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Abstract

We study the Epstein-Zin model with recursive utility. Recogniz-
ing that recursive preferences implies that the underlying model is not
Markovian, we use methods not depending upon the Markov property
to solve the model. We work with the returns directly, which we
approximate by Taylor series expansions, in log terms. Leaving out
moments of order three and higher, we calibrate the resulting model
to the data of Mehra and Prescott (1985) under various assumptions
about the wealth portfolio. The results are very reasonable for the
US-data. We also calibrate to a newer Norwegian data set, where
we also have the relevant estimates for the national wealth portfolio.
Again, the results are consistent with plausible values for the prefer-
ence parameters.

KEYWORDS: Recursive utility, the Epstein-Zin model, utility gra-
dients, calibrations, the Markov property
JEL-Code: G10, G12, D9, D51, D53, D90, E21.

1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Questions like the following are
sometimes asked: Are asset prices too volatile relative to the information
arriving in the market? Is the mean risk premium on equities over the riskless

∗The Norwegian School of Economics, 5045 Bergen Norway and Centre of Mathematics
for Applications (CMA), University of Oslo, Norway. Telephone: (+47) 55959249. E-mail:
Knut.Aase@NHH.NO. Special thanks to Steinar Ekern, Gunnar Eskeland, Trond Olsen,
Thore Johnsen, Tore Ellingsen, Erik Sørensen, Jens Sørlie Kværner, Sjur Fl̊am and Rajnish
Mehra for valuable comments and inspiration. Any remaining errors are mine
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rate too large? Is the real interest rate too low? Is the market’s risk aversion
too high?

Mehra and Prescott (1985) raised some of these questions in their well-
known paper, using a variation of Lucas’s (1978) pure exchange economy
with a Kydland and Prescott (1982) ”calibration” exercise. They chose the
parameters of the endowment process to match the sample mean, variance
and the annual growth rate of per capita consumption in the years 1889 -
1978. The puzzle is that they were unable to find a plausible parameter pair
of the utility discount rate and the relative risk aversion to match the sample
mean of the annual real rate of interest and of the equity premium over the
90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

In the present paper we address these empirical deficiencies of the conven-
tional asset pricing model in financial and macroeconomics using recursive
utility. We analyzed the Epstein-Zin model with recursive utility, and recog-
nize that the recursive agent takes into account more than just the present
when evaluating utility. As a consequence, when evaluating conditional prob-
abilities of the future state prices in the economy, the recursive agent must
take into account not only the present, but also past values of the basic
variables, i.e., the Markov property does not hold.

An illustration of this is the paper by Weil (1989). In this the author
analyzes the Epstein-Zin (1989) discrete-time model, and employs the exact
same two-state Markov process as fitted by Mehra and Prescott for the period
1989-1979 using the standard additive and separable expected utility model.
Using numerical methods he calculated the equity premium and the interest
rate using this two-state Markov process. While leaving the equity premium
unchanged, it appeared that the ability of the model to replicate the level of
the risk-free rate was deteriorated, compared to the conventional additive and
separable expected utility model (in short: the Eu-model). While it is true

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).
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that one can sometimes use Markov methods in non-Markovian situations,
this requires a transformation of the state space, not carried out in his paper.

In the present paper we avoid methods that require the Markov property.
The model is solved using directional derivatives, and the equity premium as
well as the short-term interest rate are calculated using Taylor series approx-
imations. With six term for the short rate, and two terms for risk premiums,
all in log terms, we calibrate the model to the same US-data as used by
Mehra and Prescott (1985). This results in rather reasonable values of the
preference parameters, under various assumptions about the wealth portfolio.

When the market portfolio is a proxy of the wealth portfolio, this cor-
responds to reasonable values for the risk aversion and the time-preference
parameters, with an the impatience rate around 4 to 5 per cent.

We then explore the situation where the market portfolio is not assumed
a satisfactory proxy for the wealth portfolio. By assuming that we can view
income streams as dividends of some shadow asset, the model is valid if the
market portfolio is expanded to include the new assets. Since the latter are
not traded, the return to the wealth portfolio is not readily observable or es-
timable from the available US-data. Still we can get a reasonable impression
of how the model fits data, under various assumptions, and the results are
really promising. We also calibrate to a newer Norwegian data set, where we
do have the relevant estimates for the national wealth portfolio. Again, the
results are consistent with plausible values for the preference parameters.

In a companion paper (Aase 2015a) we have analyzed the continuous-
time model established by Duffie and Epstein (1992a,b) using the stochastic
maximum principle, and also calibrated this model to the same data as in
this paper. The results are consistent with the ones in this paper.

Besides giving new insights about these interconnected puzzles, the re-
cursive model is likely to lead to many other results that are difficult, or
impossible, to obtain using, for example, the conventional time additive Eu-
model. One example included in the paper is related to empirical regularities
for Government bills2.

The paper is organized as follows: In Section 2 the basic model is for-
mulated and the state price deflator and the stochastic discount factor are
established. Section 2.4 explains the financial market. Section 2.5 applies

2There is by now a long standing literature that has been utilizing recursive pref-
erences. We mention Avramov and Hore (2007), Avramov et al. (2010), Eraker and
Shaliastovich (2009), Hansen, Heaton, Lee, Roussanov (2007), Hansen and Scheinkman
(2009), Wacther (2012), Bansal and Yaron (2004), Campbell (1996), Bansal and Yaron
(2004), Kocherlakota (1990 b), and Ai (2012) to name some important contributions. Re-
lated work is also in Browning et. al. (1999), and on consumption see Attanasio (1999).
Bansal and Yaron (2004) study a richer economic environment than we employ.
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the general theory to the CES specialized preference ordering of Epstein and
Zin. In Section 2.6 the risk premiums and the equilibrium interest rate are
derived using Taylor series expansions. Some initial calibrations are carried
out in Section 2.7, and in Section 2.8 we look at Government bills. In Sec-
tion 3 we carry out calibrations when the market portfolio is not a proxy for
the wealth portfolio. Section 4 analyzes the Norwegian data, and Section 5
concludes. The paper contains an Appendix for some of the more technical
material.

2 The discrete time development

2.1 Introduction

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
tion that is the expectation of a sum of future discounted utility functions.
The model has been criticized for several reasons. First, it does not perform
well empirically. Second, the conventional specification of utility can not
separate the risk aversion from the elasticity of intertemporal substitution,
while it would clearly be advantageous to disentangle these two conceptu-
ally different aspects of preference. Third, while this representation seems to
function well in deterministic settings, and for timeless situations, it is not
well founded for temporal problems (e.g., derived preferences does not satisfy
the substitution axiom, see e.g., Mossin (1969)).

Recursive utility was first formulated in the setting of discrete time. The
basic notions of separating time and risk preferences are roughly summarized
as follows: First consider a risk-less economy, where preferences over con-
sumption sequences (c0, c1, · · · , cT ) are characterized with Koopmans’ (1960)
time aggregator f(·), where

Ut(ct, ct+1, · · · , cT ) = f(u(ct), Ut+1(ct+1, ct+2 · · · , cT )).

This framework is then generalized to evaluate uncertain consumption se-
quences essentially by replacing the second argument in f(·) by the period
t certainty equivalent of the probability distribution over all possible con-
sumption continuations. The resultant class of recursive preferences may be
characterized as

Ut(ct, ct+1, · · · , cT ) = f(u(ct),mt+1(Ut+1(ct+1, ct+2 · · · , cT ))),
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where mt+1(·) describes the certainty equivalent function based on the con-
ditional probability distribution over consumption sequences beginning in
period t+1. Such preferences are dynamically consistent (Johnsen and Don-
aldson (1985)). We use the notation Vt = Ut(ct, ct+1, · · · , cT ) from now on.

In addition to assumption A1: dynamic consistency, there are also A2:
irrelevance of past consumption, and A3: state independence of time prefer-
ence, for the standard version of recursive utility (see Skiadas (2009a)).

Recursive preferences have an axiomatic underpinning, in which the main
axiom, ”Recursivity” is essentially identical to the notion of dynamic consis-
tency, see Chew and Epstein (1991).

2.2 The first order conditions

The agent is characterized by a utility function U and an endowment process
e ∈ L. The agent’s problem is

supc∈LU(c) subject to E
( T∑
s=0

pscs
)
≤ E

( T∑
s=0

pses
)

where L is the space of adapted consumption processes, and p is the state
price deflator (the Arrow-Debreu state price in units of probability).

The Lagrangian of the problem is

L(c, λ) = U(c)− λE
( T∑
s=0

ps(cs − es)
)

where λ > 0 is the Lagrangian multiplier. Assuming U to be continuously
differentiable, the gradient of U at c in the direction x is denoted by5U(c;x).
This directional derivative is a linear functional, and by the Riesz Represen-
tation Theorem and e.g., dominated convergence, it is given by

5U(c;x) = E
( T∑
s=0

πsxs
)
.

Here π is the Riesz representation of 5U(c; ·). The first order condition is

5L(c, λ;x) = 0 for all x ∈ L.
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This is equivalent to

E
{ t∑
s=0

(πs − λps)xs
}

= 0 for all x ∈ L.

This implies that πt = λpt for all t ≤ T .
Our next task is to characterize the Riesz representation π of U . When

this is done, we have the state price in the economy modulo a constant.

2.3 The state prices in the economy

In order to characterize the state price in this economy, we need to find
the Riesz representation π of the utility function U as explained in the last
section.

Consider the following specification of recursive utility when time is in-
dexed by t = 0, 1, · · · , T . The utility U(c) = V0, Vt = f(u(ct),mt+1), and
VT = f(u(cT ), 0). Here f is the aggregator function mentioned above, life
time utility is given by U(c) = V0, and mt+1 is the certainty equivalent, given
the information Ft available to the agent in the planning period. We assume
that mt+1 = h−1(Et(h(Vt+1)) for some strictly increasing and concave func-
tion h, so that the certainty equivalent is obtained via expected utility, in
which case the preferences fall in the Kreps and Porteus (1978) family. The
utility function u is increasing, concave and differentiable and its derivative
is denoted by u′. We denote the derivative of h by h′, and fu and fm are
the partial derivatives of f with respect to the first and the second argument
respectively. Present utility Vt can depend on past consumption history if
Vt+1 does.

For this class of utility functions we want to characterize 5U(c;x), the
gradient of U at c in the direction x, i.e., to find {πt} adapted to Ft such
that

5U(c;x) = limα↓0
U(c+ αx)− U(c)

α
= E

{ T∑
t=0

xtπt
}
. (1)

The utility function U is continuously differentiable in which case 5U(c;x)
is a linear and continuous functional from the set of consumption processes L
intoR. By the Riesz Representation Theorem and by dominated or monotone
convergence the last equality in (1) follows.

When c is an equilibrium allocation, or the aggregate endowment in a
representative agent economy, πt has the interpretation of being the state
price deflator at time t (see e.g., Duffie (2001), Ch. 2).
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In Appendix 1 we show that the utility gradient is given by

5 U(c;x) = 5V0(c;x) =

E
{ T∑

t=0

xt fu(u(ct),mt+1)u
′(ct)

t−1∏
s=0

fm(u(cs),ms+1)

h′(ms+1)
h′(Vs+1)

}
, (2)

from which it follows that the state price deflator is given by

πt = fu(u(ct),mt+1)u
′(ct)

t−1∏
s=0

fm(u(cs),ms+1)

h′(ms+1)
h′(Vs+1) (3)

for t = 0, 1, · · · , T . In (3) c is assumed optimal from now on.
As can be seen, πt depends on past consumption and utility from time zero

to the present time t. This implies that the economy is not Markovian. State
prices are determined by consumption process c and the certainty equivalent
process m. Let g be a Borel function from R2 to R and B a Borel set in R,
and consider for any τ ≥ t > 0 the following conditional probability:

(i) P{g(ct+1,mt+2) ∈ B|cs,ms+1, s ≤ t}.

In order to determine from (c,m) the time t-conditional probability distribu-
tion of future state prices, this can not be achieved by restricting attention
to a conditional probability of the type

(ii) P{g(ct+1,mt+2) ∈ B|ct,mt+1},

for some appropriate g, since πt+1 depends on the entire past of the variables
(c,m). Thus, with recursive utility one should avoid methods requiring the
Markov property3.

The stochastic discount factor/marginal rate of substitution is Mt+1 =
πt+1/πt, and given by

Mt+1 =
fu(u(ct+1),mt+2)u

′(ct+1)

fu(u(ct),mt+1)u′(ct)
fm(u(ct),mt+1)

h′(Vt+1)

h′(mt+1)
. (4)

Comparing to Epstein and Zin (1991), eq. (23), Donaldson and Mehra (2008),
eqn. (8), Cochrane (2008), eqn. (14), or Skiadas (2009), the latter based
on directional derivatives, our expression in (4) is in agreement with this
literature.

3This feature is the same as in the continuous-time model.
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2.4 The financial market

Having established the general, homogeneous recursive utility of interest, in
this section we turn our attention to pricing restrictions relative to the given
optimal consumption plan. Since we consider a pure exchange economy, the
aggregate consumption process in society is optimally consumed by the single
agent at each time t, i.e., ct = et, or the optimal consumption ct equals this
agent’s endowment process et for all t = 0, 1, · · · , T . There is a risk-less asset
with price process βt

βt = β0R
f
1R

f
2 · · ·R

f
t ,

where Rf
t+1 := βt+1

βt
is the gross rate of return on this asset over the period

(t, t+ 1) and Rf
t+1 := 1 + rft+1, with rft+1 the corresponding arithmetic return

(βt+1− βt)/βt on the risk-less asset. This means that at any time t < T , one
can invest one unit of account in order to receive 1 + rt+1 units of account at
time t+ 1. The return rate rft+1 over the period (t, t+ 1) can be locked in at
time t by trading government bonds.

The risk-less asset is characterized by the property that its return has zero
conditional covariance with the state price deflator, i.e., covt(πt+1, R

f
t+1) = 0

for all t.
Suppose St is the (cum dividend) price process of any risky asset in this

economy, with corresponding gross return RR
t+1 := St+1

St
. Since we have a

state price deflator π, there is no arbitrage in this economy if and only if
Stπt is a martingale. The martingale property implies the following pricing
relation

St =
1

πt
Et{πt+1St+1}

for any t ∈ [0, T − 1]. This implies the pricing restriction

Et{Mt+1R
R
t+1} = 1. (5)

From this it follows by the defining property of covariance that

−
covt(Mt+1, R

R
t+1)

Et(Mt+1)
= Et(R

R
t+1)−R

f
t+1, (6)

provided that we interpret the reciprocal of Et(Mt+1) as the gross rate of
return on the riskless asset over the period (t, t+ 1), i.e.,

Rf
t+1 :=

1

Et(Mt+1)
. (7)
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This is seen from (6) by replacing RR
t+1 by Rf

t+1, in which case

covt(Mt+1, R
f
t+1) = 0,

the defining property of the risk-less asset. The right-hand side of (6) is of
course the risk premium of the risky asset.

The main question of interest is then the determination of prices, in-
cluding risk premiums and the interest rate that makes the agent’s behavior
optimal.

The model for the financial market is complete, but has otherwise few
restrictions on returns and aggregate consumption, except that we need some
kind of ergodicity of returns and the growth rate of aggregate consumption
in order for statistical estimation to make sense.

Our definition of wealth Wt includes current consumption (dividend), so
the gross real rate of return on the wealth portfolio over the period (t, t+ 1)
is

RW
t+1 :=

Wt+1

Wt − ct
. (8)

We make the assumption that one can view exogenous income streams as
dividends of some shadow asset. Then our model is valid if the market port-
folio is expanded to include the new asset. While this is the most important
addition, a few more portfolios must be included in order to be a reasonable
proxy for a nation’s wealth portfolio. We assume the latter marketed, in
which case Wt is the time-t wealth required to finance the consumption plan
c from time t on; in other words (c,W ) is a traded contract4.

Define the wealth-to-consumption ratio as

α: =
Wt

ct
,

in which case 1/αt is the dividend yield on the wealth portfolio. In our model

αt =
1

1− β

(Vt
ct

)1−ρ
,

which is seen to be stochastic unless ρ = 1, in which case our model is not
valid. This means that Et(ln

(
αt+1

αt−1

)
) > 0 is a valid assumption. Moreover,

covt(ln
αt+1

αt − 1
, lnRM

t+1) > 0

4In reality the (c,W ) is not traded, so the return to the wealth portfolio is not readily
estimated from available data. However, see Section 4.
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is also feasible in our model, where RM is the gross return on the market port-
folio. As a consequence the time-t gross return on the wealth portfolio can
exceed the growth rate on aggregate consumption, and the time-t covariance
between the wealth portfolio and the market portfolio can be larger than
the corresponding time-t covariance between the the consumption growth
rate and the market portfolio. These observations we will make use of later,
where we indicate reasonable adjustments when the market portfolio is not
a proxy for the wealth portfolio.

2.5 Application of the standard aggregator

In their most basic analysis, Epstein and Zin explore the CES-like specialized
preference ordering that is detailed below:

Vt = f(u(ct),mt+1) =
(

(1− β)c1−ρt + β
(
Et(V

1−γ
t+1 )

) 1−ρ
1−γ
) 1

1−ρ
(9)

with 0 < β < 1, 1 6= γ > 0, ρ > 0, ρ 6= 1. The parameter γ is the relative risk
aversion, ρ is time preference, the inverse of the EIS-parameter ψ, and β is
the impatience factor, with impatience rate δ = −ln(β). When the parameter
β is large, the agent puts more weight on the future and less weight on the
present, in accordance with the impatience interpretation of this parameter.
The preferences represented by (9) have axiomatic underpinnings (e.g., Chew
and Epstein (1991)).

In order to find the stochastic discount factor we must compute the quan-
tities in (4). These are

∂

∂u
f(u(ct),mt+1)u

′(ct) = (1− β)V ρ
t c
−ρ
t ,

∂

∂m
f(u(ct),mt+1) = βV ρ

t m
−ρ
t+1

and
h′(Vt+1)

h′(mt+1)
=

V −γt+1

m−γt+1

.

where we have chosen the usual CRRA specification for the utility function
h. This means that the stochastic discount factor takes the form

Mt+1 =
πt+1

πt
= β

(ct+1

ct

)−ρ( Vt+1

mt+1

)ρ−γ
. (10)

Also, from (9) the certainty equivalent can be written as

mt+1 =
( 1

β

(
(πtWt)

1−ρ − (1− β)c1−ρt

)) 1
1−ρ
. (11)
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Let c signify optimal consumption, and Wt is the agent’s wealth at time t,
given by

Wt =
1

πt
Et

( T∑
s=t

πscs

)
. (12)

If U and Vt are both homogeneous of degree one, or scale invariant, it follows
that

5U(c; c) = U(c).

Homogeneity is shown in the Appendix. Since the gradient is a linear func-
tional, it follows from the Riesz Representation Theorem and the first order
condition of optimality of c that

5U(c; c) = E(
T∑
s=0

πscs).

By (12) it follows that
U = V0 = W0π0.

Similarly, since 5Vt is also a linear functional, the following holds as well

5Vt(c; c) = E(
T∑
s=t

π(t)
s cs) = Vt(c), (13)

where π
(t)
s , s = t, t+1, · · · is the Riesz representation of this functional as of

time t. The last equality in (13) follows since Vt := Vt(c) is scale invariant
(see the Appendix). With reference to the state price deflator πt given in
(2), let

Yt =
t−1∏
s=0

fm(u(cs),ms+1)

h′(ms+1)
h′(Vs+1), t = 1, 2, · · ·

Under assumptions A1, A2 and A3 (see Skiadas (2009b)), it follows that

π(t)
s =

πs
Yt
, s = t, t+ 1, t+ 2, · · ·

In particular

π
(t)
t = fu(u(ct),mt+1)u

′(ct) = V ρ
t (1− β)c−ρt . (14)
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From the expression for Wt we now get

E(
T∑
s=t

π(t)
s cs) =

1

Yt
E(

T∑
s=t

πscs) =
1

Yt
Wtπt = Wtπ

(t)
t .

From (13) we then have

Vt = Vt(c) = Wtπ
(t)
t , (15)

and from (14) and (15) we finally obtain

Vt+1 =
(
Wt+1(1− β)c−ρt+1

) 1
1−ρ .

Following Cochran (2008), from this and (11) the stochastic discount factor
in (10) can be written

Mt+1 = β
(ct+1

ct

)−ρ( (
Wt+1(1− β)c−ρt+1

) 1
1−ρ(

1
β

(
(1− β)c−ρt Wt − (1− β)c1−ρt

)) 1
1−ρ

)ρ−γ

. (16)

By the definition of the gross real return on the wealth portfolio in (8), it
now follows directly that

Mt+1 = β
1−γ
1−ρ

(ct+1

ct

)−ρ 1−γ
1−ρ (

RW
t+1

) ρ−γ
1−ρ . (17)

This expression has been the starting point for much of the literature on re-
cursive utility in discrete time models, see e.g., Donaldson and Mehra (2008)
and Cochrane (2008), among many others. This is the stochastic discount
factor f irst derived by Epstein and Zin (1989-91), in their seminal papers,
based on dynamic programming techniques.

This is also our starting point for calibrations to the data of Mehra and
Prescott (1985). When doing so, we will take into account that the variable
Wt is the wealth portfolio of the agent, which may be different from the
market portfolio.

As has been claimed, without any adjustments a mere calibration to the
market portfolio may lead to negative equity premium for reasonably param-
eterized Epstein-Zin utility for the data of Mehra and Prescott (1985) (e.g.,
Azeredo (2007)), or to implausible values for the parameters γ and ρ for
reasonable values of β. As Donaldson and Mehra (2008) write (p 52) about
the (EZ) relationship in (17) ...”But, as we are aware, this alone does not, in
general, solve the puzzle”...
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About this we have much more to say in the next sections.

2.6 Risk premiums and the interest rate

First we derive approximate expressions for the risk premiums and the real
interest rate. To this end we use the pricing restriction Et{Mt+1R

R
t+1) = 1,

valid for any risky security R in the market, together with the relationship
lnRf

t+1 = −ln(Et(Mt+1)). In the pricing restriction we employ Taylor series
expansions involving terms containing up to second order moments. Next we
take the logarithm of the resulting equation, and use a Taylor series expansion
up to the second order. In the expression for the log of the gross, risk-free
interest rate we employ similar Taylor series expansions. Using this second
relationship in the first, we obtain the following results. The risk premiums
in log terms are given by

Et(lnR
R
t+1)− lnRf

t+1 =
ρ(1− γ)

1− ρ
covt

(
ln
(ct+1

ct

)
, lnRR

t+1

)
+
γ − ρ
1− ρ

covt

(
lnRW

t+1, lnR
R
t+1

)
, (18)

for any asset R in the economy. The log-return on the risk-free asset takes
the form

lnRf
t+1 =

1− γ
1− ρ

ln
( 1

β

)
+
ρ(1− γ)

1− ρ
Et ln

(ct+1

ct

)
− 1

2

ρ2(1− γ)2

(1− ρ)2
vart(ln

ct+1

ct
)

+
γ − ρ
1− ρ

Et lnRW
t+1 −

1

2

(ρ− γ)2

(1− ρ)2
vart(lnR

W
t+1)

+ ρ
1− γ
1− ρ

ρ− γ
1− ρ

covt
(
ln
(ct+1

ct

)
, lnRW

t+1

)
. (19)

For comparisons, in the conventional, expected utility model these rela-
tionships are

Et(lnR
R
t+1)− lnRf

t = γ covt

(
ln
(ct+1

ct

)
, lnRR

t+1

)
, (20)

and

lnRf
t+1 = ln

( 1

β

)
+ γ Et ln

(ct+1

ct

)
− 1

2
γ2 vart(ln

ct+1

ct
), (21)

which can be obtained from the recursive formulas by setting ρ = γ5.

5Weil (1989) do not develop expressions like (18) and (19), but rather analyze (5) and
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The latter term in the expression for the risk premiums, and the last
three term on the right hand side of (19) distinguish the recursive model
from the Eu-model. Superscript W signifies the wealth portfolio, M refers
to the market portfolio of the risky securities, while superscript R refers to
any (risky) asset in the market. In the application below R = M .

2.7 Calibrations

In Table 1 we provide the key summary statistics of the data in Mehra
and Prescott (1985) of the real annual return data related to the S&P-500,
denoted by M , as well as for the annualized consumption data, denoted c,
and the Government bills, denoted b 6.

Expectat. Standard dev. Covariances

Consumption growth 1.83% 3.57% cov(M, c) = .002226
Return S&P-500 6.98% 16.54% cov(M, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.000158
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889-1978. Discrete-time com-
pounding.

In our calibrations it will be convenient to consider a log transformation
and use log returns. The relevant summary statistics are given in Table 2.
Notice that this table is not a mere transformation of Table 1, but developed
from the the original data set used in the Mehra and Prescott (1985)-study, by
taking logarithms of the relevant yearly quantities, and basing the statistical
analysis on these transformed data points.7

Assuming for the moment that the market portfolio can be used as a
proxy for the wealth portfolio, we then interpret the risky asset as the value
weighted market portfolio M corresponding to the S&P-500 index. We then
have two equation in two unknowns to provide estimates for the preference
parameters by the ”method of moments”. The impatience rate δ = ln(1/β).
We denote the elasticity of intertemporal substitution in consumption by
ψ := 1/ρ, and refer to it as the EIS-parameter. Under this assumption we

(7) directly directly using a stationary two state Markov process and numerical methods.
6There are of course newer data by now, but these retain the same basic features. If

we can explain the data in Table 1, we can explain any of the newer sets as well.
7We have obtained the original data set from Professor R. Mehra. For example, a

log return is not obtained simply adjusted as µ − (1/2)σ2 from Table 1, which would be
(almost) true if returns and growth rates of consumption were normally distributed. We
observe some deviations from normality in the data.
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Expectat. Standard dev. Covariances

Consumption growth 1.75% 3.55% cov(M, c) = .002268
Return S&P-500 5.53% 15.84% cov(M, b) = .001477
Government bills 0.64% 5.74% cov(c, b) = −.000149
Equity premium 4.89% 15.95%

Table 2: Key US-data for the time period 1889-1978 in terms of log returns
of discrete-time compounding.

calibrate our model (18) and (19) for various values of β. The results are
given in Table 3 when the market portfolio is assumed a proxy for the wealth
portfolio.

Parameters γ ρ EIS δ

The expected utility model :
β = 1.08 21.97 21.97 .046 -.077
The recursive model:

β = .945 1.95 .000 - .057
β = .950 1.68 .290 3.45 .051
β = .955 1.41 .590 1.70 .046
β = .961 1.05 .950 1.05 .040
β = .962 1.02 .980 1.02 .039
β = .962 1.01 .990 1.01 .039
β = .963 .990 1.01 .990 .038
β = .964 .895 1.10 .909 .036

Table 3: Various Calibrations Consistent with Table 2.

These results may be seen in view of the comments made above, where
researchers express disappointing results for the EZ-model’s ability to explain
empirical observations. When the agent is as patient as commonly assumed
in applied work, the results for γ may become unacceptable, in particular if
δ is smaller than 2 per cent (β larger than .98). However, when β is between
.945 and .975, the other two parameters actually take on rather reasonable
values, considering our proxy for the wealth portfolio.

In this connection it may be of some interest to recall the study of An-
dersen et. al. (2008). They use controlled experiments with field subjects
in Denmark to elicit the impatience rate and risk preference, ignoring the
subject of time preferences. First, an estimate of δ around 25% is reached
assuming risk neutrality, second, a new estimate of δ around 10% is obtained
assuming risk aversion, with an associated estimate of γ around .74, both

15



based on arithmetic averaging.
Compared to corresponding results for the continuous-time model of Ep-

stein and Duffie (1992), which are calibrated by Aase (2015a), the latter
model is consistent with reasonable values of γ and ρ for lower values of δ.8

These results are encouraging, and not surprising considering the back-
ground for the data. For large parts of the period this data covers, the par-
ticipation in the stock market has been rather low, around 8-10 per cent on
average according to Vissing-Jørgensen (1999). This may call for a heteroge-
neous model (e.g., Aase (2014b)). Thus most consumers are not participating
in the stock market, in which case the issue of early resolution of uncertainty
(γ > ρ) may not be all that important. If the average agent obtains as
good return on the wealth portfolio as in the stock market, there seems to
be no point in stressing with the early information issue. So, for example,
the values for β above .963 yield γ < ρ, which may not be unreasonable with
this point of view in mind. However, we find it more reasonable that the
EIS parameter ψ > 1, which is violated in this range. Dagsvik et.al. (2006)
estimate the ψ, and find it larger than 1 9.

Weil (1989) obtained the values β = .95, γ = 45, ψ = .10 when the net
risk premium is .0572 and the risk-free rate is .0085. According to Table 1
this risk premium is a bit smaller that estimated, and the risk-free rate is
a bit larger, but this is the closest he got to these estimates. Nevertheless,
using these values for the moment, our model produces two possible solutions
for β = .95: (γ = .86, ψ = .84) and (γ = 31.94, ψ = .070). It is this last
one that is closest to what Weil (1989) obtained, using the two-state Makrov
model. When β = .94 , the solution for this risk premium and interest rate
is (γ = 1.24, ψ = 1.51), which is reasonable. In other words, assuming that
the underlying model is Markovian, yields results rather different from the
ones we obtain.

In Section 3 of the paper we take a different approach, and suppose we
can view exogenous income streams as dividends of some shadow asset, and
similarly with other non-marketed assets that make up the wealth portfolio.
In this case our model is valid if the market portfolio is expanded to include
the new assets. However, if the latter are not traded, then the return to the
wealth portfolio is not readily observable or estimable from available data.
Still we should be able to get a pretty good impression of how the two models
compare. This we do in Section 3 below, where it will also be observed that
this approach is close in spirit to considering a heterogeneous model. We also

8For example, when δ = .023, the two other parameters are γ = 1.15 and ρ = .90.
Also, the present model gives a better fit for values of δ between 3.5 and 5.5 percent.

9Weil (1989) assumed, for example, that ψ = .1, i.e., ρ = 10. Here this gives β = 1.9
and γ = −87.9.
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Figure 1: Calibration points in the (γ, ρ)-space

consider the example of Norway, where we have the relevant estimates and
various correlations with the market portfolio and aggregate consumption.

Figure 1 illustrates the feasible region in (ρ, γ)-space. For the conventional
model it is the 45◦-line shown (ρ = γ). For the recursive utility it is all of the
first quadrant, including the axes. The points above the 45◦-line represent
late resolution of uncertainty, the points below correspond to early resolution.

The larger region for the (ρ, γ)-combinations permitted by recursive util-
ity is not a frivolous generalization of the conventional, additive model. That
the richer structure of the recursive model is a modest extension is demon-
strated by the interpretations and plausible results yielded in the simple
expressions (18) and (19). The model is based on fundamental assumptions
and axioms of rational behavior (Chew and Epstein (1991)).

2.8 Including Government bills

There is an additional problem with the conventional, additive Eu model that
could be mentioned. From Table 2 we see that there is a negative correlation
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between Government bills and the consumption growth rate. Similarly there
is a positive correlation between the return on S&P-500 and Government
bills.

If we interpret Government bills as risk free in a yearly context, the
former correlation should be zero for the CCAPM-model to be consistent.
Since this correlation is not zero, then γ must be zero if Government bills are
to be considered as risk free, in which case the conventional model breaks
down. Since the Government bills used by Mehra and Prescott (1985) have
duration one month, and the data are yearly, Government bills are not the
same as Sovereign bonds with duration of one year. One month bills in a
yearly context will contain price risk 11 months each year, and hence the real
risk free rate should, perhaps, be set strictly lower that .80%.

With bills included, the conventional, additive model does not seem to
have enough ’degrees of freedom’ to match the data, since in this situation
the model contains three basic relationships and only two ’free parameters’.
Thus the conventional model can not have the correct state price deflator, or
stochastic discount factor.

Exactly what risk premium bills command we can here only stipulate.
With recursive utility we have a third equation, namely

Et(lnR
b
t+1)− lnRf

t+1 =
ρ(1− γ)

1− ρ
covt

(
ln
(ct+1

ct

)
, lnRb

t+1

)
+
γ − ρ
1− ρ

covt

(
lnRW

t+1, lnR
b
t+1

)
(22)

that can be solved together with the equations when R = M , and the equa-
tion for the interest rate. With the covariance estimates provided in Table 2,
and an estimate for the risk premium of Government bills of .0032 (log terms),
we have three equations in three unknowns, giving the following solution

β = .955, γ = 1.65 and ρ = .42

This is seen to be consistent with a typical value set in Table 3 in the region
of β-values where the model gives an otherwise reasonable fit10.

With reference to Section 3 below, where we do not assume that the
market portfolio is a proxy for the wealth portfolio, with a growth rate of the
wealth portfolio of 4.6 per cent (instead of the 5.53 per cent of the market

10For a risk premium larger than .00345 on Government bills, the calibration is consistent
with late resolution of uncertainty (e.g., β = .97, γ = .90, ρ = 1.08 when the premium is
.00345).
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portfolio), we obtain the calibrated values

β = .970, γ = 2.28 and ρ = .44,

for a risk premium of Government bills .0050 and a correlation coefficient
between the wealth portfolio and the market portfolio of .90.

3 The market portfolio is not a proxy for the

wealth portfolio

In this section we illustrate how the calibrations change when the market
portfolio is not a proxy for the wealth portfolio.

Parameters γ ρ EIS δ

Et(lnR
W
t+1) = .025, σW (t) = .05;

κW,M = .85
β = .994 2.32 .85 1.18 .006
β = .995 1.46 .95 1.05 .005

Et(lnR
W
t+1) = .025, σW (t) = .05;

κW,M = .60
β = .998 2.62 .90 1.11 .002
β = .999 1.85 .95 1.05 .001

Et(lnR
W
t+1) = .030, σW (t) = .08;

κW,M = .80
β = .990 2.77 .60 1.67 .010
β = .992 1.93 .80 1.25 .008

Et(lnR
W
t+1) = .035, σW (t) = .08;

κW,M = .70
β = .994 2.64 .70 1.42 .006
β = .996 1.59 .90 1.11 .004

Table 4: Calibrations with different assumptions for the wealth portfolio.

In the conventional Eu-model with constant coefficients, the growth rate
of the wealth portfolio has the same volatility as the growth rate of aggregate
consumption. Here we may consider the growth rate of consumption as
a lower bound for the growth rate of the wealth portfolio, and the same
relationship may seem reasonable between the two volatilities. Below we
assume the volatility of the wealth portfolio is .10 (in log terms). Also we set
the correlation coefficient κW,M between the return on the market portfolio
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and the growth rate of the wealth portfolio varies between .45 and .90. We
assume a correlation coefficient κW,c between the wealth portfolio and the
growth rate of consumption to be .8, while κM,c = .4 (Table 2). Also we
start in Table 4 with an annual return rate on the wealth portfolio of 2.5 per
cent. The results of these calibrations are presented in tables 4 and 5.

Parameters γ ρ EIS δ

Et(lnR
W
t+1) = .040, σW (t) = .10;

κW,M = .80
β = .979 2.85 .40 2.50 .021
β = .983 1.66 .80 1.25 .017

Et(lnR
W
t+1) = .040, σW (t) = .10;

κW,M = .50
β = .997 2.94 .70 1.43 .003
β = .999 1.69 .90 1.11 .001

Et(lnR
W
t+1) = .046, σW (t) = .12;

κW,M = .80
β = .976 2.19 .50 2.00 .011
β = .990 1.48 .95 1.05 .024

Et(lnR
W
t+1) = .046, σW (t) = .12;

κW,M = .60
β = .989 2.14 .70 1.43 .011
β = .990 1.78 .80 1.25 .010

Table 5: Calibrations with different assumptions for the wealth portfolio

In Table 4 the growth rate of the wealth portfolio varies between 2.5 and
3.5 per cent, and κW,M varies between .60 and .85. Compared to Table 3,
small values of the impatience rate δ fit well, corresponding to values of β
closer to one. The calibrated values for the relative risk aversion γ and the
time preference ρ are plausible.

Since the majority of the population did not invest in the stock market
for the period this data covers, the wealth portfolio with a growth rate of
about 3.5 per cent could well reflect the average real return (log terms) that
this majority received. This group also dominates in aggregate consumption
because of the sheer number of people this ’agent’ represents.

In Table 5 the growth rate of the wealth portfolio varies between 4.0 and
4.6 per cent, and κW,M varies between .50 and .80. Compared to Table 3,
reasonably small values of the impatience rate δ again fit well. Now values
of δ around .1 to 2.1 per cent go well together with reasonable values for the
other two parameters.
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The illustrations in this section give an indication of how the model fits
data when the market portfolio is not a proxy for the wealth portfolio. These
results are consistent with similar analyses for the continuous-time model,
see Aase (2014a). Many additional examples can be given, but the results
presented above are fairly representative.

The main change from the standard Lucas (1978)-model is the new pref-
erence, and we have no Markov assumptions related to the dynamics of the
economy.

When considering puzzles, it is desirable to alter as few features of the
original model as possible. In this paper we have followed that recipe. Com-
pared to the conventional model the difference is dramatic.

4 An empirical example

In this section we present the results of the Norwegian economy in which the
central statistical agent, Statistisk sentralbyr̊a, has provided the data needed,
also related to the wealth portfolio (from 1985 to 2013, see Hjortland (2015)).
Table 6 contains the data corresponding to Table 2.

Expectat. Standard dev. Covariances

Consumption growth 1.785% 1.366% cov(M, c) = .00068485
Return OBX 5.588% 32.795% cov(M, b) = .00189848
Government bills 2.079% 3.559% cov(c, b) = 8.299E-06
Equity premium 3.508% 32.407%

Table 6: Key Norwegian-data for the time period 1971-2014 in terms of log
returns of discrete-time compounding.

The estimates provided by Statistisk sentralbyr̊a (2014) are restricted to
include capital that is measurable in units of account: (i) human capital; (ii)
real capital; (iii) financial capital (including the Sovereign Pension Fund of
Norway); (iv) natural resources. For the whole period 72-75 per cent of the
national wealth can be attributed to human capital.

Based on further information from the statistical agent, e.g., popula-
tion growth, Hjetland (2015) has calculated the following per-capita esti-
mates related to the wealth portfolio (log terms): vart(ln(RW

t+1)) = .000333,
Et(lnR

W
t+1) = .0218, covt(lnR

W
t+1, lnR

M
t+1) = .00142, , covt

(
lnRW

t+1, ln
(
ct+1

ct

))
=

.000127. This gives the calibrated model reported in Table 7.
The values of the impatience rate vary little, so we have chosen to use

the time preference parameter ρ as the variable on the left-hand side of the
table. The parameter estimates are reasonable over most of the range shown.
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Parameters γ ρ EIS δ
ρ = .70 11.73 .70 1.42 .035
ρ = .80 8.72 .80 1.25 .039
ρ = .85 7.37 .85 1.17 .042
ρ = .90 5.19 .90 1.11 .044
ρ = .95 3.18 .95 1.05 .047
ρ = .97 2.34 .97 1.03 .049
ρ = .98 1.90 .98 1.02 .049
ρ = .99 1.45 .99 1.01 .050

Table 7: Calibrations of the recursive model to the Norwegian economy.

When ρ > 1 negative values for γ appear. This is in accordance with Dagsvik
et.al. (2006), who estimate EIS to be between 1 and 1.5 for the Norwegian
population. When ρ = 0.00, β = .983 and γ = 24.7. The relative risk
aversion γ varies between 2.77 and 1.90, when ρ varies between .96 and .98,
with corresponding values of β between .953 and .951.

This indicates that the average Norwegian is reasonably patient with
an impatience factor β ∈ (.95, .96), with a time preference parameter ρ ∈
(.80, .98), an EIS above 1 and a relative risk aversion γ ∈ (1.9, 8.7), all
rather plausible parameter values11.

5 Extensions

Given the period the US-data covers, where the participation in the stock
market has been low at times, a heterogeneous model seems appropriate
to explain empirical regularities. Several agents have been considered by
e.g., Guvenen (2009) in a discrete time model, and by Aase (2014b) in the
continuous-time model analogues to the one considered in the present paper.
In the latter plausible results were obtained by non-Markov methods.

The effects of recursive utility is seen clearly in applications to the life
cycle model: The recursive utility maximizer is not merely myopic, but takes
into account more than just the present. For the US-data, the typical con-
sumer smoothens consumption more than the Eu-maximizer, invests more in
good times, and can then consume more in bad times. This behavior goes
a long way in explaining the puzzle, provided the consumer prefers early

11For the standard Eu-model this data set gives the solution β = 1.91 (δ = −.65) and
γ = ρ = 51.22. The assumption that the economy is closed is of course restrictive, since
it imposes that consumption be equal to domestic output. When exports and imports
balance, this could still be a reasonable assumption.
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resolution of uncertainty to late.
In dealing with puzzles, it is desirable to change as few features of the

original model as possible, at the time. It seems as the change from the
conventional representation of Eu-preferences to recursive utility, taking into
account the non-Markovian property of the economy, is just what it takes.

6 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial and macroeconomics using recursive utility.
We have analyzed the Epstein-Zin model, which we have calibrated to the
data of Mehra and Prescott (1985) under various assumptions.

Observing that the economy is not Markovian, our formal approach is to
use directional derivatives. This method can handle state dependence, which
is important in dealing with recursive utility.

In this paper we first used the assumption that the market portfolio is
a proxy of the wealth portfolio. This corresponded to reasonable values
for the risk aversion and the time preference parameters, when the agent is
moderately impatient.

We then made the assumption that the market portfolio is not a satis-
factory proxy for the wealth portfolio. By assuming that we can view the
various wealth components as dividends of some shadow assets, the model is
valid if the market portfolio is expanded to include the new assets. Since a
majority of the latter are not traded, the return to the wealth portfolio is not
readily observable or estimable from available data. Still we can get a rea-
sonable impression of how the model fits data, by calibrating under various
reasonable assumptions.

In particular we assumed that the annual growth rate of the wealth port-
folio is lower that then return on the market portfolio. Also the annual
correlation between the wealth portfolio and the market portfolio we assume
to be smaller than the variance rate of the market portfolio. The parameters
indicate a less impatient and more risk averse agent compared to the situa-
tion when the market portfolio is a proxy for the wealth portfolio. In all, our
analyses indicate that the recursive model fits data well.

We also pointed out that the recursive model may explain the covariances
of Government bills with consumption and equity, for a moderate risk pre-
mium for the bills. Here the conventional, additive Eu-model can offer no
reasonable answers.

Finally we considered newer data from Norway, where we do have the nec-
essary summary statistics regarding the wealth portfolio. Here the recursive
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model fits the data surprisingly well.

7 Appendix 1

7.1 The derivation of the state price deflator

Proof of (3) in Section 2.3:

By backward induction we have that

5 VT (c;x) = limα↓0
f(u(cT + αxT ), 0)− f(u(cT ), 0)

α
= fu(u(cT ), 0)u′(cT )xT

and

5 VT−1(c;x) = fu(u(cT−1), h
−1(ET−1{h(VT )}))u′(cT−1)xT−1+

fm(u(cT−1), h
−1(ET−1{h(VT )}))

h′(h−1(ET−1{h(f(cT , 0))})
ET−1{h′(VT )5 VT (c;x)}.

Using induction we obtain

5 Vt(c;x) = fu(u(ct),mt+1)u
′(ct)xt+

fm(u(ct),mt+1)

h′(mt+1)
Et{h′(Vt+1)5 Vt+1(c;x)} (23)

for t = 0, 1, · · · , T − 1. Using the relation (23) iteratively, this gives

5U(c;x) = 5V0(c;x) = E
{
fu(u(c0),m1)u

′(c0)x0+

fm(u(c0),m1)

h′(m1)
h′(V1)5 V1(c;x)} =
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E
{
fu(u(c0),m1)u

′(c0)x0 +
fm(u(c0),m1)

h′(m1)
h′(V1)

[
fu(u(c1),m2)u

′(c1)x1

+
fm(u(c1),m2)

h′(m2)
h′(V2) ·

[
fu(u(c2),m3)u

′(c2)x2

+
fm(u(c2),m3)

h′(m3)
h′(V3)5 V3(c;x)

]]}
= · · ·

= E
{ T∑

t=0

xt fu(u(ct),mt+1)u
′(ct)

t−1∏
s=0

fm(u(cs),ms+1)

h′(ms+1)
h′(Vs+1)

}
. (24)

From this we obtain that the state price deflator is given by (3). �.

Derivation of (13) in Section 2.5.

Towards this end, note that both utility U and future utility at time t, Vt,
are homogeneous of degree one, so by the definition of directional derivatives
it follows that for c optimal

5 U(c; c) = limα↓0
U(c+ αc)− U(c)

α
= limα↓0

U(c(1 + α))− U(c)

α

= limα↓0
(1 + α)U(c)− U(c)

α
= limα↓0

αU(c)

α
= U(c)

where the third equality uses the homogeneity of U . It follows from the
expression for the gradient of U in (1) that

5U(c; c) = E
( T∑
s=0

πscs

)
= W0π0 = U(c),

where W0 is the wealth of the representative agent at time zero, i.e., the
second equality follows from the definition of Wt in (12).

Moving to time t, let Vt(c) denote future utility at the optimal consump-
tion c for our utility representation. Since Vt is continuously differentiable,
by the Riesz’ Representation Theorem the gradient is a linear functional, so
that

5Vt(c; c) = Et

( T∑
s=t

π(t)
s cs

)
,

where π(t) is the Riesz representation of 5Vt(c). As explained in the text,

π
(t)
s = πs/Yt for all t ≤ s ≤ T , and by homogeneity of Vt the same, basic
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relationship holds for the associated directional derivatives, i.e.,

5Vt(c; c) = Vt(c).

Using (12) and π
(t)
s = πs/Yt, this shows (13). �
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