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Abstract

We analyze optimal incentive contracts in a model where the prob-

ability of court enforcement is determined by the costs spent on con-

tracting. We show that contract costs matter for incentive provision,

both in static spot contracts and repeated game relational contracts.

We �nd that social surplus may be higher under costly relational con-

tracting than under costless veri�able contracting, and show that there

is not a monotonic relationship between contracting costs and incen-

tive intensity. In particular we show that an increase in contracting

costs may lead to higher-powered incentives. Moreover we formulate

hypotheses about the relationship between legal systems and incentive

provision, speci�cally the model predicts higher-powered incentives in

common law than in civil law systems.
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1 Introduction

Costly contracting and measurement problems are textbook explanations for

why employment contracts often lack explicit statements regarding performance-

related pay. Paul Milgrom and John Roberts (1992) state that (p. 330) "the

incompleteness (...) and the shape of the employment contract are all re-

sponses to the impossibility of complete contracting. (...)Brie�y, they involve

the di¢ culties of foreseeing all the events that might possibly arise over time

(...) the di¢ culties of unambiguously describing these events (...) and the

costs of negotiating acceptable explicit agreements over these many terms even

if they could be described"

Despite this insight, analyses of the relationship between contracting costs

and the shape of the employment contract are scarce. In particular, we know

little about the relationship between contracting costs and incentive intensity,

except that contracting costs are generally regarded as an impediment to

incentive pay.

In this paper we analyze optimal incentive provision in a simple principal-

agent model with unobservable e¤ort and costly contracting. We assume that

the principal can write an incentive contract that speci�es the desired quality

of the agent�s output and contingent bonuses if the quality requirements are

delivered. But writing such contracts are costly for the principal. Moreover,

we assume that the probability that the incentive contract will be enforced by

a court of law is determined by the costs spent on contracting. In particular

we assume that contracting increases the probability that the court can verify

the quality of the agent�s output and thus that the court can verify whether or

not the principal has ful�lled her bonus obligations.1 Due to incomplete legal

enforcement, we also allow the parties to engage in relational contracting. A

1In the aftermath of the 2008 �nancial crisis, legal disputes about bonus payments have
not been uncommon. As a recent example, seventy-two city bankers are suing Dresdner
Kleinwort and Commerzbank for e33m ($47.8m) worth of unpaid bonuses in the biggest
case of its kind in the UK, see Financial Times, September 8, 2009.
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relational contract relies on self-enforcement and is modelled as a repeated

game between the parties.

We report on the following results: First, social surplus may be higher

under costly contracting and imperfect enforcement than under costless con-

tracting and perfect enforcement. If the parties have limited liability, then a

(stationary) relational incentive contract may be higher-powered (and leave

more rent to the agent) than a perfectly veri�able contract.

Second, there is not a monotonic relationship between contracting costs

and incentive intensity. Since contracting costs are used to explain the lack

of incentive pay, one might expect that higher contracting costs reduce the

level of incentive pay. However, we show that an increase in contracting costs

may in fact lead to higher-powered incentives.

Third, optimal incentive pay depends crucially on the shape of the con-

tract cost function. And since the shape of this function is partly determined

by the legal system, we can formulate hypotheses about the relationship be-

tween legal systems and optimal incentive pay. In particular, we argue that

the model predicts higher-powered incentives in common law than in civil

law systems.

Forth, we �nd that higher trust in the relationship i.e., better conditions

for relational contracting, does not necessarily lead to higher-powered incen-

tives. Rather, we �nd that higher trust, proxied by the discount factor in

the repeated game, may lead to lower-powered incentives.

Related literature: Starting with the seminal papers of Townsend (1979)

and Dye (1985), costly contracting and imperfect enforcement is increas-

ingly recognized as an important vehicle to understand the nature of transac-

tional relationships. One strand focuses on the formation of incomplete con-

tracts (Anderlini and Felli, (1999), Battigalli and Maggi (2002) and Shavell

(2006), while others focus on contract design problems, in particular the

tension/trade-o¤ between ex ante contract speci�cations and ex post rene-

gotiations (Chakravarty and MacLeod (2009), Bajari and Tadelis (2001),
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Schwartz and Watson (2004)). Our approach di¤ers in that we analyze a

model where ex ante contracting a¤ects the court�s ability to verify whether

the parties have ful�lled their contract obligations. This approach relates to

Doornik (2010) who analyze a model where contracting a¤ects the level of

expected enforcement costs, and thus the probability of ending up in court.

It also relates to Ishiguro (2002) and Bull and Watson (2004), who endoge-

nize the probability of veri�cation, but who unlike us consider ex post actions

such as evidence disclosure instead of ex ante contracting.

In repeated game models of relational contracting, the common assump-

tion is that veri�ability is exogenously given, and that contracting is costless

or prohibitively costly. In the �rst models dealing with the interaction be-

tween formal and informal contracting, such as Schmidt and Schnitzer (1995)

and Baker, Gibbons and Murphy (1994), the level of contracting costs does

not matter.2 Recently, however, Sobel (2006), MacLeod (2007), Battigalli

and Maggi (2008) and Kvaløy and Olsen (2009) have introduced models

where contracting costs in�uence the interaction between legal enforcement

and relational contracting.3 But these papers assume symmetric information

and do not deal with incentive problems due to unobservable e¤ort and moral

hazard.

The main contribution of the paper is to examine costly contracting and

endogenous veri�ability in an otherwise standard moral hazard model. In the

classic moral hazard models (e.g. Holmström, 1979), perfect enforcement is

assumed, while in models of incomplete contracting, it is commonly assumed

that contracting is prohibitively costly so that legal enforcement is impossible

(starting with Grossman and Hart, 1986). Moreover, the large majority of

2Schmidt and Schnitzer (1995) and Baker, Gibbons and Murphy (1994) analyze models
with both veri�able and non-veri�able variables, but the veri�ability of a given action or
signal is exogenously given. Other models that address the relationship between veri�able
and non-veri�able variables are Bernheim and Whinston (1998) and Pearce and Stacchetti
(1998).

3Our set up is closest to Kvaløy and Olsen (2009) who analyze a model where ex ante
contracting-level a¤ect veri�ability.
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models dealing with incomplete and/or relational contracting have generally

focused on environments where the parties have symmetric information (see

in particular MacLeod and Malcomson, 1989). Notable exceptions are Baker,

Gibbons and Murphy (1994, 2002), MacLeod (2003), Fuchs (2007) and in

particular Levin (2003) who makes a de�nite treatment of relational contracts

with asymmetric information. But neither of these papers open for costly

contracting and probabilistic enforcement, like we do. A reason for this gap

in the literature might be that �rst best incentives can be achieved (under

risk neutrality) if there is a positive probability of court enforcement, and if

su¢ ciently large payments are feasible and enforceable. To make the model

interesting and closer to reality, we thus adopt the assumption from Innes�

(1990) that the principal is �nancially (and legally) constrained and cannot

o¤er wages above the value of output. �

Our approach is then to extend the model in Kvaløy and Olsen (2009)

to a situation with asymmetric information in terms of unobservable e¤ort.

We show how this extension to some extent complicates the analysis of the

relationship between costly formal contracting and relational contracting.

But we also show that the main qualitative results from the symmetric model

apply to standard incentive problems with moral hazard.

The remainder of the paper is organized as follows: Section 2 presents

the model and characterizes optimal contracts. In Sections 3 and 4 we ana-

lyze how optimal incentives in the relational contract varies with contracting

costs and the discount factor, respectively. Section 5 concludes. Proofs not

explicitly stated in the text are contained in an appendix.

2 Model

We consider a relationship between two risk neutral parties, a principal and

an agent, where the agent produces either high (qH) or low (qL) value for the

principal. The probability of producing qH depends on the agent�s e¤ort, and
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is for simplicity given by the e¤ort level: e = prob(qH). E¤ort costs are given

by C(e), where C 0(e) > 0, C 00(e) > 0, C(0) = 0. We assume that output is

observable to both parties, but that the agent�s e¤ort level is unobservable

to the principal, so the parties must contract on output: the principal pays

a �xed salary s; and a contingent bonus �i, i 2 (H;L) if the agent delivers
quality qi.

We assume that the agent is protected by limited liability, and hence that

the �xed salary as well as net payments must be non-negative (s � 0 and

s + �i � 0). Note that this allows the contract to specify a �punishment�in
terms of a negative bonus for, say, bad performance (�L < 0).

Following Kvaløy and Olsen (2009) we assume that there is a probability

v 2 [0; 1) that the contracted quality can be veri�ed.4 We follow the standard
assumption from incomplete contract theory saying that if the variables in

a contract are non-veri�able, then the contract is not enforceable by a court

of law. Hence, the probability of veri�cation, v, can thus be interpreted as

the probability of legal enforcement of the bonus contract, �i: If the court

veri�es quality, it can verify whether or not the parties have ful�lled their

obligations regarding the contracted bonus payments.

The probability v is assumed to depend on the level of contracting: the

more the parties invest in specifying contract terms, the higher is the proba-

bility that the court can verify the realized quality. We let K(v) be the cost

that must be incurred to achieve veri�ability level v, and we interpret K as

the costs associated with writing explicit contracts specifying the quality of

the agent�s output.

To keep the model simple, we assume that values accrue directly to the

principal in the process of production, so that the agent cannot hold up

values ex post. The model then best describes situations where the agent

provides ongoing services like consulting, maintenance, IT services, HR ser-

4By not allowing for v = 1, we assume that perfect veri�ability is prohibitively costly.
This is in line with the standard assumption (v = 0) in the relational contract literature.
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vices, administrative services etc.

We analyze a repeated relationship where the following stage game (�) is

played each period:

1. The principal makes an investment K(v) in writing a contract with

veri�ability level v, where v is common knowledge, and o¤ers a contract

(s; �L; �H) to the agent. If the agent rejects the o¤er, the game ends.

If he accepts, the game continues to stage 2.

2. The agent takes action e and quality qi is realized.

3. The parties observe qi. The principal is obligated to pay the �xed salary

s, and then the parties choose whether or not to honor the contingent

bonus contract �i. The decision to honor or deviate (o¤er �
0
i 6= �i)

belongs to the principal if �i > 0 and to the agent if �i < 0.

4. The parties choose whether or not to go to court. If at least one party

goes to court and the court veri�es quality, it rules according to a

breach remedy that is ex ante common knowledge. If no party goes to

court, or if the court does not verify quality, the agent and the principal

obtain payo¤s s+ �0i � C(e) and qi � s� �0i �K(v), respectively.

A spot contract is taken to be a perfect public equilibrium (PPE) of this

stage game. We deduce the optimal spot contract below applying a standard

breach remedy. We then move on to analyze the in�nite repetition of the

stage game �. A relational contract between the parties describes a PPE of

this in�nitely repeated game.

With respect to the breach remedy, we assume that the parties apply ex-

pectation damages (ED), which entail that the breacher has to compensate

the victim so as to make her equally well o¤ as under contract performance.

ED is the most typical remedy, and is also regarded as the most e¢ cient

one in the seminal literature on optimal breach remedies (Steven Shavell,
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1980; and William P. Rogerson, 1984). Given (UCC §2-718 (1987) and RE-

STATEMENT (SECOND) OF CONTRACTS §356, which prevents courts

from enforcing terms stipulating damages that exceed the actual harm, no

party-designed damage rule can do better than expectation damages in our

model.

2.1 The spot contract

Our interpretation of the breach remedy ED is as follows: If the court veri�es

insu¢ cient payments, it rules that the breacher is to comply with his/her

part of the contract and pay �0i = �i as speci�ed in the contract. If the court

veri�es that the breacher has more than ful�lled the contract terms, it takes

no action.

By backwards induction we start with stage 4, where the players simul-

taneously and independently choose whether to accept �0i or to go to court.

If at least one player does not accept, but rather goes to court, the payo¤s

are given by the procedures de�ned above.

One sees that the court is avoided in stage 4 if and only if the parties

have adhered to the contract. If �i > 0 and the principal has deviated by

o¤ering5 �0i < �i the agent is worse o¤ accepting than taking the case to

court (because the expected payment in court is here v�i + (1� v)�0i > �0i).
Similarly, if �i < 0 (but s+�i � 0) and the agent has deviated by o¤ering to
pay back less (�0i > �i), the principal will go to court in stage 4. Given these

responses, we see that the party making the decision in stage 3 will optimally

deviate from the contract and o¤er �0i = 0, because his/her expected outlay

in court will then be minimal and equal to v�i < �i.
In stage 2, the agent�s expected payo¤will now be s+v(�L+e��)�C(e),

where �� = �H � �L. He will choose e¤ort to maximize this payo¤, which
5The principal will never o¤er �0i > �i in this game.
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gives IC and participation (IR) constraints as follows

v�� = C 0(e) (IC)

s+ v(�L + e��)� C(e) � 0; (IR)

where we have assumed that his reservation payo¤ is zero.

Without further constraints, the principal would in stage 1 then maximize

her payo¤ qL+ e�q� (s+ v(�L + e��))�K(v) subject to IC and IR. Note
that �rst best e¤ort, given by �q = C 0(e), can be achieved with a bonus

�� = �q
v
. With no restrictions on bonuses, the principal could then obtain

the �rst best allocation asymptotically by increasing �� and letting v and

thus K(v) go to zero (assuming K(0) = 0).

But as we have argued above, arbitrarily large bonuses are not realistic.

Assume now restrictions on �i such that

s+ �i � qi (BRi)

The motivation behind this constraint is twofold. One is limited liability:

the principal cannot commit to pay wages above the agent�s value added.

This constraint resembles Innes (1990) who in a �nancial contracting setting

assumes that the investor�s (principal�s) liability is limited to her investment

in the agent. The other source relates to legal practice. Enforcing a payment

s + �i > qi is equivalent to a breach remedy that stipulates damages that

exceed the actual harm. And as noted, legal practice prevents courts from

enforcing such rules.

Finally we have the constraints arising from the agent�s limited liability.

As explained above these are

s � 0 and s+ �i � 0 (LL)

Consider now the principal�s problem. Note that the agent�s participation
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constraint (IR) will not bind, since s + v�L � v(s + �L) � 0 by LL, and

the agent�s payo¤ therefore (by IC) will be no less than ve�� � C(e) =
eC 0(e) � C(e) > 0. (The inequality follows by strict convexity of C(e).)

The agent will thus get a rent. The rent is costly to the principal, and it

follows (from IR) that she will optimally choose s + v�L = 0 and therefore

s+ �L = 0. This implies that the constraint on bonuses (BR) is ful�lled for

i = L (assuming qL � 0), and takes the form �� � qH for i = H.
Substituting from IC we now see that the principal obtains a payo¤ given

by qL + e�q � eC 0(e)�K(v), and that she is subject to a bonus constraint
(BR) that is equivalent to C 0(e) = v�� � vqH . Since no e¤ort will be exerted
if v = 0, the principal will invest in contract speci�cations if marginal and

�xed contracting costs (K 0(0) and K(0)) are not too large. Assuming this is

the case we obtain the following

Proposition 1 The spot equilibrium entails a contract (s; �; v) with v > 0,

�L = s = 0 and �H = �� = qH , yielding e¤ort less than the �rst best level

(e = es < eF ) and given by

max
e;v

[qL + e�q � eC 0(e)�K(v)] s.t. C 0(e) = vqH

The agent gets a rent uA = esC 0(es)�C(es) > 0. In equilibrium the principal
deviates from the contract and pays no bonus if high output is realized. The

case then ends in court, where the contracted bonus is enforced if quality is

veri�ed.

The constraint C 0(e) � vqH must clearly bind, otherwise v could be

reduced and the payo¤ thereby increased. This implies that spot e¤ort is

also smaller than the e¤ort level that is optimal for veri�able output and

limited liability for the agent, i.e. the e¤ort level that would be optimal if

complete veri�ability (v = 1) were costless for the principal (K(1) = 0). In

that case the principal�s payo¤ would be qL + e�q � eC 0(e) and the optimal
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e¤ort would be given by

ec = argmax
e
[qL + e�q � eC 0(e)] : (1)

The principal�s bonus constraint (C 0(e) � qH) would clearly not bind here

(since the optimal e¤ort ignoring this constraint satis�es C 0(ec) < �q � qH).
Since on the other hand the constraint is binding when veri�ability is costly,

the e¤ort levels corresponding to costly and free veri�ability clearly satisfy

es < e
c.

2.2 Relational contract

Since veri�ability is costly, and it is uncertain whether a legal court is able to

enforce the contract, the parties may also rely on self-enforcment. Through

repeated transactions the parties can make it costly for each other to breach

the contract, by letting breach ruin future trade.

A self-enforcing relational contract is a perfect public equilibrium of the

in�nitely repeated game where the stage game � is played every period. In

long-term relationships, ongoing investments in contract modi�cations are

common. But contract modi�cations do not necessarily imply that equilib-

rium v is changed. In fact, we consider stationary contracts where the same

veri�cation equilibrium v and output (qL; qH) is realized every period. Such

a case arises when e.g., new technological developments or market demands

imply that the content of (qL; qH) changes, but the costs required to pro-

duce the object of value (qL; qH), or the veri�cation level v, do not change.

Then contract modi�cations are required even if costs C(q) and K(v) are

una¤ected.6

We consider stationary trigger strategies, where the parties revert to the

equilibrium of the stage game forever if a party deviated from the contract in

6It can be shown that whether such costs are incurred every period, or just prior to
the �rst stage game, is not crucial for the results we obtain.
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any history of play. The conditions for implementing a relational incentive

contract is then satis�ed if the parties honor the contract for both high and

low output qi; i 2 fL;Hg.
First note that under a relational contract equilibrium, the agent trusts

the principal to honor the contract, and hence chooses e¤ort according to

�� = C 0(e) (ICR)

Now, the principal will honor the contract if the net present value from

honoring is greater than the net present value from reneging. This holds i¤

qi�s��i�K(v)+
�

1� ��P � qi�s�K(v)�maxfv�i; 0g+
�

1� �uP , i = L;H;

(EP)

where � is a common discount factor, up is the principal�s spot payo¤ and

�P = qL+e�q�K(v)�s��L�e�� is the payo¤(per period) under relational
contracting. The RHS of the inequality captures the principal�s payo¤ after

her two possible deviations. First, if �i > 0 and the principal reneges on

the bonus payment (and then optimally o¤ers �0i = 0), the agent will go

to court, where he obtains v�i, and he will then insist on spot contracting

forever after. Second, if �i < 0 (but s+ �i � 0, which may occur for i = L)
the principal may renege by not accepting the payment from the agent, in

which case there will also be spot contracting forever after.

Participation for the agent requires

�A = s+ �L + e�� � C(e) � uA (IRR)

where uA is the agents�s payo¤ in the spot contract. The enforceability

constraints (EA) for the relational contract pertaining to the agent are

s+ �i +
�

1� ��A � s+minf0; v�ig+
�

1� �uA, i = L;H; (EA)
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If �i > 0 the agent must be no worse o¤ accepting than refusing the o¤ered

bonus payment. If �i < 0 (but s+�i � 0) he must be no worse o¤ accepting
to �pay back�the speci�ed �bonus�rather than refuse and be taken to court,

where he will in expectation obtain s+ v�i.

Since �H > �L to provide incentives, the relevant enforceability con-

straints will be the EA constraint corresponding to �L for the agent, and

the EP constraint corresponding �H for the principal. In addition we have

BR-constraints s+ �i � qi, i = L;H.
The optimal relational contract for the principal maximizes her (per pe-

riod) payo¤ �P = qL+e�q�K(v)�s��L�e�� subject to all constraints.7

As shown in the appendix, it is optimal that EA binds (for �L), and that

consequently the relational enforceability conditions are equivalent to the

following condition:

�

1� � [qL + e�q �K(v)� C(e)� u] � C
0(e)(1� v); (EC)

where u = uA + uP is the total spot surplus. The RHS here is the largest

one-period gain that can be obtained by deviating from the bonus contract,

namely ��(1 � v), where �� = C 0(e) by ICR. The LHS is the future total
loss incurred when the relational contract is broken. The condition says that,

to deter deviations, this loss must be no smaller than the total temptation

to deviate.

Since s+ �L � 0 by limited liability for the agent, we see from IRR and

ICR that he will get a rent at least equal to eC 0(e)�C(e) > 0. This exceeds
the agent�s spot payo¤uA if e¤ort exceeds spot e¤ort (e > es). In such a case

IRR will clearly not bind, hence s+ �L = 0, and the principal will maximize

her payo¤ qL + e�q � K(v) � eC 0(e) �i.e. total surplus minus the agent�s
7We consider only stationary contracts, which is not restrictive when parties are risk

neutral and there is no limited liability (Levin, 2003). When parties have limited liability,
stationary contracts are not necessarily optimal. Fong and Li (2009) show, however,
that under limited liability the optimal contract reaches a stationary equilibrium after a
�probation phase�.
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rent �subject to EC.8

Since social surplus also depends on contracting costs, we may have lower

e¤ort in the relational contract equilibrium than in the spot equilibrium even

if the relational surplus exceeds spot surplus. If this is the case (e < es) then

clearly IRR will bind and s + �L > 0 (assuming qL > 0), implying that the

principal�s payo¤ will be qL + e�q�K(v)�C(e)� uA. She then maximizes
this payo¤ subject to EC.

There are thus two cases, depending on whether the participation con-

straint IRR for the agent binds or not. We obtain the following result.

Proposition 2 For given �q, there is q0L > 0 such that for qL � q0L we have:
(i) If the relational contract yields e¤ort exceeding the spot level (e > es), then

s+ �L = 0, IRR is not binding, and (e; v) solves

max
e;v

[qL + e�q �K(v)� eC 0(e)] s.t. EC

(ii) If the relational contract yields e¤ort smaller than the spot level (e < es),

then s+ �L > 0, IRR is binding, and (e; v) solves

max
e;v

[qL + e�q �K(v)� C(e)� uA] s.t. EC

We are here not primarily interested in a complete characterization of the

optimal relational contract for all parameter values, but rather in being able

to say something about how the contract will change in response to certain

parameter changes. For this purpose the above characterization is su¢ cient.

Consider now the optimal relational contract. Such a contract can ob-

viously not yield a higher payo¤ than the principal�s maximal payo¤ when

output is veri�able (and the agent is protected by limited liability), i.e. the

payo¤ given in (1). But we see that this payo¤ is attainable if the associated

8The BR constraints will typically not bind since s+�L = 0 � qL and s+�H = �� �
�q � qH due to �� = C 0(e) and e¤ort being no larger than �rst-best e¤ort.
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optimal e¤ort ec is implementable (satis�es the EC constraint) with zero con-

tract investment (v = 0 = K(0)). From EC we see that this is indeed feasible

only if the discount factor is su¢ ciently large (� > �c for some �c < 1). For

lower � the payo¤ must be lower, but it cannot be smaller than the spot

payo¤. It is clear that for a range of discount factors (in (0; �c)) the optimal

relational contract will have higher payo¤ for the principal than the spot

contract, and entail an interior solution (0 < v < 1, e > 0) if the contract

cost function K(v) has su¢ ciently small marginal and absolute (�xed) costs

at v = 0.

It is worth noting that the optimal contract may have e > ec, and thus

entail a level of e¤ort that exceeds the e¤ort level that is optimal for veri�able

output. In the appendix we show the following result.

Proposition 3 For a class of cost functions (including quadratic ones) and
parameters the following holds: There is an interval of discount factors (�0; �c)

such that for � in this interval the relational contract entails positive contract

investment (v > 0) and a level of e¤ort that exceeds the level that is optimal

for veri�able output (e > ec).

An example illustrating such an outcome is depicted in Figure 1.
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Constraint curves (convex) corresponding to two levels of �,

and indi¤enerence curves (concave) for the principal.

The �gure shows two (convex) �constraint curves�that delineate the set of

implementable contracts (e; v), i.e. contracts satisfying EC, for two levels of

the discount factor �. These contracts are here in the regions north-east of the

respective curves. The other (concave) curves in the �gure are indi¤erence

curves for the principal, drawn for e > ec = 0:5 in this example.9 The

outer (green) curve corresponds to the principal�s payo¤ being equal to her

spot surplus, the inner (blue) curve corresponds to a higher surplus. (The

�bliss point� for the principal is e = ec; v = 0.) A higher � enlarges the

set of implementable contracts, and is illustrated by the shift (leftwards) of

the constraint curve in the �gure. For the higher � the optimal relational

contract is de�ned by tangency of the constraint and indi¤erence curves. For

the lower � there is no relational contract that yields a higher payo¤ to the

principal than her spot payo¤.

9The example has C(e) = e2=2, K(v) = kv2=2 and �q = 1, qH = 9=8, k = 1=4.
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If the principal were constrained only by the agent�s limited liability, she

would have chosen e = ec < eFB. E¤ort would be lower than �rst best

because she must leave rents to the agent. But a contract with such an

e¤ort level may yield a relatively low social surplus. By increasing the level

of e¤ort she can increase the social surplus and hence ease implementation

of the contract. This is the reason why it may optimal for the principal to

choose a relational contract with e > ec.

The analysis in this section shows that the optimal contract and hence

the optimal bonus, ��, will depend crucially on the form of the contract cost

function, also under relational contracting. In the next sections we examine

how the optimal bonus varies with the cost function K(v), and the level of

trust, represented by �.

3 Contract costs and optimal incentives

The necessary cost to achieve a given probability of legal enforcement will

depend on the complexity of the transactions and the quality of the perfor-

mance measures, as well as the strength of enforcement institutions and the

practice of legal courts. We will in this section point out two relationships

between contract costs and optimal incentives that we �nd particularly in-

triguing, one regarding the cost level and one regarding the form of the cost

function.

First, we address the cost level issue. Since contracting costs are used to

explain the lack of incentive pay, one might expect that higher contracting

costs reduce the level of incentive pay. However, we can show that an increase

in contracting costs may actually lead to higher-powered incentives. To show

this we consider a function K(v; �) with K� � 0; and examine how incentives
and e¤ort vary with the parameter �. It turns out that the elasticity of the

marginal cost function is an important determinant for how variations in �

a¤ect incentive provision. This elasticity can be expressed as (1�v)Kvv=Kv,
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since this expression measures the relative increase in marginal costs per

percentage reduction in the probability of non-veri�cation (1 � v). We �nd
the following.

Proposition 4 Given a relational contract equilibrium (v�; e�), consider a

cost variation that leaves marginal costs unaltered at v� (Kv�(v
�; �) = 0).

(i) If costs increase more at the relational equilibrium v = v� than at the

spot equilibrium v = vs (so that K�(v
�; �) > K�(v

s; �)), this will lead to

higher-powered incentives i¤ the following condition holds:

(1� v)Kvv=Kv + 
�e�

1� �Kvv=Kv < 1

where  = 0 if e� < es and  = 1 if e� > es. In the former case the condition

holds i¤ the marginal contract cost function is inelastic, in the sense that

(1� v)Kvv=Kv < 1.

(ii) If costs increase less at the relational equilibrium v = v� than at the spot

equilibrium v = vs (so that K�(v
�; �) < K�(v

s; �)), the cost increase will lead

to higher-powered incentives i¤ the opposite condition holds.

The proposition demonstrates that endogenous contracting costs and the

opportunities for the parties to engage in relational contracting create a non-

trivial relationship between contracting costs and incentive intensity. Under

plausible assumptions an increase in contracting costs may lead to higher-

powered incentives. Part (i) of the proposition is the most striking one since

it shows that incentive intensity in the relational contract may increase even

if contracting costs increase more at the relational equilibrium than at the

spot equilibrium. Part (ii) of the proposition complements insights from pre-

vious literature (e.g. Baker, Gibbons and Murphy, 1994), that less attractive

outside options (worse spot contracts) may bene�t the relational contract.

An increase in the cost to achieve a given veri�ability level can stem

from higher job complexity. The costs associated with describing a job�s

tasks and operational performance metrics are likely to be higher the more
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complex the job is. The result in Proposition 2 then says that, under certain

conditions, higher job complexity may generate higher-powered incentives.

The intuition is that higher job complexity may lead the parties to increase

the level of contracting such that the probability of veri�cation increases.

This in turn makes the parties able to implement higher-powered incentives.

Interestingly, higher-powered incentives are more common in human capital

intensive industries (see e.g. Long and Shields, 2005 and Barth et al, 2008),

and one reason may be that knowledge-intensive jobs require more detailed

contracts.

Consider now the form of the cost function. As argued in Kvaløy and

Olsen (2009), the form of the cost function K() may depend on the legal

system. Di¤erences inK()may pertain to di¤erences in contract enforcement

between common law and civil law systems. The common law system is

assumed to be more willing to enforce speci�c contract terms than civil law,

which to a larger extent set party-designed contract terms aside if it con�icts

with the civil codes. This indicates that the marginal e¤ect on v of investing

in detailed contracts is higher in common law (see Djankov et al, 2003). On

the other hand the civil codes assure that a minimum level of veri�ability

can be achieved at relatively low costs. This suggests that K() as a function

of v will tend to be �atter, but have a higher intercept in common law

compared to a civil law system. It further suggests that we may interpret a

marginal change where K 0
�(v

�; �) > 0 and K�(v
�; �) = 0 as a marginal move

from common to civil law practice. Interestingly, we �nd such a move from

common law to civil law lead to lower-powered incentives. Formally,

Proposition 5 Given a relational contract equilibrium (v�; e�), consider a

cost variation that (i) increases marginal costs at v� (Kv�(v
�; �) > 0) and (ii)

leaves absolute costs unaltered at v = v� and at the spot equilibrium v = vs

(so that K�(v
�; �) = K�(v

s; �) = 0). This variation, which implies increased

marginal contracting costs for the given v�, will lead to lower-powered incen-

tives.
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Interestingly, empirical studies indicate a higher frequency of performance

related pay in central common law countries like U.S., U.K. and Australia

than in civil law countries such as France (see Brown and Heywood, 2002

for an international comparison on performance pay). In order to test our

hypothesis, one could look at the relationship between performance pay and

judicial formalism, as indexed by Djankov et al (2003), but unfortunately,

one still lacks good international data on performance related pay

4 Trust and optimal incentives

The discount factor can be seen as a proxy for trust, see e.g. Hart (2001),

since in a repeated relationship between P and A, if A knows that P has a

high discount factor, A knows that P values future trade with A. Hence, A

trusts P and P is trustworthy. In this sense, the repeated game approach

formalizes an economic concept of trust and trustworthiness.10 A common

feature of the relational incentive contracts studied in the literature is that

incentive intensity is positively related to the parties�trust in the relationship,

i.e. their discount factors. The higher the discount factor, the higher is the

present value of the ongoing relationship relative to the present value of

reneging on the contract. When this �punishment�from reneging increases,

the parties are able implement higher-powered incentives without running

the risk of opportunism (see Levin, 2003).

We will here show that this relationship does not generally hold when

the principal can invest in contracting in order to increase the probability of

legal enforcement. We �nd,

Proposition 6 Higher trust (higher �) leads to lower-powered incentives i¤

10This concept of trust has been critized since it does not capture the idea that trust
implies risk of exploitation (see e.g. James Jr., 2002). In our setting the de�nition of trust
is not important, it is mostly a matter of �nding a suited interpretation for the rather
technical term �discount factor�. We might as well see the discount factor as a proxy for
the level of �mutual dependence.�
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(1� v)Kvv=Kv + 
�e�

1�� (Kvv=Kv � h(e�; v; �)) < 1, where  = 0 if e� < es and
 = 1 if e� > es, and h(e; v; �) = 1

(1�v)(1�
�
1��

Kv

C0(e)) > 0.

The intuition behind the proposition is that the parties realize the surplus

from higher trust by reducing contracting costs, instead of by increasing the

incentive intensity. We see that the elasticity of Kv() is important also here.

The response in v to a change in � is larger, the less elastic is Kv(). When

Kv() is inelastic, the standard result that higher � leads to higher-powered

incentives does not necessarily hold, since a higher � can make it optimal to

reduce v so much that the principal �nds it pro�table to also reduce incentive

provision.

5 Conclusion

In this paper we have endogenized the probability of legal enforcement in

an otherwise standard moral hazard model with limited liability. We have

assumed that the probability of contract enforcement is determined by the

level of ex ante (costly) contracting, and have analyzed both a static and

repeated game version of the model

The main message from the paper is that contract costs matter for in-

centive provision, both in the static spot contract and in the repeated rela-

tional contract. Interestingly, there is not a monotonic relationship between

contracting costs and incentive intensity. We show that if the marginal con-

tract costs are inelastic, an increase in contracting costs may lead to higher-

powered incentives. Moreover, we �nd that social surplus may be higher

under costly relational contracting than under costless veri�able contracting.

Since the shape of the contract cost function is partly determined by

the legal system, we can also formulate hypotheses about the relationship

between legal systems and incentive provision. Speci�cally, we argue that the

model predicts higher-powered incentives in common law than in civil law

systems. Empirical studies indicate higher frequency of performance related
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pay in common law countries than in civil law countries, but one needs better

international data on performance pay in order to test this hypothesis.

Our paper (together with Kvaløy and Olsen, 2009) o¤ers a simple frame-

work that is well suited for analyzing the relationship between trust-based

informal contracts and legal institutions. The model can be extended to in-

corporate other legal variables such as litigation costs and alternative breach

remedies. Variations of this framework could also be applied to other topics

where repeated games and legal institutions are important, such as optimal

�rm boundaries, public versus private ownership, and the sustainability of

cartels and collusive agreements.
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Appendix
Proof of Proposition 2
We �rst show that the enforceability conditions EA and EP can be re-

placed by EC. Given that �H > �L is necessary to provide incentives, the

relevant EP constraint will be the one corresponding to �H , with �H � 0.

The constraint can then be written as

�

1� � [qL + e�q �K(v)� s� �L � e�� � uP ] � �H(1� v) (2)

Given �H > �L, the relevant EA constraint will be the one corresponding to

�L, which can be written as

�L � vminf0; �Lg+
�

1� � [s+ �L + e�� � C(e)� uA] � 0 (3)

If (3) doesn�t bind, then �L can be reduced, keeping s + �L and �� �xed,

without violating any constraints. This will strictly relax (2), and then v can

be reduced, increasing the payo¤�P . Hence it is optimal to have (3) binding,

and thus �L � 0 by IRR. Substituting for �L(1 � v) from (3) and for ��

from ICR into (2), we then see that the relational enforceability conditions

are equivalent to condition EC.

To prove the proposition, note �rst that the agent�s spot payo¤ is

uA = esC
0(es)� C(es) (4)

where spot e¤ort satis�es es < ec = argmaxe [e�q � eC 0(e)], and hence
uA < Q � ecC 0(ec)� C(ec). Note that ec is, for �xed �q independent of qL,
and so is consequently Q.

De�ne sL = s+ �L, and write EC as G(e; v; �; u) � 0.by de�ning

G(e; v; �; u) = qL + e�q � C(e)�K(v)�
1� �
�
C 0(e)(1� v)� u (5)
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Substituting for �� = C 0(e) from ICR and ignoring the agent�s LL con-

straints for the moment, the Lagrangean for the principal�s optimization

problem can be written as

l = qL + e�q �K(v)� sL � eC 0(e) + � (sL + eC 0(e)� C(e)� uA)
+�G(e; v; �; u) + �(qL � sL) + '(qH � sL � C 0(e))

Here �; �; �; ' are (non-negative) multipliers on the IRR, EC and (two) BR

constraints, respectively.

The LL constraints are sL = s + �L � 0 and s = sL � �L � 0. Since

we showed above that �L � 0, the relevant LL constraint is sL � 0. The

optimality conditions include

@l

@sL
= �1 + �� � � ' � 0; sL � 0; (compl. slack)

@l

@e
= �q � C 0(e)� eC 00(e)(1� �) + �Ge � 'C 00(e) = 0

@l

@v
= �K 0(v) + �Gv = 0

If e > es then IRR doesn�t bind and hence � = 0 and sL = 0. (IRR

binding would yield sL < 0, which is impossible.) Since sL = 0 < qL we

have � = 0. If now BR binds for qH we have C 0(e) = qH � �q. This

implies Ge < 0 and consequently @l
@e
< 0, which is a contradiction. Hence we

have sL = 0 and all other constraints except EC being slack. This proves

statement (i) in the proposition.

If e < es then IRR requires sL > 0, which implies � = 1 + � + ' > 0 (so

IRR binds). If now BR binds for qH then C 0(e) = qH � sL � qH � qL = �q.
This implies that e¤ort exceeds �rst-best e¤ort, which contradicts e < es.

Hence BR for qH is slack and ' = 0.

Assuming qL � Q where Q was de�ned in the paragraph following (4),
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we can see that the BR constraint for qL must also be slack. If not, we would

have sL = qL and thus from IRR qL+eC 0(e)�C(e) = uA, which is impossible
when qL � Q > uA. Hence all constraints except IRR and EC must be slack
in this case, and this proves statement (ii) in the proposition.

Proof of Proposition 3.
Consider the EC constraint for v = 0, given by by G(e; 0; �) � 0, see

(5). (To save notation we ignore the dependence on u here.) Let �c be the

minimal � for which v = 0; e = ec can be implemented; it is given by

G(ec; 0; �c) = ec�q � C(ec)� ~u� 1� �
c

�c
C 0(ec) = 0 (6)

where ~u denotes the spot surplus in excess of qL, i.e. ~u = u � qL = es�q �
C(es)�K(vs). Since es < ec < eFB, we see that �c is well de�ned.
Assuming C 000(e) � 0 the function G(e; 0; �) is strictly concave in e, and

it satis�es G(e; 0; �) < 0 for e = 0 and for e su¢ ciently large. For given � the

equation G(e; 0; �) = 0 has thus generically two or none solutions for e. If

Ge(e
c; 0; �c) > 0, then G(e; 0; �c) > 0 for all e in some interval (ec; e0c), hence

all these e can be implemented for v = 0 and � = �c. Since G� > 0, there is

then by continuity a �0 < �c such that for � 2 (�0; �c) we have G(e; 0; �) > 0
for all e in some interval (e�; e0�) with e

0
� > e� > e

c, and Ge(e�; 0; �) > 0. For

given such � all e in this interval can be implemented with v = 0. We may

assume (if necessary by choosing �0 closer to �c) that the principal�s payo¤

at e = e�; v = 0 exceeds his spot payo¤.

Assume now Ge(e
c; 0; �c) > 0 (we verify that this is feasible below).

Let � 2 (�0; �c) and let e� > ec be the minimal e¤ort that can be imple-

mented with v = 0. We have here Ge(e�; 0; �) > 0, and since Gv(e; 0; �) =

�K 0(0) + 1��
�
C 0(e) > 0 for K 0(0) = 0 (and e < eFB) the feasible set de�ned

by G(e; v; �) � 0 is here delineated by a curve v(e) with v(e�) = 0 and slope
dv
de
= �Ge

Gv
< 0.
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An indi¤erence curve for the principal (given by e�q � eC 0(e)�K(v) =
const) has slope dv

de
= ��q�C0�eC00

K0(v) < 0 for e > ec. Since this slope is in�nite

at v = 0 for K 0(0) = 0, while the slope of the constraint curve is �nite at

this point, the principal is better o¤ with some v > 0; e < e� than with

v = 0; e = e�, and hence better o¤ than with any implementable (e; v) with

v = 0. It remains to show that the principal�s optimal (e; v) has e > ec.

For quadratic cost functions the function G(e; v; �) is a quadratic form in

(e; v), and the feasible set de�ned by G(e; v; �) � 0 is then delineated by a

curve that is either a parabola, a hyperbola or an ellipse. Since for the given

� this curve intersects the e� axis at two points (e� and e0� > e�) and has a
negative slope at e�, the curve must be tangent to an indi¤erence curve at

some point (e; v) with e > ec. (Indi¤erence curves have slope equal to zero

for e = ec.) This point of tangency is optimal, and satis�es e > ec and v > 0.

It remains to verify that the assumption Ge(ec; 0; �
c) > 0 can hold. Note

that by de�nition of ec (as argmax [e�q � eC 0(e)]) we have �q � C 0(ec) �
ecC 00(ec) = 0 and hence

Ge(e
c; 0; �c) = �q � C 0(ec)� 1� �

c

�c
C 00(ec) = (ec � 1� �

c

�c
)C 00(ec)

Thus Ge(ec; 0; �
c) > 0 if �c is su¢ ciently large (�c > 1

1+ec;
). By de�nition of �c

(see (5)) this will be the case if ec�q�C(ec)�~u is su¢ ciently small, i.e. if the
spot surplus ~u = es�q � C(es)�K(vs) is su¢ ciently close to ec�q � C(ec).
This will hold e.g. if qH is su¢ ciently large, since then vs = C 0(es)=qH is small

(and consequently K(vs) is small, assuming e.g. K(0) = 0) and es is close to

ec. This shows that Ge(ec; 0; �
c) > 0 for some parameter speci�cations, and

thus completes the proof.

Proof of Propositions 4 and 5.
To simplify notation, we set qL = 0 in this proof. De�ne f(e; v; �) as

the total per period surplus, and g(e) = eC 0(e) � C(e). It follows from

Proposition 2 that the variables in the relational contract solve the following
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problem

max
e;v
! (f(e; v; �) + g(e)) = e�q�C(e)�K(v; �)+ [eC 0(e)� C(e)] s:t: EC

(7)

where  = 0 if e < es, and  = 1 if e > es. Comparative statics (for local

variations) can then be derived from this problem.11

Note that the EC constraint can be written as (see (5))

G(e; v; �; �) = f(e; v; �)�H(e; v; �; �) � 0, where H(e; v; �; �) =
1� �
�
C 0(e)(1�v)+u(�)

Here u(�) denotes the spot surplus, and we note from Proposition 1 that

u0(�) = �K�(v
s; �), where vs is the equilibrium spot veri�cation probability.

Let L = (f+g)+�G be the Lagrangean for problem (7). Given su¢ cient

second order conditions (SOC), standard comparative statics yield

e0(�) =
1

D
([LvvGe � LevGv]G� + [Le�Gv � Lv�Ge]Gv) ; (8)

where D > 0 is the determinant of the bordered Hessian of L. (For com-

pleteness this is veri�ed at the end of this proof).

Note that from L = (f + g) + �G, G = f � H and the �rst-order

conditions (FOCs) fk + gk = ��Gk, k = e; v, we have

GkLij = Gk(fij + gij) +Gk�Gij

= (fk �Hk)(fij + gij)� (fk + gk)(fij �Hij)
= fkHij �Hkfij + (Gkgij � gkGij)

11As stated the objective is not continous at e = es, but this can be amended by
subtracting (1 � )uA from f + g. This has no bearing on the comparative statics
formulae.
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Substituting this in the formula for e0(�) yields

e0(�)D = [(feHvv �Hefvv) + (Gegvv � geGvv)� (fvHev �Hvfev)� (Gvgev � gvGev)]G�
+ [(fvHe� �Hvfe�) + (Gvge� � gvGe�)� (feHv� �Hefv�)� (Gegv� � geGv�)]Gv

Using gv = g� = 0, Gvj = fvj �Hvj and Hvv = 0 then yields

e0(�)D = [�Hefvv � gefvv � (fvHev �Hvfev)]G� (9)

+ [(fvHe� �Hvfe�)� (feHv� �Hefv�) + ge(fv� �Hv�)]Gv

Substituting for the partials of f(e; v; �) = e�q�C(e)�K(v; �) andH(e; v; �) =
1��
�
C 0(e)(1 � v) + u(�) in (9), and noting that fev = fe� = He� = He� = 0,

we obtain

e0(�)D = [HeKvv + geKvv +KvHev] [f� �H�] + [�HeKv� � geKv�]Gv

= [HeKvv + geKvv +KvHev] [�K� � u0(�)]� [He + ge]Kv�Gv

=

��
�(1� v)Kvv +Kv +

geKvv

Hev

�
[K� + u

0(�)]�
�
(1� v) + ge

(�Hev)

�
Kv�Gv

�
(�Hev)

where the last equality follows from He=Hev = �(1� v).
Since Hev = �1��

�
C 00 < 0 and ge = eC 00 we then see that e0(�) has the

same sign as�
�(1� v)Kvv � 

�e

1� �Kvv +Kv

�
[K� + u

0(�)]�
�
(1� v) +  �e

1� �Kvv

�
Kv�Gv

(10)

Note that FOC implies Gv = �fv=� = Kv=� > 0.

In Proposition 4 we have (i) Kv� = 0 and (ii) K� > K�(v
s; �) = �u0(�),

hence we see that e0(�) has the same sign as �(1 � v)Kvv �  �e
1��Kvv +Kv.

From ICR (�� = C 0(e)) it follows that e¤ort and incentives covary, and this

proves the proposition.

In Proposition 5 we have (i) Kv� > 0 and (ii) 0 = K� = K�(v
s; �) =
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�u0(�), and since Gv > 0 as noted above, we have from (10) that e0(�) has

the same sign as �Kv�. This proves Proposition 4.

For completeness we �nally verify the standard comparative statics for-

mula (8). Di¤erentiation of the FOCs (Le = Lv = G = 0) yields264 Lee Lev Ge

Lve Lvv Gv

Ge Gv 0

375
264 e0(�)

v0(�)

�0(�)

375 =
264 �Le��Lv�
�G�

375 (11)

and hence

e0(�) =
1

D

�������
�Le� Lev Ge

�Lv� Lvv Gv

�G� Gv 0

������� =
1

D

�
LvvGeG� + Le�G

2
v � LevGvG� � Lv�GeGv

�

where D is the determinant of the Hessian in (11). The su¢ cient SOC

for this problem is D > 0. (see e.g. Intriligator, M.D. (1981) Mathematical

programming with applications to economics, Ch. 2 in Arrow and Intriligator

(eds.) Handbook of Mathematical Economics, North Holland.). This veri�es

(8) and completes the proof.

Proof of Proposition 6
Applying the comparative statics formula (9) to variations wrt �, and

noting that fev = fe� = fv� = 0, we obtain

e0(�)D = [�Hefvv � gefvv � (fvHev �Hvfev)]G� (12)

+ [(fvHe� �Hvfe�)� (feHv� �Hefv�) + ge(fv� �Hv�)]Gv
= [HeKvv + geKvv +KvHev]G� + [fvHe� � (fe + ge)Hv�]Gv

As above (in the previous proof) the �rst term in the last line can be written
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as

[HeKvv + geKvv +KvHev] =

�
�(1� v)Kvv � 

�e

1� �Kvv +Kv

�
Hev (13)

where Hev = �1��
�
C 00 < 0.

Next note that the FOCs (fk+gk = ��Gk) imply (fe+ge)=fv = Ge=Gv,
and that G = f �H then implies

He=Hv = �ge=Hv + (fe + ge �Ge)=(fv �Gv) = �ge=Hv +Ge=Gv

Noting that He�=Hv� = He=Hv, we see that the last parenthesis in (12) can

be written as

[fvHe� � (fe + ge)Hv�] = [He=Hv �Ge=Gv] fvHv� = [ge=Hv]KvHv� (14)

From (12, 13, 14) we then have

e0(�)D =

�
�(1� v)Kvv �

�e

1� �Kvv +Kv

�
HevG� + geKv(Hv�=Hv)Gv

=

��
(1� v)Kvv +

�e

1� �Kvv �Kv

�
+ 

ge
�Hev

Kv
Hv�
G�

Gv
Hv

�
(�Hev)G�

We have G� = �H� so Hv�=G� = �Hv�=H� = (1 � v)�1. Since Hev =
�1��

�
C 00 < 0.and G� > 0 we see that e0(�) has the same sign as�

(1� v)Kvv +
�e

1� �Kvv �Kv

�
+
�e

1� �Kv
Gv

(1� v)Hv

To verify the claim in the proposition, it remains to show that �Gv=Hv(1�
v) = h(e; v; �) > 0, i.e. that

�Gv
Hv

= 1� �

1� �
Kv

C 0(e)
> 0 (15)
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We have Gv=Hv = (fv �Hv)=Hv = �Kv=Hv � 1 and Hv = �1��
�
C 0(e). This

proves the equality in (15). The inequality follows from FOC Gv = �fv=� =
Kv=� > 0 and Hv < 0. This completes the proof.
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