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Abstract

Motivated by the problems of the conventional model in rational-
izing market data, we derive the equilibrium interest rate and risk pre-
miums using recursive utility in continuous time. In a representative-
agent framework our model allows for the separation of risk aversion
from the time preference. We demonstrate how this separation gives
new insights in asset pricing: The expressions for risk premiums com-
bine the market-based CAPM with the consumption-based CAPM.
The equilibrium real interest rate now combines characterizations of
preferences and market returns. This model explains both the Equity
Premium Puzzle and the Risk-Free Rate Puzzle with good margin,
and give solutions consistent with early resolution of uncertainty.

KEYWORDS: The equity premium puzzle, the risk-free rate puzzle,
recursive utility, early resolution, utility gradients, dynamic program-
ming, The Stern Review
JEL-Code: G10, G12, D9, D51, D53, D90, E21.

1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Are asset prices too volatile relative
to the information arriving in the market? Is the mean risk premium on
equities over the riskless rate too large? Is the real interest rate too low? Is
the market’s risk aversion too high?

∗NHH Norwegian School of Economics, 5045 Bergen Norway and Centre of Mathemat-
ics for Applications (CMA), University of Oslo, Norway. The paper was presented at the
international conference ”The Social Discount Rate” held in Bergen in May, 2012, and
organized by K̊are Petter Hagen in cooperation with the Royal Ministry of Finance. Spe-
cial thanks to Thore Johnsen, Gunnar Eskeland and Darrell Duffie for valuable comments,
and to Rajnish Mehra for providing the data.
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Mehra and Prescott (1985) raised some of these questions in their well-
known paper, using a variation of Lucas’s (1978) pure exchange economy
with a Kydland and Prescott (1982) ”calibration” exercise. They chose the
parameters of the endowment process to match the sample mean, variance
and the annual growth rate of per capita consumption in the years 1889 -
1978. The puzzle is that they were unable to find a plausible parameter pair
of the utility discount rate and the relative risk aversion to match the sample
mean of the annual real rate of interest and of the equity premium over the
90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

We utilize a continuous time setting, to take full advantage of the analytic
power of infinite dimensional analysis. We use the framework established by
Duffie and Epstein (1992a-b) and Duffie and Skiadas (1994) which elaborates
the foundational work by Kreps and Porteus (1978) of recursive utility in
dynamic models. This model is extended to a continuous time setting, where
future utility is a conditional expected time integral of a felicity index minus
a measure of Arrow-Pratt absolute risk aversion multiplied by the variance
rate of utility. When there is no uncertainty, the felicity index does not
depend upon risk aversion.

As is well know recursive utility leads to the separation of risk aversion
from the elasticity of intertemporal substitution in consumption, within a
time-consistent model framework. We demonstrate that this gives risk pre-
miums which combine the market-based CAPM with the consumption-based
CAPM. The volatility of the market portfolio enters the expression for the
risk premium. The equilibrium interest rate now combines characterizations
of preferences and market returns. It contains two new terms connecting the
risk free asset to the risky securities. In these new terms the risk aversion
enters, while all the conventional terms are only affected by consumption
substitution. The new feature is the form of the endogenous coefficients of

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).
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these factors in terms of the parameters of the problem.
We calibrate our model to the data of Mehra and Prescsott (1985), and the

model can explain these data with reasonable values for the parameters of the
utility function. In addition to giving new insights about these interconnected
puzzles, the model is likely to give many other results that are difficult, or
impossible, to obtain using the conventional model.

Epstein and Zin (1989) and Weil (1989-90) study recursive intertemporal
utility in discrete-time. This utility functions permit a certain degree of sep-
aration between substitution and risk aversion and has been used by several
authors, like Campbell (1993) and Epstein and Zin (1991). To our knowl-
edge this approach has not solved the problems that this paper addresses.
Our analysis also gives a clear indication why this is so, including why Weil
(1989) found that recursive utility leads to even larger values for the risk
free interest rate than the conventional model (the so-called Risk-Free Rate
Puzzle).

We rely on the recursive utility approach in Duffie and Epstein (1992a-
b), a development that came after the paper by Weil (1989). While Duffie
and Epstein (1992a) used dynamic programming to find risk premiums, we
employ first principles (directional derivatives and utility gradients). It turns
out that our solution, when calibrated to market data, is consistent with early
resolution of uncertainty for very plausible values of the parameters.

Most developments that calibrate to market data use dynamic program-
ming, in discrete time, or in continuous time. These models typically fit mar-
ket data best at late resolution of uncertainty, and then only for relatively
large values of the model parameters. It does not seem reasonable that the
typical investor in the US stock market, for the 90-year period covered by the
data of Mehra and Prescott (1985), prefers late to early resolution of uncer-
tainty, is very risk averse, and requires a large compensation for consumption
substitution.

This indicates that for recursive utility, where uncertainty is ”dated” by
the time of its resolution, and where the individual regards uncertainties
resolving at different times as being different, the dynamic programming
approach may be too restrictive, at least for the application to the market
data that we have in mind.

Also we make use of dynamic programming, although in a cursory sense,
namely to connect the volatility of the indirect utility to the volatility of
the market portfolio. That our approach gives different results from those
of Duffie and Epstein (1992a) is apparent, and emphasized by the following
statement of the authors, who write: ...”It is a still unresolved empirical
question whether recursive utility or one of the above alternatives, or per-
haps a suitable composite, best explains and helps to organize the observed
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behavior of consumption and asset returns”... Also, see Kocherlakota (1996),
who maintains that the equity premium is still a puzzle.

There is by now a long standing literature that has been utilizing recursive
preferences. We mention Avramov and Hore (2007), Avramov et. al. (2010),
Eraker and Shaliastovich (2009), Hansen, Heaton, Lee, Roussanov (2007),
Hansen and Scheinkman (2009), Wacther (2012), Bansal and Yaron (2004),
Campbell (1996) and Bansal and Yaron (2004) to name some important
contributions. Related work is also in Browning et. al. (1999), and on
consumption see Attanasio (1999).

The paper is organized as follows: In Section 2 we explain the problems
with the conventional model, and give a preview of the results. In Section 3
we present a brief introduction to recursive utility along the lines of Duffie and
Epstein (1992a-b) and Duffie and Skiadas (1994), and set up the first order
conditions of optimal consumption. In Section 4 we derive risk premiums
for risky assets and in Section 5 we find the equilibrium interest rate. In
Section 6 we connect the volatility of the future utility, a quantity in the
representation of preferences in our approach, to the volatility of the market
portfolio. In this section we offer an explanation why our results deviate
from the rest of the extant literature. In Section 7 we tie the various pieces
together, present our main results, and show how both the Equity Premium
Puzzle and the Risk-Free Rate Puzzle can be resolved with good margin, for
a representative agent who favors early to late resolution of uncertainty.

Section 8 provides a discussion of the implications of our results. Just to
give an illustration of the variety of economic consequences of our findings,
in this section we present an application to the economics of climate change.
Section 9 concludes.

2 The problems with the standard model

2.1 The additive and separable Eu-model

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
tion that is the expectation of a sum, or a time integral, of future discounted
utility functions. The model has been criticized for several reasons. First,
it does not perform well empirically. Second, the standard specification of
utility can not separate the risk aversion from the elasticity of intertemporal
substitution, while it would clearly be advantageous to disentangle these two
conceptually different aspects of preference. Third, while this representation
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seems to function well in deterministic settings, and for timeless situations,
it is not well founded for temporal problems (e.g., derived preferences may
not satisfy the substitution axiom (Mossin (1969)).

In the conventional model the utility U(c) of a consumption stream ct is
given by

U(c) = E
{∫ T

0

u(ct, t) dt
}

(1)

where the felicity index u has the separable form

u(c, t) =
1

1− γ
c1−γ e−β t. (2)

The parameter γ is the representative agent’s relative risk aversion and β is
the utility discount rate, or the impatience rate, and T is the time horizon.
These parameters are assumed to satisfy γ > 0, β ≥ 0, and T ≤ ∞.

In this model the risk premium (µR − r) of any risky security can be
shown to have the simple form

µR(t)− rt = γ σRc(t) (3)

where rt is the equilibrium real interest rate at time t, and the term σRc(t) =∑d
i=1 σR,i(t)σc,i(t) is, by the Ito-isometry, the covariance rate between returns

of the risky asset and the growth rate of aggregate consumption at time
t, a measurable and adaptive process satisfying standard conditions. The
dimension of the Brownian motion is d > 1. This is the continuous-time
version of Breeden’s consumption-based CAPM. Similarly, the expression for
the risk-free real interest rate is

rt = β + γ µc(t)−
1

2
γ (γ + 1)σ′c(t)σc(t). (4)

The process µc(t) is the annual growth rate of aggregate consumption and
(σ′c(t)σc(t)) is the annual variance rate of consumption growths, both at time
t, again dictated by the Ito-isometry. Both these quantities are measurable
and adaptive stochastic processes, satisfying standard conditions. The return
processes as well as the consumption growth rate process in this paper are
also assumed to be ergodic processes, implying that statistical estimation
makes sense.

Notice that in the model is the instantaneous correlation coefficient be-
tween returns and the consumption growth rate given by

κRc(t) =
σRc(t)

||σR(t)|| · ||σc(t)||
=

∑d
i=1 σR,i(t)σc,i(t)√∑d

i=1 σR,i(t)
2

√∑d
i=1 σc,i(t)

2

,
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Expectation Standard deviation

Consumption growth 1.83% 3.57%
Return S&P-500 6.98% 16.67%
Government bonds 0.80% 5.67%
Equity premium 6.18% 16.54%

Table 1: Key US-data for the time period 1889 -1978. σ̂Mc = .003

and similarly for other correlations given in this model. Here−1 ≤ κRc(t) ≤ 1
for all t.

In Table 1 we reproduce from Mehra and Prescott (1985) the key summary
statistics of the real annual return data related to the S&P-500, denoted by
M , as well as for the annualized consumption data 2. We have estimated the
covariance σMc(t) directly from the data set to be σ̂Mc = .003.3. This gives
the estimate κ̂Mc = .5 for the instantaneous correlation coefficient κ(t).

Interpreting the risky asset as the value weighted market portfolio M cor-
responding to the S&P-500 index, we have two equation in two unknowns to
provide estimates for the preference parameters by the method of moments.
The result is

γ = 20.91 β = −.08,

i.e., a relative risk aversion of about 20 and an impatience rate of minus 8%.
If we insist on a nonnegative impatience rate (as we should, but see

Kocherlakota (1990)), this means that the real interest rate produced by
the model is larger than than 9% (when β = .01, say) for the period con-
sidered, but it is estimated, as we see from Table 1, to be less than one per
cent.

We denote the elasticity of intertemporal substitution in consumption by
ψ, and refer to it as the EIS-parameter. In the standard model ψ = 1/γ,
so if the risk aversion is as large as indicated in the above, it means that
ψ = .048, which is too low for the average individual.

To better understand the problems with contemporary asset pricing, we
propose to consider recursive utility along the lines of Duffie and Epstein
(1992a-b), where these two quantities can be separated. This will have clear
implications for risk premiums and the equilibrium interest rate, as we shall
demonstrate.

2There are of course newer data by now, but these retain the same basic features. If
we can explain the data in Table 1, we can explain any of the newer sets as well.

3The full data set was provided by Professor Rajnish Mehra.

6



2.2 Preview of our results

Let ρ the time preference of the individual. Our approach allows ρ = 1/ψ
to be different from risk aversion γ. Based on the analysis to follow, the two
relationships corresponding to (3) and (4) are, with the same notation as
above, given as follows:

µR(t)− rt = ρ σRc(t) +
(
γ − ρ

)
σRM(t) (5)

and

rt = β + ρµc(t)−
1

2
ρ
(
ρ+ 1

)
σ′c(t)σc(t)+

ρ(ρ− γ)σcM(t) +
1

2
(ρ− γ)(1− ρ)σ′M(t)σM(t). (6)

respectively.
The risk premiums in (5) are endogenously derived and the same is true

for the expression for the equilibrium interest rate. Here σM(t) signifies the
volatility of the return on the market portfolio of the risky securities, and
σRM(t) is the instantaneous covariance of the returns on the risky asset with
the return of the market portfolio, and σcM(t) is the instantaneous covariance
between consumption growths and the return on the market portfolio. In
the model all these quantities are measurable, adaptive stochastic processes
satisfying standard conditions.

The risk premium of any risky asset in (5) is seen to be a linear combina-
tion of the market-based CAPM of Mossin (1966) and the consumption-based
CAPM of Breeden (1979). If γ = ρ risk premiums reduce to those of the
latter.

In order to demonstrate the rich structure of our model, we fix the impa-
tience rate β = .01, and solve the two non-linear equations (5) and (6) using
the data of Table 1, when R = M . The results are

γ = 2.83, ρ = .68, and EIS = 1.47.

as the method of moment estimates for the remaining parameters in the
recursive utility function. The low value of the time preference ρ (and cor-
responding high value of ψ = 1/ρ) indicates a representative agent who does
not require too much compensation for consumption substitution in a de-
terministic world. The value 2.83 must be considered as reasonable for the
relative risk aversion γ, in particular compared to the value of 20.

In other words, with these values of the preference parameters of the
recursive-utility-representative-agent, the model can explain an equilibrium
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interest rate and equity premium estimated to, respectively

r̂ = .0080 and (µ̂M − r̂) = .0618

for the consumption/market data used by Mehra and Prescott (1985), pre-
sented in Table 1. This is a solution of both the Equity Premium Puzzle
of Mehra and Prescott (1985) as well as the Risk-Free Rate Puzzle of Weil
(1989).

That the the risk premium can be large in our model is illustrated by the
market based CAPM term, when γ > ρ, explaining the ”missing link” of the
risk premium in the CCAPM-specification (that has puzzled economists for
more that 27 years now). The richer model allows a reconciliation of the data
in Table 1. For this data set the CAPM-term is 0.0598 and the CCAPM-term
is .00204 adding to the total of .0618, i.e., the CAPM accounts for 96.7% of
the equity premium.

One challenge with the conventional model is that the interest rate is too
high. It is lower in our model for several intuitive reasons: The second term
in (6) containing µc contributes only with 1.4%, while it is of the order of
38% in the standard model (4). The precautionary savings term contributes
with 29%, resulting in a difference of 9%. In our model this difference is
1.1%. In addition are the two last terms in (6) negative if γ > ρ and ρ < 1,
both of which we find plausible. This explains an equilibrium real interest
rate of less than one per cent for the data of Table 1 with very reasonable
parameters.

If ρ = 0 the model reduces to

µR(t)− rt = γ σRM(t), rt = β − γ

2
σ′M(t)σM(t).

The risk premium is that of the ordinary CAPM-type, while the interest rate
is new. This version of the model corresponds ”neutrality” of consumption
transfers in some sense, to be explained later. Solving the two non-linear
equations consistent with the data of Table 1, we obtain

γ = 2.22 and β = .039.

In the conventional model this simply gives risk neutrality, i.e., γ = 0, so this
model gives a risk premium of zero, and a short rate of r = β.

When the instantaneous correlation coefficient κMc(t) between returns
and the aggregate consumption growth rate is small, our model handles this
situation much better than the conventional one. The extreme case when
κMc(t) = 0 is, for example, consistent with the solution presented above for
ρ = 0, which is a reasonable one. If this is the case, the discrepancy between
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the standard model and the present one is even more striking than when
κ̂Mc = .5, as it is for the data. For example, in the hypothetical situation
that κMc(t) = .01, but the rest of the summary statistics are as in Table 1, the
conventional model gives γ = 1045 and β = 675, while our model provides
the solution β = .01, γ = 2.82, ρ = .60 corresponding to EIS = 1.67. The
reason for this is that the second term in the equity premium is unaffected
by κMc(t), and a decrease in κMc(t) only leads to a slight increase in the
difference (γ − ρ), while the expression for the interest rate merely depends
on κMc(t) in the fourth term on the right-hand side, and otherwise changes
slightly with ρ and (ρ− γ).

Figure 1 illustrates the the feasible region in (ρ, γ)-space. For the con-
ventional model it is the 45◦-line shown (ρ = γ). For the recursive utility
model it is all of the first quadrant, including the axes. The points above the
45◦-line represent late resolution of uncertainty, the points below correspond
to early resolution. As can be seen, both the calibration point (ρ = .68, γ =
2.83, β = .01) reported above and the point corresponding to the market
based CAPM, called CAPM++ in the figure, (ρ = 0, γ = 2.22, β = .039),
are in the early resolution part.

Estimates of the EIS-parameter seem difficult to obtain for several rea-
sons, and the results will naturally depend on circumstances. In e.g., Dagsvik
et. al. (2006) an estimate of this parameter is suggested to be in the range
from 1 to 1.5.

The larger region for the (ρ, γ)-combinations permitted by our model is
not a frivolous generalization of the conventional model. Numerous general-
izations have been presented during the last 27 years without achieving any
acceptable resolution. That the richer structure of the recursive model is a
modest extension is demonstrated by the interpretations and plausible results
yielded in our simple expressions. It is based on fundamental assumptions
and axioms of rational behavior.

The risk premium of any risky asset is seen to depend on other risky
assets through the volatility of the market portfolio, and the return rate on
government bonds depends both on how aggregate consumption covariates
with the stock market as well as the size the variance of the market portfolio.

Initially one would think that these features should be reflected also in
the corresponding formulas in the conventional model, but at the outset it is
hard to say if these aspects are internalized or not.
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Figure 1: Time preference ρ as a function of risk aversion γ

3 Recursive Stochastic Differentiable Utility

3.1 Specification of the utility

In this section we give a brief introduction to recursive, stochastic, differen-
tiable utility along the lines of Duffie and Epstein (1992a-b) and Duffie and
Skiadas (1994).

Despite the fact that the analysis naturally becomes more technically
involved once we depart from the additive and separable framework of the
expected utility representation, we obtain surprisingly simple and transpar-
ent results when we use the Kreps-Porteus specification for the felicity index.
The issue of when uncertainty is resolved is an important one in this theory,
as Figure 1 illustrates.

We are given a probability space (Ω,F ,Ft, t ∈ [0, T ], P ) satisfying the
usual conditions, and a standard model for the stock market with Brow-
nian motion driven uncertainty, N risky securities and one riskless asset.
Consumption processes are chosen form the space L of square integrable
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progressively measurable processes with values in R+.
The stochastic differential utility U : L→ R is defined as follows by two

primitive functions: f : L×R→ R and A : R→ R.
The function f(ct, Vt) is a felicity index at time t, and A is a measure of

absolute risk aversion of the Arrow-Pratt type for the agent. In addition to
current consumption ct, the felicity index also depends on future utility.

The utility process V for a given consumption process c, satisfying VT = 0,
is given by the representation

Vt = Et

{∫ T

t

(
f(cs, Vs)−

1

2
A(Vs)σV (s)′σV (s)

)
ds
}
, t ∈ [0, T ] (7)

where Et denotes conditional expectation given Ft and σV (t) is an Rd-valued
square-integrable progressively measurable volatility process. Here d is the
dimension of the Brownian motion Bt. We think of Vt as the remaining utility
for c at time t, conditional on current information Ft, and A(Vt) is penalizing
for risk.

If, for each consumption process ct, there is a well-defined utility process
V , the stochastic differential utility U is defined by U(c) = V0, the initial
utility. The pair (f, A) generating V is called an aggregator.

Since VT = 0 and
∫
σV (t)dBt is a martingale, (7) has the stochastic

differential equation representation

dVt =
(
− f(ct, Vt) +

1

2
A(Vt)σV (t)′σV (t)

)
dt+ σV (t) dBt (8)

If terminal utility different from zero is of interest, like for life insurance,
then VT may be different from zero.

We think of A as associated with a function h : R → R such that
A(v) = −h′′(v)

h′(v)
, where h is two times continuously differentiable. U is mono-

tonic and risk averse if A(·) ≥ 0 and f is jointly concave and increasing
in consumption. Bellman’s characterization of optimality can be applied in
such a way that state variables reflecting past consumption are unnecessary.
The fact that past consumption does not matter, in the sense that the con-
tinuation utility Vt is independent of consumption prior to t, is a consequence
of the prospective nature of (7). 4

Stochastic differential utility disentangles intertemporal substitution from
risk aversion: In the case of deterministic consumption, σV (t) = 0 for all t.
Hence risk aversion A is then irrelevant, since it multiplies a zero variance.

4In the general case A(·) is associated with a local gradient representation (LGR)
M(v, x) of a certainty equivalent m. When m = h−1(E[h(V )]) for h a von Neumann-
Morgenstern index, then A(Vt) = −M1,1(Vt, Vt) where M1,1(v, x) = ∂2M(v, x)/∂v2.
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Thus certainty preferences, including the willingness to substitute consump-
tion across time, are determined by f alone. Only risk attitudes are affected
by changes in A for f fixed. In particular, if

Ã(·) ≥ A(·)

where U and Ũ are utility functions corresponding to (f, A) and (f, Ã) respec-
tively, then Ũ is more risk averse than U in the sense that any consumption
process c rejected by U in favor of some deterministic process c̄ would also
be rejected by Ũ . Thus

U(c) ≤ U(c̄)⇒ Ũ(c) ≤ Ũ(c̄). (9)

Here it is important that f(ct, Vt) at the outset does not depend on risk
aversion, only on time substitution. In contrast, assuming a CRRA-felicity
index in the conventional model, the corresponding remaining utility at t is
given by

Vt = Et

{∫ T

t

1

1− γ
cse
−β(s−t)c−γs ds

}
, t ∈ [0, T ].

When γ ≥ 1 there is a reward for risk, and only when γ is small there will be
a penalty for risk. However, it is not clear if these effects are caused by risk
aversion or EIS. When c is deterministic, the only sensible interpretation is
that of pure time substitution.
Examples.

1) The standard additive and separable utility has aggregator

f̃(c, v) = u(c)− βv, Ã = 0

This can be shown by demonstrating that the standard utility function is a
solution of the differential equation (8) for this specification of the aggregator.
If c is a stochastic process, so is Vt.

If u has the usual properties, then we can also define the aggregator

f(c, v) = β
u(c)− u(v)

u′(v)
, A(v) = −u

′′(v)

u′(v)
. (10)

By using Ito’s lemma on u(Vt) we obtain that the corresponding utility pro-
cess V satisfies

Vt = u−1
(
Et
{
β

∫ T

t

u(cs)e
−β(s−t) ds

})
.

In particular the utility function Ũ defined by (f̃ , Ã) (the standard additive
and separable one) and U defined by (f, A) are ordinally equivalent since
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u−1(·) is increasing, and thus represents the same preference ordering of con-
sumption processes.

2) The Kreps-Porteus utility corresponds to the aggregator in (10) with
the CES specification

f(c, v) =
β

1− ρ
c1−ρ − v1−ρ

v−ρ
and A(v) =

γ

v
(11)

so that u(c) = c1−ρ

1−ρ and h(v) = v1−γ

1−γ . If, for example, A(v) = 0 for all v,
this means that the recursive utility agent is risk neutral, but this situation
is different from having A = 0 in 1).

Here ρ ≥ 0, ρ 6= 1, β ≥ 0, γ ≥ 0, γ 6= 1 (when ρ = 1 or γ = 1 it is
the logarithms that apply). The elasticity of intertemporal substitution in
consumption ψ = 1/ρ. The parameter ρ is the time preference parameter
referred to in Section 2.2. Here u(·) and h(·) are different functions, resulting
in the desired disentangling of γ from ρ.

As for the standard additive utility, this utility function has an ordinally
equivalent specification. When the aggregator (f, A) is given corresponding
to the utility function U , there exists a strictly increasing and smooth func-
tion ϕ(·) such that the ordinally equivalent Ũ = ϕ ◦ U has the aggregator
(f̃ , Ã) where

f̃(c, v) = ((1− γ)v)−
γ

1−γ f(c, ((1− γ)v)
1

1−γ ), Ã = 0.

Thus

Ũ =
1

1− γ
U1−γ.

This is the specification we work with, where f̃ has the CES-form

f̃(c, v) =
β

1− ρ
c1−ρ − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
1−ρ
1−γ−1

, Ã(v) = 0. (12)

The corresponding utility Ũ retains the essential features, namely that of
disentangling intertemporal elasticity of substitution from risk aversion. The
primary reason for working with the transformed version is that it leads to
a manageable form for the Hamilton-Jacobi-Bellman equation.

From now on we use the simpler notation (f, 0) (instead of the tildes) for
the representation given in (12), and U for the corresponding utility function.
An analysis based directly on (11) is carried out elsewhere.
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3.2 The First Order Condition

The representative agent’s problem is to solve

supc̃∈LU(c̃)

subject to

E
{∫ T

0

c̃tπtdt
}
≤ E

{∫ T

0

ctπtdt
}
.

The Lagrangian for the problem is given by

L(c̃;λ) = U(c̃)− λE
(∫ T

0

πt(c̃t − ct)dt
)

In order to find the first order condition for the representative consumer’s
problem, we use Kuhn-Tucker and directional derivatives in function space.
The problem is well posed since U is increasing and concave and the con-
straint is convex. In maximizing the Lagrangian of the problem, we calculate
the directional derivative 5U(c;h), which equals (5U(c))(ht) where 5U(c)
is the gradient of U at c.

Since U is continuously differentiable, this gradient is a linear and con-
tinuous functional, and thus, by the Riesz representation theorem, it is given
by an inner product. By Duffie and Skiadas (1994) this utility gradient is

(5U(c))(ht) = E
(∫ T

0

Yt
∂f

∂c
(ct, Vt) ht dt

)
. (13)

where

Yt = exp
(∫ t

0

∂f

∂v
(cs, Vs) ds

)
a.s. (14)

The first order condition is that the directional derivative of the Lagrangian
is zero at the optimal ct in all directions h ∈ L:

5L(c, λ;h) = 0 for all h ∈ L
This is equivalent to

E
{∫ T

0

(
Yt

∂f

∂c
(ct, Vt)− λπt

)
ht dt

}
= 0 for all h ∈ L. (15)

The result is that for the Riesz-representation of the gradient of U to be
equal to the state price deflator πt it is necessary and sufficient that

λπt = Yt
∂f

∂c
(ct, Vt) a.s. (16)

For the representative agent the optimal consumption process is the given
aggregate consumption c in society, and for this c the remaining utility Vt at
time t is optimal. We now turn to risk premiums using this result.
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4 Risk Premiums for Recursive Utility

We start by observing that the Riesz-representation for stochastic differential
utility for the representative agent is equal to the state price πt provided

πt = Yt fc(ct, Vt). (17)

Aggregate consumption is exogenous, with dynamics on of the form

dct
ct

= µc(t) dt+ σc(t) dBt, (18)

where µc(t) and σc(t) are measurable, Ft adapted stochastic processes, satis-
fying appropriate integrability properties. This is also assumed for processes
representing returns. In addition we assume these processes to be ergodic,
so that we may replace time averages by state averages.

Similarly the process Vt follows the dynamics

dVt
(1− γ)Vt

= µV (t) dt+ σV (t) dBt (19)

where

µV (t) = − β

1− ρ

(c1−ρt − ((1− γ)Vt)
1−ρ
1−γ

((1− γ)Vt)
1−ρ
1−ρ−1

)
.

From the FOC (17) we then get the dynamics of the state price deflator:

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt). (20)

Using Ito’s lemma this becomes

dπt = Yt fc(ct, Vt) fv(ct, Vt) dt+ Yt
∂fc
∂c

(ct, Vt) dct + Yt
∂fc
∂v

(ct, Vt) dVt

+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) (dct)
2 +

∂2fc
∂c ∂v

(ct, Vt) (dct)(dVt) +
1

2

∂2fc
∂v2

(ct, Vt) (dVt)
2
)
.

(21)

Here

fc(c, v) :=
∂f(c, v)

∂c
=

β c−ρ(
(1− γ)v

) 1−ρ
1−γ−1

,

fv(c, v) :=
∂f(c, v)

∂v
=

β

1− ρ

(
c1−ρ

(
(1− γ)v

)− 1−ρ
1−γ (ρ− γ) + (γ − 1)

)
,

∂fc(c, v)

∂c
= − β ρ c−ρ−1(

(1− γ)v
) γ−ρ

1−γ
,

∂fc(c, v)

∂v
= β(ρ− γ) c−ρ

(
(1− γ)v

)− 1−ρ
1−γ ,
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∂2fc
∂c2

(c, v) =
β ρ (1 + ρ) c−ρ−2(

(1− γ)v)
1−ρ
1−γ−1

,
∂2fc
∂c ∂v

(c, v) =
ρ β (γ − ρ) c−ρ−1(

(1− γ)
) 1−ρ

1−γ
,

and
∂2fc
∂v2

(c, v) =
β (γ − ρ) (1− ρ) c−ρ(

(1− γ)v
) 1−ρ

1−γ+1
.

Denoting the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (22)

from (21) and the above expressions we now have that the drift and the
diffusion terms of πt are given by

µπ(t) = Yt

( β2

1− ρ
(ρ− γ) c

2(1−ρ)−1
t ((1− γ)Vt)

− 2(1−ρ)
1−γ +1

− (1− γ)β2

1− ρ
c−ρ((1− γ)Vt)

− 1−ρ
1−γ+1 − β ρ c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 µc(t)

−β c−ρt (ρ−γ) ((1−γ)Vt)
− 1−ρ

1−γ f(ct, Vt)+
1

2
β ρ (1+ρ) c−ρt ((1−γ)Vt)

− 1−ρ
1−γ+1 σ′c(t)σc(t)

− β ρc−ρt (ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ+1σcV (t)

− 1

2
β (ρ− γ) (1− ρ) c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 σ′V (t)σV (t)

)
, (23)

and

σπ(t) = Yt β c
−ρ
t

(
(−ρ)σc(t) ((1− γ)Vt)

− 1−ρ
1−γ+1+

(ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ ((1− γ)Vt)σV (t)
)

(24)

respectively.
The risk premium is in general given by

µR(t)− rt = − 1

πt
σRπ(t), (25)

where σRπ(t) is the instantaneous covariance of the increments of R and π.
Interpreting πt as the price of the consumption good at time t, by the first
order condition it is a decreasing function of consumption c since fcc < 0. So
in ”good times” when consumption is high, the state price is low and returns
are high for a typical security. Accordingly the covariance rate is negative,
accounting for the minus sign.
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Furthermore when πt is low (good times) then the typical risk premium
is high, since the state price appears in the denominator. For securities that
work as an ”insurance” of consumption, just the opposite conclusions hold.

Combining the FOC in (17) with the above result (24), the formula for
the risk premium in terms of the primitives of the model is accordingly given
by

µR(t)− rt = ρ σRc(t) + (γ − ρ)σRV (t). (26)

If σV (t) = σM(t), where σM(t) is the volatility of the return of the value-
weighted market portfolio at time t, the intertemporal model is a linear
combination of the CCAPM and the classical CAPM. It reduces to the latter
when ρ = 0 and to the former when ρ = γ.

When ρ = 0 the CAPM-term explains all of the risk premium, in which
case the utility function u of consumption in the CES-specification of the
felicity index f is of the form u(c) = c. This corresponds to neutrality with
respect to consumption transfers.

When ρ 6= γ the latter term in (26) may be positive or negative. The most
reasonable situation for the data in Table 1 is when γ > ρ, corresponding
to early resolution of uncertainty. This results in a higher equilibrium risk
premium than for the conventional model, as we shall demonstrate.

We return to a discussion about the volatility term σV (t) later. Before
we do that, we give an expression for the equilibrium interest rate rt in terms
of σV (t).

5 The equilibrium interest rate

The equilibrium interest rate rt is given by the general formula

rt = −µπ(t)

πt
. (27)

The real interest rate at time t can be thought of as the expected exponential
rate of decline of the representative agent’s marginal utility, which is πt in
equilibrium.

In order to find an expression for rt in terms of the primitives of the
model, we use the formula for f(ct, Vt) from (12) in the expression for µπ(t)
in (23). We then obtain the following

rt = β + ρµc(t)−
1

2
ρ
(
ρ+ 1

)
σ′c(t)σc(t)+

ρ(ρ− γ)σcV (t) +
1

2
(ρ− γ)(1− ρ)σ′V (t)σV (t). (28)
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For the standard utility (ρ = γ) this reduces to the familiar expression in
(4). We observe that it is the time substitution interpretation that is the
meaningful one in this new setting for terms two and three on the right hand
side. For example, for a value of ρ < 1 this may give a low value for the
interest rate. First and foremost it it is the term related to the growth rate of
consumption that now contributes to this lower value. The ”precautionary
savings” term also works in the right direction since it is negative because
this representative agent is also ”prudent”, but is likely to be relatively small
in magnitude. Notice that the concept of ”prudence” is now linked to the
time preference parameter ρ rather than the risk aversion γ. The two last
terms are negative provided ρ < γ and ρ ≤ 1. These relationships between
the parameters all seem reasonable.

In order to link the volatility term σV (t) to an observable (or estimable)
quantity in the market, we now specify a model for the financial market.

6 The Financial Market

In this section we present a model for the financial economy along the lines
of Cox, Ingersoll, and Ross (1985), who use dynamic programming to find
equilibrium. This model has been extended to the case of recursive utility
by Duffie and Epstein (1992a-b).

The model requires a Markov state process K satisfying the stochastic
differential equation

dKt

Kt

= µK(Kt, t)dt+ σ(Kt, t)dBt (29)

where µK and σK satisfy standard technical conditions. One interpretation
is that K is capital in a production model, in which KµK is the production
function. The dimension of the vector σK is N , which can also be equal to
the dimension d of the Brownian motion B when N > 1.

In state k at time t, let ν(k, t) ∈ RN denote the vector of expected rates
of return of the N given risky securities in excess of the riskless instantaneous
return rt, and let σ(k, t) denote the N ×N matrix of diffusion coefficients of
the risky asset prices, normalized by the asset prices, so that σ(k, t)σ(k, t)′ is
the instantaneous covariance matrix for asset returns. The combined state
process is then (K,W ) where W is wealth.

The representative consumer’s problem is, for each initial level (k, w) of
the state variables to solve

sup
(c,ϕ)

U(c) (30)
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subject to the intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · ν(Kt, t) + rt)− ct

)
dt+Wtϕ

′
t · σ(Kt, t)dBt, (31)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth Wt held in
the risky securities.

Duffie and Epstein (1992b) establish that the preference ordering repre-
sented by recursive utility is time consistent in the sense of Johnsen and Don-
aldson (1985). (The utility function considered by Kreps and Porteus (1978)
is time consistent by construction, by their Axiom 3.1.) In the present setting
it is claimed that state variables reflecting past consumption are unnecessary,
and therefore they proceed with the dynamic programming approach.

According to this idea is the first order condition for the problem (30)-(31)
given by the generalized Bellman equation:

sup
(c,ϕ)

{
D(c,ϕ)J(w, k, t) + f(c, J(w, k, t))

}
= 0, (32)

with boundary condition

J(w, k, T ) = 0, w > 0, k > 0, (33)

where the differential operator D(c,ϕ) is given by

D(c,ϕ)J(w, k, t) = Jw(w, k, t)(wϕ · ν + rw − c) + Jk kµK + Jt(w, x, t) (34)

+
w2

2
ϕ′ · (σ · σ′) · ϕJww(w, k, t) +

1

2
Jkk(w, k, t)k

2σ′KσK

+ Jwk(w, k, t)wkϕσσK .

The function J(w, x, t) is the indirect utility function of the representative
consumer at time t when the wealth Wt = w, and the state Kt = k, and
represents future expected utility at time t in ”state” (w, k), provided the
optimal portfolio choice strategy is being followed from this time on. Thus
J = V in optimum.

6.1 The Consumption/Portfolio Choice: A special case

Explicit solutions to problems of this kind are hard to derive, and few are
known in the literature. In order to obtain an estimate of the volatility term
σV , for the moment we simplify the problem as follows: We omit the state
variable K and let the instantaneous covariance matrix of the risky securities
be a constant matrix. The differential operator D(c,ϕ) then simplifies to

D(c,ϕ)J(w, t) = Jw(w, t)(wϕ · ν + rw − c) + Jt(w, t) (35)

+
w2

2
ϕ′ · (σ · σ′) · ϕJww(w, t).
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It is a consequence of Ito’s lemma, since J = J(Wt, t) is a function of
wealth, that J is also an Ito process with dynamics given by

dJ(Wt, t) = µJ(t) + σJ(t)dBt (36)

where the diffusion term is

σJ(t) = JWWtϕ
′
t · σ (37)

This means that σ̃V (t) = JwWtϕ
′
t · σ, where σ̃V (t) is the diffusion term of V .

It remains to find Jw as well as ϕt. In order to do this, we have to solve the
generalized HJB-equation.

The first order condition for c is:

Jw = fc

implying that

ct =
( 1

β
((1− γ)J)

1−ρ
1−γ−1Jw

)− 1
ρ

The first order conditions for ϕ are:

ϕt =
(
− Jw
Jwww

)
(σσ′)−1ν (38)

Attempting a solution of the form J(w, t) = 1
θ
wθk(t), for some θ that may

depend on ρ and γ in some way, separation of wealth from time works suc-
cessfully here when θ = (1 − γ). Employing an analogue of the verification
theorem of optimal control theory (see e.g., Øksendal (2003), Ch 11), estab-
lished in Proposition 9 of Duffie and Epstein (1992b), shows that we have
found the solution. Thus Jw = k(t)w−γ, the optimal consumption ct is

ct =
( 1

β
k(t)

1−ρ
(1−γ)

)− 1
ρ
W (t)

where the function k(t) satisfies an ordinary, first order differential equation
in t. Also5

ϕt =
1

γ
(σσ′)−1ν. (39)

Market clearing requires that (ϕt)
′σ = (δMt )′σ = σM(t) in equilibrium, where

σM is the volatility of the return on the market portfolio, and δMt are the
fractions of the different securities, j = 1, · · · , N held in the value-weighted

5This is the standard result of optimal portfolio choice, first established by Mossin
(1968).
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market portfolio. That is, the representative agent can only hold the mar-
ket portfolio in equilibrium, by definition, and must consume the aggregate
consumption.

This implies that σ̃V (t) = σJ(t) = W (t)−γk(t)WtσM(ω), so that

σV (t) =
σ̃V (t)

(1− γ)Vt
=

σ̃V (t)

(1− γ)J(W (t))
=

W (t)−γ k(t)Wt σM(t)

(1− γ) 1
(1−γ) W

(1−γ)
t k(t)

,

taking into account the transformation (19). As a consequence

σV (t) = σM(t). (40)

This is the link to the market based quantity that we conjectured. This result
should at least indicate that the connection (40) may be reasonably accurate
also in a wider context.

As equation (39) indicates, however, this particular financial market model
is not necessarily consistent with equilibrium, for the same reason as for the
conventional model (see e.g., Duffie (2001), p 210).

6.2 A two factor model for the equity premium

In this subsection we present an additional argument why σV (t) = σM(t) for
(almost) all t ∈ [0, T ] in a model which is consistent with equilibrium.

Returning to the model for the financial market in the beginning of Sec-
tion 6, since we are primarily concerned with the equity premium (and the
risk free interest rate) in this article, we can assume without loss of generality
than there is only one risky asset - the index - so that N = 1 (but d > 1 ).

Using the generalized Bellman approach indicated in the above, the first
order condition for optimal portfolio choice gives for the optimal demand of
the risky asset

Wtϕt =
(
− Jw(Wt, Kt, t)

Jww(Wt, Kt, t)

)( µ(Kt, t)− rt
σ(Kt, t)σ(Kt, t)

)
+
(
− Jkw(Wt, Kt, t)Kt

Jww(Wt, Kt, t)

)(σ(Kt, t)σK(Kt, t)

σ(Kt, t)σ(Kt, t)

)
. (41)

where µ(k, t) − r = ν(k, t). The representative agent is initially endowed
with one share of ”the firm”, in which case the market clearing condition is
ϕt = 1 a.s. for all t, so that ϕσ = σM and µ = µM . Notice that this gives a
different demand than what follows from (38) for obvious reasons. From the
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expression (41) the equity premium can be written

µM(Kt, t)− rt =
(
− Jww(Wt, Kt, t)Wt

Jw(Wt, Kt, t)

)
σM(Kt, t)σM(Kt, t)

+
(
− Jwk(Wt, Kt, t)Kt

Jw(Wt, Kt, t)

)
σMK(Kt, t), (42)

which is a two-factor model. Assuming ct = c(Wt, Kt, t) for some smooth
function c : R3

+ → R+, by Ito’s lemma the diffusion function for consumption
can be written

σ̃c(Wt, Kt, t) = ckσKKt + cwσMWt, (43)

where ck and cw signify partial derivatives of c with respect to k and w
respectively.

By (35) the first order condition for optimal consumption choice is again
Jw = fc. Differentiating with respect to to w gives Jww = fcccw + fcvJw and
with respect to k gives Jwk = fccck + fcvJk. Under homothetic preference
J is homogeneous with respect to wealth so that J(w, k, t) = h(k, t)wθ for
some h and θ. This gives the connection fcc = (θ/w − fcv). Using (43) and
noticing that σ̃c(Wt, Kt, t) = ctσc(t) of (18) in Section 4, where σc(t) is here
constrained to only depend on state variables at time t, the last term in (42)
becomes a linear combination of σMσM and σMc. In this situation, when
θ = ρ, Epstein and Duffie (1992b) obtain the following expression for the
equity premium

µM(Kt, t)− rt = a σMc(t) + b σM(Kt, t)σM(Kt, t) (DE)

for some a and b depending on the parameters γ and ρ (a = ρ(1− γ)/(1− ρ)
and b = (γ − ρ)/(1− ρ)).

First, since this model of a financial market is consistent with equilibrium,
a comparison with (26) for R = M confirms that σV (t) = σM(t).

Second, the functional forms of a and b only coincide with the coefficients
we have if ρ = γ, or ρ = 0 i.e., for the conventional model or the pure
CAPM. Comparing the first order conditions of our approach given in (17)
with the corresponding fc = Jw in dynamic programming, we see that this is
not really surprising. Our FOC depends on past consumption as well as past
values of utility along the optimal path, while this is not the case for dynamic
programing, which is based on Markov processes uncertainty. This suggests
that with recursive utility the Markov structure of uncertainty revelation
may not be rich enough to capture the fine points of the theory. A change
of the state space can often bring a non-Markovian process into a Markov
process. This may be of particular interest in the discrete time framework
(e.g., Kreps and Porteus (1979)).
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Since our approach is the more general of the two, and works for a wide
range of concave and increasing utility function including, for example, for
both recursive utility and habit formation, it should be clear that this method
gives the solution to the problem if there is any discrepancies between the two
methods. The dynamic programming approach is valid under more restrictive
assumptions than our method.

Dynamic programming sometimes provides the correct solution to the
problem with recursive utility, for example when ρ = 0 and γ > 0 which is
the CAPM++ model. It also coincides with our solution for the conventional
model where ρ = γ, as it should.

In general, our representative agent is prepared for a situation where un-
certainty related payoffs may partially or completely resolve on or before
any time t, and the individual may prefer earlier or later resolution of this
uncertainty. Our solution, when calibrated to the data in Table 1, is con-
sistent with early resolution as we have seen. There are also late resolution
solutions. For example, with respect to the calibrations in the next section,
we have a situation where β = .03, γ = 2.40, ρ = .20. This is a solution
of two nonlinear equations in two unknowns, namely γ and ρ, keeping the
impatience rate β = .03 fixed. This system of equations also has another
solution, which is ρ = 23.96, γ = 23.64. This one corresponds to late resolu-
tion of uncertainty. Because the risk aversion as well as the time preference
are both rather large, this solution we consider to be less plausible than the
one with early resolution. In our application of the model with data from
the securities market from 1889 to 1978, we expect the average investor to
be anxious to be informed as early as possible.

When inserting the values for the late resolution in the dynamic program-
ming version (DE), the model provides an equity premium of .07 which is,
in this connection, not too far from the observed .062. Typically (DE) does
not seem to be consistent with early resolution for the data of Table 1. For
most of the other results presented in the literature on recursive utility, pri-
marily using discrete time models and applied to the market data that give
rise to the equity premium puzzle, the solutions point in the direction of late
resolution of uncertainty (e.g., Epstein and Zin (1991), Weil (1989)). In Weil
(1989), for example, large values of gamma together with even larger values
of ρ seem to better fit the data, but the values of ρ and γ are both very large.

For temporal problems the use of standard methods may easily give re-
sults that can be wrong (e.g., Mossin (1969), Kreps (1988)). To be more
concrete, recall the basic definition of a stochastic integral:∫ t

0

f(s)dBs = ”lim”
∑
ti

f(si)(B(ti+1)−B(ti)),
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as the limit in some sense (L2 or probability) of a discrete sum, where
si ∈ [ti, ti+1]. Ito’s choice is obtained when si = ti, and unlike for ordi-
nary Lebesgue-Stieltjes integrals, this choice matters. For example, if si is
chosen in the middle of the interval, the so-called Stratonovich integral re-
sults, which is another object than the standard Ito integral. Next consider
dynamic programming, and recall how the Bellman equation is derived. We
fix a time point t, run any control between t and t + ∆t and then switch
to the optimal control thereafter. After applying the principle of optimality,
one is faced with, among other things, a stochastic integral from t to t+ ∆t
of the derivative of the indirect utility function times a volatility. The final
form of the Bellman equation now hinges upon the fact that the conditional
expectation of this integral is zero for all ∆t > 0, and then one lets ∆t ap-
proach zero. For this to hold Ito’s choice is the essential ingredient, i.e., the
uncertainty dBt has to ”stick out into the future” for the procedure to be
valid.

The point we are trying to make is the following: The first order condition
derived this way depends in a ”stiff” way on how uncertainty appears (always
the same), and when it is realized (always late). This may not be compatible
with the rather rich structure of recursive utility. Using this approach here
is as if there is an implicit bias towards late resolution. With Stratonovich’s
choice, for example, the resulting Bellman equation will be different, after
proper adjustments for the drifts. Now, however, the solution is presumably
one where the agent is biased to be indifferent to the resolution times of
uncertainty, just as for the standard model, again in a rigid manner. If
si = ti+1 is the convention, early resolution of uncertainty is favored, again a
different solution. This is not the situation with utility gradients. Here the
principle works for any kind of analysis, so long as we properly adjust for
the drift term according to which choice is made for the stochastic integral
in the subsequent analysis.

In short, it seems as if the continuous time calculus using the Bellman
equation favors late resolution of uncertainty for equilibrium with recursive
utility, when applied to the data of Table 1. If this ’constraint’ is not binding,
the two types of analysis give the same answer. We have pointed out two
corner solutions where this is the case, when ρ = 0, or for the standard model
where ρ = γ. There may be others.

7 The Final Formulation of The Model

Returning to our earlier expression given in (26) for the risk premium of any
risky asset having return rate µR(t) and volatility of return σR(t), and the
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equilibrium interest rate given in (28), we can now formulate our main result:

Theorem 1 In the model specified in sections 3-6, there exists an equilibrium
in which risk premiums of risky assets and the real interest rate are given by

µR(t)− rt = ρ σRc(t) +
(
γ − ρ

)
σRM(t). (44)

and

rt = β + ρµc(t)−
1

2
ρ
(
ρ+ 1

)
σ′c(t)σc(t)+

ρ(ρ− γ)σcM(t) +
1

2
(ρ− γ)(1− ρ)σ′M(t)σM(t). (45)

respectively, where ρ is the time preference, γ the relative risk aversion, and
β the impatience rate.

As claimed risk premiums in the resulting model are linear combinations
of the consumption-based CAPM and the market-based CAPM at each time
t ∈ [0, T ].

Table 2 illustrates additional parameter values to the ones presented in
Section 2.2 for the recursive utility model consistent with the data of Table
1. The ”Kelly Criterion” means logarithmic utility in the standard model,
which here corresponds to γ = 1 6. This gives a negative value for ρ which
is not plausible, since we really require that ρ ≥ 0. Thus a relative risk
aversion of γ = 1 is too low for our model to be consistent with the Mehra
and Prescott-study, which is interesting, but perhaps not surprising.

All the value sets presented in Table 2 represent exact fits to the data
of Table 1. The CAPM++ version has acceptable values for risk aversion
and the impatience rate, as we have seen before. By CAPM++ in Table 2 is
meant the current version in continuous time, with an associated level of in-
terest rate attached, and based on recursive utility. The original equilibrium
model developed by Jan Mossin was in a one period (timeless) setting with
consumption only on the terminal time point, in which case wealth equals
consumption. Since there was no consumption on the initial time point, no
intertemporal aspects of consumption transfers arose in the classical model.
This naturally corresponds to u(c) = c for the the felicity index regarding
consumption transfers, meaning ρ = 0 and ψ = 1/ρ = +∞, and correspond-
ing to perfect substitutability of consumption across time.

All the plausible calibration points are in the early resolution part of the
(ρ, γ)-plane where γ > ρ, which is not surprising given the data in Table 1.

6Although γ = 1 is formally not in the permissible range for this parameter, and really
require h(v) = ln(v), still it works fine in the above.
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γ ρ EIS β

Standard Model 20.91 20.91 .0478 - .08
β = 0.010 fixed 2.83 .68 1.47 .01
β = 0.020 fixed 2.61 .44 2.27 .02
β = 0.030 fixed 2.40 .20 4.84 .03
β = 0.035 fixed 2.30 .09 11.11 .035
ρ = 1.00 fixed 3.20 1.00 1.00 -.003
ρ = .83 fixed 2.97 .83 1.2 .004
ρ = .50 fixed 2.57 .50 2.0 .016
ρ = 24.0 fixed 23.67 24 .042 .031
CAPM ++ 2.22 0.00 +∞ .039
The Kelly Criterion 1.00 - 1.34 -.74 .101
γ = 2.25 fixed 2.25 .029 34.14 .038
γ = 2.50 fixed 2.50 .309 3.23 .026
γ = 3.05 fixed 3.05 .924 1.08 .0002

Table 2: Various Specifications Consistent with Table 1 where κ̂Mc = .5

It is here that our results deviate from earlier research on recursive utility
applied to explaining the historical equity premium and the interest rate.
However, corresponding to the value β = .031 for example, as pointed out
in Section 6, there is also the solution ρ = 24, (ψ = 0.042) and γ = 23.67
which is a late resolution equilibrium (since ρ > γ). Although this risk
aversion as well as the time preference are both too large to be considered
reasonable, in fact worse than the risk aversion provided by the conventional
model (as observed by Weil (1989)), this equilibrium corresponds to a more
plausible value of the impatience rate than does the conventional solution
(where β = −.08).

8 Discussion

In this section we briefly discuss some of the new features of our model.
First, it is really reassuring that the risk premium of any risky asset

depends on other investment opportunities in the financial market, and not
just on this asset’s covariance rate with consumption.

The new term in the risk premium is positive when γ > ρ, which was the
result when β = .01. For the data of Table 1, the estimate of the CAPM-
term σ′M(t)σM(t) is of the order of magnitude .03, while the estimate of the
consumption covariance rate with the stock index σMc(t) is .003, where the
estimate of κMc(t), κ̂Mc = .5. That the former term has the potential to fill

26



in the ”gap” in the expression the equity premium of the standard model,
we have just demonstrated. In the example with β equal to one per cent, the
CAPM term explains 96.7% of the risk premium estimated by Mehra and
Prescott.

It is equally satisfying that the return rate on government bonds depend
more than just the growth rate and the variance rate of aggregate consump-
tion, but also on characteristics of other investment opportunities in the
financial market.

The interest rate r comes down relative to the conventional model for
three reasons: The term multiplying the growth rate of consumption µc is
now of the order of .7 instead of the order of 20 for the standard model. The
fourth term is negative when γ > ρ, and so is the last term provided ρ < 1
as well. The precautionary savings term is still negative, but less so than in
the standard model.

Faced with increasing consumption uncertainty, the prudent consumer
will still save and the interest rate will accordingly fall in equilibrium. This
effect is smaller the smaller ρ is. When the covariance rate between con-
sumption growths and the return on the market portfolio increases, the re-
cursive utility consumer buys more government bonds and sells stocks pro-
vided γ > ρ. If the opposite is true, the consumer will borrow and buy
stocks. When the uncertainty of the return of the market portfolio increases,
the recursive utility agent will buy bonds and sell stocks provided γ > ρ and
ρ < 1, or γ < ρ and ρ > 1, and will otherwise borrow and buy stocks.

Rewriting the expression for the risk premium we obtain the formula

µR(t)− rt = ρ
(
σRc(t)− σRM(t)

)
+ γ σRM(t). (46)

From this version we notice that the risk premium increases when γ increases,
ceteris paribus, for risky securities that satisfy σRM(t) > 0. In the conven-
tional model the risk premium decreases when ψ increases for such securities.
For recursive utility, on the other hand, this is different. When σc(t) < σM(t)
as the data show, the risk premium increases when the EIS-parameter ψ in-
creases, for risky securities that satisfy (σRc(t) − σRM(t)) < 0. For such
securities the individual can handle deterministic variations in consumption
better when ψ increases, and a larger reward in the securities market must
be offered for these securities to make the representative agent indifferent to
status quo. For securities that works as an insurance product, the reverse
is true: When (σRc − σRM(t)) > 0, an increased ability to handle determin-
istic variations in consumption in the economy means that the individual
will diversify in the presence of uncertainty, and include such securities in
his, or her, portfolio. To restore to status quo, the price of such securities
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must increase. When σc(t) = σM(t) we get the market-based CAPM, which
collapses to the conventional model when ρ = γ

Turning to the expression for the interest rate, we notice that when
σcM(t) > 0, the interest rate rt decreases when γ increases, ceteris paribus,
provided ψ ≥ 1. Even if ψ < 1 this may still be true. Several other combi-
nations are possible, illustrating the rather rich structure of the model.

This kind of analysis has no place in the conventional model, since there
is no direct connection to the securities market in the expression for the
equilibrium interest rate in (4), nor is there any direct connection to the
securities market for the risk premium in (3).

8.1 The Relation to Climate Change

Our results have immediate implications for the economics of climate change.
The Stern Review, (Stern (2007)), deals with precisely these problems. Stern
uses the standard model (3) and (4), but ignores the equity premium in (3)
altogether, and sets γ = 1. Furthermore he assume that the impatience
rate is close to zero (.1%). The resulting interest rate that he obtains from
the standard model is then r = .014, which is much lower that what nor-
mally follows from the standard model. This value of r can then support a
more dramatic mitigation policy than follows from other, similar cost-benefit
analyses.

If N. Stern had taken the model for the risk premium seriously, he would
have obtained an interest rate of the order larger than 9%, in order to be
consistent with a non-negative impatience rate β, and thus with a reasonable
representative agent.

A consequence of our analysis with recursive utility is that the social
discount rate may be set very low. For the data set in Table 1 our model
interest rate r is already down to .8%, the observed one, i.e., a value less than
one percent is consistent with the model, which is much lover that Stern’s
1.4%. Moreover, projects with a very long horizon are inherently risky, so
the discount rate should really be adjusted for risk.

With respect to climate problems, imagine a ’project’ that does not pay
off in the future if the state of the climate is in the ”good” state, but gives
a positive payoff if the future state is ”bad”. Such a project has the effect
of substituting consumption across time and across states of nature. With
reference to an insurance setting, this project has a negative correlation with
aggregate consumption and utility, and will therefore result in a negative risk
premium in equilibrium.

The standard model would not be of much help in this regard, since
aggregate consumption is so smooth that the correlation of such a project’s
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return with aggregate consumption will not subtract much from the short
rate, unless the risk aversion is very large. If so, the short rate produced by
the model is larger than 9% for the data of Table 1 provided one insists on
β ≥ 0, and the final conclusion would be to reject any projects designed to
mitigate the adverse effects of climate change.

For the recursive model, the project’s negative correlation with aggregate
consumption and utility translates into a negative correlation with aggregate
consumption and the the market portfolio. As we have seen, the latter term
may very well result in a significant subtraction from the (already very low)
interest rate of less than one per cent, since this model is consistent with
both large risk premiums at moderate levels of risk aversion, and very low
levels of r. Thus our model is really promising for the economics of climate
change, but for reasons different from those given in the Stern Review.

8.2 Extensions

There are many important issues to explore, based on the framework of this
paper. The life cycle model, for instance, can be better understood once
time preference is separated from risk aversion. This gives new insights in
the comparisons of defined benefit to defined contribution pension plans.
Other applications are plentiful and will be deferred to future research.

9 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial and macro economics. The root of the prob-
lem was identified to be the equality between risk aversion and time pref-
erence. With recursive utility properly defined, these inherently different
properties of an individual are disentangled. This explains the new terms
of this analysis; for the risk premiums of risky securities, as well as for the
equilibrium real interest rate, provided we use utility gradients rather than
dynamic programming to find the first order conditions. Dynamic program-
ming, widely used for this sort of problems, tend to produce solutions consis-
tent with late resolution of uncertainty, and then for not very plausible values
of the parameters. Late resolution of uncertainty does not seem reasonable
for a rational agent operating in the US stock market. Our solution, on the
other hand, is not based on dynamic programming and implies that the agent
prefers early to late resolution of uncertainty, and for plausible values of the
parameters.

With a Kreps-Porteus specification of the felicity index in a recursive
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utility approach of the Duffie-Epstein-Skiadas type, we were able to explain
both the Equity Premium Puzzle, as well as the Risk-Free Rate Puzzle with
good margin. The resulting model is able to fit the observed high equity
premium of 6.18% related to the return on the S&P-500 index in the USA
for the period of 1889-1978, the low estimated value of .8% for the risk free
real interest rate, the low consumption volatility for the same period, and the
low covariance between returns on equity and the growth rate of aggregate
consumption, for reasonable parameter values of the utility function.

Other important aspects about the single investor assumption are not
discussed in this paper, such as limited market participation, heterogeneity,
and incomplete markets. These are important topics to be addressed in this
topic area.

Nevertheless, our findings are likely to have broad economic implications.
Just to illustrate, we rounded off with an application of our results to the
economics of climate change, and showed that the conclusions in the Stern
Review can be considerably improved on behalf of the climate, or more pre-
cisely, to the benefit of future generations, but for reasons different than
those put forth in The Review regarding the discount factor.
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