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Abstract

Time series models for count data have found increased interest in recent days. The existing

literature refers to the case of data that have been fully observed. In the present paper, methods for

estimating the parameters of the first-order integer-valued autoregressive model in the presence of

missing data are proposed. The first method maximizes a conditional likelihood constructed via the

observed data based on the k-step-ahead conditional distributions to account for the gaps in the data.

The second approach is based on an iterative scheme where missing values are imputed in order to

update the estimated parameters. The first method is useful when the predictive distributions have

simple forms. We derive in full details this approach when the innovations are assumed to follow a

finite mixture of Poisson distributions. The second method is applicable when there are not closed

form expressions for the conditional likelihood or they are hard to derive. Simulation results and

comparisons of the methods are reported. The proposed methods are applied to a data set concerning

syndromic surveillance during the Athens 2004 Olympic Games.

Keywords: imputation; Markov Chain EM algorithm; mixed Poisson; discrete valued time series;

1 Introduction

1.1 Motivation

In recent years the need to create and maintain health surveillance systems has been recognized. A
definition of health surveillance refers to the systematic collection, collation, analysis and interpretation
of health related data and dissemination of information to those who can decide about actions to be
taken to prevent and control a disease (usually one of an infectious nature). Among various aspects of
health surveillance, ”syndromic surveillance” has been considered as an important tool since it is based on
symptoms rather than diagnosis and hence it can create alerts faster. For example, syndromic surveillance
systems for detection of biologic terrorism after the September 2001 terrorist attacks have been launched
in New York city (Das et al. (2003)). In addition, during large athletic events such surveillance systems
can be useful to quickly detect threats for the public health, and they have been used in winter Olympic
Games in Salt Lake City 2002 and Athens 2004 Olympic Games. (see Dafni et al. (2004))

Syndromic surveillance data refer to the number of incidences of a particular syndrome in a hospital; a
sudden increase on the number of incidences of this symptom may be related to an outbreak and measures
must be taken as soon as possible. The data usually are collected at the emergency departments (EDs)
of major hospitals. This kind of data are by nature low counts data series, in particular if they refer to
symptoms that are not so common and we do not observe a large number so as to be able to assume
normal approximations. Hence the data must be treated as discrete valued time series. Most of the
existing method either ignore the discrete nature of the data or their time series nature. Moreover a
common element of such data is the existence of missing values because for example the hospital does
not accept patients for some days, either because of maintenance reasons or because each day only some
of the hospitals are on duty in a wider area. This creates missing values. Moreover in certain cases the
data are themselves irregularly spaced because data are not collected on a daily basis.

The data refer to different hospitals in Athens, for the period from March 2004 until end of September
2004. The period covers the period of the Olympic Games, so we have used data from hospitals not in
the main Olympic places so as not to have problems with the changes in the potential population of the
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areas. We have plotted 4 cases with different proportion of missing values in Figure 1. For the first case
(a)the proportion of missing values is 5% while for the other cases the proportion is 28%, 11.5% and 3.3%
respectively. One can also see some patterns in the missing values. These data sets are very typical to
the problem at hand. The aim is to be able to fit a suitable model in order to allow for correct prediction
of future values and thus able to see if the next observations are acceptable (in the sense that they do
not indicate a sudden increase of this syndrome) given the historical data or it is too high which perhaps
imply the start of an outbreak.
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Figure 1: Datasets related to syndromic surveillance. The vertical lines imply missing values. One can
see different patterns on the data with respect to the missing data and their proportion.

Note also that integer valued time series occur in several other circumstances where the response is
a discrete random variable, like the number of purchases of a particular product, the occurrence of a
certain type of crime in a province, the number of cars passing a certain point etc. While issues like
estimation for such models have been worked out, the literature lacks of methodologies to handle time
series containing missing values.

1.2 Summary of the paper

In this paper we start from the general Integer Autoregressive Model of order 1 (INAR(1) hereafter)
proposed by McKenzie (1985) and Al-Osh and Al-Zaid (1987) and we discuss how the missing values in
such time series models can be treated so as to allow for estimating the parameters and making inference
about the data. We consider the general setting by allowing a variety of different distributions for the
innovations so as to be able to model several different time series.
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In the present paper we propose two different approaches for dealing with missing values. The first
one uses the conditional likelihood created via the conditional distributions of the missing data given
the observed ones. This approach is suitable when these distributions can be written in closed form
expressions and thus computations are relatively easy. For certain models we derive the conditional
distribution based on the results of Freeland and McCabe (2004). For this approach we consider a general
model by assuming that the innovations follow a finite mixture of Poisson distribution (see Pavlopoulos
and Karlis (2007)) and we fully derive the conditional distributions needed.

The second approach uses an iterative algorithm, where the missing data are generated from the
conditional distribution given the observed data and the current parameters (instead of evaluating the
distribution we need only to simulate from it, which is quite easier). This second approach is useful when
the conditional distributions are cumbersome. Variants of this approach are discussed. A comparison of
the two methods is made using the simplest case, i.e. the case based on Poisson innovations.

The remainder of the paper proceeds as follows: Section 2 gives a brief overview of the INAR model
and the existing variants of this model. Section 3 describes the predictive distribution if mixed Poisson
innovations are considered. In Section 4 the conditional maximum likelihood approach is given while in
Section 5 the methods based on imputation are discussed. In Section 6 simulations results are reported to
show the efficiency of the methods proposed and a comparison between them. Application of the methods
to the syndromic surveillance data can be found in section 7 while concluding remarks and discussion in
section 8.

2 The INAR model

2.1 Description of the model

McKenzie (1985) and Al-Osh and Al-Zaid (1987) defined a process for discrete data analogous to the
standard autoregressive process for continuous data, called the Integer-valued autoregressive (INAR)
process as follows:

Definition: A sequence of random variables {Xt} is an INAR(1) process if it satisfies a difference equation
of the form

Xt = α ◦ Xt−1 + ǫt, t = 1, 2, . . . (1)

where ǫt is a sequence of uncorrelated non-negative integer-valued random variables having mean µ and
finite variance σ2 and X0 represents an initial value of the process. The operator ” ◦ ” is defined by

α ◦ X =

X
∑

t=1

Yt,

where Yt are independent Bernoulli random variables with P (Yt = 1) = α = 1 − P (Yt = 0), α ∈ [0, 1]
and is called the binomial thinning operator. The binomial thinning operator ◦ implies that, conditional
on X , α ◦ X is a binomial random variable, where X denotes the number of trials and α the probability
of success in every trial. The term ǫt is referred to as the innovation term and must be independent of
α ◦ Xt−1 and follows any discrete distribution F .

It is straightforward to show that for 0 ≤ α < 1 the stationary mean and variance of the INAR(1)
process {Xt} are E(Xt) = µ/(1 − α) and V ar(Xt) = (αµ + σ2)/(1 − α2) and that the autocorrelation
function is given by ρ(k) = αk, for any non-negative integer k. This implies that the autocorrelation
decays exponentially.

Note that according to the choice of the distribution F for the innovations certain models can be
constructed. Most of the literature assumes that the innovations follow a Poisson distribution. For
non Poisson innovations one can see the papers of Böckenholt (1999); Pavlopoulos and Karlis (2007);
McKenzie (1986); Brännäs and Hellstrom (2001); Mc Cabe and Martin (2005)

Al-Osh and Al-Zaid (1987) were concerned with estimation of the two parameters of the INAR(1)
model, where innovations follow a Poisson law. Parameter estimation is also treated in Freeland and
McCabe (2005); Jung et al. (2005); Böckenholt (1999); Pavlopoulos and Karlis (2007) among others. In
all the above papers the data are considered as no having missing values.
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Our aim lies at examining the case where the data series contains missing values. More formally,
consider time series data Xi, i ∈ T = {1, 2, . . . , T}. However for some reasons we have not observed
all the data points but only the data points Xs, s ∈ S ⊆ T , while the points Xr, r ∈ R = T \ S are
missing. Let also Θ denote the parameters of interest. We aim at estimating Θ by using all the available
information from the observed data.

The first approach is a conditional likelihood approach. Denote as S = {s1, s2, . . . , sTo
}, where

s1 < s2 . . . < sTo
. Then based on the Markovian property of the INAR model the conditional likelihood

of the observed data will be of the form

CL(Θ) =

To
∏

i=1

Pr(Xsi
| Xsi−1

, Θ)

Note that since the distance between si and si−1 will not necessarily be equal to 1, i.e. we have successive
points, in certain case we need to calculate the p-step ahead predictive distribution, where p = si − si−1.

The second approach is based on imputing the missing values and then estimating the parameters
from the complete data. Iterating between imputation and updating can provide estimates. The two
approaches are described in detail in later sections.

A common element in both methods is the need to find the conditional distribution in a certain time
point given the values in some time points earlier. This corresponds to the p−step predictive distributions
of the model.

2.2 The predictive distribution

Following Mc Cabe and Martin (2005) the p-step ahead predictive distribution for a general INAR model
will be of the form

P (Xt = xt | Xt−p = xt−p, Θ) =

min(xt,xt−p)
∑

s=0

P (B = s)P (W = xt − s) (2)

where B is a binomial random variable, following a Bin(αp, xt−p) distribution and W =
p−1
∑

j=0

Wj where

Wj = αj ◦ ǫt−j. So, the predictive distribution will be the convolution of a binomial random variable with
a discrete random variable defined as the sum of independent random variables as given by W . Note that
the exact form of the distribution of W depends on the choice of the distribution F for the innovation
terms.

Consider for example the case of Poisson innovations. Since, if X ∼ Poisson(λ) the unconditional
distribution of β ◦ X is again a Poisson(βλ) one can see that the distribution of W is the sum of
independent Poisson variables and hence also follows a Poisson distribution. This implies that the p-step

ahead predictive distribution is the convolution of a Bin(αp, xt−p) variate and a Poisson(
p−1
∑

j=0

αjλ) variate

and hence it has a neat and easy to compute formula.
Moving away from the simple Poisson innovations, let us assume negative binomial innovations. This

implies that the data are overdispersed relative to the Poisson distributions, an assumption which is
realistic for real data. Now, consider the case where X ∼ NBIN(p, r), then the unconditional distribution
of β ◦X is again a NBIN( p

1−(1−α)(1−p) , r) distribution but the convolution of negative binomial random

variables is not a negative binomial This implies that the distribution of W becomes quite complicated
and computationally demanding to be used in practice.

Similar problems occur when other innovations distributions are considered, like the binomial dis-
tribution or the generalized Poisson distribution. For all these cases the predictive distributions are
somewhat difficult to be obtained in simple forms and numerical calculations must be employed which
perhaps complicates the computations involved.

To disentangle the problem we will consider finite Poisson mixtures innovations as in Pavlopoulos and
Karlis (2007) and we will show that in this case the predictive distributions belong to a specific family of
distributions that allow for relatively easy computations (see Section 3).
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Finally, note that, even if the distribution is complicated to be written in closed form, simulation of
random variables from it is relatively straightforward since generation of W is obvious. This will be used
later on for the imputation methods.

3 Poisson mixture innovations

3.1 Predictive distribution

Consider the INAR model defined in (1) where the innovations follow a distribution F . Since for the
INAR model the innovations ǫt, t = 1, . . . , T are independent and identically distributed the distribution
of W is determined as the convolution of the Wj ’s. For the latter we have that for Wj the unconditional
distribution is derived as

P (Wj = w) =
∑

y

P (Wj = w | ǫt−j = y)P (ǫt−j = y)

=
∑

y

P (αj ◦ ǫt−j = w | ǫt−j = y)P (ǫt−j = y)

One can see that the conditional distribution of Wj given ǫt−j is a Bin(αj , ǫt−j) distribution. The
unconditional distribution depends on the choice made for F .

Consider the case where F is a finite mixture of Poisson distributions, i.e.

P (ǫt = y) =
k

∑

j=1

pj

exp(−λj)λ
y
j

y!
, y = 0, 1, . . .

where
∑

pj = 1, 0 < pj ≤ 1 and 0 ≤ λ1, < λ2, < . . . < λk. We will denote this distribution as
FP (k, θk), where k is the number of components and θk the vector of parameters for this mixture, i.e.
θk = (p1, . . . , pk−1, λ1, . . . , λk). Clearly for k = 1 we have the simple Poisson distribution.

In order to derive the predictive distribution we need to see what is the distribution of the random
variable β ◦ ǫ when ǫ follows a FP (k, θk) distribution. It is relatively easy to see that if ǫ follows a simple
Poisson distribution with parameter λ then β ◦ ǫ follows also a Poisson distribution with parameter βλ.

For the case of a finite mixture of Poisson distributions one can see that

P (W = w) =
∑

P (W = w | ǫ = y)P (ǫ = y)

=
∑

P (β ◦ ǫ = w | ǫ = y)P (ǫ = y)

=

k
∑

j=1

∞
∑

y−w=0

y!

w!(y − w)!
βw(1 − β)(y−w)pj

exp(−λj)λ
y
j

y!

Changing the order of summation one relatively easy obtains that the distribution of W = β ◦ ǫ is a
FP (k, θ∗k) distribution where θ∗k = (p1, . . . , pk−1, βλ1, . . . , βλk). i.e. a finite mixture of Poisson distri-
butions with the same number of components, the same mixing proportions but with different mixing
parameters.

So, going back, since the ǫt−j’s all follow a FP (·) distribution all the Wj ’s will be also FP distributions
and hence the density of W will be the sum of independent finite Poisson mixture random variables, each
one having, however, a different parameter vector (but the same number of components). Hence the final
step is to derive the distribution for the convolution of two random variables each one following a finite
Poisson mixture distribution.

Corollary: Suppose that X follows a FP (k, θk) distribution with θk = (p1, ..., pk−1, λ1, ..., λk) and Y
follows a FP (m, θm) distribution with θm = (π1, ..., πm−1, µ1, ..., µm) and it is independent of X . Then,
Z = X + Y follows a FP (km, θM ) distribution where θM = (φ1, ..., φmk−1, t1, ..., tmk) where the φi’s
are the km products piπj for i = 1, . . . , k and j = 1, . . . , m and the ti’s are the km sums λi + µj for
i = 1, . . . , k and j = 1, . . . , m.
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Proof: The probability generating function of the random variable Z, denoted as gz(t) is the product
of the probability generating functions of X and Y . Thus we have that

gz(t) =

[

k
∑

i=1

pi exp [λi(t − 1)]

] [

m
∑

i=1

πi exp [µi(t − 1)]

]

=
k

∑

i=1

m
∑

j=1

piπj exp [(λi + µj) (t − 1)]

which is the probability generating function of a FP (mk, (φs, ts) distribution with φs = piπj and ts =
λi + µj for i = 1, . . . , k and j = 1, . . . , m and s = 1, 2, . . . , mk.

Remark: Note that for k = 1 and m = 1 this is the well known additive property of the Poisson
variates. We can generalize this result for the sum of more than two rv with each one having a finite
Poisson mixture distribution. If we let a Poisson distribution with λ = 0 to represent a degenerate
distribution with all its mass at 0, then the FP (2, (p1, 0, λ2)) distribution is a zero-inflated Poisson
distribution.

Using the above results we can see that Wj follows a FP (k, θ
(j)
k ) distribution where

θ
(j)
k = (p1, . . . , pk−1, α

jλ1, . . . , α
jλk). Hence by the above corollary we can see that W0 + W1 will follow

also a FP (k2, θk2) distribution with θk2 = (π1, . . . , πk2 , µ1, . . . , µk2) with π(i−1)j+i = pipj , i, j = 1, . . . , k
and µ(i−1)j+i = λi + αλj , i, j = 1, . . . , k. As one can see W0 + W1 + W2 will have k3 components and

in general
p−1
∑

j=0

Wj will have kp components. One can find the corresponding parameters by a recursive

scheme, but for even moderate k the number of components can be prohibitively large after a few steps.
Finally in order to get the p-step ahead predictive distribution for the case of the finite Poisson

mixture innovation distribution, one can see that this will be the convolution of a finite Poisson mixture
with a binomial random variable, which results to a mixture of Poisson-Binomials, the order is the
same as the order of the mixture for the finite Poisson mixture. This can be seen easily using the
following representation for the finite Poisson mixture random variable. Consider random variables Zj

each one following a Poisson distribution with parameter λj , j = 1, . . . , k. Consider also multinomial

random variable Ω = (Ω1, . . . , Ωk) with corresponding probabilities (p1, . . . , pk). Then
k
∑

j=1

ΩjZj follows an

FP (k, (p1, . . . , pk−1, λ1, . . . , λk)) distribution. Consider now a binomial random variable X . We need the

distribution of X+
k
∑

j=1

ΩjZj or equivalently the distribution for the random variable
k
∑

j=1

ΩjX+
k
∑

j=1

ΩjZj =

k
∑

j=1

Ωj(Zj + X) which implies a finite mixture of Poisson binomial random variables.

3.2 Approximation of high-order Poisson mixtures

An issue that arises when a finite Poisson mixture is assumed for the innovation terms is the fact that the
order of the mixture increased rapidly. A solution to this problem could be to approximate a high-order
Poisson mixture with one of lower order. We are therefore interested in how well such an approximation
works.

Assume that the data are independent draws from a FP (k + 1, (p, λ))-distribution where p =
(p1, ..., pk, pk+1)

′ and λ = (λ1, ..., λk, λk+1)
′. The sums of the elements in p is one. We will approxi-

mate this distribution by a FP (k, (p̃, λ̃))-distribution where the elements of p̃ are reweighted in order to
sum to one and given by p̃i = pi/(1 − pk+1) and λ̃ = (λ1, ..., λk)′.

Under the data generating process we define the (k + 1)-class probability function as

πk+1(x) =

k+1
∑

i=1

pi exp (−λi)
λx

i

x!
.
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This will be approximated by the function

π̃k(x) =

k
∑

i=1

p̃i exp (−λi)
λx

i

x!
,

where the latter can be rewritten as

π̃k(x) =
1

1 − pk+1

k
∑

i=1

pi exp (−λi)
λx

i

x!
.

We will now analyse the effect of removing the k + 1’th class. This will be done if pk+1 < ǫ for some
small positive ǫ. In practice we will remove any class having a small probability or a lambda close to a
lambda of another class. However, there is no loss of generality by assuming the order of the states, as
is done here.

We can formulate the approximation error as

e(x) = π̃k(x) − πk+1(x)

=
pk+1

1 − pk+1

k
∑

i=1

pi exp (−λi)
λx

i

x! − pk+1 exp (−λk+1)
λx

k+1

x! (3)

By considering the two summands of (3) separately, we see that

e(x) ≤
pk+1

1 − pk+1

k
∑

i=1

pi exp (−λi)
λx

i

x!
≤

pk+1

1 − pk+1
(4)

and

e(x) ≥ −pk+1 exp (−λk+1)
λx

k+1

x!
≥ −pk+1 (5)

The inequalities (4) and (5) together implies

|e(x)| ≤ max

(

pk+1,
pk+1

1 − pk+1

)

=
pk+1

1 − pk+1
(6)

A numerical example of is that if we remove a class with probability less than 0.005 (ǫ < 0.005)
an upper bound of the absolute error we can get in calculating a probability πk+1(x) = P (X = x) is
0.005025.

4 Conditional Maximum Likelihood Estimation

The literature on linear models of continuously valued time series with missing values is very mature.
An extensive review of this literature here would therefore be beyond the scope of this paper. Consider
the simple AR(1) model of the form xt = φxt−1 + ǫt were {ǫt} now is a normally distributed white
noise process with standard deviation σ. One way to handle missing variables in this case is to use the
conditional distributions

(xt|Ft−p) ∼ N

(

φpxt−p, σ
2 1 − φ2p

1 − φ2

)

(7)

where Ft−p = {all observations until time t − p} to calculate the conditional log-likelihood. This condi-
tional likelihood can then be maximized numerically.

The conditional distribution is not always as easy to express as in the simple case given above. How-
ever, for other linear models, the problem of missing data can be solved by formulating the model of inter-
est in terms of a state space model and apply the Kalman filter to obtain the likelihood (see e.g. Hamilton,
1994; Harvey et al.). The special, but nevertheless rather including, case of vector autoregressive- moving
average (VARMA) processes is treated extensively in Luceno (1989).
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Analogously one may treat the case of the INAR model. For the cases where we have an explicit
expression of the conditional probabilities for Xsi

given Xsi−1
we also have, given the Markovian nature

of the process, an explicit expression for the conditional log-likelihood function of the model

log CL(Θ) =

To
∑

i=1

log Pr(Xsi
| Xsi−1

, Θ). (8)

Each conditional probability is calculated under the p-step ahead predictive distribution with p = si−si−1.
Equation (8) is then maximized numerically.

5 Imputation

5.1 The general idea

Imputation in the time series context is not so simple since we need to find a way to impute the values
without destroying the underlying autocorrelation structure. Consider, for example, the simple case where
the missing values are imputed by merely considering the conditional distribution, conditioned on the
previously observed data point. To help the illustration consider a series where Xt and Xt+3 are observed
but the values Xt+1 and Xt+2 need to be imputed. A straightforward imputation would be based on the
previously observed value and, hence, to generate the data by simulating Xt+1 conditional on Xt and
Xt+2 conditional on the imputed Xt+1. While this would reproduce a large part of the autocorrelation
and the marginal properties of the series, the imputed values will not have any connection with Xt+3

destroying the structure at this point.
The key to overcome this problem is to impute the missing values by taking into account not only the

information at the previous observed point but also the information of the next observed point. To do
so we propose two alternative methods.

The first method imputes data based only on the conditional distribution where the conditioning set
consists of previous observations. This is repeated a number of times and the imputation that provides
the larger log-likelihood using the current values of the parameters is kept. In some sense we keep the
imputed values that given the current parameters are more probable.

The second method imputes the values from the conditional distribution where the conditioning set
consists of values both before and after the missing value. A value for the next observed value is also
generated and we keep the imputed value only if it coincides with the observed one. This implies that
we have bridged the observed values using the imputed ones.

5.2 Imputation based on the likelihood

The steps for this approach are the following:
Step A: Impute data Xr, r ∈ R by using the conditional distribution Pr(Xr | Xsr

, Θ) where sr ∈ S
such as sr < r and sr − r is minimum.

Step B: Combining the observed and the imputed data, consider the entire series of observations. For
this new series and using the current values of the parameters we calculate the conditional log-likelihood
of the series as the one when all the data were observed. Denote this value as Li.

Step C: Repeat steps A and B, a number of times, say M . This will result in M values of the
log-likelihood, L1, . . . , LM . Li indicates how possible is the imputation given the parameter values.

Step D: Select the imputation that provides the best likelihood.
Step E: Using the selected series maximize the conditional likelihood with respect to the parameters

and update their values.
Step F: If a stopping criterion is satisfied then stop otherwise go back to step A.
The key idea behind this is that we expect that at least one of the many simulated datasets will

resemble the true one or at least be close, the closeness is measured by the log-likelihood. At least for M
large this method will succeed in generating data close to reality. However large M can be computationally
demanding.
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5.3 Bridge imputation

This imputation tries to generate the missing data taking into consideration all the available data. The
missing values are generated by conditioning on the previous values but in order not to destroy the
structure we force the missing data to tie with the observed one by simulating also the first available
point after the missing datapoint(s) and rejecting all the paths where this point differs from the previous
one.

So this imputation proceeds as follows. Consider that we have observed points Xt and Xt+k, for some
k > 1 but all the points between are missing. The algorithm proceeds by simulating Xt+r+1 conditional
on the previous point Xt+r for r = 0, . . . , k − 1 and then if the simulated value X̃t+k does not coincide
with the true value to discard this path and regenerate a new one until the condition is satisfied. This
procedure is used to fill all the missing points. In Figure 2 one can see the approach. While several paths
were generated, we kept only the one that bridged the two edges. For simulating the missing points the
current values of the parameters are used. Once an entire series have been simulated, then the INAR
model is fit in order to obtain new parameters.

In practice a few iterations suffice for the parameters to reach the area where the likelihood is max-
imized, however, due to the Monte Carlo nature then they fluctuate. This method can be problematic

time

x

2 4 6 8 10 12 14

2
4

6
8

10
12

Figure 2: Representation of the bridge method. Some imputed series (dotted lines) and the one that is
accepted (solid line). the missing values are those between the vertical lines.

if the assumed model is purely specified as the generated values can be far away from the observed ones
and hence one may need a lot of attempts in order to accept a trajectory. However such problems can
be solved by considering reasonable starting values and/or the assumed model is not very contradicting
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with the observed data.
Having discussed imputation method we end up this section by considering a combination of the

conditional likelihood and the imputations approaches. This algorithm can be considered as an MCEM
algorithm

5.4 A Monte Carlo EM-type algorithm

The idea is to create the complete data set, i.e. to augment the observed data with the missing data by
imputing the missing data from the appropriate conditional distributions. To do this we use the bridge
imputation described above. Then the expectation of the complete data log-likelihood is approximated
using Monte Carlo at the E-step while the M-step involves maximization of the expected complete log-
likelihood. A description of the algorithm follows:

Let T = sTo
.

1. Choose some starting values Θ0 for the parameters Θ in the model.

2. Generate xg
1, x

g
2, ..., x

g
T where xg

t is equal to observed values if available and through the following
simulation procedure when not. If si − sj = p we generate data from

xg
t = α ◦ xg

t−1 + ǫt, t = si−1, . . . , si

with parameter values obtained from the last iteration and conditional on xsi−1
. If xg

t 6= xsi
we

discard it and try with a new trajectory. This is done until we obtain xg
t = xsi

.

3. Step 2 is repeated M times. We now have M trajectories consisting of a combination of observed
and generated data.

4. For each trajectory, we calculate log CLi = log CL(Θ|trajectory i), i = 1, 2, ..., M .

5. Monte Carlo E-step: Approximate the expected conditional log-likelihood for the parameter value
by

̂log CL(Θ) =
1

M

M
∑

i=1

log CLi

6. M-step: Maximize (the approximation of) the expected conditional log-likelihood to obtain a new
Θ.

7. Repeat steps 2 to 6 with the parameter values obtained in the last iteration until some convergence
criteria is reached.

Looking carefully on the procedure above one sees that, for large M , the behavior will be that of an
EM-type algorithm.

When the proportion of missing data is small this algorithm works well, but if the missingness increases
it can be slow.

6 Simulation and Comparisons

A simulation experiment was conducted in order to show the performance of the proposed methodology.
We worked by assuming Poisson innovations as this implies the simple Poisson INAR model and hence
a formal comparison of several methods is applicable. Data of two different sample sizes, namely n =
100, 500 were generated. For all cases parameter λ of the Poisson innovations was set equal to 3 while
the autocorrelation parameter α was set equal to 0.1 and 0.5 respectively to indicate small and strong
autocorrelation respectively. Time series were generated by mimicking the INAR process. Then, a number
of random data points were considered as missing. We used two different scenarios of missingness. Namely
the first one assumes that only 5% of the data are missing while the second that 30% of the data points
are missing, implying large proportion of missing values. All computations were run in R, (R Development
Core Team, 2005)
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For each data set we used 6 different methods to estimate the parameters. The first two just ignore
the missing data either by creating a time series with only the observed data and fitting the model (Ign)
or by using for the calculations only the available pairs (Ign2). Such methods while very simple in nature
ignore either part of the autocorrelation structure as the former or decrease the sample size the latter
and hence they are suspect to produce estimates with bias and/or large variances.

The third method is the conditional ML (CML) method described in section 4. Depending on the
gaps between the observations the adequate conditional distribution was employed. The rest methods
are in fact imputation methods described in section 5. The interesting feature is to examine the effect of
using one imputation as in the bridge method (BR), or many as in the two other methods namely the
method of section 5.2 (denoted as LI) and the MCEM approach (denoted as SML).
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Figure 3: Boxplot with results from the simulation, n = 100

Figures 3 and 4 show the boxplots based on 500 replications for all the methods and the configurations
used. For the iterative methods we have used 50 iterations and report as estimate the average of the last
20 iterations. From figures, one can see some interesting findings. First of all the imputation methods,
especially BR, perform quite well producing good estimates with relatively small variance comparable
to the CML method. This implies that in cases where the CML method is not computationally feasible
the method can be a standard approach for estimation. On the other hand the methods that ignore
observations lead to either bias or large variance as they ignore the structure and decrease the number of
observations respectively. The LI method is the worst imputation method, however its performance can
be improved by simulating more series at the cost of increasing the computing time.

Concluding the simulations verify the good properties of the CML method while in cases where this
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Figure 4: Boxplot with results from the simulation, n = 500

method is computationally problematic, the imputation methods can be used.

7 Syndromic data from Athens 2004 Olympic Games

We will use the data from the syndromic surveillance of Athens Olympic Games in 2004. Plot of the
data can be seen in Figure 1. We focus on the series (a). The syndrome considered is ”febrile illness
with rash”. Since the data show some overdispersion (variance = 3.194, mean= 2.222, variance to the
mean ratio is equal to 1.43) the simple Poisson INAR case is not adequate. The sample autocorrelation
at lag 1 is 0.10 but this underestimates the true one since there are some missing values that destroy
the underlying structure. We have fitted two models, the INAR(1) with negative binomial innovation
term and one with finite mixture of Poisson distributions as innovation distribution. Both models allow
for overdispersion. For the negative binomial innovations we use the parametrization were λ denotes the
mean of the distribution and n∗ the size parameter.

For the negative binomial model the CML is not applicable as the predictive distribution is cum-
bersome. The form of the distribution can be computed only recursively, which implies that it is time
consuming and any errors are accumulated. This may lead to problems during the optimization. For this
reason we used the imputation methods described. The conditional distribution is the convolution of a
binomial and a negative binomial distributions and hence simulation is relatively straightforward. These
computations were also run in R.

Results from fitting this model to the data are reported at Table 1 based on different methods. The
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Negative Binomial Innovation
Method α λ n∗

IGN 0.1389 1.9247 5.075
IGN2 0.1594 1.854 6.512
Bridge 0.1733 1.8640 4.7216

Lik, M = 100 0.1707 .18461 4.9810
M = 500 0.1704 1.8447 5.0059
M = 1000 0.1710 1.8421 4.9886

Mixed Poisson innovation
α mix. prop. mix. parameters

CML 0.16751 0.9580 λ1 = 1.6557
λ2 =6.9271

Table 1: Results from fitting a model with negative binomial innovations based on different methods

first two correspond to the cases where the missing values were ignored. As one can see the autocorrelation
parameter is underestimated. The imputation methods provide larger estimates of the autocorrelation
and give quite similar results. Moreover the LI method when increasing the number of imputed series
approaches better the bridge method as expected. We have also fitted mixed Poisson innovations. As
mentioned above CML is applicable and thus we report such estimates in the second part of Table 1.
The conditional likelihood stopped increasing for k > 2 components. Hence two components suffice to
represent the data. The conditional likelihood was -353.1975, while its value for k = 1, i.e. simple Poisson
innovations, was -363.6542.

Figure 5 shows the history of the 500 iterations used for the bridge imputation method (negative
binomial innovations assumed). Each plot corresponds to one parameter estimate. It is interesting that
the algorithm converged very quickly, 5 iterations were sufficient to approach the estimate and then it
just fluctuated, as expected, around this value. The plot also depict the ergodic mean (discarding the
first 100 iterations) and the horizontal line refers to the reported estimate based on the mean of the
last 500 iterations. Note that for such stochastic algorithms other functionals could have been reported
instead of the mean.

Figure 6 shows the predictive one step ahead distribution P (Xt+1 = y | Xt = x) based on both
models, the one with negative binomial innovations and the one with mixed Poisson innovations with 2
components with parameters as estimated from the data. One can see that there are some differences.
The mixed Poisson leads to larger tails than the negative binomial one. We have selected certain values
x of the previous observation. Such predictive distributions can be used to recognize an unexpectedly
large observation and for surveillance reason to alarm so as to examine the situation more thoroughly.

One of the issues arising is which of the two models we must select. On a theoretical ground, since
the mixed Poisson model with k = 2 gives the largest possible likelihood over all models of mixed Poisson
family we know that this is the best possible model in likelihood terms. On the other hand such model
lacks parsimony as it has a relatively large number of parameters, especially if k is large. So a trade off
is needed. The problems becomes more complicated since we do not have a likelihood score available
from each model so as to be able to penalize it and decide on these grounds. To overcome the problem
we followed a simulation based procedure, where the log-likelihood of the complete data was estimated
based on 500 replications from each model, where missing values were imputed based on the conditional
distributions as described in a previous section. Such a procedure led to an estimate of the complete
data log-likelihood and using these estimates we can have an objective comparison of the two models
penalizing for the parameters as well. The complete log-likelihood of the mixed Poisson model is larger.
Taking the average over the 500 replications we found -387.5171 for the negative binomial model and
-382.1978 for the mixed Poisson. The difference is statistically significant. Penalizing for the difference
in the number of parameters the mixed Poisson model is statistically better using either the AIC or the
BIC criteria and taking into account the Monte Carlo error due to simulation approach. This leads to
the conclusion that for this dataset the mixed Poisson innovations are preferable.
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Figure 5: The estimates for the 500 iterations of the algorithm using the bridge imputation. The ergodic
mean is depicted after the first 100 iterations. the horizontal line refers to the reported estimate, namely
the last 250 iterations.

8 Conclusions

In the present paper we examine the problem of making statistical inference for time series of discrete
valued data that contain missing data. Missing data can destroy the underlying structure to a certain
extent and hence, by simply removing or ignoring them, we may end up with inaccurate estimates and
thus distort the inferential procedures. To disentangle the problem we propose two approaches. The
first one is based on the conditional likelihood where each observation is conditioned on the previously
observed one. This approach, can be very time consuming since the predictive p step ahead distributions
are convolutions of discrete random variables and in general recursive algorithms are needed. We saw
that for a broad class of models, that of finite Poisson mixture distributions for the innovations, the
conditional likelihood is tractable. The second approach is based on an iterative algorithm where the
missing data are imputed and then we use the complete data to update our estimates. The performance
of both methods are quite satisfactorily based on the simulation experiments presented.

There are some more points that we did not pursue in this paper. First of all, the main focus in the
paper is on the INAR(1) model, but extensions to general INAR(p) can be obtained. The conditional
distributions are much more cumbersome but the imputation approach based on simulation is easily
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Figure 6: The predictive distributions P (Xt+1 = y | Xt = x) conditional on certain values x of the
previous observation. The dotted lines correspond to the model with mixed Poisson innovations and the
solid lines to the model with negative binomial innovations. The value of the parameters used are those
estimated by the two models respectively. One can see that the mixed Poisson model results to larger
tails

extendable and applicable as it involves simply simulation from standard discrete distributions.
Another interesting point relates to the application discussed in the paper. Since the interest relies

mostly on being able to promptly recognize an unexpectedly large value, it would be better to separate
the data in two parts. The model is fitted to the first part and it is used for the second part to recognize
suspect values. On the other case, when all the data are used to fit the model, a problem of over-fitting
may occur, especially while in finite mixture models outliers tend to create themselves a component in
the mixture. So, we advice careful use of different data sets to obtain the estimates and apply the model
for future prediction.
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