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Abstract

This paper considers the valuation of a spread call when asset prices
are lognormal. The implicit strategy of the Kirk formula is to exercise if
the price of the long asset exceeds a given power function of the price of
the short asset. We derive a formula for the spread call value, conditional
on following this feasible but non-optimal exercise strategy. Numerical
investigations indicate that the lower bound produced by our formula is
extremely accurate. The precision is much higher than the Kirk formula.
Moreover, optimizing with respect to the strategy parameters (which cor-
responds to the Carmona-Durrleman procedure) yields only a marginal
improvement of accuracy (if any).
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1 Introduction
This paper considers the valuation of a spread call when the asset prices are
lognormal. The starting point is the observation that the implicit strategy of
the Kirk formula is to exercise if the price of the long asset exceeds a given
power function of the price of the short asset.
We derive a formula that evaluates the spread call, conditional on following

this exercise strategy. The formula consists of three terms, one for each of the
two assets, and one for the strike. A standard normal cumulative probability
enter into each term, and each argument is a function of the forward prices,
time to exercise, volatilities, and correlation. The formula fits well in to the
tradition of Black-Scholes, Black76, and Margrabe.
Numerical investigations indicate that our formula is extremely accurate.

The precision is much higher than the Kirk formula. Furthermore, the accuracy
of our formula is comparable with the precision of the lower bound procedure
suggested by Carmona and Durrleman, which requires a two-dimensional opti-
mization scheme.

2 Assumptions
Consider a frictionless market with no arbitrage opportunities and with a con-
stant riskless interest rate r. Assume two assets where the prices at the future
date T are
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S1 (T ) = F1 exp
n
−12σ21T + σ1

√
Tε1

o
(1)

S2 (T ) = F2 exp
n
−12σ22T + σ2

√
Tε2

o
(2)

with respect to the Equivalent Martingale Measure (EMM), where F1 and F2
are the current forward prices for delivery at the future date T , σ1 and σ2 are
volatilities, and ε1and ε2 are standard normal random variables with correlation
ρ. It follows from above that the two asset prices are lognormal, and that the
expected future price for each asset (wrt. the EMM) coincides with the current
forward price.

3 The spread call

Consider a European call option on the price spread S1 (T )−S2 (T ) with strike
K ≥ 0 and time to exercise T . The call option pay-off at time T is

C(T ) = (S1 (T )− S2 (T )−K)+ (3)

where ()+ denotes the positive part. The call value at time 0 can be represented
by1

C = e−rTE0
h
(S1 (T )− S2 (T )−K)+

i
(4)

where the expectation is taken with respect to the EMM, and r is the riskless
interest rate. It follows from the put-call parity that the value of a European
put option on the price spread S1 (T ) − S2 (T ) with strike K ≥ 0 and time to
exercise T is given by P = C − e−rT (F1 − F2 −K).

With both S1 (T ) and S2 (T ) being lognormal, there is no known general
formula for the spread call value. However, closed form solutions are available
for the following limiting cases: Firstly, if F2 = 0, the call spread collapses into
a standard call on S1 (T ), and the value is given by the Black76 formula (c.f.
Black (1976)). And secondly, if K = 0, the call spread collapses into an option
to exchange one asset for another. The option value in this case is given by the
Margrabe formula (see Margrabe (1978)).

4 The Kirk formula
In the general case, however, we have to rely on either approximation formulas
or extensive numerical methods. Approximation formulas allow quick calcula-
tions and facilitate analytical tractability, whereas numerical methods typically

1See, e.g., Cox and Ross (1976), Harrison and Kreps (1979), and Harrison and Pliska
(1981).
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produces more accurate results. Practitioners are very focused on simple calcu-
lations and real time solutions, hence a closed form approximation formula is
typically the preferred alternative.

Kirk (1995) suggests the following approximation to the spread call2

cK = e
−rT {F1N (dK,1)− (F2 +K)N (dK,2)} (5)

where N () denotes the standard normal cumulative probability function, and
dK,1 and dK,2 are given by

dK,1 =
ln (F1/ (F2 +K)) +

1
2σ

2
KT

σK
√
T

(6)

dK,2 = d1 − σK
√
T (7)

σK =

s
σ21 − 2

F2
F2 +K

ρσ1σ2 +

µ
F2

F2 +K

¶2
σ22 (8)

5 The Carmona-Durrleman procedure

Carmona and Durrleman (2003a, 2003b) represent the future spot prices by two
independent state variables and model the correlation by using trigonometric
functions. In particular, Eqs.(1) and (2) above translate into

S1 (T ) = F1 exp
n
−12σ21T + (z1 sinφ+ z2 cosφ)σ1

√
T
o

(9)

S2 (T ) = F2 exp
n
−12σ22T + σ2

√
Tz2

o
(10)

where z1 and z2 are standard normal and independent random variables, and
cosφ = ρ where φ ∈ [0,π]. The authors consider the value from exercising the
spread option according to a feasible, but non-optimal strategy conditional on
the two state variables. In particular, the strategy is to exercise when

Yθ∗ ≡ z1 sin θ∗ − z2 cos θ∗ ≤ d∗ (11)

where θ∗ ∈ [π, 2π] and d∗ are found numerically by maximising the option
value.3

2By the put-call parity, the Kirk approximation of a put on the price spread S1 (T )−S2 (T )
with strike K ≥ 0 and time to exercise T is pK = cK − e−rT (F1 − F2 −K).

3φ ∈ [0,π] and θ∗ ∈ [π, 2π] translate into sinφ ≥ 0 and cos θ∗ ≤ 0. To motivate this,
observe from Eqs. (9) and (11) that an increase in z1 will increase the pay-off from asset 1,
and push the call more in-the-money (less out-of-the-money).
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The value from following this strategy, which represents a lower bound to
the true spread option value, is4

cCD = e−rTE0 [(S1 (T )− S2 (T )−K) I (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)]
= e−rT

n
F1N

³
d∗ + σ1

√
T cos (θ∗ + φ)

´
(12)

−F2N
³
d∗ + σ2

√
T cos θ∗

´
−KN (d∗)

o
see Appendix B.5 Numerical investigations in Carmona and Durrleman (2003a)
indicate that their lower bound optimization procedure produces very accurate
estimates to the true option value.

6 A closed form spread option formula

It can be verified (see Appendix C) that the Kirk formula follows from the
expectation

cK = e
−rTE0

⎡⎣⎛⎝S1(T )− a · (S2 (T ))b

E
h
(S2 (T ))

b
i
⎞⎠+⎤⎦ (13)

where a = F2 +K, b = F2/(F2 +K), and

E0

h
(S2 (T ))

b
i
= exp

©
1
2b (b− 1)σ22T

ª
F b2

Note that 0 ≤ b < 1 when K ≥ 0. Observe from above that the implicit strategy
is to exercise if and only if S1 (T ) exceeds a scaled power function of S2 (T ).

We want to use the insight above to obtain an alternative spread option
approximation formula. Now, consider the future spread call pay-off conditional
on exercising if and only if S1 (T ) exceeds a power function of S2 (T ), with

exponent b and scalar a/E0
h
(S2 (T ))

b
i
. We can express the future pay-off from

following this strategy as

c(T ) = (S1 (T )− S2 (T )−K) · I
⎛⎝S1 (T ) ≥ a · (S2 (T ))b

E
h
(S2 (T ))

b
i
⎞⎠ (14)

where I () represents the indicator function, assuming unity whever the argu-
ment is true and zero otherwise. Compare Eq.(14) with Eq.(3), and observe

4There is a typo in Eq.(20) of Carmona and Durleman (2003a) as well as in Eq.(6.3)
of Carmona and Durrleman (2003b). The trigonometric function entering the second term
should read cos, and not sin.

5By the put-call parity, the Carmona-Durrleman approximation of a put on the price spread
S1 (T )−S2 (T ) with strike K ≥ 0 and time to exercise T is pCD = cCD−e−rT (F1 − F2 −K).
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that the specified strategy is feasible but not optimal. Consequently, the spread
option value from following such a strategy represents a lower bound to the true
spread option value.
Proposition: Approximate the spread call value by the following formula

c (a, b) = e−rTE0

⎡⎣(S1 (T )− S2 (T )−K) · I
⎛⎝S1 (T ) ≥ a · (S2 (T ))b

E
h
(S2 (T ))

b
i
⎞⎠⎤⎦

= e−rT {F1N (d1)− F2N (d2)−KN (d3)} (15)

where d1,d2, and d3 are defined by

d1 =
ln (F1/a) +

¡
1
2σ

2
1 − bρσ1σ2 + 1

2b
2σ22
¢
T

σ
√
T

(16)

d2 =
ln (F1/a) +

¡−12σ21 + ρσ1σ2 +
1
2b
2σ22 − bσ22

¢
T

σ
√
T

(17)

d3 =
ln (F1/a) +

¡−12σ21 + 1
2b
2σ22
¢
T

σ
√
T

(18)

σ =
q
σ21 − 2bρσ1σ2 + b2σ22 (19)

and where the constants a and b are

a = F2 +K (20)

b =
F2

F2 +K
(21)

By the put-call parity, the put option on the price spread S1(T ) − S2(T ) with
strike K and time to exercise T is approximated by p = c−e−rT (F1 − F2 −K).

Proof: See Appendix D.
The Black-Scholes, the Black76, and the Margrabe formulas consist of one

term for each component that enters into the future option pay-off. Eqs.(15)-
(19) conforms with this tradition. This form is similar to Eq.(6.3) in Carmona
and Durrleman (2003b). However, by comparing with our Eqs.(15)-(19), there
should be no doubt that our representation of the arguments d1,d2,d3 is more
along the lines of the Black-Scholes, Black76, and Margrabe than the corre-
sponding arguments found in Carmona and Durrleman (2003b).
In order to obtain a stricter lower bound, one could optimise the spread call

value c (a, b) above with respect to a and b. Optimal parameters a∗ and b∗ can be
obtained by expanding first order conditions and applying the Newton-Raphson
iterative procedure, using Eqs.(20) and (21) as the initial guess. The first order
conditions, as well as the second order partials needed for Newton-Raphson, are
provided in Appendix E.
Optimizing our formula with respect to a and b is in fact equivalent to

the Carmona and Durrleman procedure (see Appendix F). Extensive numerical
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investigations, however, indicate that with our initial choice a and b, there is
very little to gain from implementing such an optimization procedure. Put
differently, the formula stated in Eqs.(15)-(21) above represents a very tight
lower bound to the true spread option value.

7 Numerical results
In the following, we compare the accuracy of the Kirk approximation in Eqs.(5)-
(8), our formula in Eqs.(15)-(21) above, and the optimal lower bound following
from maximizing the formula with respect to the parameters a and b (which is
similar to the Carmona-Durrleman optimization procedure). To approximate
the true spread option value, we apply a Monte Carlo simulation procedure using
the first 100,000 pair of numbers from a two-dimensional Halton sequence. In
order to reduce the simulation error, we use our representation of the spread
call as control variate.6

We adopt the numerical example in Carmona and Durrleman (2003a), where
the annual riskless interest rate is r = 0.05 and the time horizon is T = 1
year. Their numerical case translate into forward prices F1 = e(0.05−0.03)·1110 ≈
112.22 and F2 = e(0.05−0.02)·1100 ≈ 103.05. The annualized volatilities are
σ1 = 0.10 and σ2 = 0.15.
We consider different combinations of strike K and correlation ρ. In case

of K = 0, the spread option reduces to the Margrabe exchange option (c.f.
Margrabe (op.cit.)). With K > 0, the option corresponds to a call on the price
spread S1(T ) − S2(T ). In case of K < 0, the option represents a put on the
opposite price spread, i.e. S2(T ) − S1(T ). The put values are obtained by the
put-call parity.

6Rewrite Eq.(4) as

E
£
e−rTC(T )

¤
= c+E

£
e−rT (C(T )− c(T ))

¤
where the pay-offs C(T ) and c(T ) are defined in Eqs.(3) and (14), and c is our spread option
formula in Eqs.(15)-(21). Clearly, the two pay-offs C(T ) and c(T ) are highly correlated.
Consequently, the simulation error from evaluating the expectation on the RHS is much lower
than the simulation error from evaluating the expectation on the LHS.
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Table 1. Spread option value approximation
ρ

K
-1 -0.5 0 0.3 0.8 1

-20

29.6752
29.6561
29.6561
29.6561

29.0056
28.9948
28.9948
28.9948

28.3848
28.3811
28.3811
28.3811

28.0709
28.0701
28.0701
28.0701

27.7704
27.7701
27.7701
27.7701

27.7538
27.7538
27.7538
27.7538

-10

21.8787
21.8686
21.8686
21.8686

20.9114
20.9050
20.9050
20.9049

19.8917
19.8889
19.8889
19.8888

19.2710
19.2701
19.2701
19.2701

18.3816
18.3811
18.3811
18.3811

18.2444
18.2439
18.2439
18.2438

0

15.1332
15.1332
15.1332
15.1332

13.9180
13.9180
13.9180
13.9180

12.5237
12.5237
12.5237
12.5237

11.5618
11.5618
11.5618
11.5618

9.6325
9.6325
9.6325
9.6325

8.8212
8.8212
8.8212
8.8212

5

12.2425
12.2441
12.2441
12.2441

10.9543
10.9562
10.9562
10.9562

9.4431
9.4453
9.4453
9.4453

8.3649
8.3674
8.3674
8.3674

5.9628
5.9670
5.9670
5.9670

4.4420
4.4542
4.4542
4.4542

15

7.5376
7.5218
7.5218
7.5217

6.2559
6.2422
6.2422
6.2421

4.7562
4.7445
4.7444
4.7443

3.6907
3.6798
3.6797
3.6796

1.3545
1.3425
1.3422
1.3421

0.0724
0.0488
0.0488
0.0479

25

4.2475
4.2014
4.2014
4.2013

3.1686
3.1300
3.1300
3.1298

1.9923
1.9621
1.9620
1.9617

1.2441
1.2200
1.2198
1.2194

0.1124
0.1041
0.1039
0.1032

0.0000
0.0000
0.0000
0.0000

Number on top of each box: Kirk’s formula.
Second number (in italics) from top of each box: Simulation result (100,000 trials).
Third number from the top of each box: Optimizing our formula wrt. a and b.
Number on the bottom of each box: Our formula (a and b fixed)).

Table 1 shows the results of the spread option value approximations. The
number on top in each box represents the result from the Kirk formula. The
second number (in italics) from top in each box is the spread option value ob-
tained by Monte Carlo computation with 100,000 trials. We use the simulation
results as the benchmark for the true spread option value. The third number
from top of each box is the result from optimizing our formula with respect to
a and b, which is similar to the Carmona-Durrleman optimization procedure.
The number at the bottom of each box represents the result from our formula.

It is interesting to observe from Table 1 that the Kirk formula violates the lower
bound (provided by our formula) for all correlations when the strike is K = 5.
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Table 2. Pricing error
ρ

K
-1 -0.5 0 0.3 0.8 1

-20
0.0191
0.0000

0.0108
0.0000

0.0037
-0.0001

0.0008
0.0000

0.0003
0.0000

0.0001
0.0000

-10
0.0101
0.0000

0.0065
0.0000

0.0029
0.0000

0.0010
0.0000

0.0005
0.0000

0.0006
0.0000

0
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

5
- 0.0016
0.0000

-0.0019
0.0000

- 0.0023
0.0000

- 0.0025
0.0000

- 0.0042
0.0000

- 0.0122
0.0000

15
0.0158
-0.0001

0.0137
- 0.0001

0.0118
-0.0001

0.0109
- 0.0002

0.0120
- 0.0004

0.0236
- 0.0009

25
0.0461
- 0.0001

0.0386
- 0.0002

0.0301
-0.0004

0.0241
- 0.0006

0.0083
- 0.0009

0.0000
0.0000

Number on top of each box: Approximation error following from the Kirk formula.
Number on the bottom of each box: Approximation error following from our formula.

Table 2 shows the approximation error associated with the Kirk formula
(number on top of each box) and our formula (number on bottom of each box),
as compared to the benchmark. Note that the Kirk formula seems to underprice
the spread option when the strike is closer to zero, and to overprice the spread
option when the strike is further away from zero. Our formula represents a
lower bound, hence the approximation error (if any) is negative. Observe that
for all relevant cases in Table 2,7 our formula performs much better than the
Kirk formula. In our view, practitioners looking for a pricing formula are better
off using our formula than the Kirk formula when evaluating spread options.

Table 3. Improved accuracy obtained by optimization
ρ

K
-1 -0.5 0 0.3 0.8 1

-20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 0.0001 0.0001 0.0001 0.0001 0.0002 0.0009
25 0.0001 0.0001 0.0003 0.0004 0.0007 0.0000

Number in each box: Improved accuracy obtained by optimization.

Table 3 shows the improved accuracy by optimizing our formula with re-
spect to a and b, as compared to using our formula with parameter values for a
and b in Eqs.(20) and (21). Recall that optimizing our formula corresponds to
the Carmona-Durrleman optimization procedure. Hence, we may interpret the

7When K = 0, both formulas degenerate to the Margrabe exhange option formula, which
represents the true value in this case. Hence, the pricing errors are zero in these cases.
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results in Table 3 as the gain form using their numerical optimization procedure
as compared to our formula which is closed form. The results in the table in-
dicate that the improved accuracy from implementing numerical optimization
is either marginal or zero. For practical purposes, the benefits of a closed form
solution are obvious. In our view, the numerical results indicate that the accu-
racy of our formula is comparable with the accuracy of using an optimization
procedure. Consequently, practioners should settle for our formula rather than
the Carmona-Durrleman procedure when evaluating spread options.

8 Conclusions

This paper considers the valuation of a European spread option when the asset
prices are lognormal. We derive a spread option formula that consists of three
terms, one for each of the two assets and one for the strike. A standard normal
cumulative probability enters into each term, and each argument is a function
of the forward prices, time to exercise, volatilities, and correlation. The formula
fits well in to the tradition of Black-Scholes, Black76, and Margrabe.

Numerical investigations indicate that our formula is extremely accurate.
The precision is much better than the Kirk formula, which is the current market
standard in practice. Moreover, the precision of our formula is comparable
the lower bound procedure of Carmona and Durrleman, which requires a two-
dimensional optimization scheme.
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A Bivariate normal variables - a useful result

The standard bivariate normal density function is defined by

m(x, y; ρ) =
1

2π
p
1− ρ2

exp

½
−x

2 − 2ρxy + y2
2 (1− ρ2)

¾
where ρ is correlation. The density function satisfies the identity

exp
©
(ax+ by)− 1

2

¡
a2 + 2ρab+ b2

¢ª
m (x, y; ρ) = m (x− (a+ ρb) , y − (ρa+ b) ; ρ)

where E
£
exp

©
(ax+ by)− 1

2

¡
a2 + 2ρab+ b2

¢ª¤
= 1.

Consequently,

E
£
exp

©
(ax+ by)− 1

2

¡
a2 + 2ρab+ b2

¢ª
h(x, y)

¤
=

Z Z
exp

©
(ax+ by)− 1

2

¡
a2 + 2ρab+ b2

¢ª
h(x, y)m(x, y; ρ)dydx

=

Z Z
h(x, y)m (x− (a+ ρb) , y − (ρa+ b) ; ρ) dydx

=

Z Z
h(x+ (a+ ρb) , y + (ρa+ b))m (x, y; ρ) dydx

= E [h(x+ (a+ ρb) , y + (ρa+ b))]

B The Carmona-Durrleman result

For notational convenience, write

X1 = F1 exp
©−12v21 + v1 (z1 sinφ+ z2 cosφ)ª

X2 = F2 exp
©−12v22 + v2z2ª

where z1 and z2 are independent and standard normal. Consider the expectation

cCD = E [(X1 −X2 −K) I (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)]
= E [X1I (z1 sin θ

∗ − z2 cos θ∗ ≤ d∗)]
−E [X2I (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)]
−E [KI (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)]

Observe that due to the identity
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(sinφ)2 + (cosφ)2 = 1

both z ≡ (z1 sinφ+ z2 cosφ) and Yθ∗ ≡ (z1 sin θ∗ − z2 cos θ∗) are standard nor-
mal. Evaluate the last term

E [KI (z1 sin θ
∗ − z2 cos θ∗ ≤ d∗)]

= KE [I (z ≤ d∗)]
= KN (d∗)

Evaluate the second term

E [X2I (z1 sin θ
∗ − z2 cos θ∗ ≤ d∗)]

= E
£
F2 exp

©−12v22 + v2z2ª I (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)¤
= F2E [I (z1 sin θ

∗ − (z2 + v2) cos θ∗ ≤ d∗)]
= F2E [I (z1 sin θ

∗ − z2 cos θ∗ ≤ d∗ + v2 cos θ∗)]
= F2E [I (z ≤ d∗ + v2 cos θ∗)]
= F2N (d

∗ + v2 cos θ∗)

using the result in Appendix A. And finally, evaluate the first term

E [X1I (z1 sin θ
∗ − z2 cos θ∗ ≤ d∗)]

= E
£
F1 exp

©−12v21 + v1 (z1 sinφ+ z2 cosφ)ª I (z1 sin θ∗ − z2 cos θ∗ ≤ d∗)¤
= F1E [I (sin θ

∗ (z1 + v1 sinφ)− cos θ∗ (z2 + v1 cosφ) ≤ d∗)]
= F1E [I (z1 sin θ

∗ − z2 cos θ∗ ≤ d∗ + v1 (cos θ∗ cosφ− sin θ∗ sinφ))]
= F1E [I (z ≤ d∗ + v1 cos (θ∗ + φ))]

= F1N (d
∗ + v1 cos (θ∗ + φ))

where we use the result in Appendix A and the identity

cos θ∗ cosφ− sin θ∗ sinφ = cos (θ∗ + φ)

Now, collect the results, apply riskless discounting, and translate v1 = σ1
√
T

and v2 = σ2
√
T , to obtain the result in Eq.(12).

C The implicit Kirk strategy

For notational convenience, write
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X1 = F1 exp
©−12v21 + v1ε1ª

X2 = F2 exp
©−12v22 + v2ε2ª

aXb
2

E
£
Xb
2

¤ = a exp
©−12b2v22 + bv2ε2ª

and consider the expectation

E

⎡⎣ÃX1 − aXb
2

E
£
Xb
2

¤!+
⎤⎦ = E "X1I ÃX1 ≥ aXb

2

E
£
Xb
2

¤!#−E "aXb
2I

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#

The two terms are evaluated as follows:

E

"
X1I

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#
= E

£
F1 exp

©−12v21 + v1ε1ª I ¡F1 exp©−12v21 + v1ε1ª ≥ a exp©−12b2v22 + bv2ε2ª¢¤
= F1E

£
I
¡
F1 exp

©−12v21 + v1 (ε1 + v1)ª ≥ a exp©−12b2v22 + bv2 (ε2 + ρv1)
ª¢¤

= F1E
£
I
¡
v1ε1 − bv2ε2 ≥ − ln (F1/a)− 1

2v
2
1 + bρv1v2 − 1

2b
2v22
¢¤

= F1E

"
I

Ã
ε ≥ − ln (F1/a) +

1
2v
2
1 − bρv1v2 + 1

2b
2v22p

v21 − 2bρv1v2 + b2v22

!#

= F1N

Ã
ln (F1/a) +

1
2v
2
1 − bρv1v2 + 1

2b
2v22p

v21 − 2bρv1v2 + b2v22

!
and

E

"
aXb

2

E
£
Xb
2

¤IÃX1 ≥ aXb
2

E
£
Xb
2

¤!#
= E

£
a exp

©−12b2v22 + bv2ε2ª I ¡F1 exp©−12v21 + v1ε1ª ≥ a exp©−12b2v22 + bv2ε2ª¢¤
= aE

£
exp

©−12b2v22 + bv2ε2ª I ¡F1 exp©−12v21 + v1ε1ª ≥ a exp©−12b2v22 + bv2ε2ª¢¤
= aE

£
I
¡
F1 exp

©−12v21 + v1 (ε1 + ρbv2)
ª ≥ a exp©−12b2v22 + bv2 (ε2 + bv2)ª¢¤

= aE
£
I
¡
v1ε1 − bv2ε2 ≥ − ln (F1/a) + 1

2v
2
1 − bρv1v2 + 1

2b
2v22
¢¤

= aE

"
I

Ã
ε ≥ − ln (F1/a)−

1
2v
2
1 + bρv1v2 − 1

2b
2v22p

v21 − 2bρv1v2 + b2v22

!#

= aN

Ã
ln (F1/a)− 1

2v
2
1 + bρv1v2 − 1

2b
2v22p

v21 − 2bρv1v2 + b2v22

!
Now, collect the results, apply riskless discounting, choose the constant a such
that

14



a = F2 +K

and translate v1 = σ1
√
T ; v2 = σ2

√
T ;

p
v21 − 2bρv1v2 + b2v22 = σ

√
T , to

obtain the Kirk formula stated in Eqs.(5) - (8) above.

D Derivation of the spread option formula

Consider the expectation

E

"
(X1 −X2 −K) I

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#

= E

"
X1I

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#−E "X2I ÃX1 ≥ aXb
2

E
£
Xb
2

¤!#−E "I ÃX1 ≥ aXb
2

E
£
Xb
2

¤!#
The first term is evaluated in Appendix C. The two remaining terms are evalu-
ated as follows

E

"
X2I

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#
= E

£
F2 exp

©−12v22 + v2ε2ª I ¡F1 exp©−12v21 + v1ε1ª ≥ a exp©−12b2v22 + bv2ε2ª¢¤
= F2E

£
I
¡
F1 exp

©−12v21 + v1 (ε1 + ρv2)
ª ≥ a exp©−12b2v22 + bv2 (ε2 + v2)ª¢¤

= F2E
£
I
¡
v1ε1 − bv2ε2 ≥ − ln (F1/a) + 1

2v
2
1 − ρv1v2 − 1

2b
2v22 + bv

2
2

¢¤
= F2E

"
I

Ã
ε ≥ − ln (F1/a) +

1
2v
2
1 − ρv1v2 − 1

2b
2v22 + bv

2
2p

v21 − 2bρv1v2 + b2v22

!#

= F2N

Ã
ln (F1/a)− 1

2v
2
1 + ρv1v2 +

1
2b
2v22 − bv22p

v21 − 2bρv1v2 + b2v22

!

E

"
KI

Ã
X1 ≥ aXb

2

E
£
Xb
2

¤!#
= KE

£
I
¡
F1 exp

©− 12v21 + v1ε1ª ≥ a exp©−12b2v22 + bv2ε2ª¢¤
= KE

£
v1ε1 − bv2ε2 ≥ − ln (F1/a) + 1

2v
2
1 − 1

2b
2v22
¤

= KE

"
ε ≥ − ln (F1/a)−

1
2v
2
1 +

1
2b
2v22p

v21 − 2bρv1v2 + b2v22

#

= KN

Ã
ln (F1/a)− 1

2v
2
1 +

1
2b
2v22p

v21 − 2bρv1v2 + b2v22

!

15



Collect the results, and translate v1 = σ1
√
T ; v2 = σ2

√
T ;
p
v21 − 2bρv1v2 + b2v22 =p

(σ21 − 2bρσ1σ2 + b2σ22)T = σ
√
T , to obtain the result stated as Eqs.(15)-(19)

1 above.

E Optimizing wrt. the exercise strategy

Define

H(a, b) = e−rT {F1N (d1)− F2N (d2)−KN (d3)}

d1 =
ln (F1/a) +

¡
1
2σ

2
1 − bρσ1σ2 + 1

2b
2σ22
¢
T

σ
√
T

d2 =
ln (F1/a) +

¡−12σ21 + ρσ1σ2 +
1
2b
2σ22 − bσ22

¢
T

σ
√
T

d3 =
ln (F1/a) +

¡−12σ21 + 1
2b
2σ22
¢
T

σ
√
T

σ =
q
σ21 − 2bσ1σ2 + b2σ22

First, establish

∂d1
∂a

=
∂d2
∂a

=
∂d3
∂a

=
−1
aσ
√
T

∂σ

∂b
= bρσ

∂d1
∂b

= C1 − d1bρ
∂d2
∂b

= C2 − d2bρ
∂d3
∂b

= C3 − d3bρ
where we for notational convenience define

bρ =
bσ22 − ρσ1σ2

σ2

C1 =
−ρσ1σ2T + bσ22T

σ
√
T

C2 =
bσ22T − σ22T

σ
√
T

C3 =
bσ22T

σ
√
T
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Consequently, the first order partials of H are

Ha = −e−rT {F1n (d1)− F2n (d2)−Kn (d3)} 1

aσ
√
T

Hb = −e−rT {F1n (d1) d1 − F2n (d2) d2 −Kn (d3) d3}bρ
+e−rT {F1n (d1)C1 − F2n (d2)C2 −Kn (d3)C3}

Next, obtain the second order partials

∂2d1
∂a2

=
∂2d2
∂a2

=
∂2d3
∂a2

=
1

a2σ
√
T

∂2d1
∂a∂b

=
∂2d2
∂a∂b

=
∂2d3
∂a∂b

=
bρ

aσ
√
T

∂2d1
∂b2

=
σ22
σ
− 2C1bρ+µ3bρ2 − σ22

σ2

¶
d1

∂2d2
∂b2

=
σ22
σ
− 2C2bρ+µ3bρ2 − σ22

σ2

¶
d2

∂2d2
∂b2

=
σ22
σ
− 2C3bρ+µ3bρ2 − σ22

σ2

¶
d3

and the second order partials of H are

Haa = −e−rT {F1n (d1) d1 − F2n (d2) d2 −Kn (d3) d3} 1

a2σ2T

+e−rT {F1n (d1)− F2n (d2)−Kn (d3)} 1

a2σ
√
T

Hab = Hba = −e−rT
©
F1n (d1) d

2
1 − F2n (d2) d22 −Kn (d3) d23

ª bρ
aσ
√
T

+e−rT {F1n (d1)C1d1 − F2n (d2)C2d2 −Kn (d3)C3d3} 1

aσ
√
T

+e−rT {F1n (d1)− F2n (d2)−Kn (d3)} bρ
aσ
√
T

Hbb = −e−rT ©F1n (d1) d31 − F2n (d2) d32 −Kn (d3) d33ªbρ2
+e−rT

©
F1n (d1)C1d

2
1 − F2n (d2)C2d22 −Kn (d3)C3d23

ª
2bρ

−e−rT ©F1n (d1)C21d1 − F2n (d2)C22d2 −Kn (d3)C23d3ª
+e−rT {F1n (d1) d1 − F2n (d2) d2 −Kn (d3) d3}

µ
3bρ2 − σ22

σ2

¶
−e−rT {F1n (d1)C1 − F2n (d2)C2 −Kn (d3)C3} 2bρ
+e−rT {F1n (d1)− F2n (d2)−Kn (d3)} σ

2
2

σ
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We now have the necessary results to implement the Newton-Raphson iterative
procedure, using a = F2 +K and b = F2/(F2 +K) as our initial guess.

F Optimizing our formula and the Carmona-
Durrleman procedure

Compare Eq.(12) with Eqs.(15)-(19), assuming that a and b are optimal. Note
that it is sufficient to show that the arguments of N () equal for each of the
three terms. Firstly, let d∗ = d3. Secondly, let σ2

√
T cos θ∗ = d2 − d3 which

leads to cos θ∗ = (ρσ1 − bσ2) /σ.

Hence, we need to show that σ1
√
T cos(θ∗ + φ) = d1 − d3. Recall that

cosφ = ρ, and that φ ∈ [0,π] and θ∗ ∈ [π, 2π] (see footnote 3). Obtain the
result as follows:

cos(θ∗ + φ) = cos(θ∗) cos(φ)− sin(θ∗) sin(φ)

=
ρσ1 − bσ2

σ
ρ− (−1)

s
1−

µ
ρσ1 − bσ2

σ

¶2p
1− ρ2

=
ρ2σ1 − bρσ2

σ
+

r
σ21 − ρ2σ21

σ2

p
1− ρ2

=
ρ2σ1 − bρσ2

σ
+

σ1
¡
1− ρ2

¢
σ

=
σ1 − bρσ2

σ

=
1

σ1
√
T

¡
σ21 − bρσ1σ2

¢
T

σ
√
T

=
d1 − d3
σ1
√
T

Consequently, optimizing our formula with respect to a and b is equivalent to
the Carmona-Durrleman procedure.
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