Ohe | O — Oy ay T
0 OHp, (9u] 3Hk
ot jz: Ou; Oy Z 8uj
0 O0Hy 0
- —H —
TR v
k
where we have used that
i gu 8uj 0 ] Ou; OHy
J ot 8y T Oy g
OHy, . ..
— = 0, optimum condition for player no. k,
(9uk
% = =9 state equation
e g9=9, : q .
Thus the final result may be written as
H
Z OH, (131)

Ou; 8t Y

Defining discounted Hamiltonians Hj déf €™ Hy,, and following the same proce-

dure as in Appendix A we obtain

=3

def

where m, = et \;.

0
t’H,k + rmrg + Z

Oty 0

Bu; 9 (132)
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5 Example: Feedback type solution

In Sec. 2, a theory was presented, where a procedure for finding feedback type
solutions were discussed. As a test of this theory we consider the following
example

1
F(y,u):ay—§y2—0u2, y=g(y,u) =u—>by, (133)

M= S 2cu (134)
Gu

1 1
P=F+Mg= ay—§y2—cu2+M (u—by) = ayf(5erzc)szrc(ufby)2 (135)

P, = a—y—2bcu,
P, = 2c(u—>by),
and
du F, du Y a
Pb—+P=—r— = —by)— — bju— —+—=0. 136
TR =t b hu— =0. (130)

First consider the case 7 = 0, then we have

1
P(y,up) =ay— (5 + b%)y? + c(uo — by)* = Cy, (137)
and
1 1 9 N9
uO:by:l:% Co+(§+bc)y —ay. (138)
Using Eq. (66) we find
1
Co = max|ay — (5 +b%c)y?], motice g=u—by =0, (139)
this occur when a
L 14
R W (140)
and
1 1 o
Co=—ay™ = ——— . 141
0T T aTy e (141)

We observe that this choice of Cy makes the expression under the square root
in Eq. (138) a complete square®, and we obtain

1 /1 .
uo = by + VAR + 0% (y—y™) (142)

We continue to find w1 by using Eq. (67) and Eq.(142)

5Tf the value of the constant Cg is chosen differently, this will complicate the solution for
w1 with a logarithmic term.
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Uy = _ /y pM (v u(y'))dy' = £o /y uo(2)dz , (143)
Poluos) Jy- 10— by Jyee

and since ug — by = —=/5 + b%c (y — y**) we finally obtain

by Po Po

WQ(:U Yy ) 2(y Yy ) ( )

where in our case r = epg and py may be chosen equal to one but with dimension
% where ¢ is time. With a non dimensional time in the problem this factor can
simply be put equal to one. Furthermore this problem was chosen simple enough
so that a closed form exact solution can be found.

This solution can be written in implicit compact form as

U1 =

—2r

15 1 arctan
G(y,u) e R¢ 75 Mt ? _ ¢ = const. (145)

where

def r+2b  2(u-—>bgq)

G T Dy-a) 1o
D “ o b 4= (r120)? - 4c, (147)
def d
N (148)
R —(-bg) + 26+ 1)(y - q)(u - ba) + &y - 0
= fy-a’-[u-be- -0l (149)
def r _ l
;o (b+§)2+(1——4D. (150)

Notice that

VD = +2i\/F .

We observe that even the exact solution may not be to useful for practical
purposes. However, we can now recover the same result as that previously
obtained for ug and u; by a Taylor expansion of the exact solution, Eq. (145),
using the discount rate r as an expansion parameter. This calculation (which
has been performed) is for general initial conditions long and tedious and show
the power of perturbation techniques for finding approximate solutions. Other
examples using this technique dealing with economic problems can be found in
the literature. See [4] -[9].
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6 APPENDICES
A  Some Details

The derivation of Eq. (21)

H=Hs+rmg=Hs+7rmyg. (151)
We have
H=e"H=F+mg=e°f+eAg=¢"f+myg, (152)
. dH H
H = r’HJre”—:r’HJre”a—
ds Os
_ s OF 09
- rite 8s+m85
S 9 TS TS 89
= re f+rmg+%(e f)—re f+m85
= 8—ﬁHJrrm = —=+rmy
- 0Os 97~ s v

where Hs = Fs 4+ mgs, thus m is to be considered as constant under the %

operation here. In this new formulation we have H = H(s, y,u, m)), where m
is replacing A as variable.
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B Constrained Control

Let u € [a, A] and the condition H, > 0. Then for a binding constraint at
u = 3 we have

H = F(y,0) + My, P)g(y, 9) , (153)
and
Z—?:FerngJrMyg.
From Eq. (13) we find
m = rm—a—H
Oy’
yaa—]\; = rM-F,-Myg,,
gaa—]\; = rM—F,—Mg,, or
C(li—?; = Fy—l—ng—l—gaa—]\;:rM,

and we see that we again recover Eq. (25).



