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Abstract

The paper gives an overview over the theory of pricing and hedging
financial derivatives that can be exercised at any time during a fixed time
interval [0,T]. The analysis makes use of the theory of optimal stopping,
and as such it constitutes an interesting application of probability theory
to the theory of financial economics.

In this paper we concentrate on the main principles involved only,
which means, for example, that we abstract from derivatives where the
underlying asset pays out dividends.
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1 Introduction

An American derivative has the distinguishing feature that it can be exercised
at any time before its expiry date. Compared to a European type instrument,
which can only be exercised at expiration, this added flexibility ought to have
some value in itself, which should then be reflected in the market price of the
derivative.

For fairly obvious reasons, valuing American options has been given much
attention in the economic and financial literature. Firstly, there has been a re-
markable development of financial markets where American options are traded.
And, secondly, many investment situations where both random prices and de-
cision flexibility are present, have been phrased in terms of American options.

In this paper we start out explaining why it is never optimal to exercise early
an American call option. The arguments we use do not presuppose any specific

*Thanks to Edward Lungu, University of Botswana, and Bernt @ksendal, University of
Oslo, for arranging the symposium in Gaborone



pricing model. Then we turn to the American put option as an example of a
derivative where early exercise may be rational.

The stylized model by Black and Scholes is discussed briefly, where from the
comparative statics we are also led to the conjecture that early exercise may
sometimes be advantageous for the holder of an American put option.

The arguments are presented why such an instrument has a market price
found as the supremum over a set of stopping times of values computed the usual
way, that is, as conditional expected, discounted values under an equivalent
martingale measure. A no-free-lunch-type argument is used, involving a super-
replicating strategy.

We proceed with the mathematical theory of exercise and continuation re-
gions for American instruments, ending in a set of variational inequalities. This
is where the theory of optimal stopping really is used. The solution in the case
of the American put option is still unknown, but some of its qualitative features,
which are known, are briefly discussed.

The paper ends with the perpetual case, in which the time to expiration goes
to infinity. Here we have the advantage of studying an explicit solution to the
pricing problem for the American put option, which is presented for the Black
and Scholes model.

References to the literature are given as we proceed, but the list of references
18, however, not intended to be exhaustive.

2 The Economic Model

Given is a filtered probability space (2, F, P), satisfying the usual conditions,
where {F;} is the information filtration generated by a d-dimensional Brownian
motion process B(t), where 0 < ¢ < T. This latter process generates the asset
processes X () = (Xo(t), X1(2),..., Xn (1)) of Tto- type, where F = Fr, T being
the time horizon.

Each w € Q denotes a complete description of the exogenous uncertain
environment from time 0 to time T, F 1s the sigma-field of distinguishable events
at time 7', and P is the common probability belief held by the agents in the
economy. Process Xy(t) denotes the price of a risk free security at time t,
whereas the processes (X1, Xa...,Xy) are the corresponding price processes
of N risky securities. We assume that X (¢) is a (N+1)-dimensional Tté-process
admitting no arbitrage, and that the market is complete. Consider the following
example:

Example 1. The Black and Scholes model.

Here “the bank account” is represented by 3(t) := Xq(t) = Boe”*, where Sy
and r are positive constants, r being the continuously compounded interest rate,
and the risky asset has price process S(t) := Xy (t) = Spexp {(pu — %0'2)15 + 0B}
where B; is a Brownian motion process, and where p and o are two constants,
@ > r. Thus S; is log normally distributed for each t, and d = 1. This model
allows no arbitrage, and is furthermore complete. Here S can be found as the



solution to the following stochastic differential equation
dS(t) = pS(t)dt + oS(t)dB(t) (1)

with the initial condition S(0) = Sp. One could also view the price of the risk-
free asset as a solution to the (ordinary) differential equation dS(t) = rg(¢)dt
subject to the initial condition 5(0) = Gp. O

2.1 No Arbitrage and Complete Markets

For a risk-free asset of the form dg3(t) = »(¢,w)B(t)dt, (0) = Bo, let us continue
to denote the price process of the risky assets by S| i.e., X(t) := (8(t), S(t))
where S has N components, or S;(¢) := X;(t), 1 =1,2,..., N. The It security
price process S in RN satisfies the following stochastic differential equation

dS(t) = p(t,w)dt + o(t,w)dB(t). (2)

Assuming that the short-rate process r is bounded, we remind the reader that for
the model to admit “no free lunch”, is sufficient that there exists an equivalent
martingale measure ) such that the discounted price process S’(t) =3 i5 4
martingale under ), where the variance of the corresponding Radon-Nikodym
derivative is assumed finite. A different condition is the following: Suppose
there exists a process u(f,w) of dimension d, where [u*(t,w)dt < co, P — a.s.,
such that

o(t,wu(t,w) = p(t,w) —r(t,w)S() (3)

and such that

Elexp (

N | —

/uz(t,w) dt)] < oo, (4)

then the pricing process X has no arbitrage. Conversely, if the process X has
no arbitrage, then there exists a (¢,w)-measurable process u(#,w) such that (3)
holds for a.a. (,w), (but not necessarily (4), (see Karatzas (1996) Th. 0.2.4). In
terms of the process u, the equivalent martingale measure @) referred to above
can be expressed as follows:

N | —

dQ(w) = exp (— / u(t,w)dB(t) — /uz(t,w) dt)dP(w). (5)

Assuming that equations (3) and (4) hold true, then @ ~ P and by the Girsanov
theorem the process

B(t) := /u(s,w)ds—i—B(t) (6)



1s a (-Brownian motion, and in terms of B(t) we get by Ito’s lemma

A A Mt Ot ot =
dS; = (=S + =2)dt + —dBy = —dBy; 7
0= (TSt i B =5 dB ™)

Hence S is a @-martingale, so there exists an equivalent martingale measure,
and by the above cited result, there can be no arbitrage.

We also remind the reader about the result that the market model is complete
if and only if o(t,w) has a left inverse for a.a. (¢,w), which is equivalent to the
property that

rank(c(t,w)) =d for a.a. (t, w). (8)

Let us just check these criteria for the model of Example 1. The “price of risk”
u(t,w) is clearly given by

uS(t) —rS() _p-r
oS(t) o’

u(t,w) =

a constant, since S is strictly positive, and obviously the Novikov condition (4)
holds true. Also from (5) it is seen that the variance of de: is finite, since the
log-normal distribution has a finite variance. Since d = rank(o) = 1, the model
is also complete.

The assumption of no arbitrage seems reasonable for a consistent theory,
and 1t says essentially that it should not be possible to obtain strictly positive
financial gains from investing nothing, i.e., from not taking any financial risk.

The assumption of complete markets is, on the other hand, far from obvious,
at least in practice. The above technical characterizations of these properties
seem rather similar, but the concepts are very different indeed. If the market 1s
complete, it should be possible to perfectly duplicate the pay-out of any finite
variance, financial instrument by forming (linear) portfolios of the primitive
securities. No stock markets are so “rich” that anything like it could be possible,
and if it were, derivatives would simply have no economic meaning. It also means
that there is only one state price process { that will work, admittedly a very
convenient property. Much more could be said about this topic, especially if
investors and consumption are brought into the model, but we shall simply use
this assumption as a practical, theoretical vehicle, without further discussion.

2.2 The Valuation Rule

Consider now a risky security with price process S, and suppose that it is a
claim to a cumulative dividend process D. Then the following connection is
essential:

T

S; = exp /rs ds)St —1—/ exp(— /ru du)dDy], (9)



where the expectation is conditional on the information at time t, under the
measure .

The fact that we require the variance of ¢ := % to be finite, leads to a
continuous pricing functional. Tn order to see this, let us define & = Fy(£).

Clearly &; is martingale under the given measure P. Letting Y be the pay-off of
a security at time 7T, represented as a finite variance random variable, its price
at any time ¢ € [0,7] is given by

T
vi(v) = @ = B2feap(— [ r.dsy) (10)

t

¢
where (¢ := eaxp(— [r;ds)& is called the state price deflator. In particular
0

the market value of ¥ at time zero can be written as V4(YV) = E((rY), so
if var({r) < oo, the linear functional V' is bounded, and hence continuous.
Alternatively, since { > 0, P —a.s., we know that a positive linear functional on
L2(Q, F, P) is continuous (in this case V is strictly positive). Continuity of the
pricing functional V' is an important economic property; changing the pay-off
structure a little does not change the market price in any dramatic manner, i.e.,
if ||Y — Z||2 is small, then |V(V) — V(7)]| is also small, where || - ||2 signifies
the L2-norm. This is a kind of stability, or smoothness property of the pricing
functional that seems reasonable in a theory of valuation.

As an illustration of the valuation rule (10), consider an European call option
in the model of Example 1. This is a contract that pays out C'(Sp,T) = (St —
K)™* at the expiration date T only, where the exercise price K is a given constant.
Thus Y = (Sy — K)*, and the market price V;(V) := C'(St, t) of this call option
at time ¢ < T', when the price of the underlying asset is Sy, is given as follows:

C(Si, 1) = 5 ®(a) — e " T DKS(a — o /(T — 1)) (11)

where

L In(S/E) + (r+0*/9(T—1)

o/ (T —1) (12)

and where @ is the cumulative standard normal distribution function. This
computation in the setting of Example 1 is straight-forward, as it only amounts
to taking the expectation of a simple function of a log-normally distributed
random variable.

3 American Derivatives

We now turn to American derivative securities in the above setting. The distin-
guishing feature of such a security is that it can be exercised at any time before
its expiration. We denote the payoff by U(t) for any ¢ < T. The pay-out will



take place at a stopping time 7 < T, where the event {w € Q: 7(w) <t} € F;.
We may think of a derivative security as one which has no value in itself, but
derives its value from another underlying security. This has nothing to do with
our discussion of complete markets at the end of the last section, since deriva-
tives may very well have risk allocational value in, say, incomplete markets. We
are now only trying to explain what a derivative is regardless of the market
structure.

As a typical example of a derivative security we pick an American put option,
in which case U(t) = (K — S;)*. Here K is a fixed constant, the exercise price,
upon which the parties agree in advance, and S() is the market price at time t
of a underlying stock, which may be thought of as one of the primitive securities.
Thus the put only gets a positive value once the stock price drops below the
fixed exercise price K. In this regard the put option can be thought of as an
insurance contract. See figure (1)

Figure 1: Pay-off
Payoff
A

K » Stock price, S

Pay-off at expiration of an American put option.

3.1 The Optimal Stopping Rule

Suppose the holder of such an instrument adopts a fixed strategy 7. According
to the theory of the last section, in particular equation (10), the market price
of the instrument exercised according to this strategy must be

T

V() = Efexp(— [ r.ds)U ()]

t

Denote by I'iy ;) = {Stopping times in [£, 5]}, and consider the problem

Vo= sup W (U(r)). (13)
TEF[D,T]



If there exists a stopping time 7* solving problem problem (13), then V§ is
the market price of this instrument: Suppose not, denote the price by Vy and
consider two cases:

(a) Vo < V. In this case an investor could use the following strategy: Buy
the instrument and pay V4. Sell short a self-financing portfolio replicating the
payoff —U (7*). This latter construction is possible since the market is assumed

complete, and this portfolio has a market value Vi = E(? lexp(— [ rsds)U(7*)].
0

The cash flow at time zero is V7 —Vy > 0, and at time 7* the option is exercised
giving U(7*), which can be then used to cancel the short position —U(7*). This
strategy is thus risk-free, but gives a positive cash flow at time zero, implying
a free lunch. Since we have assumed there is no arbitrage, we have reached a
contradiction.

(b) Vo > V5. Again we recommend buying the cheapest instrument, and
selling the most expensive one. This means selling the option, but here the seller
has the problem that he does not know the buyer‘s exercise strategy 7. This is
where we may use the concept of a super-replicating strategy 6, defined as a self-
financing strategy having the property that 6, X; > U(t),¥t € [0.T]. Suppose
for the moment that such a strategy exists with initial value 6o Xq = V;*. Then
do the following: Sell the American instrument and “buy” the super-replicating
strategy ¢. The cash flow from this is at time zero Vy — V7 > 0. At the point
in time 7, chosen by the holder of the American instrument, 6, X, > U(r), so
this strategy will never give a loss after time zero, i.e., again a free lunch.

The conclusion must then be that the market price V5 = V{f'. It remains
to verify that a super-replicating strategy exists, and for this we need some
regularity conditions.

Consider a non-negative process U, let U* = sup;¢[g 7 U, and assume that
E(U*)P < oo for some p > 2. We then have the following results:

Proposition 1 Under the above stipulated conditions
(a) There exists a rational exercise strategy ™ such that

*
T

Vg = sup W(U(r)) = E(?[exp(— / rs ds)U (7")]
7€l 0,1 ;

Implicit in this is that the last expectation exists.
(b) There exists a super-replicating strategy 0 and some constant k such that
0, Xy > k,Vt where 0p Xy = Vi

Proof. For the proof of (a) we refer to Karatzas (1988). Here we concentrate on
~ t ~
(b): Let Uy = exp(— [ r; ds)U; and let W be the Snell envelope of U under @Q,
0

le.,

Wy = sup EtQ(ﬁT), 0<t<T.
TEF[t)T]



Under the given conditions we know that W is a continuous super-martingale
under . Thus W = Z — A, where Z is a Q-martingale and A 1s an increasing

T
process, where Ay = 0. Consider the quantity Zp exp([ r, ds). By the assump-
0
tion of complete markets there exists a self-financing strategy with associated
T
portfolio # in the primitive assets, such that 0 Xp = Zp exp(f rsds). Here 0, ,

0
is the number of shares of asset no. n in the portfolio consisting of the given
assets at time ¢. In this theory we know that the discounted value process is a
@-martingale, i.e.,

¢ T
e exp(—/rs ds) = EQ (exp(— /rs ds)0r X7)
0 0
This is equivalent to
¢

0: Xt = exp( | s ds)EtQ(exp(— rs ds)fp X7)

T~

t

Ty ds)EtQ(ZT) = exp(/ rs ds) 7
0

= exp(

¢
rs ds)(Wy + Ay) > exp(/ rs ds)Wy > Uy.

0

= exp(

S O O

The second equality follows from the definition of 8, the third follows since 7 1s
a martingale, the first inequality is true since A; > 0 and last inequality follows
from the definition of W, U and U, i.e., from the fact that

¢
Wi > U, = exp(—/rs ds)Uy.
0

By the definition of Wy and Vit follows that 8, Xy = Wy = Vi, since Ag =
0. Since U; > 0, 6, X; > 0 for all ¢, so # is a super-replicating strategy for
(U, T). O

For later reference we notice the following: Define
O =inf{t : W, = Uy} (14)

Then 7° is a rational exercise strategy, i.e., it solves the problem (13).

3.2 When is Early Exercise Optimal?

Consider a call option written on an underlying security having price process 5,
and paying no dividends. For notational simplicity, assume that the short rate



process r(t,w) = r(w) does not depend upon time. Suppose the call is exercised
at a possibly random stopping time time 7 < 7. Then it follows, by a slight
extension of Jensen’s inequality, that its price C§ must satisfy

T = EQ[(S,e7T — Ke™") 7]
< E9[(Sre™T — Ke™ ") ]
< E9[(Spe™™T — Kem" YT =T

where the last inequality is trivially true if » > 0 a.s. Notice that the above
holds regardless of the dynamics of the pricing process of the risky asset, and
also regardless of the interest rate process, as long as r > 0 for a.a. ¢ a.s. Thus,
under these circumstances it is not advantageous to exercise a call option early.

In the case where the underlying asset pays out dividends, it is known that
there exist situations in which early exercise may be optimal. Consider e.g., a sit-
uation where the stock has known ex-dividend dates and the dividend amounts
per share are random variables which can exceed the exercise price K, then
there is a positive probability of early exercise just prior to the ex-dividend
dates. Moreover early exercise is only optimal (if ever) at the instant before the
stock goes ex-dividend (see e.g., Jarrow and Rudd (1983)). Tn order to keep the
presentation from becoming too technical, we shall concentrate on situations
where the underlying asset pays no dividends in the following, unless explicitly
stating otherwise.

Let us try to go through the above reasoning for a put option. Its price PJ
must satisfy

Pl = EQ[(Ke™™™ — S,e7"™)*]
< E9[(Ke " — Spe” "]

But

EQ[(Ke ™™™ — Spe™ ™)) >
EQ[(Ke™™ — Spe=™")¥]1 = PI,

and one can guess that early exercise of American put options is sometimes
optimal, still assuming » > 0 for a.a. ¢ a.s. Since the short interest rate is in
nominal terms in this analysis, it must be positive.

Consider now the Black and Scholes model of Example 1. Here we want to
see how of the price of a Furopean put option varies as the parameters vary. We
take as the starting point the put-call parity, which states that the price Py of
a put option can be found in terms of the price Cj of a call option as follows:

Py=Cy—Sy+ Ke™ T,

a relation which can easily be verified from equality of the respective payoffs at
expiration. Using the formula (11) for the price of a European call option in



this model, we deduce the following;:

g_];:g_g_b@(a)—uo (15)
gi, - gf{ e T =T (1 —éla— aﬁ)) >0 (16)
g—i - g—g —rke™T = ;TUTgo(a) +Kre™ T (d(a—avT)—1)  (17)
O = 90 = 5VTp(a) > 0 (18)
88—]: - %—f — KTe™T = TEe™T (®(a—oVT) = 1) <0, (19)

where ¢ 1s the standard normal density function. Of particular interest in
the present case is relation (17). Here the sign is ambiguous, since the first
term on the right hand side is positive, but the second is negative. However,
0C/IT > 0, so the European call option increases in value by increasing the
time to expiration, consistent with our more general observation above.

Several other insights can be derived from the above comparative statics: As
the stock price increases, the put value declines, which is fairly intuitive, since
then the “insurance case” becomes less likely. As the exercise price increases,
the “insured sum” increases, which naturally increases the put value, i.e., the
“insurance premium”. Increasing the “volatility” o of the stock, both the call
and the put values increase. It may be somewhat surprising that increased un-
certainty is valuable, but for the put case this simply means that “insurance”
becomes more worth. For the call option, the holder of such an option has no
downside risk (i.e., no matter how far the call is out-of-the-money at expira-
tion, its value is still zero), and increasing ¢ increases the probability that the
option will end up in-the-money at maturity.! Finally, as the interest rate in-
creases, the value of the put decreases. One may explain this from looking at
the present value of the exercise payment in the event of exercise declines as r
increases, making the present value of the “insurance sum” smaller, and hence
the insurance premium also declines.

4 Exercise and Continuation Regions

Consider an American instrument having payoff U; = g(Y;,t), where g : R* — R
is a continuous function. Here Y is a Markov diffusion process in R having
dynamics given by

dY; = a(Y:)dt + b(V;)dB;  under Q. (20)

We maintain our previous assumptions, but let the interest rate » = 0 for the
moment. If Y; = y, the market value at time ¢ of the instrument 1is

h(y,t) = Sup B2 [g(Y,,7)]. (21)
T [t,T]

IThe issuer of the options can control the risk by hedging, since the market is complete.
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By picking 7 = ¢, we see that h(y,t) > g(y,t). From a previous remark we also
know that

™= iItlf{t €10,7]: h(Yi,t) = g(Vi, t)}. (22)
Thus h(Y:, t) > g(Vi, 1) for t < 7*, and
E={(y.1) € R" x[0,T): h(y,1) = g(y,1)} (23)
is called the exercise region, while
C={(y.t) € R" < [0,T]: h(y.t) > g(y,1)} (24)

is termed the continuation region. The optimal strategy is to wait in C and
exercise in &, i.e., to exercise the first time the process Y hits £.
The associated variational inequality of this problem is

h>g,  Dh<0,  (h—g)(Dh)=0, (25)

having the boundary condition h(y,T) = g(y, T), where

Dh(y, 1) = he(y,t) + hy(y,t)a(y) + %tr [hyy (5, )b ()T ()] (26)
is the relevant differential operator. Here ¢r[] is the trace of the matrix indi-
cated, and b7 (y) is the transpose of b(y).

The problem can readily be adapted to the situation where r # 0, e.g., where
ry = a(Yy) for some function « : RF — R. In this case the differential operator
D" h(y,t) changes to Dh(y,t)—a(y)h(y,t). Also,ifa = a(y,t),b = b(y,t) depend
upon time, use the new diffusion process Y(t) = (4, Y(t)) (see e.g., Oksendal
(1995)). Jaillet, Lamberton, and Lapeyre (1988, 1990) review the treatment
of the optimal stopping problem valuation problem as a variational inequality.
Notice that we require the Markov property in the above treatment.

There exists no closed form solution for the American put option in the
Black and Scholes model. However, it is known that the continuation region is
a subset of Ry x [0,7T]: There exists an increasing, continuously differentiable
function f(t) : [0, 7] = R such that

C={(z,t): x> f(t)}, (27)

where f(T') = K, and f(¢) behaves roughly as the square root function close to
the terminal time T, having an infinite derivative in the point (7, K') (see Barles
et al. (1995)). The optimal rational exercise strategy is to exercise as soon as
the stock price S hits f i.e.,

™ =inf{t: S(t) = f(t)}. (28)

In Barles et al. (1991) it is in particular shown that

f(t) =K ~—aK\/(T—t)|In(T—1)| as t—=T7,

11



in the sense that

i) - K

oK/ —0) [In(T =1 ] ot

This indicates that the continuation region has the shape shown in figure (2), but
the exact form is still unknown. The behavior of the optimal exercise boundary
near expiration is in addition treated in Lamberton (1993), and Carretour et
al. (1992). Van Moerbecke (1976) was the first to demonstrate that the critical
boundary f(¢) is continuously differentiable.

Figure 2: Continuation Region
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Continuation Region of an American put option.

There are several numerical techniques for approximation the value function
h and exercise boundary f, one of which is based on a direct finite-difference
numerical solution of the variational inequality (25) adapted to the Black and
Scholes model. Another is described in Bjerksund and Stensland (1993) and
consists in the following: They derive a lower bound to the option value by
restricting the set of feasible exercise strategies. This they accomplish by re-
stricting the functions f to be linear of the type f(t) = ¢ for all ¢ € [0, 7] for
¢ some constant, and this constant is then given two recipes to determine. At
the point T' the boundary has a vertical line from the point (7, ¢) to the point
(T, K), see figure (3).

Their method is compared to other numerical techniques, like the finite-
difference and the binomial-tree approximations, and it seems to do reasonably
well.

In Aase (1986) a similar approximation technique was attempted in a sit-
uation where the underlying asset was modeled by a jump-diffusion process,
and then based on Monte Carlo simulations. Barone-Adesi and Whaley (1987)
proposed a quadratic approximation, which they found accurate for short-term
options. Geske and Johnson (1984) developed a compound-option approxima-
tion model. Approximate solutions to the American option price are also treated

12



Figure 3: Approximative Region
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Approximative continuation region for the American put option.

by Allegretto, Barone-Adesi and Elliott (1993), Broadie and Detemple (1993),
Carr (1994), Geske and Johnsen (1984), Gandhi, Kooros, and Salkin (1993),
and Baron-Adesi and Elliott (1991) among others. Many of these these treat
options written on a dividend-paying asset, often limited to a dividend rate.

Broadie and Detemple (1996) develop lower and upper bounds on the prices
of American call and put options, which they compare to the binomial tree
approximation.

A decomposition of the American option in terms of an early exercise pre-
mium was proposed by Jamshidian (1989), Jacka (1991), Kim (1990), and Carr,
Jarrow, and Myneni (1992).

For American-style Asian options there is recent work by Hansen and Jgrgensen
(1997), who find analytical pricing formulas for such instruments.

Bensoussan (1984) and Harrison and Kreps (1979), among others, did im-
portant early work on American option pricing.

In the above cited literature one can find references to a large body of re-
search that deals with American options, see in particular Duffie (1996).

5 The Perpetual Case

The formula for pricing the infinite-lived, or perpetual American call option
when the underlying asset provides a continuous proportional pay-out was de-
rived by Samulson (1965), and generalized by McDonald and Siegel (1986). A
similar simple formula for the finite-lived American option is not yet found.
However, some important existence and uniqueness results are given in Kim
(1990) and Jacka (1991). We know from their work that there exists a unique
parabolic boundary characterizing the optimal exercise strategy.

In this section we shall look at the perpetual American put option when,
again, the underlying asset pays no dividends. This leads to the same mathe-
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matical problem as the above mentioned call option when the underlying asset
provides a continuous proportional pay-out. Firstly we remark that the market
value of a Furopean perpetual (T"— oo) put option is zero:

Pl =CT—So+Ke™ 50 as T — oo,

since CF — Sy as T — oo follows directly from the expression in (11). However,
the corresponding value of the American perpetual put option converges to a
strictly positive value, demonstration at least one situation where there is a
difference between these two products, in the situation with no dividends from
the underlying asset. The perpetual case was first treated in Merton (1973),
and has later been extended by Karatzas (1988). The value of the American
perpetual put option can actually be found explicitly in the Black and Scholes
model, which we now demonstrate:

For a sufficiently low stock price, it may be advantageous to exercise the
put, and define the trigger price ¢ as the largest value of the stock such that the
put holder is better off exercising the put than continuing to hold it. Here the
linear approximation made by Bjerksund and Stensland (1993) happens to hold
exactly: Because at each time point ¢ > 0 in the life of the put option, bought
at time zero, the remaining time to maturity is the same, time can not enter
into the function f of the last section, so f(t) = ¢ for all ¢, where ¢ is a positive
constant that must be determined as part of the solution. In other words, the
continuation region is given as follows, see figure (4):

C={(zt):2>c}.

Figure 4: Continuation Region

Price
A

» Time
TS(-

Continuation region of the perpetual American put option.

In the continuation region C the partial differential equation in one of the
relations of (25) reduces to an ordinary differential equation:
1

50'29:2/1”(1‘) + rahgy(2) — rh(z) =0, (29)
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valid for ¢ < # < co. Given the trigger price ¢, let us denote the market value
h(z) := h(xz;¢). The relevant boundary conditions are then

h(co;¢) =0 Ve (30)
hic;e) =K —e¢ (exercise). (31)

The trigger price ¢ must then be determined in accordance with our optimal
stopping rule in equation (13), so that it maximizes the value of the option.

The solution can now be derived as follows: From the theory of ordinary
differential equations we know that

h(z;e) = are +asx™",

where v = 3—2 > 0. The boundary condition (30) implies that a; = 0, and the
boundary condition (31) implies that as = (K — ¢)cY¥. Thus

L (K—c)(%)_v, if x> ¢
hz;c) = {(K —z), if z <e. (82)

In order to determine the optimal value of ¢, we maximize h(z;¢) with respect
to ¢, leading to the unique value of the trigger price
~vK _2r

c= , where =
T+~ !

— 33
z (33)
and K is the exercise price. Inserting this expression in (32) finally leads to the
closed form solution for the market value of the American perpetual put option:

K (O+peNTT .
h(z) = A () L ez

(K — ), ife<e,

(34)

where ¢ is given above in equation (33). See figure (5).
The “high-contact” boundary condition of Samuelson and McKean (1965)

hy(c;e) = =1 (35)

yields the same value of the trigger price ¢ as we have found above from the
first order condition

he(e;e) =0 (36)

It rests on an observation that the function A must be a C'-function in the
“pasting”. Of course, in general h must be a C?-function in order to satisfy
the second order differential equation, but in a “thin” enough area it is actually
enough that it is C! (see e.g., @ksendal (1995)). In the present case the Lebesgue
measure of the set of time points where the function is C'!, is zero, which is thin
enough. The high-contact condition ensures that & is smooth enough in the

15



Figure 5: Perpetual American put option value

Put value
A

» Stock price

Market value of a perpetual American put option as a function of stock
price.

pasting point # = ¢: Here h(z;¢) |p=c = (K —¢), and =1 = hy(z;¢) |p=c =
L(K - 2) |p=e =—1.

Comparative statics can be derived from the expression for the market value
in (34). The results are directly comparable to the results in section 3.2 for
the finite-lived European put option: The put price h increases with R, ceteris
paribus, and the put price decreases as the stock price x increases, which can
be seen directly from figure (5). Changes in the volatility parameter have the
following effects: Let v = o2, then

e ()" z i .
Q@:{Uu>ln@m it > e -
v 0, if 2 < ec.

Clearly this partial derivative is positive as we would expect.
Similarly, but with opposite sign, for the interest rate r:

c (c\7 T : .
Qﬁ:{—%<ﬂ In(2), ife>e o
or 0, ifz <e.

The effect of the interest rate on the perpetual put is the one we would expect,
i.e., a marginal increase in the interest rate has, ceteris paribus, a negative effect
on the perpetual put value.

We end by a few philosophical remarks about the perpetual model. It turns
out to be a border line model, which only makes sense when interpreted properly.
One may wonder if a call option can have a positive market value when the
expiration time never materializes. We also notice that the Novikov condition
does not hold in the limit, and there is no well defined equivalent martingale
measure on all of Ry, since e.g., B(t) = 227t 4 B(t) can not be a Brownian
motion under  as t — oo.

The problem can equivalently be phrased for the risky asset: The discounted
price process S is a martingale under the measure ), but this martingale is not

16



uniformly integrable, so in particular lim;_ Sy does not exist in the sense
of Ly, and there is no real random variable Soo which is integrable such that
Sy = EQ(S’OO | ) for all . Tt is easy to show that under @, lim;_ Sy =0 as.
2 Now we have an asset which does not pay dividends, and never realizes any
positive “scrap value” Seo > 0; how can it possibly have a positive value Sy at
time zero, say?

The answer is that since the process {5},0 <t < T} is well defined as a
Q-martingale for all T, it follows that for some Sy > 0, Sy = EQ(S*T) for all
T < oo, so it must be the case that limp_, ., EQ(S’T) =S5 > 03 It is in
this meaning the perpetual model makes sense, as a limit of market values as
T — oo, and 1t is this interpretation we used above, when we considered the
variational inequalities in the limit. Notice that

So = lim E9(Sr) # E9(lim Sp) =0
T—o0 T— o0

(by the lack of uniform integrability). In other words, as noticed above, it is not
the case that the market value Sy at time zero can be recovered as EQ(S’OO) for
any real random variable So. closing the martingale S. We may conclude that
the perpetual case is well defined as a model in the limit, but not well defined
as a limiting model.*
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