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Abstract

In confronting a consumer good whose production process is associated
with both flow and stock externalities, a corrective tax is introduced to re-
store efficiency. The objective is to maximize social welfare over time when
the stock pollutant obeys an arbitrary dynamic process. The model makes
it possible to derive the optimal corrective tax as a closed form feedback
control law. This feedback rule can be applied for qualitative purposes such
as parameter analysis or studying the time path of the corrective tax. It
can also be used for quantitative purposes, for example evaluating an actual
policy or assessment of the optimal tax for a certain case. It is here used
to study how the optimal corrective tax, both as a function of time and as
a function of the pollution level, depends upon the decay function. It is
shown that, depending upon the initial conditions and the structure of the

economy and the decay function, most outcomes are possible.
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1. Introduction!

Global warming through emission of COs in the atmosphere, the thinning of the
ozone layer, toxic waste, etc., are all examples of externalities in the economy.
There exists already a vast literature on externalities that at least dates back to
Pigou who was one of the first to suggest a corrective tax which could restore
efficiency. Most of the literature on pigovian taxation, however, is about flow
externalities whose harmful effects dissipate more or less immediately and not
about stock externalities whose harmful effects remain for a long period. COs,
thinning of the ozone layer due to chlorofluorocarbons, toxic waste and pollution
in general are all examples of stock externalities. In fact, it is hard to think of
examples of pure flow externalities, except noise and strong light, as most physical
emissions tend to accumulate to some extent.

Stock externalities are obviously important and problems of stock externali-
ties were addressed already in the early 1970s (Keeler, Spence and Zeckhauser,

1971, d’Arge and Kogiku, 1973, and Forster, 1975). With increasing concern
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about global warming due to accumulation of COy in the atmosphere there has
emerged a literature on the economics of accumulation of so-called greenhouse
gases which is a typical example of a stock externality. Nordhaus (1982) was one
of the first to address this area in the economic literature by asking how fast the
global economy should allow a buildup of atmospheric CO,. Brito and Intrili-
gator (1987) addressed the problem of steady state analysis in the presence of
stock externalities and the use of a constant pigovian tax. Ko, Lapan and San-
dler (1992) examine the use of an inflexible pigovian tax compared to a first-best
path of a pigovian tax that varies continuously. Nordhaus (1991a) has formulated
an economic model that links emissions of greenhouse gases and climate changes
and analyzes the trade-off between the cost of reducing emissions and the damage
from global warming. Wirl (1994a) uses a Nordhaus model and discusses the time
path for taxation of energy in the presence of flow and stock externalities as part
of his study of the dynamic and strategic interactions between producers and con-
sumers of fossil energy. Peck and Teisberg (1992) determine optimal time paths of
emissions control and corresponding carbon taxes under alternative assumptions
about global warming costs. Their main result is that an optimal carbon tax will

tend to increase monotonically over time. Sinclair (1992 and 1994) and Ulph and



Ulph (1994) consider the optimal time path of a carbon tax when this is linked
to the extraction of fossil fuels as nonrenewable resources and discusses whether
this tax should rise or decrease over time. They find that in most cases the rule
is to let the tax decrease over time in order to postpone extraction.

In most of the literature on pollution a monotonically increasing decay function
is applied. Among the exceptions are Forster (1975) who uses a nonconstant
exponential decay function and Tahvonen and Salo (1996) who use a concave-
convex decay function. These are, however, special cases of the decay function
applied here which is completely general. Therefore, most of the results referred
to above can be found as special cases of the model applied here.

The aim of the present paper is to provide an analytical expression for the
optimal path of the corrective tax in the presence of a general decay function.
The optimal path for the pigovian tax in the presence of both flow and stock
externalities is derived as a feedback control. Feedback controls have several ad-
vantages. They are relatively easy to implement as the optimal tax is a function of
the current level of pollution only, and sporadic shocks, e.g. sudden uncontrolled
emissions, are automatically taken care of. Analytical expressions are emphasized

in order to allow for parameter analysis and avoid the drawbacks of numerical



analysis such as aggregation of numerical errors. The model can be used quan-
titatively both to assess the optimal corrective tax and to evaluate policies that
are already in effect. Examples of assessment of the tax for particular cases are
shown. In this paper the model is also applied qualitatively to see how the opti-
mal tax, as a function both of time and of the pollution level, depends upon the
decay function. It is therefore important for us to be able to use general decay

functions.

2. The model

In the standard textbook model for determining corrective taxes there is an in-
verse demand function for the product z, P = P(x), a private marginal cost
function representing supply, MC?* = MC¥(z), and a social marginal cost func-
tion, MC® = MC®(z). Market equilibrium is given by P(z) = MC?(z). The
social welfare optimum is given by P(z*) = M C®(z*). This is the production level
that maximizes the sum of consumers’ and producers’ surplus corrected for the
difference between private and social costs (externality). The optimal corrective
tax, 7, is given once and for all by 7" = P(z*) — MC?(z*). This is illustrated

in Figure 1. If, however, each unit of x is associated with a certain amount of



pollution, a, and the pollutant tends to accumulate, we are faced with a dynamic
optimization problem and static analysis is no longer sufficient.

Consider a sector that produces the output x to which there is a fixed quantity
of pollution associated with each unit of output given by éx. The aggregate level
of pollution is denoted a, and the time change in a is given by @ = éz — f(a)
where f is a general, but known, decay function.?

Assume that the inverse compensated demand function for x can be approxi-

mated by

P(a,z) = po(a) —pi(a)z, p;>0,i€e{0,1}. (2.1)

In this paper P will always represent the consumer price. Henceforth, the term
demand function and demand curve will refer to the function in Eq.(2.1).

Further, assume that the private and social marginal costs of production can
be approximated by

MC*(a,z) = csola) + cs1(a)z, cg >0,
(2.2)

MCF(a,z) = cpola) + cpy(a)x, cp; >0,

and M C? will always represent the producer price. The parameters cg;, cp; and p;

2Dots are used to denote time derivatives.



can be completely general functions in a. The social marginal costs of producing
x are assumed higher than the corresponding private costs, i.e., cso > ¢y and
cs1 > Ccp1. In other words, we are only dealing with negative externalities of
production in this paper. Positive externalities can be analyzed accordingly.

There are many reasons why the parameters in the demand function or in
the private or social cost functions may depend upon the level of stock pollution.
The demand for a product depends on many factors, also pressure exerted by
environmentalist groups. This pressure will probably - if anything - lead to a
downward shift in demand for products associated with emission of pollution. It
is also reasonable to think that the concern about the environment is greater the
higher the level of the stock pollutant, and thus the downward shift in demand
will be greater the more pollution there is already. Therefore the constant term
in the demand function, py in Eq.(2.1), can be modelled as a decreasing function
in a.

Private costs of production may also depend upon the level of pollution. This
relationship can be highlighted through an example: If clean water is needed in
the production process, then the cost of purification may be higher the higher the

stock of pollution. This may affect both the slope and position of the marginal cost



curve. If anything, these terms, i.e. the parameters ¢y, and ¢ in Eq.(2.2), will
probably be increasing functions in a. Private costs will probably be decreasing
as a function of emissions of pollution. Higher emission levels mean lower costs
as some costs associated with purification are avoided. It is important to note,
however, that this regards costs as a function of @ and not as a function of a.

The social cost function is the cost to society of producing the product when
external effects are taken into account. The difference between the private and
the social cost functions can therefore be interpreted as a measure of the external
effects. The private costs are partly included in the social costs, and these may
depend positively upon the stock of pollution. It is reasonable to believe that
the external effects of pollution will be higher the higher the level of pollution.
Therefore it is assumed here that the parameters in the social cost function, c
and ¢y in Eq.(2.2), will be increasing functions in a. The assumptions above are
made only for the economic interpretation and are not necessary for mathematical
purposes. The feedback rule derived in this paper can be implemented no matter
how the functions involved depend upon a.

Flow externality is defined in monetary terms as the difference between private

and social costs at any point in time, that is for a fixed level of a and z. It is the



externality associated with 6z, and it exists also when a is fixed at a certain level
and treated as a parameter. For any given level of a and x the magnitude of the
flow externality is MC® — MCP.

Stock externality is defined as the externality in the dynamic setting that
comes in addition to the flow externality. In this paper D(a) > 0 is used to
denote the stock externality, that is, the disutility or damage associated with the
stock pollutant. It is clear from these definitions that flow externality is a static
concept whereas stock externality is a dynamic concept. If there are no dynamics,
there is no stock externality and only flow externality exists.

Both flow and stock externalities can be internalized in the dynamic setting by
implementing a corrective tax, 7, representing the difference between the consumer

price and the producer price:

7(a,z) = P(a,zr) — MC¥(a, ). (2.3)

This corrective tax ensures market equilibrium for different combinations of a and
2. The question, to which we will return in the Section 3, is how to determine
the optimal corrective tax.

The omniscient, benevolent government’s objective function is to maximize
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the social welfare function given by the sum of the consumers’ surplus, C'S, the
producers’ surplus, S, and the government’s surplus, GS. The consumers’ sur-
plus is defined as the difference between what the consumers actually pay (taxes
included) and what they would be willing to pay under the demand curve. The
producers’ surplus is defined as total revenue for the producers less total private
cost. The government’s surplus take into account tax revenues, the difference be-

tween social and private costs and any disutility, ). These surpluses are formally

defined as:

CS = [Z P(a,2)dz — (MCF(a,z) + 7)x = P(a,z) — (MCF(a,z) + 1)z,
PS = MCP(a,z)x — [§ MCF(a,2)dz = MCF(a,z)z — MCF(a, ),
(2.4)
GS =—-D(a) +71x— [J[MC%(a,z) — MC¥(a,z2)]dz

=—D(a)+ 72 — {M@S(a,aﬁ) — M@P(a,x)}

where 2 is an integration variable and hats are used to denote integrals as in-
dicated. The benevolent government wishes to maximize the sum of all these

surpluses. In so doing many of the terms cancel out and what remains as the

11



social welfare function is

~

W(a,7) = —D(a) + P(a,z) — MC%(a,z). (2.5)

When it comes to practical use of the model, it is important to specify the appro-
priate a-dependence correctly and avoid double counting. For example, inclusion
of ain MC?® and MC? only shows how the flow externality may be influenced by
a and must not be confused with the stock externality, D(a).

It is evident from Eqs. (2.1), (2.2) and (2.3) that x can be written as a linear

function in 7 :

z(a,7) = zo(a) — z1(a)T (2.6)
where
Po — Cpo 1
rola) =——>0, z1(a) =——">0.
ol@) p1+cp1 (@) p1+cpr

Eq. (2.6) defines = as a function of 7 given that 7 = P — MC¥| that is 7 values
that result in market equilibrium, see Figure 1. The term xy can be interpreted
as the market equilibrium without any policy measures. Major definitions in this
article, such as the definitions of zy and z; above, are summarized in Appendix 1.

We are only interested in non-negative levels of production, meaning that 7 has

12



an upper bound given by 7 < xo /1.
The dynamic optimization problem can be formulated as

max /OO e "W (a,T)dt (2.7)

0

subject to the constraint

a=obéx— f(a) (2.8)

and a > 0, x > 0. The discount rate, r, is the social discount rate. The case of a
zero discount rate is of particular interest and will be given special attention.

In order to simplify the following calculations and interpretations it will be
preferable to change the scale along which a is measured from physical units
to monetary units. This is done as follows: a is measured by A(a) where A is
a known, monotone but not necessarily linear rescaling function. By definition
A= A'(a)a and we choose A to have the property A’ = 1/6z1 > 0. These two
measures of pollution will be used interchangeably in the rest of the paper, so
that W can be a function of a or A. The variable A is interpreted as pollution

in monetary terms whereas a is the pollution measured in physical units. This
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means that the dynamic problem can be rewritten

max /OO e ""W(A, T)dt (2.9)
T Jo
subject to
A=F(A) -1 (2.10)

where F' = zg/x; — f/éx1. Eq.(2.10) represents a translation of the dynamic
constraint into monetary terms such that I and 7 are comparable. The function
I is the actual increase in pollution, A, without any policy measures, and this
can be either positive or negative. The policy measure, T, is negatively related to
the change in pollution, and F'— 7 therefore represents the net change in pollution
when policy measures are applied. This can also be seen by writing

F(A) = %(_a)f@ (2.11)

remembering that a is a function a(A). By comparing the numerator, zg — f,
with (2.8) and recalling the definition of xg, it is seen that the numerator is the
actual change in pollution in physical terms without policy measures. Dividing

by 6x; we get the actual change in pollution in monetary terms. Note that F
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and [ may have opposite signs, and usually have. The intuition behind this is
that f measures the actual decay of pollution. If this decay is large, it calls for a
relatively small corrective tax because only a minor reduction in output is needed
and vice versa.

From Egs. (2.4), (2.5) and (2.6) it is evident that after the rescaling of a into

A, W can be written as a function in A and 7 as follows:

W (A, 1) = —a(A) + B(A)T — (A)T? (2.12)
where
1
a = D + 5&70(&70}?1 + ToCs1 — 2p0 + 2650), (213)
3 = (¢s0 = cp0)(P1 + ¢p1) + (Po — 0)(€s1 = ¢p1) =0,
(pl + Cpl)2
o= (pl + Csl) < 0.

2(}?1 + Cpl)2

This will be used in the following to derive the optimal corrective tax.
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3. The feedback control law

The objective of this section is to derive the optimal corrective tax, 7, as a feedback
control law; that is, as an explicit function of the pollution level, A. The easiest
way to do this is to go by dynamic programming, see e.g. Kamien and Schwartz
(1991). With a constant social discount rate, the problem of maximizing (2.9)

subject to (2.10) yields the value function

V(t, A) = max /T e "W(A,T)ds (3.1)

t

and the associated Jacobi-Bellman equation®
Vit max { |—a(A) + BA)T — v(A)7| e " + Vi [F(A) — 7]} =0, (3.2)

Let us try a solution of the form

V(e A) = —K+[22 a7 p(Am) et = ke (4) ﬂ(Ag;( jf;w
3‘/j = %_;/
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where K and Wy are arbitrary constants. Further, use the following relationships

and definitions:

Vi = 0/(A) = 29(A) [r*(A) — 7(A)],
Wo — S(A) = 7(A) [F(A) — o(A)]?, (3.3)
Vi — p(A) = 29(A) [F(A) — 7(A)]

where 7 = % is the optimal tax in the static equivalent of the model derived
from maximizing W with respect to 7 treating A as a constant. Let S be defined

as the level of welfare associated with sustaining any level of pollution, that is,

S(A) = W(A, F(A)) = —a(A) + BA)F(A) — y(A) F(A)* (34)

and p be defined as

_ OW (A, 1)

plA) = = = B(4) ~ 2()F(A).

T=F(A)

Economically g can be interpreted as the marginal increase in welfare due to a
marginal change in the tax given that the present level of pollution is preserved.
The term 7 is defined as the optimal corrective tax when the discount rate is

zero, and Wy represents a certain target value equivalent to the welfare in optimal
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steady state to be derived soon. Inserted into the Jacobi-Bellman equation (3.2)

this yields

In the special case when either r = 0 or ¢» = 0,

B To(A) B Wo — S(A)
T(A) = , To(A) = F(A) + —’Y(A)

2F(A) — 19(A)

(3.6)

In the general case it is necessary to apply perturbation methods in order to derive
analytical expressions for the feedback control law, see Appendix 2. The feedback

rule derived in Appendix 2 for the case of a positive discount rate is the following

7(A) = 7(A) +rn(A)+00?), (3.7)

_ ,L/}O<A) / _ . o
() = g ) = 294 () — 7 ()

solved to second order. The term 7y from (3.6) is the optimal tax with zero dis-

counting which will be given special attention in the next section. The correction
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r71 will usually be small compared to 7
One question remains, namely what is the optimal steady state (or target)

level of the state variable. With an infinite time horizon this is given by solving

§(A) = rp(A) (3.8)

with respect to A. The validity of (3.8) can be seen from (3.3) and (3.5) by noting
that in steady state ' = 7 such that Vy = ¢/ = p. Eq. (3.5) is an integrated
version of (3.8). The interpretation of (3.8) is that the marginal benefit of a unit
of A should in optimum be the same whether it is left alone (left hand side) or it

is taxed away (right hand side).

3.1. The case of zero discounting

The case of a zero social discount rate is of particular interest in this context be-
cause then the social welfare of future generations will not be less important than
the welfare of the present generation. Furthermore, all the important features of
this approach are clearly seen in the case of zero discounting. Sensitivity analysis
also shows that the optimal time path for 7 is not very sensitive to changes in the

discount rate whereas it is quite sensitive to changes in the degree of nonlinearity
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through changes in 7.
An analytical expression for the optimal corrective tax at any point in time is

given by
Wo — S(4)

T(A) = F(A) + A

(3.9)

from (3.6) where W is a constant. With an infinite time horizon, the appropriate
choice of Wy is max S(A). The constant Wy is the target level of welfare derived
from (3.8) when » = 0. In other words, the optimal steady state with zero
discounting is determined as the global maximum of S, assuming that an interior
solution exists. By substitution, it can easily be confirmed that the rule applied
here conforms to the Pontryagin maximum principle. In Eq.(3.9), the solution
with the plus sign, making A = F' — 7 < 0, is chosen in (3.9) when A is higher
than the optimal steady state level, and the solution with the minus sign is chosen
when A is below the optimal steady state.

As Eq.(3.9) represents a feedback control, it is an easy task to set the optimal
corrective tax at any point in time as a function of the current level of pollution
when the compensated demand function as well as the private and social cost
functions and the decay function of pollution are known. In this model 7 is a

continuous function. How often 7 should be updated in practical policy depends
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on the conventions of the fiscal institutions and on how often new estimates for
the pollution level are available. Along an optimal path the time change in A

corresponding to (3.9) is given by

Wo — S(A)

AT @

(3.10)
Equations (3.9) and (3.10) describe the phase plane for any value of A no matter
how far it is from the optimal steady state.

Eq.(3.9) shows that the question whether a carbon tax should increase or
decrease over time, which has been discussed by Peck and Teisberg (1992), Sinclair
(1992 and 1994) and Ulph and Ulph (1994), depends totally on the characteristics
of the decay function in combination with the economic parameters in the model.
We will return to this question in more detail in the next section.

There are still some interesting characteristics to note about the structure
of the model. Note, for example, that for any curve, S(A), a local maximum
corresponds to a saddle point steady state, a local minimum corresponds to a
center and an inflection point corresponds to a cusp in the phase-space. Thus the
complete topology of the phase-space is given by the S-curve. If Wy is given by the

global maximum of the S-curve, as it is with zero discounting, then the steady
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state corresponding to this is a saddle point and therefore by nature unstable.
This makes the feedback rule even more useful. Given that the pollution level
corresponding to Wy is known and that the current level of pollution is known by
monitoring, then it is an easy task to set the corrective tax at the optimal level
that eventually leads to the welfare optimum.

Also sporadic distortions and shocks become less important with a feedback
control. Exogenous distortions will automatically be taken care of no matter
whether these distortions take place far from the optimal steady state or locally
around it. The model is just as applicable far away from steady state as it is
locally.

Although it is obvious that the optimal policy derived from static analysis is
not globally optimal when the true model is dynamic, it is often believed that
a static policy is approximately correct very close to the optimal steady state.
Unfortunately, this is not the case as both the optimal path and the optimal
steady state are different in the two approaches. A quasi-dynamic policy based
on 7(A) = B here A is treated as a parameter that is continuously updated,

27(A)°

will never lead to the steady state found by dynamic optimization.
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4. Qualitative analysis: The time path of the corrective tax

The purpose of the present section is to make a complete analysis of the time
path of the optimal corrective tax, that is; what factors does it depend on and
how. In particular the following question is asked: How does the time path of the
optimal tax look, and how does it depend upon the initial situation and the decay
function. This question has also been raised by Peck and Teisberg (1992), Sinclair
(1992 and 1994) and Ulph and Ulph (1994) using somewhat similar models.

As the optimal corrective tax can be written as a function of the pollution

level, 7(A), the time derivative is

7 =1'(A)A.

As A > 0 when we are below the optimal steady state and vice versa, it is
important to determine the sign of 7/ on each side of the optimal steady state. In
the following we look at the case with zero discounting, and where v in Eq. (2.12)
does not depend upon the pollution level, A. This corresponds to the case where
A-dependence can only occur through the disutility term, D, or through the

intercepts of the demand and marginal cost curves (2.1) and (2.2), not through
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the slope of these curves. The derivative can then be written (recall (3.10))

5'(4)

)= P+

(4.1)

In the case of zero discounting optimal steady state is determined by S = 0, and
Wy = S(A*) where A* is the optimal steady state level of pollution. The time

derivative of 7 is given by

The sign of 7 depends upon the sign of the three terms F’, S’ and A. Whether
Ais positive or negative depends on whether we are above or below the optimal
steady state level. Thus we have eight possibilities to investigate. These are listed

in the following schedule.
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a) S’

b) S

1) A>0

0&F'>0=7>0

O&F/<O&W0—S

0&F’>O&WO—S

0&F'<0=7<0

2)A<0

0&F’>O&WO—S

0&F'<0=7>0

0&F'>0=7<0

O&F/<O&W0—S
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From the schedule above it is seen that there are three factors affecting the time
path of the corrective tax: the sign of ', the sign of F” and whether the difference
between Wy and S is greater or smaller than some value given by % (;—F/,)Q How
are these factors interpreted? It is useful to start by recalling the interpretations
of S and F. The expression for S is given by (3.4), and it is interpreted as the
sustainable level of social welfare. The maximum sustainable welfare (MSW) is
Wo. The sustainable welfare can be both increasing and decreasing in A on either
side of the optimal steady state due to the nonlinearity.

The expression for F' is given by (2.11). From this it is seen that whether
F' is positive or negative depends upon whether éxy — [ is positive or negative.
Recall that 6xg — [ is the actual increase in pollution without policy measures as
xo is the production level without policy measures (under market equilibrium).
Therefore 6xq is the increase in pollution determined from the market equilibrium
production level whereas f is the natural decay. In the typical case that private
costs are shifted upward and demand is shifted downward with the pollution level,
2y < 0. In this case there are three forces working towards reduced emissions of

pollution when the level of pollution increases, the market, nature itself and the

policy measure. If f' > 0 then F’ < 0. The requirement for F’ > 0 is that
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f' < 0and éxy > f'. As xy typically is negative, I/ > 0 requires that the natural
decay decreases with the level of the stock pollutant and that the market is less
sensitive to a change in the pollution level than the environment. An example
of pollution with a decreasing decay functions is acid rain where the natural
purification process becomes less efficient the higher the pollution level.

This enables us to interpret the different cases in the schedule above. Case 1a)
is interpreted as follows. If the initial level of pollution is below the optimal steady
state, sustainable welfare is increasing in the pollution level and the free market
emission level is less sensitive to changes in pollution than the environment, the
corrective tax should definitely be increasing over time. Case 1b) tells us that if
the initial level of pollution is below the optimal steady state, sustainable welfare is
increasing in the pollution level and the free market emission level is more sensitive
to changes in pollution than the environment, the corrective tax should only be
increasing over time if the difference between MSW and the present sustainable
welfare level, Wy — S, is less than a certain value. This value can be calculated as
%(QS—F/,)2 The distance Wy — S can be interpreted as a measure of how far we are

from the optimum, or rather how much one can gain from approaching optimum.

The remaining six cases can be interpreted accordingly.
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How does the interpretation of these cases confirm with intuition? Note that
when S’ goes from negative to positive, everything else equal, this calls for an in-
crease in 7. In other words, if the sustainable welfare is increasing in the pollution
level, the optimal tax should be more increasing over time than in the opposite
case. This result is rather counterintuitive. Next we note that when I goes from
negative to positive, everything else equal, this calls for an increase in 7 when
the pollution level is below the steady state level and a decrease in 7 when the
pollution level is above steady state. In other words, when the decay decreases
with the level of pollution, and is more sensitive to the pollution level than the
market is, the optimal corrective tax should increase over time for small pollution
levels and decrease over time for high pollution levels. This too seems somewhat
counterintuitive.

Some of the cases in the schedule are more relevant than other. For example, if
S is concave, as it certainly is in the neighbourhood of steady state, only the cases
la) and b) and 2¢) and d) are relevant. Assuming that S is concave, 7 is typically
positive below optimal steady state and negative above optimal steady state. The
only cases in which the opposite may happen is in 1b) and 2d) when Wy — S >

1\ 2
% (%) , that is when F” is negative and large in magnitude. However, to say
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that I is negative and large in magnitude is to say that either xy, is large negative
or f’ is large positive. If x; is large negative it means that the private market
equilibrium without policy measures is quite sensitive to the level of pollution;
that is, the equilibrium level of production decreases with the level of pollution
due to decreased demand (environmental awareness) or higher production costs.
If f is large positive it means that decay process is efficient. Both are examples
of a case in which policy measures are not very essential because the net increase
in emissions is reduced due to market and environmental effects. In other words,
in some neighbourhood of the optimal steady state, the only case in which the
tax will be increasing over time for pollution levels higher than the optimal one
and decreasing over time for pollution levels lower than the optimal one, is when
the tax plays a minor role.

A small positive discount rate will not change the qualitative conclusions in this
section. With discounting 7 = 7y + 7y where 77y represents a small perturbation.
Only if 7¢ is close to zero, will the last term possibly affect the sign of 7, but if so,
the corrective tax will be more or less constant anyway. If, however, v is made
A-dependent, the time path of the optimal tax becomes even more complex, and

it becomes more difficult to draw general conclusions than with a constant .

29



5. Quantitative analysis: Some numerical examples

In this section some examples based on a stylized numerical model is given for
illustrative purposes. In particular we look at how the optimal tax changes as a
function of the pollution level, A, with different decay functions. It is assumed that
0.1 units of pollution are associated with each unit of production, that is § = 0.1.
People are more concerned about the environment the higher the aggregate level of
pollution such that demand for this product is shifted down as the aggregated level
of pollution rises. Private marginal costs are shifted up as the level of pollution
rises. Social marginal costs are both shifted up and become steeper as the level

of pollution rises. The numerical specification is given by:

bPo = 3_0’7 p1:17

cso = l+4a, ce1 =

With these assumptions, private equilibrium is given by z = 1 and social optimum
by z = 0.8 when a = 0. When a = 0.5 these figures are x = 0.6 and z = 0.36

respectively, and when a = 1 they are x = 0.2 and & = 0. The transformation of
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a into A is given by a = A/25 such that 0 < A < 25 corresponds to 0 < a < 1.
Three different possibilities for the function f(a) are examined and the results
are illustrated in Figures 2 - 4. In Figure 2 f is given by an equation similar to

the normal distribution, that is

1
J(a) = 10v270?

e 3(5FH)?

where p = 0.5 and 0 = 0.25. The optimal corrective tax given by (3.9) and the
corresponding production level, z, as functions of A are illustrated. The optimal
a-level is 0.13 and max .S = S5(0.13) = 0.61. Note the u-shaped form of the optimal
tax, and that there is no production when a is greater than 0.72 (A > 18). As
negative production is impossible, x = 0 for @ > 0.72. Any prohibitive tax will
do when a > 0.72.

Figure 3 illustrates the optimal tax and corresponding production when f(a)
is linearly increasing, f = 0.16a. For the purpose of comparability all f-curves
examined here have a maximum of 0.16 in the range 0 < o < 1. With this choice
of f, the optimal a-level is 0.24 and 5(0.24) = 0.39. Note that in this case the
optimal corrective tax is monotonically decreasing in the range 0 < a < 1 and

production is choked when a > 0.84 (A > 21).

31



The third case examined here is the case of a logistic f-function given by
f = 0.64a(1 — a). This case is illustrated in Figure 4. The optimal a-level is
0.1 and S(0.1) = 0.61. In this case the optimal corrective tax is monotonically
increasing and a prohibitive tax is needed when a > 0.75.

Depending upon the shape of the f-curve, the optimal corrective tax may be
u-shaped, decreasing or increasing in a. However, in all cases examined here,
the corresponding optimal production level, z, is a decreasing function in a. All
illustrations here are based upon zero discounting. The optimal tax is not very
sensitive to changes in the discount rate, and the positions of the curves are

virtually unchanged for reasonable values of the social discount rate, .

6. Conclusions

The model described in this article is designed to analyze the dynamic problem
of maximizing social welfare from the production and consumption of a consumer
good whose production process is associated with an externality, in this case
emission of pollution. Social welfare is defined as the sum of the consumer and
producer surplus from the production, corrected for the externality associated

with the emission of pollution, the flow externality, and corrected for any further
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disutility associated with the stock pollutant, the stock externality. The stock
of pollution obeys a dynamic process by which the stock increases as a result of
production of the good and decreases due to assimilation in the environment rep-
resented by a general, but known, decay function. A corrective tax is introduced
to internalize the externalities and restore efficiency. It is possible to derive the
optimal corrective tax as an explicit function (feedback control law) of the current
stock of pollution and the discount rate.

In particular, it is found that the properties of the optimal corrective tax, both
as a function of time and as a function of the pollution level, depend critically
upon the shape of the decay function. To study whether there is decay or not
is not sufficient, it is the shape of the decay as a function of the pollution that
counts. Typically the corrective tax will be an increasing function of time for
pollution levels less than the optimal steady state and a decreasing function of
time for pollution levels greater than the optimal steady state. The opposite will
usually only be the case when policy measures are not highly required because
net accumulation of pollution to a large extent is reduced by increasing natural

decay and by the response of the market.
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8. Appendix 1. List of major symbols and definitions.

This appendix gives brief definitions of some of the major symbols. For more
thorough definitions, see the text.

2 : Some product causing emissions

a : The stock pollutant measured in physical units

7 : A corrective (pigovian) tax

D(a) : Disutility caused by the presence of the stock pollutant (D > 0)

f(a) : The decay function for pollution

A : The stock pollutant measured in monetary units (cost of the stock pollu-
tant)

F(A) : Actual increase (F' > 0) or decrease (F' < 0) in A in monetary terms

P(a,x) = po(a) — p1z: Inverse demand function for x

MC*(a,z) = cpo(a) + ¢p1(a)x: Private cost of producing z

MC*(x) = cy(a) + csi(a)x: Social cost of producing
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z(a,7) = zo(a) — z1(a)T : The market equilibrium with respect to z for a

given corrective tax 7

pu— Lmoic
Zo p1tcp1 >0

1
X =
1 p1tcp1 >0

W(a,7) = —a(a) + B(a)T — v(a)7® : Social welfare from the production and

consumption of x
S(A) = —a(A) + (A F(A) — ’y(A)F(A)2 : Sustainable welfare

oW

p= % = B(A) = 29(A) F(4)

T=F(A)

o= D + tao(zop1 + Tocs1 — 2po + 2¢50)

 (es0—cpo)(P1+ep1 )+ (po—cpo)(cs1—cp1)
ﬂ B - (;1+Cp1)2 B = >0

— £p1+cslz > 0

7= 2(p1+tcp1)?

9. Appendix 2.

In order to derive the expression for the optimal feedback control law in (3.7) it
is necessary to introduce perturbation theory, see, e.g., Nayfeh (1973) for a more
thorough introduction to this theory. This enables us to compare the implications
of a constant discount rate with zero discounting for the nonlinear model and still

get explicit analytical solutions. Thus it is not necessary to resort to numerical
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methods.

In the following the same symbols denote both current values and
present values. Straightforward perturbation yields the following scheme:

Y=o+ 1+ ¥y + -

2
ST =To+TrT+r°79+--",

D —p=E2/7(Wo = 5), To=FF /M=,

2|8 — | S = dy, 29m = —44, (9-1)
di dpg dyy 12 _ _dy
2 (% — ] B = dyun - [B5]7, 2y = -2,
D[S — p| e = dyyy, — 288 2y — e,

Note that for any order the necessary correction is assessed using at most one

direct integration of the solution to the previous order. Note also that the value

function developed in the discount rate yields

V(t,A) = =K + [% 4+ y(A)] e = —K + [12 +p(A)] [1 =t + -

—Wot + h(A) + O(r).

The constant term is included in 1/3(/1) To the lowest order this is identical to

the value function for the case with zero discounting yielding the rule in Eq.(3.9).
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The general solution to order three is given by

— - - 2 _ 2.2 3
T = TO+2’V(T0—F) [rwo—l—r WPy —yr Tl]—I—O(T )
,L/}O / * / 'L/}O
= 0 = —2(r — - _ ,
B 2/)/(7_0 . F)? 7‘/}0 7(7—0 T )7 7‘/}1 To — F

9.2)

Usually, however, the desired order is low, i.e. less than three, and therefore the

solution to second order is applied in the text body.
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10. Figure legends

Figure 1. Static analysis: The optimal corrective tax, 7%, the corresponding pro-
duction level, z*, and the market equilibrium, zq, for a given pollution level, a,
when P is inverse demand, M C? is the private marginal cost function and MC*®

is the social marginal cost function.

Figure 2. The optimal corrective tax and the corresponding production level
as functions of A when f is similar to a normal distribution with 4 = 0.5 and

o = 0.25 divided by ten. A = 25a.

Figure 3. The optimal corrective tax and the corresponding production level

as functions of A when f is linearly increasing, f = 0.16a. A = 25a.

Figure 4. The optimal corrective tax and the corresponding production level as

functions of A when f is given by the logistic function f = 0.64a(1 —a). A = 25a.
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