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Chapter 1

Introduction

ABSTRACT - A derivative security is a security whose value depends
on the values of other more basic underlying variables. The use of
derivatives have spread to non-financial markets. In this thesis we are
studying issues in agricultural derivatives pricing, electricity contin-
gent claims valuation and risk management, and average based con-
tingent claims valuation. These areas of research may be perceived
as rather unconnected at first sight. In this introductory chapter we
make an effort of illuminating the points of contact between these
three research areas. All are topics in the growing literature on con-
tingent claims valuation and risk management in commodity markets.
We give a short description of the papers contained in the following
chapters of this thesis, and finally we suggest areas for further research.

Derivatives, or contingent claims, have been enormously successful the
last 30 years, and these products have penetrated new markets. The Chicago
Board Options Exchange (CBOE), founded in 1973, revolutionised options
trading by organising a marketplace for options. The founding year of CBOE
coincided with the publication of the seminal papers by Black and Scholes
(1973) and Merton (1973) on stock option valuation. The use of derivative
products quickly spread to currency and fixed income markets. Derivatives
can now be bought on insurance, volatility, weather, electricity etc. The
thesis deals with several issues that are important when modelling commodity
markets for valuation and risk management purposes. We will investigate
agricultural and electricity markets. This thesis consists of five independent
essays. In this introduction we give a brief overview of the literature on the
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modelling of commodity markets and a summary of the main results. Finally
we provide some suggestions for further research.

1.1 Modelling commodity markets

1.1.1 The theory of storage

In the commodity literature the theory of storage developed by Kaldor (1939),
Working (1948, 1949), Telser (1958) and Brennan (1958) is the dominant
model of commodity spot and futures prices. The futures and spot price
differential is equal to the cost of storage (including interest) and an im-
plicit benefit that producers and consumers receive by holding inventories of
a commodity. This benefit is termed the convenience yield. Kaldor (1939)
recognised the convenience yield as an explanation of the futures and spot
price differential, the basis, “by enabling the producer to lay hands on them
the moment they are wanted”. Working (1948) and (1949) argued that the
convenience yield could explain the negative basis, so-called contango, ob-
served in agriculture markets at specific times of the year. The convenience
yield is expected to depend upon the level of inventory, but in a marginal
sense:

”The amount of stock which can thus be useful is, in given cir-
cumstances, strictly limited; their marginal yield falls sharply with
an increase in the stock above requirements, and may rise very
sharply with a reduction in stocks below requirement.” Kaldor
(1939) p.4.

Telser (1958) made an empirical investigation where he confirmed this

negative relation when analysing the marginal convenience yield and inven-
tories of cotton and wheat. Since holders of inventories earn the convenience
yield but holders of futures contracts do not, a positive convenience yield
depresses the futures price relative to the spot price.

1.1.2 Commodity contingent claims

Fischer Black introduced option pricing valuation in commodity markets.
Using the dynamic hedging argument pioneered in Black and Scholes (1973)
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and Merton (1973), Black (1976) derived a pricing formula for the European
commodity futures option, by explicitly assuming a geometric Brownian fu-
tures price process. Brennan and Schwartz (1985) focused instead on the
spot price of the commodity, and linked the dynamic hedging argument to
the theory of storage. They modelled the commodity spot price as geo-
metric Brownian motion. Assuming continuous trading opportunities in the
commodity, a constant risk free rate and constant proportional convenience
yield, they developed no-arbitrage valuation expressions and optimal manag-
ing policies for a real asset (copper mine). This method has been modernised,
and in recent applications the stochastic dynamics of the spot price and other
state variables are usually specified directly under the equivalent martingale
measure. Under this probability measure the commodity earns the risk free
rate of return subtracted by the net convenience yield which accrues to holder
of the commodity and not to the holder of a futures contract. Gibson and
Schwartz (1990) provide a generalisation in which the convenience yield is
modelled as a mean reverting Ornstein-Uhlenbeck process. Schwartz (1997)
adds the interest rate as a third stochastic factor.

One problem with spot-based models is that forward prices are given en-
dogenously from the parameters governing the spot price dynamics, and so
theoretical forward prices will in general not be consistent with market ob-
served forward prices. As a response to this, a line of research has modernised
the theory developed by Black (1976) which focused on a single commodity
contract. A modern approach describes the dynamic evolution of the whole
forward curve, taking as given the initial term structure. Examples of this
research, building on the pioneering work on modelling forward interest rate
by Heath et al. (1992), are Cortazar and Schwartz (1994), Miltersen and
Schwartz (1998), Clewlow and Strickland (1999a), (1999b) and (2000) and
Bjork and Landén (2002).

Commodities constitute a large and heterogeneous group of assets. This
means that one modelling approach that works in one market might need
to be substantially modified in order to perform satisfactorily in another.
Duffie (1989) classifies the commodity futures contracts traded on U.S. fu-
tures markets as follows; forest products (lumber), textiles (cotton), met-
als (gold, silver, platinum, palladium, copper, aluminium), energy (heating
oil, gasoline, crude oil, propane gas), foodstuffs (cocoa, coffee, orange juice,
potatoes, sugar, corn syrup), livestock (pork, beef), grains (corn, oats, rice,
wheat) and oil and meal (soybean). In this thesis we conduct empirical in-
vestigations in both an agricultural market (the US wheat market) and an
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electricity market (the Nordic electricity market). We note that wheat is
mentioned explicitly in the subgroup of agricultural products called grains.
Electricity on the other hand, usually considered an energy commodity, is
not included in the overview in Duffie (1989). This is due to the fact that
exchange traded power contracts are a fairly new phenomenon. In the follow-
ing subsections we briefly sketch the particularities of these two commodity
markets, and indicate in which ways derivatives pricing models might de-
viate from the traditional commodity contingent claims models described
above. Finally we argue that average based contingent claims are important
instruments in both of these markets.

1.1.3 Agricultural derivatives

The model suggested by Black (1976) and Brennan and Schwartz (1985)
implies that futures prices are lognormally distributed with variance propor-
tional with time to maturity. Empirical investigations have indicated that
this model assumption is too restrictive in the case of agricultural futures
markets. Price jumps will typically occur due to abrupt changes in supply
and demand conditions, and such discontinuities in the price path of futures
prices will affect the prices on options written on futures contracts (see e.g.
Hall et al. (1989) and Hilliard and Reis (1999)).

Other studies have investigated whether the assumption of constant volatil-
ity is valid. Samuelson (1965) claimed that the volatility of futures price
returns increases as time to maturity decreases. He argued that the most
important information was revealed close to :¢ maturity of the contract.
For example, the weather affecting demand or « temporary supply disruption
will affect spot prices and hence short dated futures contracts. Short-term
price movements are not expected to persist but rather revert back towards
a normal level. This implies that long dated contracts will be less affected by
.spot price changes and experience lower volatility than short dated contracts.
This maturity effect is sometimes referred to as the "Samuelson hypothesis”.
Other authors have argued that the volatility of futures prices depends on
the distribution of underlying state variables. This is sometimes termed the
"state variable hypothesis”. For crop commodities one would typically ex-
pect the information flow to vary during the crop cycle. The most important
information is revealed during growing and harvest seasons, hence seasonality
in the volatility of futures prices is expected (see Anderson (1985), Milonas
(1986) and Galloway and Kolb (1996)). Fackler and Tian (1999) propose
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a simple one-factor spot price model with mean reversion (in the log price)
and seasonal volatility. They show that futures prices consistent with this
spot price model have a volatility term structure exhibiting both seasonality
and maturity effects. Their empirical results indicate that both phenomena
are present in the soybean futures and option markets. Both jumps and
time-dependent volatility naturally affects contingent claims valuation. In
chapter 2 we specify a futures price process that allows for both the possi-
bility of jumps and time-dependent volatility. The model is estimated using
eleven years of wheat futures options listed on Chicago Board of Trade.

1.1.4 Electricity derivatives

The electricity derivatives markets have grown rapidly as the restructuring of
electricity supply industries is spreading around the world. Electricity differs

in several respects from other commodities. Some important features are!:

e Non-storability. There is currently no technology that can econom-
ically store electricity once generated. Therefore electricity demand
and supply has to be balanced continuously in a transmission network
to prevent the network from collapsing. The lack of storage technol-
ogy implies that electricity cannot be considered a financial asset held
purely for investment purposes. The usual cash-and-carry arbitrage
relationship does not apply for electricity.

e No lower bound. Since electricity cannot be sold short there is no
lower bound on electricity prices. In fact, negative prices have occurred
in several electricity markets. Prices may become negative, as power
plants have to get rid of excess output in periods when demand is low.

e Correlation between short- and long term pricing. Pilipovié
(1998) conjectures that energy prices exhibits a ”split personality”.
This, she claims, applies especially to electricity, where short term
prices are to a large extent demand driven while forward prices are
determined by expectations of market productions capacity, improved
technology and long run cost.

1See Leong (1997), Clewlow and Strickland (2000) and Pilipovié (1998) for a thorough
discussion on several of these issues.
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e Generation and transmission technology. Electricity may be gen-
erated from natural gas, coal, oil, nuclear fuel, water turbines, from al-
ternative resources such as cogeneration and renewable sources such as
wind power, solar energy and biomass. After electricity is generated, it
is transmitted over high-voltage power lines before it is distributed to
the end users. In periods of high demand, the electricity transmitted
may come close to maximum capacity. Increased demand cannot be
met by increased supply, and prices may jump to extreme levels for
short periods of time. In some electricity markets ”price spikes” are
common (see Deng (2000) and Clewlow and Strickland (2000)).

e Seasonality. In many markets prices peak twice a year, once during
winter due to demand for heating and once in summer months due to
intensive use of air-condition. Electricity markets also exhibit daily and
weekly price patterns.

An especially worrisome feature from the list above is the non-storability
of electricity. An immediate consequence of this is that the traditional theory
of storage does not apply to this commodity. Continuous dynamic hedging is
impossible directly in the underlying asset. Still, spot price models have been
investigated in the literature. In these models the spot price is treated as a
state variable on which derivatives are written, and for valuation purposes
this state variable is adjusted for risk (usually making ad hoc assumptions).
Examples of spot price based electricity models are Lucia and Schwartz
(2000), Knittel and Roberts (2001), Kamat and Ohren (2000), Clewlow and
Strickland (1999b) and (2000), Deng (2000) and Pilipovié (1998). What pro-
cess then, should we adopt for the electricity price? The most common choice
is the familiar geometric Brownian motion. The plain geometric version is
usually modified in one way or the other to allow for the special properties
of electricity. The technically most advanced of these studies is Deng (2000).
He models the log of the spot price with mean reversion, regime switching,
stochastic volatility and different types of jumps. Lucia and Schwartz (2000)
and Knittel and Roberts (2001) consider arithmetic Brownian motion as the
process driving the spot price process.? Contrary to the traditional geomet-

2In fact Lucia and Schwartz (2000) consider a mean reverting spot price both in the
log price and in the price level. They do not make any strong judgement regarding which
model is the best. Knittel and Roberts (2001) also consider arithmetic mean reverting
models with GARCH-effects.
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ric Brownian motion, the arithmetic spot price process allows for negative
prices.

In the case of electricity, the forward curve approach seems even more
profitable, since the problem of non-storability is avoided altogether. In a
spot-based model of electricity we do not model the tradable assets directly.
The assets introduced in such a model are all derivatives on the spot rate. In
a forward curve model this is no longer an issue; the forward prices modelled
are the tradable assets. In chapter 3 we conduct an empirical investigation
of arithmetic and geometric multi-factor forward curve models in the Nordic
electricity market. In chapter 4 we investigate the analytical tractability of
the arithmetic forward curve model, with application to option pricing and
risk management.

1.1.5 Asian options

When an option depends on the average price history of the underlying asset
prior to maturity, it is called an Asian option. In the electricity market both
futures contracts and spot price options are based on the arithmetic average
of the underlying asset. In agricultural markets, many of the options traded
over-the-counter (OTC) are of Asian style (Hilliard and Reis (1999)). When
the uncertainty of the underlying asset is arithmetic Brownian motion, the
arithmetic average of the underlying asset is itself normally distributed, and a
closed form solution to the Asian option can be derived (see chapter 4 in this
thesis). When the underlying asset is lognormally distributed, on the other
hand, the arithmetic average is not itself lognormally distributed. In fact, the
distribution of the arithmetic average of a lognormally distributed asset is
unknown, and we must resort to different approximations and/or numerical
techniques to price Asian options. Chapters 5 and 6 are devoted to valuation
of Asian options when the underlying asset is lognormally distributed.

1.2 Summary of results

This section provides a brief summary of the results in the forthcoming chap-
ters.
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1.2.1 Chapter 2: Volatility and price jumps in agricul-
tural markets - evidence from option data?

In this chapter specify a futures price process that allows for both the possi-
bility of jumps and time-dependent volatility. The volatility captures both a
seasonal and a maturity effect. A futures option pricing model is derived, and
the model specification is estimated using eleven years of wheat futures op-
tions listed on Chicago Board of Trade. The market observed option prices
are compared to the theoretical option prices, and the parameters of our
futures price model are estimated using non-linear least squares. Several
models suggested previously in the literature are nested in our model specifi-
cation, and we can use standard statistical tests to determine whether jumps
and time dependent volatility are present in the data. The results show that
the maturity effect is especially strong in the wheat futures market. The
seasonal effect is of lesser importance, but it is statistically significant. The
estimated jump intensity is significantly different from zero. This result is
in line with results found in the soybean futures option market reported in
Hilliard and Reis (1999). When testing different models against each other,
we find that simpler models are rejected in favour of our proposed model with
jumps, seasonality and maturity effects. A numerical example illustrates the
implications for market prices of options.

1.2.2 Chapter 3: Forward curve dynamics in the Nordic
electricity market*

Even though the analysis in chapter 2 is concerned with the price dynam-
ics of a wheat futures contract, the model employed is not a forward curve
model. Contrary to the analysis in chapter 2, which is concerned with op-
tions written on a single futures contract, a forward curve model is concerned
with the links between the stochastic processes of futures contracts with dif-
ferent time to maturity. In chapter 3 we adopt the forward curve approach
and perform an empirical examination of the dynamics of the forward curve

3This chapter is co-authored with Gudbrand Lien. An earlier version of this paper
appeared as Discussion Paper 19/2001 at Norwegian School of Economics and Business
and Administration, Department of Finance and Management Science.

4This chapter is co-authored by Fridthjof Ollmar. An earlier version of this paper
appeared as Discussion Paper 21/2001 at Norwegian School of Economics and Business
and Administration, Department of Finance and Management Science.



1.2. SUMMARY OF RESULTS 9

in the Nordic electricity market using market prices on futures and forward
contracts in the 1995-2001 period. We specify two different models for the
evolution of the forward price of electricity in the framework of Heath et
al. (1992); the geometric and the arithmetic Brownian motion. Two sets
of data are constructed. For the arithmetic model forward price differences
are analysed, and forward price returns are analysed in the case of the ge-
ometric model. The maturities for the contracts that constitute the data
sets range from one week to two years. Following the work of Cortazar and
Schwartz (1994) and Clewlow and Strickland (2000) we use principal compo-
nent analysis to analyse the volatility factor structure of the forward curve.
Similar to the wheat futures market investigated in chapter 2, we find a very
strong maturity effect in the electricity market. In the short end of the term
structure, the volatility increases sharply as time to maturity decreases. In
other commodity markets one typically find that a few factors are able to
explain most of the variation in the forward prices. The portion of explained
variance is lower in the electricity market. We find that a two-factor model
explains 75% of the price variation in our data, compared to approximately
95% in most other markets. Pilipovi¢ (1998) conjecture that electricity prices
exhibit “split personalities”. By this she means that the correlation between
short- and long term forward prices are lower in electricity markets than in
other markets. We provide some empirical support of this claim. The most
important factors driving the long end of the curve have very little impact
on price changes in the short end. Furthermore we find some evidence of
changing volatility dynamics both seasonally and from one year to another.
Finally, we are unable to decide if an arithmetic or geometric model describes
the data best.

1.2.3 Chapter 4: A multi-factor forward curve model
for electricity derivatives

The purpose of chapter 4 is to develop valuation formulas and hedging strate-
gies for electricity contingent claims in a multi-factor arithmetic forward
curve model. The proposed forward curve model is identical to the arithmetic
model investigated in chapter 3. The fact that electricity cannot be stored
implies that production and consumption have to balance in a power network.
This property makes electricity unique compared to other commodities, and
often electricity is described as a flow commodity. Consequently, contracts
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traded in the electricity industry are typically specified with a future time
period for delivery, not delivery at a future time point. The value of such
a contract depends on the arithmetic average of the electricity spot price in
the delivery period. In a lognormal electricity forward price model, simple
closed form solutions to such derivatives do not exist,.since the distribution
of the sum of lognormal random variables is unknown. Hence, in a lognor-
mal model, approximations are needed even for simple European contingent
claims (see Bjerksund et al. (2000) for approximate valuation of different av-
erage based contracts in a lognormal forward curve model). Our model, being
a forward price model, provides an important generalisation of the Gaussian
spot price model proposed by Lucia and Schwartz (2000) and Knittel and
Roberts (2001), since it is consistent with observed market prices. But the
most important property of our model is that it provides simple closed form
pricing formulae for arithmetic average based contingent claims. We investi-
gate the dynamic properties of two different average based forward contracts.
These contracts are of purely financial nature, hence no delivery of electricity
is actually made. In the first contract we consider, the owner of the contract
receives or pays, at maturity, the difference between the forward price and
the average electricity price during a pre-specified delivery period. In the
second contract the owner receives or pays the difference between the price
of a unit of electricity and the contract price each instant during the delivery
period of the contract. The contract specifications mimic the specification of
the contracts trading in the Nordic electricity market. We show that both
these contracts are normally distributed. Based on these results, closed form
solutions to both European and Asian options and corresponding hedge ra-
tios are calculated. We briefly discuss factor hedging in this model, and
we provide some numerical examples using data from the Nordic electricity
market.

1.2.4 Chapter 5: Approximate Asian option pricing in
the Black 76 framework

In this chapter we derive an approximate lognormal valuation model for
Asian options. The preferred model among practitioners to price arithmetic
average Asian options seems to be the lognormal approximation proposed by
Levy (1992). We propose a new lognormal approximation. Our model is a
modification of the Black (1976) formula. Fischer Black published this mod-
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ification of the original stock option model to value options on commodity
forward and futures contracts. As the use of futures contracts has penetrated
all major financial markets, the Black (1976) model is perhaps the most fre-
quently used option pricing formula there is. We need two inputs for our
model; a futures price and a plug-in volatility. The first step in our analysis
is to calculate the "price” today of the future arithmetic average asset price.
This is an easy computable conditional expectation. We then interpret this
price as a financial futures contract, which delivers the value of the arithmetic
average of the underlying asset price at maturity. This means that an Asian
option can be reinterpreted as a European futures option. We show that this
contract is actually lognormally distributed prior to the averaging period.
After entering the averaging period, the arithmetic average contract is no
longer lognormally distributed. We then propose a lognormal approximation
of the contract inside the averaging period. Based on the analysis above, we
calculate a plug-in volatility for the futures option model. In a Monte Carlo
exercise, we show that our model has some advantage over the Levy (1992)
model in terms of accuracy. We finally study the implicit volatility of the
average rate options. We calculate ”exact” market prices by Monte Carlo
simulation and use the Black (1976) formula to back out implicit volatilities.
An Asian call option in a standard Black-Scholes economy has an upward
sloping implied volatility ”smile” across maturities due to the deviation from
lognormality of the arithmetic average. This smile cannot be captured by a
lognormal approximation.

1.2.5 Chapter 6: Valuation of Asian options by match-
ing moments

This chapter extends the analysis from chapter 5. The purpose of this final
chapter is to develop a valuation method applied to Asian options that gives
more accurate prices than a lognormal approximation. Our method utilises
the information in the moments of the arithmetic average. Our analysis is
linked to the work of Turnbull and Wakeman (1991). They apply the Edge-
worth expansion using the lognormal density as an approximate distribution.
In their paper the series expansion is truncated after the fourth term, hence
information from the first four moments of the arithmetic average is utilised
in their valuation approach. It is well known that this method is inaccurate
when the volatility of the underlying asset is high. We take a somewhat
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different approach to the method of matching moments. The analysis of
the average based futures contract from chapter 5 is pushed a bit further.
Having already established that the contract is lognormally distributed prior
to the averaging period, we give a stochastic volatility interpretation of the
futures price dynamics inside the delivery period. Unfortunately the result-
ing stochastic differential equation is unfamiliar and a closed form pricing
formula cannot be reached. Instead we choose a lognormal futures model
with stochastic variance, where the variance is modelled as a mean revert-
ing square-root process. Heston (1993) first introduced this model, and he
showed that European option pricing can be done efficiently by Fourier in-
version methods. The goal is to price Asian options, but first we need to find
suitable parameters in Heston’s model. Valuation is done in the following
steps: 1) Calculate the variance, skewness and excess kurtosis of the arith-
metic average. 2) Use an optimising routine to pick parameters of the ap-
proximate model that produce variance, skewness and excess kurtosis close to
(by minimising mean square error) the arithmetic average. 3) Use the Fourier
inversion technique to calculate the price of a European option on the aver-
age rate contract. This procedure allows us to match the first four moments
of the arithmetic average. Our method produces very accurate option prices,
also when the underlying asset volatility is high. From our analyses we can
conclude that the first four moments contain enough information about the
density of the arithmetic average of the geometric Brownian motion to facili-
tate accurate option pricing. We provide some numerical examples where we
compare the accuracy of our model with other methods proposed previously
in the literature.

1.3 Some suggestions for future research

In this section I will outline some possible directions for future research.
These suggestions are very closely related to content in each of the following
chapters, and as such, may be considered extensions of these specific research
areas.

In chapter 2 we model the futures price dynamics as a jump diffusion
with time dependent volatility. The volatility can capture both seasonal
and maturity specific effects. The moments of the returns of a contract will
exhibit excess kurtosis. Some authors have documented skewness in futures
price returns series, and our model does not capture this. One possible
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extension would be to modify our deterministic volatility specification with
stochastic volatility. Bates (1996) has analysed a model with both jumps
and stochastic volatility. The volatility is modelled as a mean reverting
square-root process. The mean towards the volatility reverts is a constant.
A possible modification of the model suggested by Bates (1996), is to let the
volatility revert towards a time dependent mean. The time dependent mean
can capture both maturity and seasonality effects. Such a model is richer than
the one considered in chapter 2, and it can capture possible fluctuations in
volatility. Especially when calibrated to prices over long periods of time, such
a model might give a better fit than a deterministic volatility specification.

In chapter 3 we investigate the volatility dynamics of the forward curve us-
ing principal component analysis (PCA). The PCA analysis is able to capture
the maturity effect in this market. Our analysis also indicates seasonal vari-
ation in volatility and possibly also stochastic volatility. In future research
it would be desirable to be able to incorporate seasonal and/or stochastic
volatility explicitly for one or each of the factors determined by the PCA
analysis. One way to proceed would be to investigate a so-called orthogonal
GARCH model, where seasonal variation is included in the GARCH specifi-
cation.® Orthogonal GARCH is essentially a two-step procedure; first run a
PCA, and then fit a univariate GARCH model to each of the principal com-
ponents. The univariate structure of the GARCH models is possible, since
each principal component is uncorrelated.

In chapter 4 we consider a market in which there exist a continuum of
forward prices. All other contracts are derived from these forward prices.
In particular, the average based electricity forward contracts traded in the
Nordic electricity market are derived from this continuum of basic forward
prices. This modelling approach is parallel to the modelling of the forward
interest rates pioneered by Heath et al. (1992). However, there are other
interest rate models that may be adapted in electricity markets, even more
appropriate than the Heath-Jarrow-Morton model. In the fixed income mar-
ket place, the rates applicable to interest rate derivatives are typical LIBOR
or swap rates. From a modelling point of view, starting with a continuum of
initial forward rates, and construct a continuum of processes, typically leads
to analytical intractable processes for forward LIBOR and swap rates (see
Musiela and Rutkowski (1997)). New types of interest rate models, so-called
market models, have appeared. Such a model concentrates on the actual

5See Alexander (2001) for an overview of orthogonal GARCH.
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rate at hand, and models it directly, circumventing the need to model for-
ward rates. Jamshidian (1997) develops both LIBOR and swap rate based
market models, and he derives closed form solutions for different kinds of
swaptions etc. in the case of lognormal forward swap or LIBOR rates.® In
the electricity market the same problems with forward rate based models.
The forward prices of electricity are not available in the market place. They
have to be estimated from average based forward contracts. The stochas-
tic process of this average based forward is typically intractable, and no
closed form solutions generally exist.” These contracts may be interpreted
as swap contracts. Entering into a long electricity contract means that you
are swapping floating electricity prices, against the fixed price - the price of
the average based forward contract. Hence, the average based contracts can
be interpreted as delivering the swap rate during a specified time period -
the delivery period of the contract. In a swap market model, the dynamic
properties of the average based contracts will stated explicitly, and model es-
timation and testing can be performed directly using observed market prices
instead of smoothed prices.

We encounter the problem of pricing average based contingent claims in
several chapters. Chapter 4 provides closed form solutions to such a claim
in an arithmetic Brownian model, and chapters 5 and 6 provide approxi-
mations in a standard geometric Brownian model. The bulk of research on
Asian option valuation has been conducted within this model. Chapter 2
shows that the occurrence of jumps is important in describing futures price
dynamics in the wheat futures market. Hilliard and Reis (1999) investigated
the price effect of jumps on Asian option prices in a Monte Carlo experiment.
They showed that Asian option prices in a jump-diffusion model relative to
Asian options in a lognormal model differs more than corresponding Euro-
pean options. The ratio of a lognormal over jump-diffusion out-of-the-money
Asian put is over twice the corresponding ratio for European options. This
evidence suggests that it be worth investigating Asian option pricing when
the underlying asset is deviates from lognormality. The method suggested

6See Sandmann and Sondermann (1993, 1994), Goldys et al. (1994) Musiela (1994),
Miltersen et al. (1995, 1997) and Brace et al. (1997) for contributions in the literature on
market models.

"Of course, in chapter 4 we show that in an arithmetic forward based model, closed
form solutions exists. In the market place, the Black-Scholes model is the preferred model,
and in the case of lognormal forward rates, no closed form Black-Scholes formula exists
(see Bjerksund et al. (2000)
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in chapter 6 may be modified to handle underlying asset prices that exhibit
independent jumps (as in chapter 2). A recursion could be set up to calcu-
late moments for the discrete average, and those moments could be matched
with say, the jump-diffusion stochastic volatility model of Bates (1996). If
we rely on Monte Carlo methods, we are free to pick any underlying asset
price dynamics.

I will like to stress the fact the suggestions for further research mentioned
above, is by no means an exhaustive list of paths were future research may or
should go. Rather they constitute neighbouring research areas for each chap-
ter in this thesis. They may not be the most important research topics that
need addressing. For example, in this thesis we concentrate on models deal-
ing with price risk. An equally important risk to many market participants in
both agricultural and electricity markets is the volumetric risk. Volumetric
risk is important both when it comes to hedging decisions and to valuation
of volume dependent contracts (called time-of-use or swing contracts in the
electricity market). This is unquestionably a big and challenging area for
future research. The use and valuation of weather derivatives is another.
This shows that we are experiencing exciting times in commodity markets
risk management and contingent claims valuation.
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Chapter 2

Volatility and price jumps in
agricultural markets - evidence
from option data

This paper is co-authored with Gudbrand Lien®

ABSTRACT - Empirical evidence suggests that agricultural futures
price movements have fat-tailed distributions and exhibit sudden and
unexpected price jumps. There is also evidence that the volatility
of futures prices is time dependent. It varies both as a function of
calendar-time (seasonal effect) and time to maturity (maturity effect).
This paper extends Bates (1991) jump-diffusion option pricing model
by including both seasonal and maturity effects in the volatility spec-
ification. An in-sample fit to market option prices on wheat futures
shows that the suggested model outperforms previous models consid-
ered in the literature. A numerical example indicates the economic
significance of our results for option valuation.

'Gudbrand Lien is a senior researcher at Norwegian Agricultural Economics Research
Institute, Box 8024 Dep, 0030 Oslo, Norway. An earlier version of this paper appeared as
Discussion Paper 19/2001 at Norwegian School of Economics and Business and Adminis-
tration, Department of Finance and Management Science.
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2.1 Introduction

Black (1976) derives a pricing model for European puts and calls on a com-
modity futures contract, assuming that the futures price follows a geometric
Brownian motion (GBM). In the literature on agricultural futures markets,
several empirical characteristics have been documented, indicating that the
GBM assumption may be too simple. Research has detected leptokurtic re-
turns in agricultural futures prices (e.g. Hudson et al. (1987) and Hall et al.
(1989)), and the prices often exhibit sudden, unexpected and discontinuous
changes. Price jumps will typically occur due to abrupt changes in supply
and demand conditions, and such discontinuities in the price path of futures
prices will affect the prices on options written on futures contracts. Hilliard
and Reis (1999) used transactions data on soybean futures and futures op-
tions to test the Black (1976) diffusion model versus the jump-diffusion option
pricing model of Bates (1991). Their results show that Bates’ model performs
considerably better than Black’s model in both in-sample and out of sample
tests.

A number of studies have demonstrated the presence of a volatility term
structure in agricultural futures prices. Samuelson (1965) claimed that the
volatility of futures price returns increases as time to maturity decreases. He
argued that the most important information was revealed close to maturity
of the contract. For example, the weather affecting demand or a temporary
supply disruption will affect spot prices and hence short dated futures con-
tracts. In the long term, short-term price movements are not expected to
persist rather revert back towards a normal level. This implies that long
dated contracts will be less affected by spot price changes and experience
lower volatility than short dated contracts. This maturity effect is some-
times referred to as the ”Samuelson hypothesis”. Other authors have argued
that the volatility of futures prices depends on the distribution of underlying
state variables. This is sometimes termed the ”state variable hypothesis”.
For crop commodities one would typically expect the information flow to vary
during the crop cycle. The most important information is revealed during
growing and harvests season, hence seasonality in the volatility of futures
prices is expected. is that Empirical research has produced mixed evidence
on the two effects. Milonas (1986) found strong support for the maturity
effect after controlling for seasonality. Galloway and Kolb (1996) concluded
that the maturity effect is present in markets where commodities experience
seasonal demand and/or supply, but not in commodity markets where the
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cost-of-carry model works well. Anderson (1985) found support for the ma-
turity effect, but claimed it is secondary to seasonality. Anderson (1985) also
concluded that the pricing of options on futures contracts should allow for
the regular pattern to the volatility of futures. Bessembinder et al. (1996)
have reconciled much of the early evidence on the ”Samuelson hypothesis”.
They have shown formally that, in markets where spot price changes include
a temporary component so that investors expect some portion of a typical
price change to revert in the future, the ”Samuelson hypothesis” will hold.
Mean reversion is more likely to occur in agricultural commodity markets
than in markets for precious metals or financial assets (Bessembinder et al.
(1995)), so we expect to see maturity effects in agricultural commodity mar-
kets.

Any regular pattern in the volatility is inconsistent with the underlying
assumptions in Black (1976) and Bates (1991). Choi and Longstaff (1985)
applied the formula of Cox and Ross (1976) for constant elasticity of vari-
ance option pricing in the presence of seasonal volatility. They found this
superior to the Black (1976) model for pricing options on soybeans futures.
Myers and Hanson (1993) present option-pricing models when time-varying
volatility and excess kurtosis in the underlying futures price are modelled
as a GARCH process. Empirical results suggest that the GARCH option-
pricing model outperforms the standard Black (1976) model. Fackler and
Tian (1999) proposed a simple one-factor spot price model with mean rever-
sion (in the log price) and seasonal volatility. They show that futures prices
consistent with this spot price model have a volatility term structure exhibit-
ing both seasonality and maturity effects. Their empirical results indicate
that both phenomena are present in the soybean futures and option markets.

In this paper we assume that the futures price follows a jump-diffusion
process. The diffusion term includes time dependent volatility that captures
(possibly) both seasonal and maturity effects. We derive a futures option
pricing model given our specified futures price dynamics. The model param-
eters are estimated from option prices written on the futures contract. Eleven
years of futures and option data is collected from Chicago Board of Trade
(CBOT). The market observed option prices are compared to the theoretical
option prices, and the parameters of our futures price model are estimated
using non-linear least squares. Several models suggested previously in the
literature are nested in our model specification, and we can use standard
statistical tests to determine whether jumps and time dependent volatility
are present in the data. The results show that the maturity effect is espe-
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cially strong in the wheat futures market. The seasonal effect is of lesser
importance, but it is statistically significant. The estimated jump intensity
is significantly different from zero. This result is in line with results found
in the soybean futures option market reported in Hilliard and Reis (1999).
When testing different models against each other, we find that simpler mod-
els are rejected in favour of our proposed model with jumps, seasonality and
maturity effects. A numerical example illustrates the economic significance
of our results.

This paper is organised as follows: In the next section we present the
futures price dynamics and derive a futures option pricing formula. Section
2.3 describes the data. In section 2.4 we estimate parameters in the jump-
diffusion model. The economic significance of our results is illustrated in a
numerical example. Section 2.5 concludes.

2.2 Model description

We assume that there exists an idealised futures market (liquid, frictionless,
no taxes, limitless short selling allowed etc.) for every delivery date T™.
Denote the price of a futures contract as F(t,T*), where ¢ is today’s date
and T* is the maturity date of the contract.? The futures price is assumed
to follow the following dynamics under the equivalent martingale measure
(EMM):

dF (t,T*)

W = —-Afidt -+ O'(t, T )dB(t) -+ qu (21)

where B is standard Brownian motion under the EMM and k is the random
percentage jump conditional upon a Poisson distributed event, q, occurring
and % is defined as the expected value of the jump size if it in fact occurs.
The counting process q is independent of , with Prob(dg = 1) = Adt and
Prob(dq = 0) = 1 — Adt. By standard no-arbitrage arguments we know that

ZWe present our modelling framework in a non-technical manner. Merton (1976) first
introduced the jump-diffusion model of asset prices. The modern mathematical framework
for modelling discontinuities in asset price is by the use of so called marked point processes,
in which the Poisson distributed jump arrival process considered in this paper is one of
many possible candidates. See Veredas (2000) for a nice, readable introduction on marked
point processes. A very nice exposition of forward, futures and option pricing in a very
general framework is given in Bjérk and Landén (2002). Since the focus of this paper is
the empirical properties of a jump-diffusion model, we have omitted the technicalities.
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since it costs nothing to enter a futures contract, the expected return on
holding the contract should be zero under the EMM. We can easily check
that this is the case in our model: The Brownian motion has zero expectation.
The expectation of kdg during a time increment dt is E [kdg] = E [] E [dq] =

RAdt, thus E [%} = 0. We now need to specify the jump distribution
and the volatility term structure. The inclusion of jumps in a model free
of arbitrage raises some issues of market incompleteness. We give a brief
discussion of this in the following subsection. We then describe a model for

the volatility that is able to capture both seasonal and maturity effects.

2.2.1 Jumps and market incompleteness

We assume that In (1 + k) is a normally distributed random variable with
mean (7y — 3v?) and variance v2. Consequently, the expected percentage
jump size is E [k] =K = €” — 1. These distributional assumptions are equal
to those stated in Merton (1976)3 and Bates (1991), but other distributions
might be considered.* Note that the jump parameters are constants, in
particular they are independent of time to maturity. This means that if
a jump occurs, a parallel shift in the term structure of futures prices will
emerge. If we observe futures contracts with time to maturity spanning
several years into the future, the assumption that the returns on all contracts
jump with equal amounts may seem inadequate. If, for example, exceptional
bad weather (such as a hurricane) partly destroys a harvest, then futures
prices are likely to jump. But we would expect contracts with maturity before
the next harvest to experience a greater price change than contracts with
maturity preceding the next harvest, since the next harvest is likely to turn
out better than the present one. This behaviour can easily be incorporated
in our model by imposing time dependence on the jump amplitude. Such an
extension is ignored here since the maturity of the futures contracts analysed
in the empirical part of this paper never exceed one year. Hence, in our data
set, imposing parallel jumps may be a satisfactory assumption.

3Merton (1976) assumed zero mean jump size, hence v = 0.

40ther jump distributions are considered in the financial literature. Duffie et al. (2000)
assume that abrupt changes in volatility are caused by Pareto distributed jumps, and Kou
(2000) investigates option pricing in the presence of double-exponentially distributed price
jumps. The literature on jumps in financial agricultural prices, as far as we know, concen-
trates on the lognormal jump model. Investigating other jump distribution in agricultural
markets is left for further research.



28 CHAPTER 2. VOLATILITY AND PRICE JUMPS

Merton (1976) assumed that jumps are symmetric (zero mean) and non-
systematic. In a stock market model, this means that jumps are of no concern
to an investor with a well-diversified portfolio, since jumps on average cancel
out. Given such assumptions of firm specific jump risk, parameters concern-
ing the jump part are equal under both the real world probability measure
and the EMM. The assumption of non-systematic jump risk may be inappro-
priate many settings, and this is also the case in commodity futures markets.
If, for example, bad weather results in a poor harvest, futures prices may
jump. However, the occurrence of such an event is likely to move all the
commodity futures prices in the same direction, and so diversifying the jump
risk is impossible. In other words, jump risk is systematic. It is well known
that the presence of systematic jump risk in our market makes it incomplete
in the Harrison and Pliska (1981) sense. This means that it is not possi-
ble to set up a dynamic hedging strategy in the underlying asset and a risk
free asset that replicates a contingent claim due to the possibility of abrupt
jumps in the underlying asset price. This essentially means that under the
absence of arbitrage opportunities, there are many (infinite) equivalent mar-
tingale measures. Furthermore, without explicit assumptions on preferences
and technologies, each martingale measure defines an admissible price of a
contingent claim (see Harrison and Kreps (1979)).

Bates (1991) derives a unique martingale measure in a jump-diffusion set-
ting by considering a specific equilibrium model. He assumes that optimally
invested wealth W follows a jump-diffusion

dW (t)
w(t)

= (pw — AwRw — C/W) dt + ow(t,t)dB(t) + kwdg  (2.2)

where B is standard Brownian motion, uy, is constant and ky is the random
percentage jump in wealth conditional on the Poisson event g occurring. The
Poisson counter has intensity Ay. The subscript W indicates that that the
model is specified under the cbjective (or "real world”) measure. Now let
In (1+ kw) be normally distributed with mean (yy — 3v%/) and variance
V3, and set Elkw] = By = €™ — 1 and Cov[ln(1 + kw),In(1 +&)] =
erw , where Cov [e] denotes the covariance. Furthermore the representative
consumer has time separable power utility U where

C-R_1

— (2.3)

E, /00 e U(Cr)dr, U(C)=
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and R is the relative risk aversion. The riskless rate is constant, and jump risk
is by construction systematic, since prices and (optimally invested wealth)
jump simultaneously. Bates (1991) shows that in this economy, when the
representative investor optimises his utility over an infinite time horizon,
there exists a unique martingale measure, and that the stochastic differential
equation describing futures prices are given by (2.1). He shows the following
relations between model parameters under the objective and risk neutral
measure?

o(t,t) = owl(t,t)

vV = Vw
A = )\We(—R‘Yw+%R(1+R)u%V)
Elk] = R=ew Rerwl (2.4)

We see that both the diffusion term and the variance of the jumps are the
same under both measures. But both the jump intensity and mean jump size
is different under the two measures. Bates (1991) interprets A as the cost per
unit time of jump insurance. If the mean jump size is zero, Rw = vy = 0,
and the representative investor is risk averse, we find that A > Ay,. Mathe-
matically this means that the probability of a jump occurring is greater under
the risk neutral measure than under the objective measure. Economically it
means that risk aversion increases the price of jump insurance. In the case
of risk neutrality we find that v = «y,. The mean jump size will typically
be downward biased under the equivalent martingale measure. The model
suggested by Merton (1976) can be seen as a special case of Bates (1991)
with a risk neutral agent and zero mean jump size. In this special case we
have K = Rw and v = vy .

In the empirical part of this paper, we extract the jump parameters from
option prices. From the discussion above it is clear that these parameters
are not equal to the parameters of the actual jump process governing futures
prices under the objective measure. Therefore care must be taken when
interpreting parameters implicit in option prices.

SIn his model, Bates (1991) assumes constant volatility in the diffusion term, but it is
not difficult to show that the diffusion term is equal under both measures in the case of a
deterministic term structure of volatility as well (see the appendix in Bates (1991)).
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2.2.2 Time dependent volatility

The function o (t,T*) represents the instantaneous volatility of the futures
price driving the diffusion term in the futures price dynamics. We want to
capture two possible effects in the specification of the volatility function;
seasonality and maturity. We will concentrate on the following candidate

ot T =5()6 (T —t) (2.5)

where seasonality is represented by & () and the maturity effect is given by
S(T* —t). This multiplicative relation between the two effects nests several
models suggested previously in the literature. We will specify both & () and
§(T* —t) in the subsections below.

Seasonal volatility

The first term in (2.5), 7 (t), represents the time ¢ dependent seasonal volatil-
ity pattern. A seasonal pattern evolving gradually through a cycle leads
naturally to some trigonometric representation. The trigonometric function

&(t) = sint (2.6)

is defined in terms of an angle, ¢, which is measured in radians. In a circle
there are 27 radians, and therefore & goes through its full complement of
values as t goes from 0 to 2w. We need flexibility of the seasonal function.
As a first step we can replace ¢ with yt. The parameter, y, is known as the
(angular) frequency. The time for & to go through its complete sequence of
values is called the period of the cycle, and it is equal to 27/x. Multiplying
the trigonometric function by ¢, affects the amplitude of the cyclical waves.
Finally, in order shift the function along the time axis, we introduce the
parameter, ¢, which is known as the phase. The expression then becomes

&(t) =7 + csin (xt — () 2.7)

where T represent the average volatility during a cycle. Instead of introducing
the phase, the same lateral shift could be introduced by a mixture of sine
and cosine functions. Furthermore the model specification in (2.7) produce
a volatility function which exhibits exactly one peak and one trough during
a full cycle. Summing several trigonometric functions with different phase,
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Previous models Parameter constraints
Black (1976) A=b=a;=0;=0
Schwartz (1997) A=0;=0;=0
Fackler and Tian (1999) | A=0

Bates (1991) b=a;=0,=0

Table 2.1: PI‘eViOllSly suggested models Several models suggested previously in the litera-
ture are nested within our mode] for the futures price dynamics given in (2.1), (2.8) and (2.9). The models

are given in column one, and the corresponding parameter constraints are given in column two.

amplitude and period can induce more flexibility of the seasonal pattern (for
example several peak periods). This leads to

P
o(t)=7+ Z (a;sin2nt — B; cos 2mt) (2.8)
=1

We end the discussion of seasonality here. In the empirical section we will
stick to the symmetric seasonality (p = 1) in (2.8).

Maturity effect

The second term in (2.5) we model as a negative exponential
5(T* —t) = =0T ~1) (2.9)

By choosing this particular specification, we are able to nest several mod-
els suggested previously in the literature. Previous models along with the
parameter constraints are listed in table 2.1. In the empirical part of this
paper we will consider several of these constrained models along with our
new unconstrained model.

2.2.3 Valuation of futures options

Consider a European call option, C', with maturity T' and strike K written
on a futures contract with maturity 7*, where T' < T*. The value is given
by

C(F (t,T*),t,T) =T " P(n) (F (t,T*) XM T=9% (d1,) — KD (dp))

n=0

(2.10)
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where

ny

b(n) = —AR
(n) /\/c+T_t

In (F“—KTI) + 1 (w? +nv?) + b(n) (T — t)
Vw? + nv?
d2n = d1n — vw2 + %

W= \//tTa(s,T*fds

and @ (e) denotes the cumulative standard normal distribution. This formula
is a slight generalisation of the formula given in Bates (1991) and Merton
(1976). A derivation is given in appendix A. The formula can be under-
stood intuitively as a sum of Black-Scholes (BS) type formulas with variance
w? + nv? and a risk free rate b(n)(T — t), with each BS formula weighted
by the probability of n jumps occurring in the period [t,T]. Since there is
no upper limit to the number of possible jumps occurring in this period,
we are in fact summing over infinite BS formulas. In practise this is not
a big problem, since, for reasonable jump parameters, very accurate prices
can be obtained when truncating the infinite sum by setting n rather low.5
Put options can be calculated explicitly, or they can be found via the fu-
tures option put-call parity. In the empirical part of this paper, we use data
on American futures options, and consequently, some modification of the
above European option pricing model is required. Bates (1991) derives an
approximation for an American option in the jump-diffusion framework. His
approximation generalises the formula of Barone-Adesi and Whaley (1987)

6In our empirical investigation we set out with n ~ ATe”. Then n is extended until
additional terms do not increase accuracy. Following Bates (1991) we set n = 1000 at
the maximum. There is a way of avoiding the truncation problem altogether. Zhu (1999)
computes the characteristic function of the jump-diffusion and by inverting this using
Fourier inversion technique, he propose an alternative formula without summation. This
method could easily be applied in our model as well, but this is not done here.
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to a jump-diffusion model of the underlying asset. We use the same approx-
imation as described in Bates (1991), replacing the constant volatility in his
setting with the time-dependent volatility given by w above. This model is
called New in the empirical part of the paper.

2.3 Data description

We use price quotes on wheat futures and wheat futures options collected
from CBOT to estimate the parameters of the futures price dynamics. Weekly
data were obtained from January 1989 until December 1999. Wheat futures
contracts are available with expiration in March, May, July, September, and
December. The total sample consists of fifty-five futures contracts. The fu-
tures contracts matures in March, May, July, September, and December. At
each point in time, there are five contracts traded, meaning that a one-year
contract, is the longest contract an investor can enter into. The options
written on the contracts can be exercised prior to maturity, hence they are
of American type. The last trading day for the options is the first Friday
preceding the first notice day for the underlying wheat futures contract. The
expiration day of a wheat futures option is on the first Saturday following
the last day of trading.

We applied several exclusion filters to construct the data sample. First,
our sample starts in 1989. We did not use prices prior to 1989 since market
prices then were likely to be affected by government programs in the United
States (price floor of market prices and government-held stocks). Second,
only trades on Wednesdays were considered, yielding a panel data set with
weekly frequency. Weekly sampling is simply a matter of convenience. Daily
sampling would place extreme demands on computer memory and time. The
reason for choosing Wednesday is that this is the day of the week least affected
by holidays. Third, only settlement (closing) prices were considered. Fourth,
the last six trading days of each option contract were removed to avoid the
expiration related price effects (these contracts may induce liquidity related
biases). Fifth, to mitigate the impact of price discreteness on option valu-
ation, price quotes lower than 2.5 cents/bu were deleted. Sixth, assuming
that there is no arbitrage in this market, option prices lower or equal to their
intrinsic values were removed. Three-month Treasury bill yields were used as
a proxy for the risk free discount rate. The exogenous variables for each op-
tion in our data set are strike price, K, futures spot price, F', today’s date, ¢,
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the maturity date of the option contract, T', the maturity date of the futures
contract, T*, the instantaneous risk-free interest rate, r, observed settlement
option market price, C;;. Here 7 is an index over transactions (calls of as-
sorted strike prices and maturities), and ¢ is an index over Wednesdays in
the sample.

2.4 Model estimation and performance

2.4.1 Estimation method

Besides the exogenous variables obtained from the data set, the option pric-
ing formula requires some parameters as inputs. In the full model the season
(E, a;, B;, and 6) and maturity-effect (v, v, and A) related parameters and
the jump-related parameters need to be estimated. There are two main
approaches to estimate these parameters; from time series analysis of the
underlying asset price, or by inferring them from option prices conditional
upon postulated models (Bates (1995)). There are two main drawbacks of
the former approach. First, very long time-series are necessary to correctly
estimate jump parameters, at least if prices jump rarely. Second, parame-
ters obtained from this procedure correspond to the actual distribution, and
hence the parameters cannot be used in an option pricing formula, since the
parameters needed for option pricing are given under the EMM. The latter
approach has been used in e.g. Bates (1991, 1996 and 2000), Bakshi et al.
(1997) and Hilliard and Reis (1999). Implicit parameter estimation is based
on the fact that options, if rationally priced, contain information of the future
probability distribution under the EMM.

We infer model-specific parameters from option prices over an eleven years
long time period. The model is separately estimated for March, May, July,
September and December wheat futures contracts expiring in 1989 through
1999. In previous studies, implicit parameters are inferred from option prices
during a very short time interval, often daily (e.g., Bates (1991, 1996) and
Hilliard and Reis (1999)). However, this method can be applied to data
spanning any interval that has sufficient number of trades (Hilliard and Reis
(1999)). Daily re-calibrations can fail to pick up longer horizon parameter
instabilities (Bates (2000)). In this study, one of the aspects we focus on is
the changing volatility during the year. There are only one maturity date for
options written on a specific contract. If we were to use daily data, a model
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with time-dependent volatility would be indistinguishable from a model with
constant volatility. Information of changing volatility will be revealed as the
option prices change during the course of the year. In other words, we need a
long time span, in order to be able to pick up volatility term structure effects
in this market.

American option prices, Cj;, are assumed to consist of model prices plus
a random additive disturbance term:

Cit =C (F‘ta Kia t7 Ta T*a U E, v, /\a 5:1 Qay, /Bj7 5) + Eit (211)

Equation (2.11) can be estimated using non-linear regression. The unknown
implicit parameters &, v, A, G, a;, (;, 6 are estimated by minimisation the
sum of squared errors (SSE) for all options in the sample given by
N N
SSE=Y > [Cu—C@F =) [e] (2.12)

t=1 i=1 t=1 =1

where ¢ is an index over option prices on a given date (calls of different strike
prices), and ¢ is a time index summing over weekly observations.

Many alternative criteria could be used to evaluate performance of op-
tion pricing models. The overall sum of squared errors (SSE) is used as a
broad summary measure to determine how well each alternative option pric-
ing model fits actual market prices. Assuming normality of the error term,
nested models can be tested using F-tests. Bates (1996, 2000) points out
that his option pricing models are poorly identified. By this he means that
in a jump-diffusion quite different parameter values can yield virtually iden-
tical SEE. This applies to our model as well, hence, parameter estimates
should be interpreted with care.

2.4.2 Implied parameters

The following models were estimated (abbreviations used later in the pa-
per are in parentheses): The diffusion model of Black (1976) with constant
volatility (Black76), the jump-diffusion model of Bates (1991) (Bates91), the
model suggested by Fackler and Tian (1999) with a seasonal and maturity
dependent diffusion term (Fackler99) and our unrestricted model with both
time dependence and jumps (New). Table 2.2 or shows implicit parameter
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estimates for March, May, July,” September and December wheat futures
call options.® In all the estimations reported we have set p = 1 which implies
symmetric yearly seasonality. Experimenting with higher order lags resulted
in only marginally better fit, and the results are not reported here.® As
a result of forcing eleven years of data into one option pricing model with
constant parameters, the SSE is quite large. From table 2.2 we also see indi-
cation that both volatility term structure effects and jumps are important.
The unrestricted model (New) produces the lowest SSE for all contracts.
This is not surprising, since more parameters necessarily means better fit.
Comparing SSE for each model we find that Bates91 gives a better fit
than Black76 for all contracts. This is in accordance with the conclusion in
Hilliard and Reis (1999). When comparing the pure volatility term structure
specification in Fackler99 with the pure jump specification in Bates91 we
find mixed results. Bates9! produce lower SSE than Fackler99 for December,
May and March (marginally). The opposite is true for the July contract.
We have formally tested the models against each other using F'-statistics.

The F-statistic is computed as F [J,n — L] = %——;ﬁi—?‘%ﬂ where SSEy
and SSEpg are sum of squared errors for the unrestricted and restricted mod-
els respectively, J is the number of restrictions, n is number of observations
in the sample, and L is number of parameters in the unrestricted model. The
test statistic is asymptotically F-distributed with J and (n — L) degrees of

freedom.® We ran the following tests

H, H,
Black76 Fackler99
Black76 VS Bates91
Bates91 New

"For July contracts we had problems minimising (2.12) for the New model, so the
parameters for this model is estimated in two steps. In step one all parameters except oy
and J, were estimated. In step two, ¢ and §; were fixed from the first estimation, and
the rest of the parameters were (re)estimated.

8We were unable to get sensible parameter estimates in the Fackler99 model for the
September contract.

9Generally speaking, using SSE as performance criteria there are only small improve-
ments when including several trigonometric terms compared to the more restrictive order
1 seasonal effect. The results are available from authors upon request.

10Gee for example chapter 5 in Davidson and MacKinnon (1993) for a description of
different tests available in non-linear lest squares regression. Since the test statistics is
F—distributed only asymptotically, they term it a pseudo-F test.
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March contracts
Parms. Black76 Fackler99 Bates91 New
o 0.21 [ (514.7)1 0.85 | (1072) [ 0.15 | (132.1)| 1.18 | (955.0)
07 0.04 | (51.5) | 0.04 }| (47.9)
v 0.19 | (542.8) | 0.19 | (215.4)
A 0.57 | (61.3) | 0.59 | (45.2)
6 2.85 | (247.3) 3.98 | (812.6)
a; -0.11 | (-22.6) -0.11 | (-10.2)
B4 -0.57 | (-223.4) -1.00 | (-151.8)
SSE 23006 20356 20166 18226
May contracts
Parms. Black76 Fackler99 Bates91 New
o 0.20 | (1388) | 0.25 | (2897) |0.18 | (2146) | 0.23 | (11.4)
07 0.08 | (6.4) 0.05 | (5.9)
v 0.26 | (673.8) | 0.17 | (466.9)
A 0.14 | (21.4) | 0.60 | (8.4)
6 0.36 | (3935) 0.71 | (3.3)
a; -0.02 | (-74.0) -0.03 | (-1.9)
B4 -0.02 | (-121.3) -0.05 | (-7.0)
SSE 15140 14582 13991 12990
July contracts
Parms. Black76 Fackler99 Bates91 New
o 0.21 | (1102) | 0.22 | (889.7) | 0.13 | (598.0) | 0.39 | (183.2)
07 0.04 | (89.4) | 0.02 | (71.5)
v 0.05 | (206.5) | 0.15 | (225.2)
A 6.49 | (578.8) | 1.52 | (93.8)
6 0.01 | (0.9) 4.49 | (177.0)
o1 -0.03 | -(26.0) -0.15 | -(5.8)
B4 -0.08 | -(76.7) -0.10 { -(6.1)
SSE 47931 38481 46099 38409

Table 2.2: Implicit parameter estimates for various models. The table shows param-

eter estimates from non-linear least squares regressions on wheat futures call option prices. Estimations

are made separately on March [4264], May {3859], July [5074], September [3971] and December [5231] con-

tracts in the period 1989-1999 (number of observations for each contract in brackets). For each contract

we estimate four models: Black76, Fackler99, Bates91 and New. The three former models are constrained

versions of the latter (see table (2.1) for parameter constraints for each model.) Sum of squared errors

(SSE) are reported for each model, and t-values are in parentheses.
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September contracts
Parms. Black76 Fackler99 Bates91 New
o 0.24 | (330.8) 0.18 [ (1290) | 0.34 | (706.9)
y 0.11 | (158.1) | 0.14 | (21.3)
v 0.17 | (60.8) | 0.46 | (636.3)
A 0.56 | (60.7) | 0.14 [ (23.7)
6 1.20 | (173.2)
o1 -0.15 | (421.4)
B4 -0.03 | (169.8)
SSE 55913 - 53359 42426
December contracts
Parms. Black76 Fackler99 Bates91 New
o 0.23 | (805.3) | 0.29 | (477.0) | 0.15 [ (156.5) [ 0.30 | (24.5)
y 0.01 | (78.0) | 0.05 | (271.1)
v 0.24 | (61.3) | 0.35 | (402.1)
A 0.65 | (442.1) | 0.22 | (24.4)
) 1.03 | (268.1) 1.56 | (21.7)
o 0.01 | (4.7) 0.05 | (5.7)
B4 -0.12 | -(144.8) -0.12 | -(11.3)
SSE 47345 45480 43608 41732

Table 2.2 cont. (see caption on previous page)

where Hj is the null hypothesis and H; is the alternative hypothesis. The
appropriate restrictions for each model are in table 2.1. The results, given in
table 2.3, shows that we can reject the null hypothesis of a pure lognormal
model assumptions against both the volatility time-dependent model and
the jump-diffusion model with constant volatility. We also find that, for all
contracts, Bates9! is rejected in favour of the model New with both jumps
and time-dependent volatility.

2.4.3 A closer look at the time-dependent volatility

Recall that the volatility dynamics is modelled in (2.5), (2.8) and (2.9). In
the case of order one (symmetric) seasonality model the four parameters 7,
ai, B, and 6 are governing the volatility time-dependence. From table 2.2 we
see that these parameters differ somewhat across contracts. There is little
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Testing Hy versus H; | F-value | F-critical | Decision
March contracts

Black76 vs. Fackler99 187.0 8.5 Reject Hy

Black76 vs. Bates91 202.1 8.5 Reject Hy
Bates91 vs. New 151.0 8.5 Reject Hy
May contracts

Black76 vs. Fackler99 49.2 8.5 Reject Hy

Black76 vs. Bates91 105.5 8.5 Reject H
Bates91 vs. New 98.9 8.5 Reject Hy
July contracts

Black76 vs. Fackler99 415.0 8.5 Reject Hy

Black76 vs. Bates91 67.2 8.5 Reject Hy
Bates91 vs. New 338.2 8.5 Reject Hy

September contracts
Black76 vs. Fackler99 - 8.5 Reject Hy
Black76 vs. Bates91 63.3 8.5 Reject Hyp

Bates91 vs. New 340.5 - -
December contracts
Black76 vs. Fackler99 71.4 8.5 Reject Hy
Black76 vs. Bates91 149.3 8.5 Reject Hy
Bates91 vs. New 78.3 8.9 Reject Hy

Table 2.3: Model speciﬁcation tests. The table reports the results from several hypothesis
tests. The null hypothesis of constant volatility (Ho =Black76) is tested separately against time-dependent
volatility (H1 =Fackler99) and the presence of jumps (H) =Bates91). A pure jump model (Ho =Bates)
is tested against the full model (H; =New). The critical value of the F-tests are given for a confidence

level of 95 per cent.
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point in comparing each parameter against each other for different contracts,
since, as mentioned above, different parameter values may cause quite sim-
ilar option prices. Hence, we need to consider all the relevant parameters
simultaneously when we investigate the volatility time-dependence. We have
plotted the volatility time-dependence in figure 2.1, using the estimated pa-
rameters in table 2.2. For each contract the volatility term structure spans
one year and ends as the futures contract expires.

We see that March, July and September contracts reveal the most pro-
found maturity effect. The December contract combines high summer volatil-
ity and a maturity effect during autumn. It seems to be more volatile during
the second half of the year. The July contract shows few signs of seasonality
at all, but from table 2.2 we see that the seasonal parameters are significantly
different from zero. In sum figure 2.1 illustrates the far bigger effect maturity
has on volatility time-dependence, than seasonal variations over the year.

2.4.4 A closer look at the jump parameters

If wheat futures prices are characterised solely by deterministic time-dependent
volatility, they are lognormally distributed. Furthermore, the implied volatil-
ity from option prices will be constant across strike prices.!! However, if
jumps are likely to occur, implied volatility will be not be constant across
strike prices. As argued elsewhere, implied volatility curves reveal the effects
of jumps on option prices. As an illustration of the effect of jumps on im-
plied volatility, we computed theoretical option prices on American calls for
different strikes using parameters from the New model of the May contract
in table 2.2. The futures price is set to F(t, T*) = 300, the maturity of the
contract T* = 7/12 months and the risk free rate r = 0.05. We backed out
implied volatility curves using 5 strikes (K = 240, 270, 300, 330 and 360) for
option maturities 2, 4 and 6 months from now (T = 2/12,4/12 and 6/12).
The results are given in figure 2.2.

We note that implied volatility is not constant across strike prices. This
is known as the volatility ”"smile”. This is caused by the possibility of both
upward and downward jumps. It is also evident that this ”smile” gets more
pronounced as option expiration gets closer. If there is only a short time to

HThe fact that we are dealing with American options, means that implied volatility
is not necessarily constant across strikes. However, prices on American and European
futures option differ very little (Bates (2000)), hence implied volatility from American
futures options are close to horizontal in a lognormal model.
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2.1: Estimated time-dependence of volatility. The functional form of the

time-dependence is given in (2.5), (2.8) and (2.9). The parameters underlying the volatility

(7,a1,B,,8) are implied from option prices, and they are given in table 2.2 in the column

termed New for each of the contracts. Each contract is plotted during a one year cycle. For example the

May contract is initialised in May, with maturity the following May (T* = 1).
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Figure 2.2: Implied volatility smiles from wheat call options. Parameters for the
May contract reported in table 2.2 are used in the computations. The futures price is set to 300 for a
futures contract with maturity 7 months from now ((T* = 7/12)), and the risk free rate is 5%. Option
prices are computed using the formula in (2.10) adjusting for the early exercise feature as in Bates (1991)
for different strikes (K = 240,270,300, 330 and 260) and option maturities (T = 2/12,4/12 and 6/12).
To back out implied volatilities we use the Black (1976) model adjusted for early exercise premium of

American options as described in Barone-Adesi and Whaley (1987).
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maturity, far out-of-the-money (OTM) options in a lognormal model will be
worth relatively little, since an extreme upward price swing is very unlikely.
In a jump-diffusion model, these options may end up in-the-money (ITM)
if a jump occurs, and consequently, these options will be relatively more
valuable in a jump-diffusion than in a lognormal world. When there is long
time to option maturity, the jump component plays a less prominent part
when it comes to moving futures prices upwards or downwards. In the case
of OTM options say, the diffusion term alone will be able to move the futures
price so that the option will end up ITM.!?2 We also note from figure 2.2 that
the volatility curve shifts upwards when option maturity increases. This
fact is mainly caused by the maturity effect captured by the volatility term
structure. When the option maturity is close to the maturity of the futures
contract, the maturity effect results in high average volatility during the life
of the option. When the option matures long before the futures contract,
the average volatility during the life of the option is lower, since the futures
contract is less volatile far from maturity.

2.4.5 A numerical example

Finally, we provide a numerical example showing the economic significance
of our findings. Assume that our model specification is correct; that both
the volatility term structure and jumps are present in futures prices, and
hence our option pricing formula calculates the true option price. What kind
of mispricing will take place if we use the model of Black (1976) or Bates
(1991) previously suggested in the literature? We set the futures price to
F(t,T7*) = 300 and the maturity of the contract 7* = 7/12 months and the
risk free rate r = 0.05. We computed prices for 3 strikes (K = 260, 300, 340)
for option maturities 2, 4 and 6 months from now (T = 2/12,4/12,6/12).
We compute American call option prices in the Black76, Bates91 and New
model. The parameters are from the May contract in table 2.2. The results
are given in table 2.4. The first three columns report the actual American

12Tn our case, there is roughly an equal chance for the jump to be either positive or
negative under the EMM (% ~ 0). This means that as time to option expiration increases,
multiple jumps will have a tendency to cancel each other out. This will enforce the
flattening effect on the volatility smile as time to expiration increases. However, jump
effects will in general be more visible in terms of implied volatility as time to expiration
shortens (see Das and Sundaram (1999) for an investigation of term structure effects in a
jump-diffusion model).
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%Diff.
Maturity | Strike | Black76 | Bates91 | New | Black76 vs. | Bates91 vs.
New New
T=2/12 | 260 40.17 40.29 | 40.14 0.1% 04 %
T*=7/12] 300 9.68 9.41 7.59 27.5 % 23.9 %
340 0.70 1.12 1.35 -48.1 % -16.5 %
T =4/12 | 260 41.41 41.46 | 40.97 1.1 % 1.2 %
T =7/12 | 300 13.60 13.50 | 12.43 9.4 % 8.6 %
340 2.55 3.10 3.19 -20.2 % -2.9 %
T=6/12 | 260 43.01 43.20 | 43.61 1.4 % -0.9 %
T =T7/12 | 300 16.71 16.86 | 18.14 -7.9 % -7.1 %
340 4.61 5.31 6.55 -29.6 % -18.9 %

Table 2.4: Comparison of American wheat futures option pricing models.
Option prices are computed using (2.10) and adjusting for the early exercise premium of American options
as in Bates (1991). Parameters estimates used in the computations are those estimated for the May
contract in table 2.2 are used in the computations. Prices are computed from the following pricing models
Black?6, Bates91 and New. The futures price is set to F(t, T*) = 300, the maturity of the contract T* =7
months and the risk free rate r = 0.05. Prices are computed for 3 strikes (K = 260, 300, and 340, ) for
option maturities 2 4 and 6 months from now (T = 2/12,4/12 and 6/12). The two columns to the right

report the relative pricing differences between Black76 vs. New and Bates91 vs. New respectively.

option prices for each of the models. The last two columns report percentage
differences between the New model and Black76 and Bates91 respectively.
Below we will comment on the pricing differences for each strike separately.

Prices for ITM options (K = 260) are more or less the same for all three
models for all maturities. This is due to the fact that the intrinsic value
dominates the value of an option when deep ITM, and hence most models
would produce quite similar results. The at-the-money (ATM) (K = 300)
price differences are basically influenced by the maturity effect of volatility.
Both Black76 and Bates91 use an average volatility for the whole period as
input. The fact that the volatility of futures contract increases as maturity
approaches, means that using an average value for the volatility will produce
too high option prices for short maturity options and too low prices for long
maturity options. We note that the prices from Black76 and Bates91 are
in quite good agreement with each other; however, they differ quite severely
from the New model. For the shortest option maturity (' = 2/12) the prices
of Black76 and Bates91 are roughly 25% higher than New. This number is
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down to about 9% at maturity T = 4/12. At the maturity closest to the
maturity of the futures contract (T' = 6/12), we see that ATM option prices
from Black76 and Bates91 produce prices 7% lower than New. Lastly, the
two alternative models produce significantly lower price for OTM calls than
New (K = 340). For the Black76 model, this fact is not surprising since
OTM calls will be more valuable in a jump-diffusion world. The results from
the Bates91 model deserve some explanation. We see that the parameters
estimated for Bates91 give a less pronounced smile effect than New. This
is because, as the volatility term structure is restricted to be flat, the jump
parameters will influence both the prices across strikes, and the overall price
level. From the discussion on implied volatility, the jump parameters in-
fluence both the "smile” and the level of the implied volatility curve.’® In
New, the term structure of volatility can take care of the level, and the jump
parameters can “concentrate” on ”"smile” effects. Hence the parameters in
Bates91, through the estimation method, emerge as a compromise of the two
effects. The results reported here might be important in other valuation con-
texts. For example, Hilliard and Reis (1999) argue that average based Asian
options are popular in commodity over-the-counter (OTC) markets. They
show that Asian option prices in the Black76 versus Bates91 differ even
more than is the case for European/American options prices. Our results
indicate, in addition to the jump effect, that Asian option prices will differ
quite substantially depending on where in the life of the option the average
is calculated. Especially, the relative strong maturity effect will give very
different prices on Asian options depending on both the length of averaging
period and how close the averaging period is to the maturity of the futures
contract.

13This fact may partly explain the observation reported in Hilliard and Reis (1999) that
parameter values are not stable over time. In their estimation procedure, they calibrate
the model each day. Using their procedure, Bates91 will be able to replicate New as long
as we are only considering options with one maturity date. When either the option or
futures maturity change, the parameters in Bates91 must change to capture the volatility
time-dependence. Hence we would expect unstable parameters in the analysis of Hilliard
and Reis (1999) if, in fact, there exist volatility time-dependence effects in the underlying
futures price dynamics.
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2.5 Summary

In this paper we have developed an option pricing model that incorporates
several stylised facts reported in the literature on commodity futures price
dynamics. The volatility may depend on both calendar-time and time to
maturity. Furthermore, futures prices are allowed to make sudden discon-
tinuous jumps. We estimated the parameters of the futures price dynamics
by fitting our model to eleven years of wheat options data using non-linear
least squares. Several models suggested in the literature are nested within our
model, and they all gave significantly poorer fit compared with the full model.
In a numerical example we showed that ignoring volatility time-dependence
and jump effects in futures prices might lead to severe mispricing of options.
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2.6 Appendix: Closed form futures call op-
tion

In this appendix we will give a formal proof to option pricing formula in
(2.10). Our formula is a special case of the general futures option pricing
formula provided in Bjork and Landén (2002), but it is provided here for
completeness. In their paper the change of measure technique, pioneered
by Jamshidian (1989) and Geman et al. (1995}, is used repeatedly in the
derivation of the option pricing formula. We will sketch the proof of the
pricing formula following Bjork and Landén (2002) closely. First we present
our model in a more formal way from a measure theoretic point of view.
Then we sketch the proof along the lines of Bjérk and Landén (2002).

We consider a market where the uncertainty is characterised by the prob-
ability space (Q, F, Q) where § is a set, F is a o-algebra of subsets of {2 and
Q: F — [0,1] is a probability measure. All economic activity is assumed to
take place on a finite horizon [0, T*], with the filtration F = {F;,0 <t < T*}
satisfying the usual conditions. The filtered probability space is assumed to
carry a standard Brownian motion, and a homogenous Poisson counter pro-
cess. We assume that F is equal to the information structure generated by W
and a Poisson random measure. A homogenous Poisson process is a process
with stationary (they do not depend on time) and independent increments
such that g(t) is Po(At), where Po(e) means Poisson distributed. Hence
P(q(t) = n) = e"\t’—\g. The dynamics of the futures prices are assumed to
be

dF (t,T*)
FT)

where B is standard Brownian motion under the EMM and « is the random
percentage jump conditional upon ¢ occurring. We assume that In (1 + &)
is a normally distributed random variable with mean (’y - %Vz) and variance
v?. Consequently, the expected percentage jump size is E [k] =K =¢€7 — 1.

Now consider an equivalent martingale measure. The measure QF is
defined by

= —XRdt + o(t,T")dB(t) + kdq (2.13)

dQF = LFdQ (2.14)

where

(2.15)
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The dynamics of L is obtained as
dLf = LF (kdq — XRdt) + LF o (t,T*) dB(t) (2.16)

Now the solution to (2.13) can be expressed under both measures. Condi-
tional on that there has been n jumps F (T, T*) can be written

F(T,T*>=F(t,T*>exp( A"H Qde(f )H(1+m~)
t §=0

(2.17)
where In (1 + &;) ~ N(7 — %Vz,vr"), ki, 3 = 1,...,n are i.i.d. random vari-
ables under the measure Q, and X ~ A (m,s) is a normally distributed
random variable with mean m and variance s. The possibility of n number
jumps occurring in the period [¢t,T] can be found from the Poisson distribu-
tion which is P(n) = e_A(T_t)fl;\(T_t))n under Q. Alternatively F (T,T*) can
be written

) ) —/\K(T—t—i- [Fo(s,Tds \ T4 F
F(T.T") = F(t,T ¢ 14 Kt
1,1 = F( )exp< o e )H( +f)
(2.18)
where In (1+&F) ~ N (v + 3v%,12) and &F, j = 1,...,n are i.14.d. random

variables under the measure QF Under this measure the probability of n

e AT (Tt (F
1(1,)‘ -0)" where A¥ = Xe? (see Bjork and Landén

jumps is PF(n) =
(2002) for details).

Cousider a European call option C with maturity 7' and strike K on a
futures contract with maturity T*, where T < T*. Let EZ2[e] denote the
conditional expectation with respect to the measure Q and let Ip be an
indicator function with the set D = {F (T,T*) > K}. The value at time ¢ of
this call can then be expressed as

¢TI0 ER[F (T, T*) — K]

= e T OVEQ[F (T, T*) Ip) — e "TVER [KIp)
eI, T)QF [F (T, T*) > K]

—e " TVKQF (T, T*) > K]

c(F(t,T),t,T)

The two probabilities, QF [s] and Q [s], can be expressed as follows
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QF P (1) > K] =3 )

n=

~ O(dyn) (2.19)

QP T 5 1 = SO =)

n=0

= & (dy,,) (2.20)

where ®(e) is the standard cumulative normal distribution and
In (————F(}T*)> + 1 (w? +m?) + b(n) (T - t)
Vw? + nv?

ny
Tt

dln =

b(n) = -k +

d2n = dln — VU)2 + m/2

w= \//tTU(s,T*)2ds

Using the fact that A¥ = \e” and the relationship & = ¢” — 1 we find that

2, eI (W — t)" e T NT =) -ty inn(reD)
n! B n! €
n= n=0
— o e T) (A(T — t))n e—'EA(T—t)-}'nfy
nl

n=

Setting it all together yields

» 0 =X(T-t) - _
c (F (t, T*) b, T) — e-—r(T—t)F (t, T*) Z € (T/:'(T )) e—n,\(T—t)+n7(I)(d1n)
n=0 )
® _—X(T-t) _ n
__e—'r(T—t)K Z € (:'(T t)) (I)(dgn) (221)

n=0

which is the formula given in (2.10).



Chapter 3

Forward curve dynamics in the
Nordic electricity market

This paper is co-authored with Fridthjof Ollmar!

ABSTRACT - The purpose of this paper is to investigate the forward curve
dynamics in an electricity market. Six years of price data on futures and forward
contracts traded in the Nordic electricity market are analysed. For the forward
price function of electricity, we specify two different multi-factor term structure
models in a Heath-Jarrow-Morton framework. Principal component analysis is
used to reveal the volatility structure in the market. A two-factor model explains
75% of the price variation in our data, compared to approximately 95% in most
other markets. Further investigations show that correlation between short- and
long-term forward prices is lower than in other markets. We briefly discuss possible
reasons why these special properties occur, and some consequences for hedging
exposures in this market.

3.1 Introduction
With the rapid growth of derivative securities in deregulated electricity mar-

kets, the modelling and management of electricity price risk have become
important topics for researchers and practitioners. In the case of electricity,

1Fridthjof Ollmar is a Ph. D. student at the Norwegian School of Economics and Busi-
ness Administration, Helleveien 30, 5045 Bergen, Norway. An earlier version of this paper
appeared as Discussion Paper 21/2001 at Norwegian School of Economics and Business
and Administration, Department of Finance and Management Science.
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contingent claims valuation and risk management were not considered im-
portant issues prior to market deregulation. Due to the special properties
of this commodity volatility in deregulated electricity markets can reach ex-
treme levels and a proper understanding of volatility dynamics is important
for all participants in the market place.

There are two lines of research focusing of commodity contingent claims
valuation and risk management. The traditional way has concentrated on
modelling the stochastic process of the spot price and other state variables
such as the convenience yield? (see for example Brennan and Schwartz 1985,
Gibson and Schwartz 1990, Schwartz 1997 and Hilliard and Reis 1998). This
approach has been adopted and modified in the recent electricity literature
by, among others Deng (2000), Kamat and Ohren (2000), Pilipovi¢ (1998)
and Lucia and Schwartz (2000). As far as we know Lucia and Schwartz
(2000) represent the first thorough empirical work on electricity spot prices.

The main problem with spot price based models is that forward prices are
given endogenously from the spot price dynamics. As a result, theoretical
forward prices will in general not be consistent with market observed forward
prices. As a response to this, a line of research has focused on modelling the
evolution of the whole forward curve using only a few stochastic factors taking
the initial term structure as given. Examples of this research building on the
modelling framework of Heath et al. (1992), are Clewlow and Strickland
(1999a) and (1999b), Miltersen and Schwartz (1998) and Bjerksund et al.
(2000).

Empirical investigations of forward curve models in commodity markets
have been conducted by, among others, Cortazar and Schwartz (1994) and
Clewlow and Strickland (2000). Cortazar and Schwartz (1994) studied the
term structure of copper futures prices using principal component analysis
and found that three factors were able to explain 99% of the term structure
movements. Clewlow and Strickland (2000) investigated the term structure
of NYMEX oil futures and found that three factors explained 98.4% of the
total price variation in the 1998-2000 period. The first factor (explained 91%
of total variation) shifted the whole curve in one direction. They termed this

2This direction is rooted in the theory of storage developed by Kaldor (1939), Working
(1948) and (1949), Telser (1958) and Brennan (1958) and (1991). According to the theory
of storage, the futures and spot price differential is equal to the cost of storage (including
interest) and an implicit benefit that producers and consumers receive by holding inven-
tories of a commodity. This benefit is termed the convenience yield. The most obvious
benefit from holding inventory is the possibility to sell at an occurring price peak.



3.1. INTRODUCTION 55

a ”shifting” factor. The second factor, termed the "tilting” factor, influenced
short and long-term contracts in opposite directions. The third factor, the
"bending” factor, moved the short and long end in opposite direction of the
mid-range of the term structure.3

In this paper we adopt the forward curve approach and perform an em-
pirical examination of the dynamics of the forward curve in the Nordic elec-
tricity market during the 1995-2001 period. Following the work of Cortazar
and Schwartz (1994) and Clewlow and Strickland (2000) we use principal
component analysis to analyse the volatility factor structure of the forward
curve. The forward price of electricity is the price today for a delivery of
electricity at some point in time in the future. This forward price function is
not directly observable in the market place. Power contracts trading on Nord
Pool are all written on a future average; the delivery periods of the contracts.
Instead of working directly with the different financial contracts with vari-
ous delivery periods, we compute a continuous forward price function from
each day’s futures and forward prices. This data transformation process is
similar to the process of extracting a forward interest rate curve from a set
of fixed income products. We apply the principle of maximum smoothness
described in Adams and van Deventer (1994) and Bjerksund et al. (2000) to
compute daily electricity forward curves. We specify two different models for
the evolution of the forward price of electricity in the framework of Heath et
al. (1992); the geometric and the arithmetic Brownian motion. Two sets of
data are constructed. For the arithmetic model forward price differences are
analysed, and forward price returns are analysed in the case of the geometric
model. The maturities for the contracts that constitute the data sets range
from one week to two years. Following the work of Cortazar and Schwartz
(1994) and Clewlow and Strickland (2000) we use principal component anal-
ysis to analyse the volatility factor structure of the forward curve. In the
short end of the term structure, the volatility increases sharply as time to
maturity decreases. In other commodity markets one typically find that a few
factors are able to explain most of the variation in the forward prices. The
portion of explained variance is lower iu the electricity market. We find that

3The multi-factor forward approach by Heath et al. (1992) was originally developed
for interest rate markets. Empirical work on factor dynamics in fixed income securities
markets have been conducted by Steely (1990), Litterman and Scheinkman (1991) and
Dybvig (1997), among others. The results in these studies are quite similar to the work
reported from the commodity markets. Typically, three factors explain 95%-98% of the
total variation in the forward curve.
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a two-factor model explains 75% of the price variation in our data, compared
to approximately 95% in most other markets. Pilipovié (1998) conjecture
that electricity prices exhibit “split personalities”. By this she means that
the correlation between short- and long term forward prices are lower in elec-
tricity markets than in other markets. We provide some empirical support
of this claim. The most important factors driving the long end of the curve
have very little impact on price changes in the short end. Furthermore we
find some evidence of changing volatility dynamics both seasonally and from
one year to another. Finally, we are unable to decide if an arithmetic or
geometric model describes the data best.

This paper is organised as follows: We give a short description of the
Nordic electricity market in section 3.2. Section 3.3 presents the multi-factor
models and section 3.4 describes the data set. In section 3.5 we show how
principal component analysis can be used in order to estimate the empirical
volatility functions and section 3.6 reports the results. Section 3.7 concludes
the paper.

3.2 The Nordic electricity market

3.2.1 History of the Nordic Power Exchange

From 1971 to 1993 a market called Samkjgringen co-ordinated the Norwegian
electricity production. Every week Samkjgringen set the daily or part-of-
the-day price for electricity. This price was used to decide the Norwegian
electricity production and the exchange with other countries. A new Energy
Law was approved by the Norwegian Parliament in 1990 and came into effect
in 1991. This law introduced market-based principles for production and
consumption of electricity in Norway. After England and Wales in 1989,
Norway was the second country to deregulate the electricity market.

In 1993 Samkjgringen merged with Statnett SF to create a new company
called Statnett Marked AS. Statnett Marked AS organised the new Norwe-
gian market place for electricity from 1993 to 1996. In 1996 the Swedish grid
company, Svenska Kraftnat, bought 50% of Statnett Marked AS and became
part of the power exchange area. At the same time Statnett Marked AS
was renamed to Nord Pool ASA. Finland joined the power exchange area in
1998, western Denmark in 1999 and eastern Denmark in 2000. The Nordic
electricity market is non-mandatory and a significant share of the physical
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power and financial contracts are traded bilaterally.

3.2.2 The physical market

Today Nord Pool organises and operates Elspot, Eltermin, Eloption, and
Elclearing. Elspot is a spot market for physical delivery of electricity. Each
day at noon, spot prices and volumes for each hour the following day are
determined in an auction. The equilibrium price is termed the system price,
which may be considered a one-day futures contract. The following day, the
national system operators organise a regulating- or balance market, where
short term up- or down regulation is handled. Since 1993 the turnover in
Elspot market has increased steadily from 10.2 TWh in 1993 to 96.2 TWh in
2000. In 1999, more than one fifth of the total consumption of electric power
in the Nordic countries was traded via Nord Pool.

3.2.3 The financial market

Eloption and Eltermin are Nord Pool’s financial markets for price hedging
and risk management. Financial contracts traded on Eltermin are written
on the arithmetic average of the system price at a given time interval.* This
time interval is termed the delivery period. The time period prior to delivery
is called the trading period. Both futures and forward contracts are traded
at Eltermin. The contract types differ as to how settlement is carried out
during the trading period. For futures contracts, the value is calculated
daily, reflecting changes in the market price of the contracts. These changes
are settled financially at each participant’s margin account. For forward
contracts there is no cash settlement until the start of the delivery period.
European options written on underlying futures and forward contracts are
traded on Eloption. Asian options written on the system price do no longer
trade on Eloption. This is due to low liquidity.

The power contracts refer to a delivery rate of 1 MW during every hour for
a given delivery period. Futures contracts feature daily market settlement in
their trading and delivery periods. Forward contracts, on the other hand, do
not have settlement of market price fluctuations during the trading period.

“We only give a brief description of the different products traded at Nord Pool here.
For a detailed description see www.nordpool.no or Lucia and Schwartz (2000). Some
contracts traded in the OTC market have a different underlying reference price than the
system price. Such contracts are not considered in this study.


http://www.nordpool.no
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Daily settlement is made in the delivery period. None of the contracts traded
at Nord Pool are traded during the delivery period.

The contracts with the shortest delivery periods are futures contracts.
Daily futures contracts with delivery period of 24 hours are available for
trading within the nearest week.® Weekly futures contracts with delivery
periods of 168 hours can be traded 4-8 weeks prior to delivery. Futures
contracts with 4 weeks delivery period, are termed block contracts. The
forward contracts have longer delivery periods. Each year is divided into
three seasons: V1 - late winter (January 1- April 30), SO - summer (May 1 -
September 30) and V2 - early winter (October 1 - December 31). Seasonal
contracts® are written on each of these seasonal delivery periods. In January
each year, seasonal contracts on SO and V2 the coming year and all three
seasonal contracts for the next two years are available. Furthermore, yearly
forward contracts are available for the next three years. In other words, the
(average based) term structure goes 3 to 4 years into the future, depending
on current time of year.

In 1995 the total volume of financial contracts traded on Nord Pool and
OTC was 40.9 TWh. In 2000, this number was 1611.6 TWh. The most
heavily traded contracts are weekly contracts and the two nearest seasonal
contracts. On average 20-30 weekly contracts and 30-80 seasonal contracts
are traded each day.

3.3 Multi-factor forward curve models

Our model setting is similar to the forward interest rate model of Heath et
al. (1992). The two models we investigate in this paper are special cases
of the general multi-factor term structure model developed for commodity
markets in Miltersen and Schwartz (1998). We consider a financial market
where the uncertainty can be described by a K-dimensional Brownian mo-
tion (W4, ..., Wk) defined on an underlying probability space (2, F, Q)with
the filtration F = {F; : t € [0,T*|} satisfying the usual conditions and repre-
senting the revelation of information. The probability measure QQ represents

SThese contracts have only a short (and illiquid) history, and will not be included in
our data set when analysing the volatility structure in the market.

5From 1995 to the end of 1999 seasonal futures contract were traded. In our empirical
analysis, all contracts traded in the 1995-2001 period are used in the estimation of the
models.
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the equivalent martingale measure. Throughout the paper we assume con-
stant risk free interest rate, so that futures prices and forward prices with
common maturity are identical (see Cox et al. (1981)). The two terms will
be used interchangeably in the following sections.

Let the forward market be represented by a continuous forward price
function, where f(t,T) denotes the forward price at date ¢ for delivery of
the commodity at time T, where t < T' < T*. Given constant interest rates
the futures and forward prices are by construction martingales under the
measure Q.

e Model A: Deterministic volatility functions are independent
of the forward price level

Consider a model where the dynamics of the forward price is

df(t,T) = 3 oAt T)awi(t) (3.1)

i=]

where the (W, ..., Wk) are independent Brownian motions, and o(¢, T) are
time dependent volatility functions.” The solution to (4.1) is

f@t,T)=f(0,T)+ Z/Ot a{‘(s,T)dWi(s) (3.2)

This means that the forward prices are distributed

fit,T) ~N ( f (o, T),Z /0 t a;‘(s,T)2ds> (3.3)

where N (s,v) denotes a normally distributed variable with mean s and vari-
ance v.

e Model B: Deterministic volatility functions are proportional
to the forward price level

7Volatility is a term usually associated with the (time dependent) function of the diffu-
sion term in a lognormal model {model B above). In this paper we use the term ”volatility
functions” for the time dependent functions in the diffusion term in both models.



60 CHAPTER 3. FORWARD CURVE DYNAMICS

Consider a model where the dynamics of the forward price is given by

aIfit,T) <
T izzlaf(t,T)dWi(t) (3.4)

with solution

f(t,T) = f(0,T) exp (-%Z/O af’(s,T)zds—t—Z/O a,.B(s,T)dm(s))

(3.5)
The distribution of the natural log of the forward price is given by

Inf(t,T) ~N (lnf(O T) - li/tcﬂg(s T)?ds i/taB(s T)2ds)
? ? 2 — 0 1 ? 71:1 0 1 2

(3.6)
where N (s,v) is defined as above.

Versions of both class A and B models have been proposed for the Nordic
electricity market. Lucia and Schwartz (2000) propose a spot price model
and derive analytical expressions for futures/forward prices. They consider
mean reverting spot price models both in level and log form. It is easy to
show that their models are consistent with forward price models with

of(t,T) = ge™™T~)

and

0113 t,T) = ge ™It

_respectively, where ¢ and k are positive constants. This model produces a
falling volatility curve in T', approaching zero as T — oo. Bjerksund et al.
(2000) on the other hand, propose two different kinds of class B models. The
one factor model is given by

a

O'IB(t,T) = m+c

where a, b and ¢ are positive constants. With realistic parameter values, this
specification produces a sharply falling volatility curve in T. As T — oo the
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volatility converges to c. Bjerksund et. al. (2000) also propose a three factor
model

with all parameters assumed positive. This three-factor model allows a richer
structure of the forward price dynamics. They argue that the one factor
model may be adequate for pricing contingent claims, while the three-factor
model is better suited for risk management purposes. Note that in all the
models above, given that all the parameters are positive, each individual
Brownian motion will move forward prices of all maturities in the same di-
rection. As we will see from the empirical analysis, this property of the
proposed models is inconsistent with our empirical findings.

3.4 Descriptive analysis and data preparation

We are interested in the volatility dynamics of the forward price function
described above. This forward price function, giving us today’s price of a
unit of electricity delivered at a specific instant in the future, is not directly
observable in the market place. The power contracts trading on Nord Pool
are all written on a future average; the delivery periods of the contracts. We
need to pin down the relationship between the forward price function and
the average based contracts. Let F (t,7,T5) be today’s contract price of an
average based futures contract delivering one unit of electricity at a rate of
T T in the time period [T}, T3], where T} and T is the beginning and the
end of the delivery period of the contract, and ¢t < T} < T3. Suppose that
the contract price is paid as a constant cash flow during the delivery period.
Then the expression for the average contract is (see Bjerksund et al. (2000)):

F(t,N,To) = / ) w(r,u) f(t, u)du (3.7)

T

where
e ht 72

— 3.8
fTT12 e~"tdu (38)

w(r,u) =
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Lucia and Schwartz (2000) note that F (¢,T1,T2) = ﬁ ;2 flt,w)du is a
very good approximation of (3.7) and (3.8) for reasonable levels of interest

rates. We use this approximation in the empirical analysis.

3.4.1 Smoothed data

Instead of working directly with the different financial contracts with various
delivery periods, we compute a continuous forward price function from each
day’s futures and forward prices. The smoothing procedure is based on the
principle of maximum smoothness suggested by Adams and van Deventer
(1994). The smoothness criterion they state for the forward rate function is
the one that minimises the functional

T
in " 2 )
m /0 £"(t, 5)%ds (3.9)

while at the same time fitting observed market prices.® They show, in an
interest rate setting, that the yield curve with the smoothest possible forward
rate function according to this criterion, is a quartic spline function, with the
cubic term dropped, that is fitted between each knot point on the yield curve.?
We apply the quartic spline function as described in Adams and van Deventer
(1994), and estimate the forward price function prices all traded assets within
the bid/ask spread using (3.7).1° The result of this smoothing procedure on
March 27, 2000 is illustrated in figure 3.1. The horizontal dotted lines are
closing prices on weekly, block and seasonal contracts. We have computed
the smoothed forward price function on each of the 1340 trading days in
our sample using all the contracts available each day. In figure 3.2 we have
plotted weekly forward curves during the 1995-2001 sample period. Note the
clear annual seasonal variation with high winter and low summer prices. The
contract with the longest time to maturity increases from 80 weeks in 1995
to 208 weeks in 2001.

8Here the derivatives are taken with respect to the second time index.

9For a comprehensive description of the maximum smoothness approach see Adams
and van Deventer (1994), Bjerksund and Stensland (1996) and Forsgren (1998).

10A sinusoidal prior function is defined prior to estimation to pick up the strong seasonal
pattern in this market. The smoothed forward price functions were computed using the
software ELVIZ developed by Viz Risk Management Services AS. For more information of
the ELVIZ software, see www.viz.no.


http://www.viz.no.
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Sample period: 1995 - 2001

Maturity | W-01 W-52 W-104
Mean 145.51 159.54 163.47
Median 130.18 153.49 158.88
Min 45.25 99.91 101.24
Max 356.00 262.03 275.75
Std.dev 64.10 36.04 33.17
Skewness 1.21 0.76 0.63
Kurtosis 3.91 3.18 3.26
Nobs 1340 1340 1279

Table 3.1: Descriptive statistics for electricity forward prices. The table reports
statistics from three points on the smoothed term structure, the one week forward price (W-01), the one

year forward price (W-52) and the two year forward price (W-104).

Sample period: 1995-2001

Maturity | W-01 W-52 W-104 | W-01 W-52 W-104

Price differences Price returns
Mean -0.32 0.00 -0.04{ -0.00 0.00 -0.00
Median -0.25 -0.02 -0.00} -0.00 -0.00 -0.00
Min -32.75 -17.42 -29.00| -0.39 -0.07 -0.25
Max 37.25 2136 26.80| 0.22 0.09 0.23

Std.dev 6.03 2.64 234 | 0.04 0.01 0.01
Skewness 0.13 028 -1.06 | -042 036 -1.01
Kurtosis 9.44 1256 45.07|11.23 811 116.14
Nobs 1339 1339 1278 | 1339 1339 1278

Table 3.2: Descriptive statistics for electricity forward price differences and
returns. Descriptive statistics of daily forward price differences and forward price returns from the
smoothed term structure of the total sample. The table reports statistics from three points on the smoothed
term structure, the one week forward price (W-01), the one year forward price (W-52) and the two year

forward price (W-104).
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Figure 3.1: Power contracts and the smoothed forward curve on March 26,
2000. The dotted lines represent the actual market prices, and the length of the dotted lines corresponds
to the delivery period on which the contracts are written. The weekly contracts (one dot) and block
contracts (four dots) are futures contracts, and the seasonal contracts are forward contracts. The solid

line is the smoothed term structure.

Table 3.1 shows descriptive statistics on three different points on the term
structure; W-01 (one week to maturity), W-52 (one year to maturity) and
W-104 (two years to maturity). We note that the mean forward price is
increasing with maturity. This means that the market on average can be de-
scribed by normal backwardation!! (a positive risk premium). We note that
the one-week forward price has fluctuated substantially during the sample
period. The fluctuations decrease with time to maturity. To further exam-
ine the time series properties of the data, we have plotted the time series

1Normal backwardation is used to describe the relationship f(¢,T2) > f(¢,71) when
T, > T1. We must be careful when using this relationship in markets with seasonal price
variation. By choosing maturities exactly one year apart, forward prices on the same time
of the year are compared and seasonal variation is no longer a problem.
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7

Figure 3.2: Surface plots of smoothed forward curves. Weelly surface plots (each

wednesday) for each of the years in our sample.
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Figure 3.3: Time series of futures pI‘iCGS. The graphs are time series plots of the futures

prices with one week (solid line), one year (dashed line) and two years (dotted line) to maturity.

of forward prices with the same three maturities in figure 3.3. It is obvious
that the one-week contract is much more erratic than the one- and two-year
contract. Note that the short-term price varies around the long-term price
indicating some sort of mean reversion. Roughly speaking the market was in
contango in 1996 and in normal backwardation in the 1997-2001 period.

3.4.2 Constructing two data sets

The forward price models in (4.2) and (3.5) describe the stochastic evolu-
tion under an equivalent martingale measure, and not under the real world
measure where observations are made. Although there may be risk premia
in the market that cause futures prices to exhibit non-zero drift terms, the
diffusion terms are equal under both measures. So the volatility functions
in (4.2) and (3.5) can be estimated from real world data. As noted by Cor-
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tazar and Schwartz (1994), this is only strictly correct when observations are
sampled continuously. In our analysis we use daily observations as a proxy
to a continuously sampled data set. Let f (t,,t, + 7n) denote the forward
price at date ¢ with maturity at date t,, + 7,,, where 7, = T,, — t,, is time
to maturity for the contract. Our discrete approximations of model A and B
are

df(tm tn + Tm) ~ f(tru tn +_Tm) - f(tn—b tn + T‘m) = x'rltl,m (310)

and

df tnytn +Tm) _ flatn+Tm) — fltnet,tn+Tm) 5
R =z, (3.11)
F(tnstn + Tm) Fltn1,tn + Trm) :

where n = 1,..., N. For a set of maturity dates {r1,...,7a}, we construct
2 different data sets from the smoothened data, X(‘NX M) with forward price
differences

A A A
Z11 xkz e ka
XA | Ton Tz o Ty
(NxM) = . . (3.12)
A A A
IN1 IN2 " TnNMm
and Xy, pr) With forward price returns
B B B
x}g,l Ti2 0 Tym
B B
B Tan Ta2 7 Tgum
X‘(NXM) - . . (3.13)
B B B
IN1 TN2 " INM

The matrices above deserve a thorough description. We first compute daily
forward price functions from the observed market prices. From these for-
ward functions we compute 104 weekly midpoint prices (equidistant forward
prices), one price for each week along a two years term structure. Within
each week these maturities are held constant. Next we compute N = 1339
time series observations on price returns and price differences. The contracts
are rolled over each Friday. Let us illustrate our approach using the contract
with maturity in one week: The daily returns and differences from Monday
to Friday are computed from the contracts with maturity the following week
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(71). On Friday we observe the price of the contact with maturity two weeks
ahead (73). The return and difference on this contract is calculated from
Friday to Monday. Reaching Monday, this contract has now become the new
one-week contract. We use this approach of fixing the time to maturity to
avoid problems of seasonality in prices over the year. Finally we pick M = 21
price returns and differences with different maturities among the 104 weekly
prices. If we scale T, in “weeks-to-maturity” the specific maturities chosen
are 71,...,7m = (1, 2, 3,4, 5, 6, 7, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
52, 70, 88, 104]. The maturities are chosen in such a way that they reflect
the actual traded contracts. In the shortest end we pick 7 maturities with
weekly intervals, mimicking the weekly contracts. The next 11 maturities are
4 weeks apart. There are only three maturities in the last year of the term
structure, representing seasonal contracts. In table 3.2 we report descriptive
statistics on the one week-, one year- and two year forward price differences
and forward price returns for the whole sample period. The standard devia-
tion of both price returns and price differences is sharply falling with time to
maturity. We also note that kurtosis is high, and that skewness is different
from zero. The sign of the skewness changes along the term structure. In ta-
bles 2.3 and 2.4 we report descriptive statistics on semi-annual and seasonal
sub-interval of forward price differences and forward price returns respec-
tively. We note that the standard deviation of price differences is markedly
higher in the 1995-1996 sub-period than in 1997-1998 and 1999-2001.

3.5 Principal component analysis and volatil-
ity functions

Principal component analysis (PCA) is concerned with the identification of
structure within a set of interrelated variables. It establishes dimensions
within the data, and serves as a data reduction technique. The aim is to
determine factors (i.e. principal components) in order to explain as much of
the total variation in the data as possible. In order to use principal compo-
nent analysis to estimate the volatility functions in (4.2) or (3.5) we assume
that these functions only depend on time to maturity (7,,). Not allowing the
volatility functions to depend explicitly on ¢ precludes seasonal variation in
the volatility functions. Assume that we have a total of N observations of M
different variables contained in vectors X1, Xg, ..., Xpr all of which dimension
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is (N x 1).12 Let the data matrix, X, be given by

Zn T2 o TiMm
To1 T2 - Ta2Mm

X(nNxM) = [ X1 X2 -0 Xym ] = : A . (3.14)
IN1 ZN2 *°* INM

The corresponding sample covariance matrix, of order M, is denoted ¥. The
orthogonal decomposition of the covariance matrix is

¥ = PAP’ (3.15)
where
Pu P2 0 PiM
P:[Pl P2 --- PM]= p?1 p.22 pz.M
PMm1 Pm2 - PMM
and
A O 0
a=| 0 °
0 0 - A

A is a diagonal matrix whose diagonal elements are the eigenvalues Aj;,
A22, .-, AmM, and where P is an orthogonal matrix of order M whose ith
column, p;, is the eigenvector corresponding to A;. P’ is the transpose of
P. The matrix Z = XP is called the matrix of principal components. Its
columns, z;, are linear combinations of the columns of X with the weights
given by the elements of p;. That is, the ith principal component is

Z; = Xpi = X1P1i + XoP2; + ... + XM PMi (316)

12Throughout this section we write matrices in bold upper case letters, vectors in bold
lower case letters and elements in plain text. The principal component analysis is con-
ducted on both forward price differences (XA) and forward price returns (XB ) We
suppress superscripts for notational convenience throughout this section.
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where pj; is the element in the jth row and ith column of P. The sample
covariance matrix of Z is given by

Var(Z) = P'WP = P'PAPP = A (3.17)

since PP’ = P'P = I, where I is the identity matrix, hence the Z variates are
uncorrelated, and the variance of z; = A;;. The eigenvectors on the diagonal
of A are of convention ordered so that A;; > Aoy > ... > Ay To explain
all the variation in X, we need M principal components. Since the objective
of our analysis is to explain the covariance structure with just a few factors,
we approximate the theoretical covariance matrix using the first K < M
eigenvalues in (3.15). Unfortunately we lack any solid statistical criterion to
determine the number of factors that constitute the theoretical covariance
matrix. Hair et al. (1995) discuss several criteria:

1. Eigenvalue criterion; only factors eigenvalues greater than 1 are con-
sidered significant.

2. Scree test criterion; the test conducted by plotting the eigenvalues
against the number of factors in their order of extraction, and the
shape of the curve is used to evaluate the cut-off point.

3. Percentage of variance criterion; additional factors are added until the
cumulative percentage of the variance explained reach a pre-specified
level.

We consider all of these criteria, but the latter criterion is the one fre-
quently employed in the finance literature. The K factors should explain
a “big” part of the total covariance of the underlying variables (typically
around 95%). The proportion of total variance accounted for by the first K
factors is

. . . ZI{_l )\i
Cumulative contribution of first K factors = =

Zi:l Ai

Component loadings are often computed to facilitate interpretation of the
results from a principal component analysis. Here, we instead plot the em-
pirical volatility function, &; (.), directly from the eigenvalue decomposition

as
Gi (Tm) = v/ AiDmi (3.18)
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where 1 = 1,..., K. Here we have suppressed the time index, emphasising
the fact that the volatility is independent on calendar time. We can use
(3.18) to plot easy-to-interpret volatility functions can be graphed.

3.6 Empirical results

In table 3.3 we report the results from the PCA analysis conducted on the
full sample. We note that a one-factor model is able to explain 68% and
70% of the variation of price returns and price differences respectively. The
eigenvalue and scree test criteria both agree on a two-factor model for both
returns and differences with a total of 75% and 78% variation explained re-
spectively. This is considerably lower than in most other markets. Typically
two or three factors explain more than 95% of total variations in forward
prices. For example, Clewlow and Strickland (2000) investigate the term
structure of NYMEX oil futures and find that three-factors explain 98.4% of
the total price variation. The fact that as much as 25% of the variance in the
electricity market is maturity specific, as far as we know, a feature unique to
this market. If we increase the number of factors the percentage variations
explained will naturally increase. We also note from table 3.3 that a target
of say 95% explained variation requires more than 10 factors in our data. It
is obvious that the 8 additional factors do not explain variation common to
the whole term structure. We will examine this more closely below, but first
we will investigate the shape of the first two factors.

We now want to take a closer look at the volatility dynamics represented
by the first two factors that affect the whole term structure. From the eigen-
values and the corresponding eigenvectors for the two first factors, we use
(3.18) to plot the corresponding volatility function in figure 3.4 along with
the overall volatility. The scaling on the vertical axes are annualised volatili-
ties. Data for the whole sample period is used in these calculations. We note
that the overall volatility is very high in the short end of the term structure,
and it falls rapidly with time to maturity. After approximately one year it
stabilises. This pattern applies to both price differences and price returns.
Turning to the individual volatility functions, we see that the first factor is
positive for all maturities, shifting all forward prices in the same direction.
It causes much bigger movements in the short end than in the long end. The
second factor causes short and long term forward prices to move in opposite
directions. Again this pattern applies to both price differences and price
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Sample period: 1995 - 2001

Data | Price returns l Price differences

Sample 1995-2001

Factor | Ind. Cum. | Ind. Cum.
Fnl 0.68 0.68 | 0.70 0.70
Fn2 |0.07 0.75 |0.08 0.78
Fn3 |0.05 0.80 |0.05 0.83
Fn4 [0.03 0.83 |0.02 0.86
Fn5 [0.03 0.86 | 0.02 0.88
Fn6 |0.02 0.88 ]0.02 0.89
Fn7 10.02 0.89 |0.02 0.91
Fn8 |0.02 091 |0.01 0.92
Fn9 [0.01 092 |0.01 0.93
Fnl0 {0.01 094 |0.01 0.94

Table 3.3: Principal component analysis of forward price differences and
returns. The analysis is performed on the whole data set, 1339 observations from September 1995
to March 2001. The table reports the individual contribution (Ind.) of each factor (Fn.) of the total

variance, and the cumulative effect (Cum.) of adding one additional factor.

returns. These two factors are qualitatively equal to the first two factors
reported in Clewlow and Strickland (2000) for NYMEX oil futures, which
they termed the tilting factor and shifting factor respectively.

Pilipovié¢ (1998) argued that the correlation between short-term and long-
term forward prices seem to be lower in electricity markets than in other
markets. If this is indeed the case, we would expect factors explaining a lot
of variation in the long end of the term structure, being able to explain far
less of the short term movements, and vice versa. We conducted the PCA
analysis once again to take a closer look at this. First we computed 10 prin-
cipal components capturing about 95% of variation of both price differences
and price returns. Then all 10 factors were sorted according to size for each
of the maturities. Hence for each of the 21 maturities, the 10 volatility func-
tions resulting from the PCA analysis are sorted according to their ability
to explain the overall variation for that particular maturity. The results are
given in tables 3.4 and 3.5.!% The first column reports the variation explained

13The rest of the tables and figures are located in the appendix for space considerations.
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Figure 3.4: Volatility functions and overall volatility in the full sample pe-
riod 1995-2001. The volatility functions on the left hand side are computed from price returns and
the volatility functions on the right hand side are computed from price differences. The functions are

annualized using a factor of square root of 250 (number of trading days).

by the most important factor for that particular maturity. The number in
superscript is the factor number. Hence factor number 1 is the most impor-
tant factor for explaining overall volatility. The second column reports the
cumulative variance explained by adding the second most important factor
for that particular maturity. Again, the superscript indicates the importance
of this factor in explaining total variation for all maturities. The results in
tables 3.4 and 3.5 are very similar, and we comment only the latter. We note
that factor number 1 is the factor explaining most of the variation for each
maturity within the first year. Factors number 1 and 2 are among the 4 most
important factors for all maturities. However, in the long end of the term
structure, factors number 9 and 6 are the most important ones. In other
words, the most important factors driving the long end of the curve have
very little impact on price changes in the short end. On average, very little
is gained in terms of percentage variation explained, by increasing the num-
ber of factors beyond 5. Combined, this evidence supports the conjecture
made by Pilipovié (1998) that electricity prices exhibit “split personalities”.
Why do we see this kind of forward curve behaviour in the electricity market?
The answer possibly lies in the non-storable nature of electricity. For exam-
ple, assume that the Swedish government makes a final decision to phase out
their nuclear electricity production and decides to start cutting production
two years from now. This would lower future supply, resulting in rising fu-
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tures prices with more than 2 years to maturity. In a market where storage
is possible, speculator would buy for storage (or producer would hold back
production), as a reaction to the anticipated rise in electricity prices in the
future. This would in turn result in a positive shift in spot and short-term
futures prices as well as long term futures prices. Since buying for storage is
impossible!? in electricity markets, the price on electricity will stay low until
the date of reduced production. Consequently, only futures contracts with
maturity after the production cut will react to this information.

Using the whole sample period in our calculations, we implicitly assume
that volatility dynamics have been constant in the 1995-2001 period. In-
vestigating the validity of this assumption, we plotted the volatility series
from the shortest maturity for each of our models in figure 3.5. Annualised
volatility of price differences and price returns of the one-week forward price
is calculated using a 30 day moving window. Volatility of price differences is
measured on the left vertical axis, and volatility of price returns is measured
on the right vertical axis. The volatility of price differences was high in the
period 1995-1997 and relatively much lower in the 1998-2001 period. We also
note that the volatility is all but constant.

The volatility of price returns was not especially high the first years. In
this model we see a relatively regular pattern; volatility peaks during summer.
We want to investigate yearly and seasonal differences further. However,
our methodology does not allow calendar time dependence in the volatility
functions. As a second best alternative, we repeat our PCA analysis in
different sub-samples. In table 3.6 we report the results from PCA analysis
on two years sub-intervals and seasonal sub-intervals for model A and B.
The two first volatility functions and overall volatility for each sub-sample
are plotted in figures 3.6 and 3.7. From table 3.6 we see that the V1 and SO
sub-periods, fewer factors are needed to explain 95% of the variation in the
data. Dividing into semi-yearly samples resulted in increased explanatory
power of the 10 factors. This indicates that volatility dynamics changes both
seasonally and from one year to the other!'®. Still, from the volatility function

14A large part of the electricity consumed the Nordic market is produced in hydropower
based production units. Many of these units have reservoir facilities that, to some extent,
enables them to move energy between periods. Such reservoir facilities provide a rela-
tively high level of operating flexibility. Still, the reservoir capacity is not big enough for
producers to shut down production for long periods of time without spilling water.

15We also computed the non-parametric Kolmogorov-Smirnoff test on equality of distri-
butions across seasons and years. The test results, not reported here, showed rejections of
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Figure 3.5: Estimated volatility using a moving window. The volatility series are
computed from daily data of the one week ahead forward price returns (dashed line) and forward price
differences (solid line). Both volatility series are simple arithmetic average of the last 30 trading days. We

have annualized the series by the square root of 250 (number of trading days).

in figures 3.6 and 3.7 we recognise the shifting and tilting factor as the most
important factors driving the forward curve.

Finally, we are interested in which of the two models, A or B, best resem-
bles the data generating process. We know that model A assumes normally
distributed price differences and model B assumes normally distributed price
returns. In table 3.7 we report statistics on skewness, kurtosis and the com-
bined effect of the two (the Jarque-Bera test) under the null hypothesis of
normality of price differences and price returns respectively. The tests are
conducted on 3 points on the term structure, with one week, one year and
two years to maturity. We note that both price differences and price re-
turns are positively skewed in the short end, and negatively skewed in the

equal distributions on 1% level in all cases.
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long end. Excess kurtosis is substantially different from zero for both mod-
els and increases with maturity for both specifications. The high degree of
kurtosis may indicate that jumps are present in the data. Not surprisingly,
the Jarque-Bera tests reject the null hypothesis of normality for both mod-
els, and so further modifications and testing of the models are necessary to
decide upon the winning candidate.

3.7 Concluding remarks

In this paper we have conducted an exploratory investigation of the volatility
dynamics in the Nordic futures and forward market in the period 1995-2001.
We have used smoothed data and performed a principal component analysis
to reveal the factor structure of the forward price curve. We specified two
different models in the framework of Heath et al. (1992); one model where
the volatility was independent of the forward price level and one model where
the volatility was proportional to the price level.

The main results are as follows: Two factors are common across all matu-
rities. A two-factor model explains around 75% of total variation in the data.
The first two factors governing the forward curve dynamics are comparable
to other markets. The first factor is positive for all maturities, hence it shifts
all forward prices in the same direction. The second factor causes short and
long term forward prices to move in opposite directions. In contrast to other
markets, more than 10 factors are needed to explain 95% of the term struc-
ture variation. Furthermore, the main sources of uncertainty affecting the
movements in the long end of the forward curve, have virtually no influence
on variation in the short end of the curve. We argue that this behaviour may
occur because electricity is a non-storable commodity. Note that the maxi-
mum maturity in our analysis is 2 years. One might suspect that contracts
sold in the OTC market with maturities further into the future are even less
correlated with short term contracts. These results indicate that modelling
the whole forward curve has less merit in this market than others. For exam-
ple, hedging long-term commitments using short-term contracts may prove
disastrous.

The results reported above apply to both models. Both models fail the
normality test, and so neither of them are completely satisfactory. Results
from semi-yearly and seasonal sub-intervals suggest that volatility is not con-
stant through time. Hence extending the basic model to include stochas-
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tic volatility, possibly with a seasonally time-dependent component, may be
fruitful.
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Relative importance of factors across maturities for price differences

Maturity Cumulative variance explained (%)

1th 2nd 3rd 4th 5t71, 6th 7?5 8th gﬂi loth
W-01 | 0.857 0.92% 0.94% 0.95° 0.96% 0.96° 0.96° 0.97° 0.97° 0.97*
W-02 | 0.89' 0.94%2 0.95* 0.96° 0.96° 0.96% 0.96° 0.96” 0.96° 0.96°
W-03 | 0.911 0.94%2 0.95% 0.967 0.96° 0.96° 0.96° 0.96!°0.96* 0.96°
W-04 | 091! 0.93%2 0.94* 0.94% 0.95% 0.95% 0.96” 0.96° 0.961° 0.96°
W-05 | 0.91! 0.93* 0.95° 0.96° 0.96% 0.96° 0.96'° 0.968 0.96° 0.967
W-06 | 0.90' 0.93* 0.95% 0.95% 0.96° 0.977 0.97° 0.97° 0.97%° .972
W-07 | 0.88' 0.91* 0.928 0.94% 0.947 0.95° 0.95% 0.95° 0.96° 0.96'°
W-12 | 0.81' 0.88% 0.90° 0.922 0.92% 0.93* 0.94% 0.947 0.9410 0.94%
W-16 | 0.82' 0.89° 0.922 0.93* 0.93% 0.947 0.94° 0.94% 0.941° 0.945
W-20 | 0.811 0.87° 0.902 0.92° 0.92¢ 0.921°0.93% 0.93% 0.93% 0.937
W-24 | 0.79' 0.85% 0.89° 0.91° 0.921°0.927 0.93% 0.943 0.94% 0.94*
W-28 | 0.75' 0.82? 0.857 0.87% 0.88% 0.89° 0.89° 0.89* 0.89° (.89%
W-32 | 0.661 0.823 0.912 0.93'°0.93° 0.947 0.94° 0.94* 0.95% 0.95°
W-36 | 0.70' 0.82% 0.912 0.93%° 0.947 0.95° 0.95'°0.95% 0.95% 0.95°
W-40 | 0.72! 0.82%2 0.887 0.908 0.91° 0.92* 0.93% 0.93190.945 (.94°
W-44 | 0.66' 0.772 0.84* 0.89% 0.917 0.93% 0.93%° 0.93° 0.93° 0.931°
W-48 | 0.59' 0.74* 0.85% 0.94% 0.95° 0.957 0.95% 0.961°0.96°% 0.96°
W-52 | 0.581 0.722 0.81* 0.86% 0.907 0.92% 0.93% 0.931°0.94° 0.948
W-70 | 0.591° 0.76! 0.86% 0.88% 0.91° 0.92° 0.947 0.94% 0.94* 0.946
W-88 | 0.495 0.64! 0.71° 0.76% 0.78* 0.80%° 0.813 0.828 0.83°% 0.837
W-104 | 0.72% 0.811 0.85% 0.87* 0.89'° 0.907 0.90° 0.90° 0.90° 0.90°
Avg. [0.76 084 089 091 092 093 0.93 0.94 094 094

Table 3.4: Most important factors across maturities for price differences. we
have first conducted a principal component analysis using 10 factors. Then the importance of each factor is
sorted for each maturity. The table reports the cumulative variance explained when adding one additional
factor. The factor number is in superscript. The bottom row reports the the average cumulative variance

explained.
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Relative importance of factors across maturities for price returns (%)
Maturity Cumulative variance explained
lth 2nd 3rd 4th 5th 6th 7th 8th gth loth

W-01 |0.86' 0.91° 0.95° 0.96° 0.96" 0.97° 0.97° 0.97° 0.97% 0.97%
W-02 | 0.90' 0.952 0.96 0.96° 0.967 0.96° 0.96% 0.96° 0.96* 0.96°
W-03 | 0.91' 0.93%2 0.95° 0.967 0.96° 0.96% 0.96% 0.96° 0.96° 0.96*
W-04 | 0.91' 0.93% 0.94%2 0.955 0.957 0.96° 0.96% 0.96° 0.96* 0.96°
W-05 | 0.89! 0.953 0.96%2 0.96% 0.96° 0.96° 0.967 0.96% 0.96° 0.96*
W-06 | 0.881 0.943 0.965 0.977 0.97%2 0.97% 0.97° 0.971°0.97° 0.97*
W-07 | 0.85' 0.90° 0.93% 0.947 0.952 0.95° 0.95% 0.95% 0.95!° 0.95%
W-12 | 0.76! 0.812 0.86° 0.88100.897 0.91° 0.92% 0.92% 0.92* 0.923
W-16 | 0.75' 0.842 0.89° 0.917 0.92% 0.92* 0.92° 0.93% 0.93100.933
W-20 | 0.72' 0.83%2 0.87° 0.88% 0.89° 0.90'°0.907 0.91% 0.91% 0.918
W-24 | 0.70' 0.822 0.86° 0.89% 0.901°0.915 0.92* 0.93% 0.93° 0.937
W-28 | 0.67! 0.80° 0.85% 0.87* 0.887 0.89% 0.89° 0.891° 0.89% 0.89°
W-32 | 0.611 0.77% 0.85* 0.88100.90° 0.92% 0.93° 0.947 0.94® 0.946
W-36 | 0.63! 0.78% 0.85° 0.89* 0.928 0.93% 0.947 0.94° 0.94% 0.941°
W-40 | 0.63! 0.772 0.85% 0.88% 0.90° 0.91* 0.92!°0.933 0.93¢ 0.947
W-44 | 0.59! 0.77* 0.882 0.90® 0.91° 0.923 0.92° 0.92% 0.927 0.93°
W-48 | 0.61* 0.83' 0.93% 0.94® 0.94° 0.957 0.95!°0.965 0.96° 0.96°
W-52 | 0.57! 0.75* 0.862 0.898 0.91° 0.92100.927 0.93% 0.93% 0.93°
W-70 | 0.55° 0.761°0.89! 0.93%2 0.94% 0.95° 0.957 0.95¢ 0.95° 0.95%
W-88 | 0.38% 0.53! 0.647 0.722 0.76° 0.79° 0.80% 0.81100.81° 0.81%
W-104 | 0.53% 0.737 0.79' 0.83% 0.85° 0.86° 0.87'° 0.89* 0.89° 0.89®
Avg. [071 0.83 0.88 090 092 0.92 093 093 093 0.93

Table 3.5: Most important factors across maturities for price returns. Relative

importance of factors across maturities for price returns. We have first conducted a principal component

analysis using 10 factors. Then the importance of each factor is sorted for each maturity. The table

reports the cumulative variance explained when adding one additional factor. The factor number is in

superscript. The bottom row reports the the average cumulative variance explained.
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Panel A: Analysis of forward price differences

Sample V2 Vi S0 1995-1996 1997-1998 1999-2001

Factor | Ind. Cum. | Ind. Cum. | Ind. Cum. { Ind. Cum. | Ind. Cum. | Ind. Cum.
Fnl 0.60 060 { 072 0.72 { 0.76 0.76 | 0.73 0.73 | 053 0.53 | 0.73 0.73
Fn2 0.08 067 | 007 0.79 [ 007 084 | 008 0.80 | 011 0.63 {0.07 0.81
Fn3 005 073 | 006 085 {004 088 J005 085 }007 070 ) 005 0.8
Fn4 004 077 } 004 089 | 003 091 (003 0.89 | 006 076 | 0.02 0.88
Fnb 0.03 080 | 003 092 {001 093 }003 091 {005 0.8l {0.02 090
Fnb 003 083 002 094 | 001 094 [ 001 093 |004 08 | 002 091
Fn7 002 086 | 002 095 001 095 | 001 094 | 003 0.87 001 093
Fn8 0.02 088 {001 096 {001 096 (001 095 } 002 090 | 001 094
Fn9 002 090 )001 097 | 001 097 [|001 096 | 002 092 | 001 095
Fnl0 0.02 092 | 001 097 | 001 097 {001 097 002 093 | 0.01 096

Panel B: Analysis of forward price returns

Sample V2 Vi S0 1995-1996 1997-1998 1999-2001

Factor | Ind. Cum. | Ind. Cum. | Ind. Cum. | Ind. Cum. | Ind. Cum. | Ind. Cum.
Fnl 059 059 070 070 |08 080 |070 0.70 | 0.58 0.58 { 0.73 0.73
Fn2 0.09 068 { 008 0.78 | 0.06 0.87 | 0.08 0.78 | 0.09 0.67 | 0.08 0.81
Fn3 005 073 | 005 083 [004 091 {006 083 {007 074 (0.05 0.86
Fn4 0.04 077 ({003 086 { 002 093 {003 086 | 006 080 | 002 0.88
Fnd 004 081 003 089 [|001 095 | 003 089 | 004 083|002 090
Fn6 003 084 {002 091 (001 095} 0.02 091 | 004 0.87 j0.02 092
Fn7 002 086 }002 093 | 001 096 | 002 092|002 089 | 001 093
Fn8 002 089 |001 094 { 001 097 [001 094 [ 002 091 {001 094
Fn9 002 090 §001 095 (001 098 {001 095 ;002 093 | 001 095
Fnl0 002 092 {001 096 ) 000 098 | 001 096 | 001 094 | 001 0.96

Table 3.6: Principal component analysis of forward price differences and price returns. In panel A
the analysis is performed on each two year sub-interval of the total sample. In panel B the data set is re-
shuffled, and the analysis is performed on 3 seasonal subintervals, V2 (early winter), V1 (late winter) and
S0 (summer) (see the text for exact period specifications). The table reports the individual contribution
(Ind.) of each factor (Fn.) of the total variance, and the cumulative effect (Cum.) of adding an additional
factor.
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Volatility functions: Model A
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Figure 3.6: Volatility functions and overall volatility in subperiods for price
differences. The two first volatility functions and overall volatility. The volatility functions on the left
hand side are computed from different seasons corresponding to seasonal contracts traded at Nord Pool
and the functions on the right hand side are computed from the time periods 1995-1996, 1997-1998 and
1999-2001. The functions are annualized using a factor of square root of 250 (number of trading days).
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Volatility functions: Model B
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Figure 3.7: Volatility functions and overall volatility in subperiods for price
returns. The two first volatility functions and overall volatility. The volatility functions on the left
hand side are computed from different seasons corresponding to seasonal contracts traded at Nord Pool
and the functions on the right hand side are computed from the time periods 1995-1996, 1997-1998 and
1999-2001. The functions are annualized using a factor of square root of 250 (number of trading days).
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Sample period 1995 - 2001

Data Price differences Price returns
Maturity W-01 W-52 W-104 | W-01 W-52 W-104
Std. Skew 0.15 0.25 -1.06 0.08 0.33 -1.01
Sign. (0.04) (0.00) (0.00) | (0.26) (0.00)  (0.00)
Std. Kurt. 6.93 9.49 42.07 2.65 5.07 113.14
Sign. (0.00) (0.00) (0.00) | (0.20) (0.00) (0.00)
Jarque-Bera | 2277.17 4809.96 94483.59 | 374.69 1394.68 681867
Sign. (0.00) (0.00) (0.00) | (0.00) (0.00)  (0.00)
Nobs 1339 1339 1278 1339 1339 1278

Table 3.7: Results from normality tests. Std.skew and Std.kurt are calculated as

(skewness) d (kurtosia) _ 3, respectively. The test statistics are both normally distributed,

(std.deviation)d (std.deviation)?

and the p-value for a two sided test for the null hypotesis of zero Std. skew and zero Std kurtosis is

reported in parantheses. The Jarque-Bera test statistics is calculated as %i (std.skewn)? + -% (std.kurt)?.
This statistic is chi-squred distributed. The significance level at which the null hypothesis of normality

can be rejected using a 2-sided test is reported in parantheses.
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Chapter 4

A multi-factor forward curve
model for electricity derivatives

ABSTRACT - In this paper we develop a general framework for val-
uation and hedging electricity derivatives. We propose a multi-factor
forward curve model consistent with market prices. The electricity
forward price is modelled as arithmetic Brownian motion. The main
advantage of our model compared to the geometric Brownian forward
curve models suggested previously in the literature is that closed form
solution to average based derivatives can be easily computed. This
is important in the electricity industry, since most contingent claims
in this market are derived from (arithmetic) price averages. The dy-
namic properties of two different average based forward contracts are
investigated. Furthermore, closed form solutions to both European
and Asian options and corresponding hedge ratios are calculated. Fi-
nally we implement the model and provide some numerical examples
using data from the Nordic electricity market.

4.1 Introduction

In this paper we develop a simple model that provides easy valuation, hedg-
ing and risk management of electricity contingent claims. There are cur-
rently two different approaches to commodity contingent claims valuation.
The traditional line of research starts with a stochastic specification of the
underlying asset or some state variables, such as the convenience yield or in-

89
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terest rates (see Brennan and Schwartz (1985), Gibson and Schwartz (1990),
Schwartz (1997) and Hilliard and Reis (1998))). These models are usually
referred to as spot price models. Deng (2000) and Kamat and Ohren (2000)
have investigated different spot price models for electricity contingent claims.
They modify the standard lognormal spot price assumption by adjusting for
jumps, regime switching and/or stochastic volatility in the log of the spot
price. Knittel and Roberts (2001) claim that the assumption of lognormal
electricity prices is inappropriate for several reasons, with the appearance of
negative prices in electricity markets being one. Their starting point is a
mean reverting model, where the price level is conditional Gaussian. More
sophisticated models that include seasonality, jumps and stochastic volatility
are also investigated. Lucia and Schwartz (2000) estimated both lognormally
and normally distributed spot price models using data from the Nordic elec-
tricity market. However, they do not reach any conclusion on which model
best describes the data.

Spot price models have some disadvantages. First, some or all of the state
variables, like the convenience yield, are typically unobserved. Second, the
forward and futures prices are endogenous in these models, and in general
the endogenous prices are typically inconsistent with prices observed in the
market place. To cope with these drawbacks, a second line of research has
concentrated on the evolution of the whole forward curve. The idea is to
model the entire forward curve using multiple (few) sources of risk, and all
observed futures and forward prices are taken as initial values of the forward
curve. Cortazar and Schwartz (1994) and Clewlow and Strickland (1999a)
have used this model to analyse copper index notes and energies respectively.
Bjerksund et al. (2000) apply the model in the Nordic electricity market.
These studies have the assumption of lognormally distributed forward prices
in common.

In this paper we develop a multi-factor arithmetic forward curve model
consistent with observed market prices. Electricity, once produced, cannot
be stored. Production and consumption have to balance in a power network.
This property makes electricity unique compared to other commodities, and
often electricity is described as a flow commodity. Consequently, contracts
traded in the electricity industry are typically specified with a future time
period for delivery, not a future time point. The value of such a contract
depends on the arithmetic average of the electricity spot price in the delivery
period. In a lognormal electricity forward price model, simple closed form
solutions to such derivatives does not exist, since the distribution of the sum
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of lognormal random variables is unknown. Hence, in a lognormal model,
approximations are needed even for simple European contingent claims. Our
model, being a forward price model, provides an important generalisation
of the Gaussian spot price model proposed by Lucia and Schwartz (2000)
and Knittel and Roberts (2001), since it is consistent with observed market
prices. But the most important property our model is that it provides simple
closed form pricing formulae for arithmetic average based contingent claims.
We investigate the dynamic properties of two different average based forward
contracts. Furthermore, closed form solutions to both European and Asian
options and corresponding hedge ratios are calculated.

The rest of the paper is organised as follows: Section 4.2 describes the
multi-factor model and section 4.3 investigates the distributional properties
of two average based forward contracts. Section 4.4 provides closed form
expressions for European forward and Asian spot price options. Hedging
ratios are calculated and hedging in a multi-factor model is discussed. In
section 4.5 we implement the model and provide some numerical examples
using data from the Nordic electricity market. Section 4.6 concludes the

paper.

4.2 The multi-factor model

We consider a financial market where the uncertainty is characterised by the
probability space (2, F, Q) where F is a o-algebra of subsets of Q and Q : F
— [0, 1] is a probability measure. The probability measure Q is the equiva-
lent martingale measure by assumption. All economic activity is assumed to
take place on a finite horizon [0, T*]. We consider a K-dimensional Brownian
motion (W1, ..., Wk) defined on this probability space. We fix the standard
filtration F = {F; : t € [0, T*]} with F; defined as the sigma algebra repre-
senting available information at time ¢ (for technical details see e.g. Duffie
(1996)). Let the forward market be represented by a continuous forward
price function, where f(¢,T) denotes the forward price at date t for delivery
of one unit electricity at time T, where t < T < T*. We consider a model
where the dynamics of the forward prices are given by

df(t,T) = oi(t,T)dWi(t), f(O,T)V T (4.1)

i=1
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and where the (W7, ..., Wk) are independent Brownian motions, and o;(t, T)
are time dependent volatility functions associated with each source of uncer-
tainty.! The integral form of (4.1) is

f61) = 50,1+ [ oo, awi(s) (42)

i=1

This means that the forward prices are distributed

K t
f&, 1) NN(f(O,T),Z/O Ui(s,T)2ds> (4.3)

i=1

where X ~ N(a, b) means that the random variable X is normally distributed
with mean a and variance b. The process of the spot price process can be
found by setting S(t) = f(¢,1)

K t
sw=mm+ZAW@MM@ (4.9

The spot price is normally distributed with

S(¢) NN(f(O,t),Z/dta,-(s,t)Ms)

The spot price process can be written as?

t K nt
S(t) = S(0) +/0 C(u)du + Z/o oi(u, u)dW;(u) (4.5)

where ( is the following process

X *00i(u
() = ?_fég_,t) + Z /0 L-a(t’—”dw,-(u) (4.6)

INote that volatility is a term usually associated with the diffusion term in a lognormal
model. In this paper we use the term ”volatility function” for the time dependent function
in the diffusion term in the arithmetic model presented above.

2A proof is given in appendix A.
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The differential form of S is

K t K
dS(t) = (-6—11(5%1)- + Z/ —ag—%(‘?s’—t—)dWi(s)) dt + Z oi(t, t)dW;(t) (4.7)
i=1v0

i=1

Since the last term in ((t) integrates over Brownian motions, the spot price
will in general depend upon its past evolution. In other words the spot price
process is, in general, non-Markovian (see Carverhill (1994) and Ritchken
and Sanakarasubramanian (1995) for discussions on the Markov-property of
spot rates in Heath-Jarrow-Morton models).

Lucia and Schwartz (2000) propose a spot price model and they derive
analytical expressions for futures/forward prices. They consider a mean re-
verting spot price model of the form

dS(t) = k ((t) — S(t)) dt + odW (¢), S(0) = Sy (4.8)

with solution
t t
S(t) = e—”tSo+/ e_"(t's)e(s)ds—{—/ e o dW (s) (4.9)
0 0

where 6(t) is a time dependent function that can capture seasonal variation
in the spot price and « is a positive constant that pulls the spot price back to
the normal time-dependent mean.® At first glance, the interpretation of the
of eq. (4.8) seems to be that, under the equivalent martingale measure, the
spot price reverts toward a time dependent mean, 6(t), with speed of mean
reversion equal to k. This is not correct. When 6 is time dependent, it is no
longer identical to the long run mean of the process. To see this, consider
the expectation of the spot price, m(t), given by

t
m(t) = e ™S, +/ e M1=9g(s)ds
0

and note that
om(t)
ot

¢

= —ke ™S + KO(t) — n/ e~ t=99(s)ds
0

= KkO(t) + km(t)

3Note that we are presenting the model under the risk neutral measure, which means
that 6(t) is adjusted for risk. If we follow Lucia and Schwartz (2000) and assume constant
market price of risk, we have the following relationship 4(f) = 6*(t) — 22, where §*(t) is
the corresponding time dependent function under the objective probability measure and
A is the market price of risk.
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Inserting 0(t) = %%@ + m(t) in (4.8) expresses the SDE in terms of the
mean of the process

dS(t) = (a’gft) + i (m(t) - S(t))) dt + odW (2) (4.10)

We see from (4.9) that the term structure of forward price volatility in this
single factor model is given by

o1(t, T) = ge™™T1 (4.11)
Substituting (4.11) into (4.7) we get

dS(t) = (af gZ’ b _ K /0 t ae"‘(t's)dW}(s)) dt + odW,(t)

t
(Qf-é%—) — R (S(t) - f(O,t))) dt +odWi(t)  (412)
where S(0) = f(0,0). The last equality follows from (4.4). Lucia and
Schwartz (2000) show that forward prices in their spot-based model are given

analytically as

f(0,T) = e~*T(5(0) — m(0)) + m(T) (4.13)

Substituting (4.13) into (4.12) and making the proper differentiation leads
0 (4.8). Our model is a generalisation of the Gaussian spot price model. In
the case of a one-factor model, using the spot price specification in (4.12)
ensures that the spot price model is consistent with the initial forward curve.
This is an important generalisation when the model is used for option pricing
and hedging, since observed market prices are allowed as model input. In
the following all results will be given for the general model in (4.1) of which
the spot representation in (4.12) is a special case.

4.3 Average based contracts

We will study two arithmetic based forward contracts in the next subsections:
a contract with settlement at maturity, and a contract with continuous set-
tlement. The dynamic properties of these contracts provide us with the tools
necessary to value European and Asian options in section 4.4.
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4.3.1 A forward contract with settlement at maturity

Assume that there exists an arithmetic based forward contract that will
give the owner 7 lT unit of electricity each instant during a delivery pe-
riod [T1, T5) Where T1 < T5. Let the price at time ¢ of such a contract be
A (t,T1,Tz) where t is the present time and T; and T5 is the start and end
of the delivery period respectively. Let R (t,T},T2) be the value at time t of
entering into such a contract. The owner of the contract will receive, at ma-
turity, the difference between the average electricity price during the period
[T}, T3] and the contract price. Hence, we have the following relationship at

time T5:

Tz
R(Ty,T1,Ty) = [ [ 7{2(“_1;)(1 _A(Tz,Tl,Tz)] (4.14)

Since there is no costs involved in entering into a forward contract, we set
R(t,T1,T,) =0, and find that the contract price can be expressed as

1 T2
AGTT) = B[ ; [ flu i

1

=TT f(t u)du (4.15)

Hence the value of such a contract equals the average of the forward prices
for each instant in the delivery period. Define 6;(s,a) = [ oi(s, u)du. We
show in appendix B that the SDE of (6.25) can be written as

Tory Sica (O:(6, T2) — Ou(t, T1)) dWA(t) fort < T
Z‘l::l O; (t Tg)dW( ) fort > Ty

(4.16)

The distribution of A at some future time point Ty < T, conditioning on

information at time t < T} is
A (TQ, Tl, Tz) ~ N (A (t, Tl, T2) y Va.I'A(t, T(), Tl, Tg)) (417)

dA (t,Th,Ts) = {

where

_I( min(Tl,TO) (e (5 T ) — 9(5 T ))2 ds
Varu(t,To, T1,T2) = =1 Jmin(tT1) 2 A e
a(t, To, Th, T) ( n Zf—:l max((tq;l,l’%) O;(s, T»)%ds )
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and X ~ N (a,b) denotes a random variable X with mean a and variance b.

4.3.2 A forward contract with continuous settlement

Now consider another forward contract which is defined as follows: During a
delivery period [T, T5|, T1 < T2, the owner of the contract receives or pays
the difference between the price of TziTl unit of electricity and the contract
price each instant. Let the contract price agreed upon today be F (t, Ty, T3)
where t is the present time and T and Tj is the start and end of the delivery
period respectively and let t < T} < Tp. Denote the value today of entering
into such a contract by V (¢,T},T3), and assume continuous settlements in
the delivery period. Then we have the following relationship at time T5:

1 T2
V(T T = / e~ (F(u,u) — F (4, T, Ty)) du  (4.19)
— |,

The value at time ¢ of entering such a contract is

1 T2
V(t,T,T) = E2 [Tz_Tl /T e~ (") (f(u,u)—F(t,Tl,Tz))du]

= E? 1 [ / " e Tt flu u)du]
T2 - Tl 1

_F (t’ 11, T2) /T2 (=8 4y,
T —T1

T
1

T

- —r(u—t)

= e t,u)du
T, T, /T1 ft,u)

F(t,T,T) /” —r(u—t)
—_—— e " Vdu 4.20
T Jn (4.20)

Again, since there is no initial cost of entering a forward contract, its value
must be zero at time t. Setting V' (¢,T1,T2) = 0 and rearranging gives the
following expression

T,

F(t,T,Tz) = / w(u;r) f(t, u)du (4.21)

T
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where
e —ru

Ty
le e du

w(u;r) = (4.22)
Note that setting r = 0 implies w(u;0) = ﬁ and consequently A (¢,T1,T3) =
F(t,T1,T). Define ¥ ;(s,a) = [’ w(u;r)oi(s,u)du. In appendix A it is
shown that the SDE of (4.21) is given by

dF (t, Ty, Tz) = { Sy (Wt Tp) — Wi(t, Th)) dWi(t) fort < T

YK Wit To)dWi() fortor 42

with initial condition F (0,7}, T5) given in (4.21). The distribution of F at
some future time point Ty < T3 condition on information on time t < Ty is

F(Tg,Tl,T2) ~ N(F (t,Tl,Tg) ,VarG(t, To,Tl,Tz)) (424)

with

S Sy (U5, Te) — Wil T ds |
+ K [T (s, Ty )2ds '

i=1 Jmax(t,T})

Va‘rF(ta TO: T17T2) = (

Note that since the contracts described in (6.25) and (4.21) only differs in
the way the contracts are settled, the net cash flow from the contracts are
equal. This also means that if we have zero interest rates, the contract prices
are the same. It is easy to see that (4.21) collapses to (6.25) when r = 0.

4.4 Option pricing and hedging

We want to find the values of a European style options. We consider both
European forward options and Asian spot price options.

4.4.1 European forward options

Consider a European call option, F'C, with maturity Ty < 77 written on a
forward price with continuous settlements in the delivery period (denoted
F(e) in the section above). At time Ty the owner of the call receives the
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positive difference, if any, between the value of the forward price and the
option strike price, K. The value is given by

FCO(t) = e ™MD ER [(F(To, Ty, T2) — K)7] (4.26)

This expectation can be calculated explicitly as

FC@t) = (T \/VaIF(t’ To, 10, Tb) -~ fary?
2T
+e~ M=) (F(t, Ty, Ty) — K) ®(dp) (4.27)

where

_ F(t1T1aT2) - K
\/V&I'F(t, T07 T17 T2)

®(e) is cumulative distribution function of a standard normally distributed
random variable and Varg(t,T;,Tp) is the conditional variance of the forward
contract. Proof of the formula is given in appendix C.

The corresponding European forward put option, FP(t), can be found
from the well known put-call parity

dr (4.28)

FP(t) — FC(t) = e ™0 (K — F(t, T, T2)) (4.29)

Noting the property ®(a) = 1 — &(—a) by the symmetry of the normal
distribution, we can write the valuation expression for the European put
option explicitly as:

FP(t) = e ™M (K _ F(t,T),Ty)) ®(—dr)

V: t, Ty, 71, T5) _1
+e"‘(T‘?_t)\/ = e 2) ~jary (4.30)

with dp given above.

4.4.2 Asian spot price options

Now consider an Asian spot price option. An Asian call option, AC, delivers
at Tp the owner of the option the positive difference, if any, between the
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realised average spot price during a time period [T7,T%] where T} < Ty = Ty,
and the fixed strike price K. It is obvious that the Asian option is identical to
a European forward option written on an arithmetic based forward contract
with delivery period [T}, T3] and settlement at maturity (denoted A(e) in the
section above) where the maturity of the option is equal to the maturity of
the forward contract (Tp = T3). The value is given by

1 [T "
AC(t) = e TEQ <T 7 f(u,u)du — K)
2 — 11 Jn

= @ IER (AT, T, T) — K)*]

The conditional expectation can be computed explicitly as

AC(t) = e_T(TT_t) \/VMA(t7g-’07 Tl) T2) e_%(dA)2
s

+e "B (AL, Ty, Ty) — K) ®(da) (4.31)
where

A(t, Tl) T2) - K

= 4.32
4 \/V&I'A(t, TO) Tla TZ) ( )

and Var(t, Ty, T1,T2) is given in (4.18). Proof of the formula is given in
appendix C. The corresponding Asian put option, AP(t), can again be found
from the put-call parity

AP(t) — AC(t) = e ™20 (K — A(t, T}, Th)) (4.33)

or explicitly as

AP(t) = e @ (K — A(t, Ty, Ty)) ®(—dy)

Ler(Ta—t) \/VMA (t,;g, 0. T8) - pianr (4.34)
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Call Put
d% = e 0% (d,) —— L TOF Y @
_gZC? — —r(To—t)(I)(dF) gP _ e—r(T2 t)q)( dF)
BFC _T(To—t) Q;ﬁve_%d% gFP —T(TO g ;wve_%d%

Table 4.1: Comparative statistics for futures options. The statistics are partial
derivatives of the closed form expressions for European forward call and put options given in (4.27) and
(4.30) respectively.

4.4.3 Hedging a single forward option

In table 4.1 we have computed comparative statistics for European put and
call options. These expressions apply to Asian options as well by replacing
F with A and dp with d4 everywhere. We see that the derivative of the call
with respect to the underlying forward contract, usually termed the delta of
the option, is always positive. The logic behind this result is straightforward.
An increase in the underlying asset price will increase the probability of a
positive terminal payoff, resulting in a higher option value. The reverse
argument explains the negative delta of a put. The delta of the option tells
us the number of units of the underlying forward contract to hold if we want
the value of the forward position to change by the same amount as an option,
when the underlying forward contract change by a little amount.

4.4.4 Hedging a portfolio of contingent claims

In the case of a single forward option, we can use standard delta-hedging
techniques. If we want to hedge a portfolio of derivatives, and there are sev-
eral types of derivatives and several maturities involved, delta-hedging each
exposure becomes impractical. Alternatively we can immunise the portfolio
against possible changes in the forward curve caused by each of the K factors.
This is called factor hedging and proceeds in two steps: First, compute the
changes in portfolio value when the forward curve is ”shocked” by each source
of uncertainty separately. Next, find positions in some hedging instruments
that exactly offsets these portfolio changes.

We can represent discrete shocks to forward contract for each of the
volatility functions as

Afi(t,T) = 0:(t, T)AW; i=1,.,K (4.35)
where the size of the shock AW; depends on the hedging period. Now let
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P(f(t,T)) denote the value of the portfolio P of some contingent claims as
a function of the forward price. Compute the changes in this portfolio when
the forward curve shifts up or down. For each factor we have

AP, =P (fiut,T)) = P (fiat, T))  i=1,...K (4.36)

where AP; is the change in the portfolio value and f;,(t,T) and f;4(¢,T)
are the forward curve after a positive and negative shock respectively. In
theory, K hedging instruments are needed to hedge this portfolio. Sup-
pose we in addition to our portfolio P want to take positions in K different
forward contracts (6:Af1(¢,Th) + 62Af1(t, T) + ... + 6k Afi(t, Tk)) in such
a way that forward curve changes are immunised. The problem consists of
determining the positions in the forward contracts (the §;s). If we denote
the hedged portfolio H, our job is to solve the following set of equations

AH, = AP, + 51Af1(t,T1) + 52Af2(t,T2) + ...+ 5KAfK(t,TK) =0
AHQ = AP2 + 61Af2(t,T1) + 62Af2(t, T2) + ...+ 6KAfK(t, TK) =0

AHg = APk + 6 1A fk(t, Th) + 82Afk (8, To) + ... + 6k Afr(t, Tk) = 0
(4.37)
This gives us K linear equations in K unknowns which can easily be solved.

4.5 Application to the Nordic electricity mar-
ket

In this section we illustrate an implementation of our model in the Nordic
electricity market. We only provide some simple illustrations. For a detailed
analysis of the forward curve dynamics in this market, see Koekebakker and
Ollmar (2001) .

The Nordic electricity market consists of Norway, Sweden, Denmark and
Finland. The power exchange is called Nord Pool. It is the world’s first
multinational commodity exchange for electric power. Financial contracts
traded on Nord Pool are written on the arithmetic average of the spot price
(called the system price) during a delivery period. The period may be a given
week, season or year. During the delivery period, the difference between
the contract price and the spot price is paid/received by the holder of the
contract. This corresponds approximately to the specification of the average
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based forward contract with continuous settlement during the delivery period -
as discussed in section 4.2.

4.5.1 The forward price function

Instead of working directly with the different financial contracts with various
delivery periods, we can compute a continuous forward price function from
the contract prices observed in the market place. A forward price function
consistent with observed market prices should be able to reproduce market
prices using (4.21). In Koekebakker and Ollmar (2001) the daily smoothed
forward price functions were computed using software with the name ELVIZ
developed by Viz Risk Management Services AS. Yearly cyclical price dif-
ferences are accounted for by a sinusoidal prior function. The methodology
underlying the forward market representation in ELVIZ is called mazimum
smoothness.* An example of a forward price function is provided in figure
4.1. The yearly cycle, with high winter and low summer prices, is evident
from the plot.

4.5.2 One- and two-factor models

Feeding the computer with observed market prices on power contracts, we can
compute such forward price functions each day. We compute daily forward
price functions from January 1, 1999 to March 15, 2001 following Koeke-
bakker and Ollmar (2001). Each day we observe the forward price for the
following week, the week after, and so on for next two years; a total of 104
weekly prices collected from the forward price function each day. Hence we
obtain a term structure of 104 prices each day during our sample period. Now
we can compute price differences for all our 104 fixed maturities. We now
have the data to take a closer look at the volatility functions. In figure 4.2
we have plotted the annualised historical volatility term structure of during
the period 1999-2001.

This is simply the standard deviation of each of the 104 columns in our
data matrix of forward price differences. The standard deviations are trans-
formed into annual volatility by multiplying with the square root of 250
(average number of trading days). Note that volatility falls rapidly in this

4For a comprehensive description of the maximum smoothness approach see Adams
and van Deventer (1994), Bjerksund and Stensland (1996) and Forsgren (1998). For more
information of the ELVIZ software, see www.viz.no.


http://www.viz.no.
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Figure 4.1: The forward price function on January 12, 2001.

market, and then it stabilises for contracts with maturity further into the
future than 13 weeks.

A theoretical factor model should be able the reproduce this volatility
term structure. In figure 4.2 we have also given two examples the negative
exponential one-factor model, o,(t,T) = oe Tt suggested by Lucia and
Schwartz (2001). The graph Volatility 1 appears from the parameters K =
0.38 and 0 = 37.49. The parameters result from a mean square error fit
between historical and model volatility of all 104 maturities. Note that the
sharp increase of volatility in the short end is completely ignored. Focusing
instead on the short end, the parameters kK = 4.21 and ¢ = 71.56 produce
Volatility 2. The good fit in the short end is accomplished by raising the
value of k. This implies strong mean reversion in the underlying spot price
model, and as a consequence, sharply falling volatility as time to maturity
increases. An implication of Volatility 2 is that long term forward prices
should hardly move at all. This is not in accordance with historical data.

The negative exponential one-factor model is not able to fit both the
short and long end of the volatility term structure. To cope with the sharply
falling volatility Bjerksund et al. (2000) suggested a different functional form
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Figure 4.2: Fitting a negative exponential one-factor model. The solid line is the
annualised volatility of forward price differences along a 104 weeks term structure during the period 1999 -
2001. Volatility 1 and 2 are the best fit (in mean square error sense) of the negative exponential one-factor

model using data from all 104 weeks and the first 15 weeks, respectively.
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Figure 4.3: Fitting the BSR one-factor model. The solid line is the annualised volatility
of forward price differences along a 104 weeks term structure during the period 1999 - 2001. Vol BSR is
the best fit (in mean square error sense) of the one-factor model suggested by Bjerksund et al. (2000).

of the volatility functions. A one-factor version of their model is: o,(¢,T) =
7475 + ¢ We will term this the BSR-model.> A mean square error fit of the
whole term structure resulted in the following parameter values: a = 2.62,
b = 0.027 and ¢ = 21.02. The fitted model together with historical volatilities
are given in figure 4.3. It is evident that the BSR model gives a remarkable
good fit both in the short and the long end of the term structure. However,
a direct comparison to the negative exponential model is hardly fair, since a
three-parameter model allows more flexibility than a two-factor model.

A one factor model illustrated in figure 4.3 shifts all forward prices in
the same direction, hence a price increase in the short end dictates price
increase in the long end as well. A two-factor model may provide more
realistic forward price dynamics. In figure 4.4 the solid lines represent the

5Note that Bjerksund et al. (2000) modelied the forward price as geometric Brownian
motion, hence in their study o1(¢,T) = T=475 + ¢ represent the volatility term structure
of forward price returns, not forward price differences as in this study.
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Figure 4.4: Historic and fitted volatility in a two-factor model. The solid lines are
historical factors from principal component analysis of forward price differences during the period 1999 -

2001. FIT F1 and FIT F2 are functions of a two-factor model fitted using mean square error.

two most important factors in the 1999-2001 period computed by principal
component analysis.® Factor one is most important, and it is positive for
all maturities. A shock to this factor (called the shifting factor) moves all
the forward prices in one direction. The second factor moves forward prices
with short and long maturities in opposite directions. This factor is called
the twisting factor. Inspired by nice fit of the one-factor model, we suggest

the following two-factor extension of the BSR model 01(t,T) = 7345 + &1
and 03(t,T) = 7-%5 + c2. Mean square error fits between theoretical and

historical factors resulted in the following parameter values; a; = 4.29, b, =
0.052, ¢; = 10.54, and a; = —1.00, by = 0.01, ¢c; = 10.15. We see from

figure 4.4 that the theoretical volatility factors closely mimics the empirical
counterparts.

6See Koekebakker and Ollmar (2001) for a description of the principal component
analysis applied to electricity forward price data.
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Figure 4.5: Volatility time-dependence for an average based forward contract.
The graph shows volatility of the arithmetic average based forward contract with settlement at maturity.

a

The specific model used is: o (t,T) = T—i7p + ¢ with the following parameter values a = 2.62, b = 0.027,

c=12102, Ty =1and Tp = 2.

4.5.3 Volatility of an average based contract

The forward price function gives us the price today for the delivery of one
unit of electricity at time T in the future. We also see from figure 4.2 and
4.3 that the volatility increases sharply when such a (theoretical) contract
approaches maturity. The power contract traded in the market place are
based on the average electricity price during a delivery period. The term
structure of volatility for an average based contract is quite different from
those derived from the forward price function. Consider the BSR-model with
the same parameters as in figure 4.3. Furthermore, set Ty = 1 and T} = 2,
hence we are considering a forward contract with one year delivery period
starting one year from now. For simplicity, we assume that the forward
contract has settlement at maturity. Then we can use the ©;(e)-functions in
(4.16) to compute the term structure of volatility for such a contract. This
is illustrated in figure 4.5. We see that the volatility term structure is rather
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Figure 4.6: Delta profile of European forward call options. The graph shows the
delta profile of three different call options written on arithmetic average based forward contracts with
continuous settlement during the delivery period. The volatility of the forward price function is given by
a two-factor BSR model (see text for parameter values). In all three cases considered the strike price is
(K = 160), the maturities of the calls concide with the start of the delivery periods (To = T1) and the
delivery period is set to one year (T2 = T} + 1) for all contracts. Maturities of the options are one month

(To = 1/12), six months (T = 6/12) and a year (Tp = 1).

flat at first. When approaching the delivery period, volatility rises and peaks
just when the contract is entering the delivery period. Volatility then rapidly
decreases and collapses at T;. This is intuitive, as more and more information
concerning the average price in the [T%, T3] time interval becomes known as
i> Tl-

4.5.4 Delta hedging a forward option

The idea of delta hedging an option involves dynamic trading a position in the
underlying power contract in a way so that a change in the option price during
a small time interval is offset by an identical change in value of the underlying
contract in opposite direction. We illustrate delta hedging of call options
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written on three different forward contracts with continuous settlement in the
delivery period. A two-factor BSR model gives the volatility of the forward
price function. The parameters values are a; = 4.29, b; = 0.052, ¢; = 10.54,
and a; = —1.00, b, = 0.01, ¢ = 10.15. All contracts are specified with
delivery periods of one year, and option maturities coincide with the start of
the delivery periods (Tp = T1). In all three cases considered the strike price
is K = 160, and the maturities of the options are one month, six months and
one year. We can now use the analytical expression in table 4.1 to calculate
the delta for different forward prices. The delta profile for the three options
are plotted in figure 4.6. When the forward price is low relative to the strike,
the delta (the position in the underlying asset) is low, reflecting the low
probability for the option to end in the money. An at-the-money option has
a delta of about 0.5. The delta approaches one for very high forward prices,
reflecting the high probability of ending in the money. We also note that the
delta profile is steeper the closer the maturity of the option. The reason for
this is that the probability of the option ending in-the-money becomes more
sensitive to small changes in the forward price, when this is close to the strike
price.

4.5.5 Factor hedging a portfolio of options

In this section we will illustrate the factor hedging approach. Consider a
portfolio of two short forward call options. The first option has strike price
130. The call option, denoted F'C(x-130), is written on a forward contract
with one year delivery period starting one month from now (7} = 1/12 and
T, = 1/12 + 1). We denote this contract F' (0, 35,1%). The maturity of the
option is equal to the start of the delivery period for the forward contract
(To =T1). The second call option has strike price 140. This call option,
denoted F'C(kx=140), is written on a forward contract with one year delivery
period starting one year from now (F (0, 1,2)). Both forward contracts are
continuously settled during the delivery period. The dynamics describing
the evolution of the price processes for these contracts are given in (4.23).
We calculate the forward prices of the specified contracts from the forward
price function calibrated on 12. January 2001 (see figure 4.1, and we get
F(0,4,15) = 129.36 and F'(0,1,2) = 139.55 hence both call options are
slightly out of the money. Furthermore, we assume that the forward price
function can adequately be described by a two-factor BSR-model with pa-

rameter values a; = 4.29, b; = 0.052, ¢; = 10.54, and ag = —1.00, b = 0.01,
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Figure 4.7: Shifts in a two-factor forward curve BSR-model. The parameters in
the model are a; = 4.29, b1 = 0.052, ¢; = 10.54 and a2 = —1.00, b2 = 0.01, ¢z = 10.15. The curve is

given a positive/negative one standard deviation shock of each factor for a one-week hedging period.

cs = 10.15. In a real world situation, the market would deliver the call
prices, but in this application we simply compute the options premium set-
ting 7 = 0.07, and using (4.27) inserting the forward prices and the volatility
parameters from the two-factor BSR-model given above. The premiums are
FC(K=130) = 2.35 and FC(K=140) = 7.03.

Our task now is to immunise a short position in each of the call options
using factor hedging. Hence our ::ahedged portfolio, P, is given by P =
—FCx=130) — FC(x=140) = —9.38. Since our model consists of two factors
we need to determine hedging positions in two different underlying forward
contracts. We use the two average based forward contracts described above
as hedging instruments. Thus our hedged portfolio is given by H = P +
6 F (O, —115, 1%) +82F (0,1,2). We want to determine §; and 82 in such a way
that the hedged portfolio value stays the same, when the forward curve is
”shocked” by each source of uncertainty separately. Hence we want AH = 0.
The size of the shock (AW;) is chosen to give a typical movement of the
curve over the hedging period. We have chosen one week hedging period



4.5. APPLICATION TO THE NORDIC ELECTRICITY MARKET 111

Today FlU FlD F2U F2D
F(0,%,15) 129.36 132.10 126.62 130.43 128.29
F(0,1,2) 139.55 141.40 137.70 140.87 138.23
FCx=130) 235 384 131 28 190
FClx=110) 703 791 621 765 644

Weights

AP -4.22 -2.19
AF (&,5,15) 5.48 2.14 0.46
AF(1,1,2) 3.71 2.63 0.46
AH 0.00 0.00

Table 4.2: Factor hedging a portfolio of options. = This table illustrates factor hedging in
a two-factor model. The model specification is given in the caption of figure 4.7. The unhedged portfolio
consists of two short forward call option positions FC(g 130y and FC(g=140) (strike prices in subscript)

written on the contracts F(O, —115, lilg) and F(0,1,2). The options mature as the forwards enter their
respective delivery periods. In the upper columns, the prices today of the derivatives are given along
with the prices in case of one standard deviations shocks during one week hedging period. Changes in
the unhedged portfolio (AP) and the forward contracts (AF(.)) are calculated using (4.36) for a shock
to either factor 1 (F1) or 2 (F2). The hedging positions that immunise the hedged porfolio (AH) are
calculated from (4.37) and given in the column termed " weights”.

(At = 1/52) and one standard deviation shifts in each factor. Figure 4.7
illustrates the shifts in the forward price function, by simulating positive and
negative shocks to each of the two volatility functions in our two-factor BSR
model.

Now we can calculate the change in value of the options and forward
contracts conditional on shocks in factor 1 and 2. The values of the derivative
securities are given in the upper rows of table 4.2. Next we solve for 6; and
82 using (4.36) and (4.37). The numerical values are given in the lower part
of table 4.2. We see that long positions of 0.46 units in each average based
forward contract offsets the risk in our portfolio. Note that the advantages
of factor hedging are greater the bigger the portfolio is. In theory we only
need two underlying assets in a two factor model to completely offset the
changes in value of a portfolio of any number of different contingent claims.
Of course, this again depends crucially on correct model specification.
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4.6 Summary and conclusions

In this paper we have developed a multi-factor term structure model for
the electricity forward curve. This modelling approach has the advantage of
being consistent with power contracts observed in the market place. Pre-
viously Clewlow and Strickland (1999a) and Bjerksund et al. (2000) have
modelled the electricity forward price as multi-factor geometric Brownian
motion. These authors provide a link between electricity contingent claims
and the pricing of derivatives in mainstream finance, since the assumption
of lognormal asset prices is most widely used. One clear advantage of this
approach is that valuation methodologies developed previously for commodi-
ties and financial assets can be applied in the electricity market as well.
This paper represents an alternative approach. We suggest a multi-factor
arithmetic Brownian motion for the forward price dynamics of electricity.
Our approach can be seen as a generalisation of several electricity spot price
models suggested by Lucia and Schwartz (2000) and Knittel and Roberts
(2001).

An electricity contingent claim will typically dependent on the arithmetic
average price during a time interval. In our set up, which implies normally
distributed spot prices, the arithmetic average spot price is normally dis-
tributed. Hence, closed form solutions to average based contingent claims
are available. This is the most salient feature of our proposed model. We
investigate several contingent claims. First we define two different average
based financial forward contracts differing only in the way they are settled.
The specification of the first contract is such that the owner will receive,
at maturity, the difference between the average electricity price during the
delivery period and the contract price. The second contract specification
assumes continuous settlement during the delivery period. Both contracts
are normally distributed, and the appropriate dynamic representations (in
the form of stochastic differential equations) are derived. The specification
of the latter contract is equal to those traded at the Nordic power exchange.
Closed form solution to both European forward options and Asian spot price
options are derived. Both option types are traded in the Nordic market. In
the last part of the paper we discuss different volatility specifications and
hedging issues using data from this market.

This research can be extended in both empirical and theoretical direc-
tions. Here we briefly sketch some possibilities. Our model rest upon an
assumption of arithmetic based forward prices. This again implies normally
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distributed spot prices. Whether or not this is a reasonable stochastic spec-
ification is an empirical issue that is yet to be resolved. One nice feature of
the closed form representations of the average based forward contracts pro-
vided in this paper is that it makes possible a more direct empirical testing of
different volatility models. The conditional distribution of the average based
forward contracts can be utilised in maximum likelihood estimation of the
volatility dynamics using market prices of traded power contracts in stead
of smoothed prices. One possible theoretical extension of the model would
be to include a jump process to the forward price dynamics. Several au-
thors have argued that electricity prices exhibit jumps (see e.g. Clewlow and
Strickland (1999b) and Deng (2000)). Whether or not closed form solutions
are available in an arithmetic forward curve jump-diffusion model is left for
future research.
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4.7 Dynamic properties of spot prices in an
arithmetic forward price model

In this appendix we will give show that an arithmetic forward price model
in (4.2) implies a spot price process given in (4.5)-(4.6). A similar proof in a
more general forward price model is given in Musial and Rutkowski (1997).
First recall that the spot price can be written as

S() = f(t,1) = F0,0+ Y /O o s(, £)dWi (1) (4.38)

Applying the stochastic Fubini theorem to the It integral, we obtain

g;/otffi(uat)dwi(u) = i:/otai(u,u)dWi(u)+

Z./o (0i(u,t) — o;(u,u)) dW;(u) (4.39)
= Z/O oi(u, u)dWi(u) +

S [ [ 2w

-y /0 o (u,u)dWi(u) + (4.41)

i‘/ot /08 a—ai(,g%fldWi(u)ds (4.42)

i=1
Finally we have

£(0,8) = S(0) + /0 Qf—g)t’i‘ldu (4.43)

Combining (4.38), (4.41) and (4.43) gives (4.5)-(4.6).
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4.8 Appendix B: The dynamic properties of
average based forward contracts

In this appendix we derive the expressions (4.16) and (4.23). First consider

the average based forward contract with settlement at maturity. We re-
member the following relationship A (T3,73,T32) = 'Ta_i"ﬁ ;;2 f(u,u)du from
(4.14). Applying the stochastic Fubini theorem to the It6 integral, we can
write A (T3, T1, T») as a stochastic process conditional on information on time

t <T, as

1 T2
AT, T, T3) = 7 Tl/ f(u,u)du
Ty
1 T n K
T L-T /T ft, u)du + /T 1 2:1: /t o:(s, w)dWi(s)du

= ! /T2 f(t,u)du

-1 /g
1 K T, T,
+ / / oi(s, u)dudW;(s
T2 - Tl 12:1: max(t,T1) Js ( ) ( )
1 K T T
— o;(s, u)dudW;(s
T, -Th ; /min(t,:rl) /s (5:) (¢)
1 &[T
= A (t,Tl,TQ) + / @i(S,TQ)dWi(S)
T2 - Tl =1 v max(t,T1)
1 z": Ty
- @1' S,T dW1 S 444
T, -1 1 /min(t,Tl) (s, T3) (©) ( )

where O;(s,a) = f: 0i(s,u)du. Note that the last term disappears when
t > Ty. The differential form of (4.44) is given in (4.16).

Now consider the average based forward contract with continuous set-
tlement in the delivery period [Ty, T3]. We have the following relationship

—-ru

from (4.19) F (T3, T1,T3) = f;? w(u; r) f(u, u)du where w(y;r) = F’ZE—:T'
e T4du
Applying the stochastic Fubini theorem to the It6 integral, we can write
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F (T3,T1,T3) as a stochastic process conditional on information on time ¢
<Ts as

f:" e~ ) f(u, u)du
fT:? e—T(u—t)dy
f;‘? e T f(t u)du + f;‘? SR e Yoy (s, u)dWi(s)du

T2 1 u—t)
I € (u=t)dy

F (T2aT17 T2) =

Ty
T2 _ry
le e dy

ZK T2 LTz e_r(u_t)o'i (3, u)dudVV, (3)

i=1 Jmax(t,T1)

T2 —ru d
[:le f(t,u)u+

;‘2 e—r(u—t) du
1

K fsTl e " g, (s, u)dudW;(s)

i=1 Jmin(t,T1)
f:,:f;z e r(u-t)dy

K Ty

— FOTLT)+Y) / (s, To)dWi(s)

i=1 ma.x(t,Tl)

K Ty )
D IR A8 (4.45)
i=1 min(t,Tl)

where U;(s,a) = [ w(u;r)oi(s,u)du. Note that the last term disappears
when ¢ > T;. The differential form of (4.45) is given in (4.23).

4.9 Appendix C: European-style call option

This appendix provides the general European-style call option pricing for-
mula when the underlying asset is normally distributed. This a modified
version of the very first option pricing formula developed by Bachelier (1900).
The formulas in (4.27) and (4.31) are both special cases.

Proposition 1 The value of a Furopean style call option, C(t), where the
underlying asset 1s Gaussian with mean, p and variance v, under the equiv-
alent martingale measure, is
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Ct) = 70 et 4700 (4 - K) 2(@)
T
where
p— K
N2
and @ is the cumulative standard normal distribution function.
Proof. Consider the Gaussian variable, X with conditional mean u and

variance o2. The distribution on time T' given the information at time ¢ can
be represented as

d=

XTlftZ[,L—f-\/EZ

where Z is standard normal random variable. Define the pay-off of a Euro-
pean style call option by

C(T)=(X(T)- K)" = Xrlp — Klp
where 1 is an indicator function and
D= {XT > K}

is the exercise set. Furthermore, assume a constant risk free interest rate.
The standard risk neutral valuation formula gives us
C; = ER[e7T (Xr - K)*]
= e T E2 [Xrlp) — e " TIER [K1p)
Taking the latter expectation is straight forward:
eTTIER [K1p] = e IKQ(D]
= e"T-9KQ[Xr > K]
e T NKQ [p+ VvZ > K|

w—K

NS

= e TNKQ [—Z<
= e T-9K®(d)

where ® denotes the standard cumulative normal distribution and d = %

Solving the expectation EQ [X71p] requires explicit integration of the normal
density:
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e TOER [ X11p) = e TYE2 [ Xrlp)

= (T / XrdXr
Xr=K

= T / N (1 +VvZ) df(2)

Xr=K

Now, change the variables to express the result as the integral of a A(0, 1)
rather than the expectation of a function of a N'(0,1),

oo 1 172
—(T-t) pQ —r(T—t) 1z
€ ES | XTlp] = e / ,u+\/17Z e 2% dZ
t [ ] . ( ) /om

e T (T-t) 00

V2 Jxr=k

e_T(T_t)‘ / i/ Ze 3247
2m Xr=K

The lower bound X7 = K in terms of Z is

ue_%z2dZ +

7 =
NG
so that
~r(T—t) 00
eTTOER [Xr1p] = = pe~22'dZ +
V2 5‘7—;&

e—r(T—t) /21/00 Ze”%z2dZ
Yis 7*:#

Finally we use the symmetry

]. o _lz2 ]. /_a ___1_22
—_— e 29 dl = — e 2 d =®(—a
\/27r/a V21 J—o ( )

to get

e TIER (Xrlp) = e T pd (d) + e T, | 2ie_%("l)2

T
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where

Putting all together yields the general formula

Ct — C—T(T_t)ﬂq) (d) + e~r(T—t) _zv_e_%(df _ e—r(T—t)Kq)(d)
T

= e T, e S ) (g — K) ®(d)
27
which completes the proof.
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Chapter 5

Approximate Asian option
pricing in the Black ’76
framework

ABSTRACT - In this paper we present an approximate lognormal
valuation model for Asian average rate options when the underlying
asset is geometric Brownian motion. Our model is a modification of
the Black (1976) formula. We analyse a futures contract written on
the arithmetic average of the underlying asset. This contract is log-
normally distributed prior to the average period, and approximately
lognormally distributed inside the averaging period. We propose a new
Asian option pricing formula based on our analysis. In a Monte Carlo
study, we find that our formula is more accurate than the lognormal
approximation proposed by Levy (1992).

5.1 Introduction

The purpose of this paper is to present a new approximate lognormal val-
uation model for Asian options. An Asian option is a path dependent con-
tingent claim, with payoff based on an average of some underlying variable.
Average based options have become popular in several markets for different
reasons. Asian options are often used in thinly traded commodity markets
to avoid problems with price manipulation of the underlying asset near or
at maturity. For this purpose, the average period will typically be rather

125
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short, and the main trading period will occur before the averaging period
(so-called forward starting Asian option). Asian options are natural hedg-
ing instrument for domestic firms with continuous sales and payments in a
foreign currency. In some commodity markets, the nature of the commodity
naturally promotes average based contracts. For example in electricity or
natural gas markets limited possibility of storage leads to continuous pur-
chases for energy consumers, and Asian options are natural instruments for
risk management purposes (see Levy (1997) for several other examples).

As shown by Kemna and Vorst (1990), an Asian option with geomet-
ric averaging has a closed form solution in a standard geometric Brownian
asset-pricing framework. Arithmetic average options are the most commonly
traded ones, but they are also the more difficult to value. Exact closed form
option formulas for these options do not exist, since the distribution of the
arithmetic average of a lognormal process is unknown. This fact has resulted
in a rather voluminous literature on different valuation approaches.! Al-
beit unjustifiable from a mathematical point of view, the preferred valuation
model among practitioners to value arithmetic average rate Asian options
seem to by the lognormal approximation proposed by Levy (1992).

Some reasons for its popularity may be that the valuation formula scores
high on performance criteria important in practise, such as speed, accuracy
and familiarity. We comment on these three criteria below.

In a hectic trading environment, a valuation model based on Monte Carlo
simulation might be considered to slow. Furthermore, simulation based meth-
ods or other numerical approaches require specialised software. A lognormal
approximation is readily implemented in a spreadsheet package or even on
an advanced calculator.

Secondly, and most importantly, the formula has to be fairly accurate.
Exact closed form solutions are satisfactorily from a mathematical (and in-
tellectually) point of view. Still, a formula is exact conditional on a specific
mathematical model. This mathematical model is at best a good approxi-
mation of the real world. From this perspective, fairly accurate is all you can

1Kemna and Vorst (1990) is the seminal paper on Asian option valuation. They used
Monte Carlo simulation to price the options. Numerical solutions to the partial differential
equation which characterises the price of an Asian option have been the focus of work by
Rogers and Shi (1995), Dewynne and Wilmott (1995), Alziary, Decamps and Koehl (1997)
and Zhang (2000). Yor (1993) and Geman and Yor (1993) develop analytical solutions to
the Asian option problem, but non-standard numerical integration techniques are needed
to compute explicit prices (see Geman and Eydeland (1995) for a numerical application).
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hope for.

Lastly it might be regarded beneficial if the formula is of a familiar form.
If the sole purpose of an option model is to deliver the correct price, we would
not accord the pricing method much importance. But an option pricing for-
mula is frequently used as a link between the mathematical model and real
world data generating process through the calculation of implied volatility
from market option prices. This world wide practise of reversed financial en-
gineering has led Taleb (1997) to conclude that the Black and Scholes (1973)
formula, or modifications thereof, is used more or less non-parametrically by
market participants. The model simply filters real world prices into implied
volatility. The implied volatility across strike prices, the so-called ” volatil-
ity smile”, is a picture well known to the trading community after years of
use. A lognormal formula enables us to use this established technique when
analysing price data.

In this paper we will derive an approximate lognormal valuation model
for Asian options. Our model is a modification of the Black (1976) formula.
Fischer Black published this modification of the original stock option model
to value options on commodity forward and futures contracts. As the use of
futures contracts has penetrated all major financial markets, the Black (1976)
model is perhaps the most frequently used option pricing formula there is.
Thus our method is fast and familiar, and as we will argue, more accurate
than the existing lognormal approximation of Levy (1992).

We need two inputs for our model that are not readily available in the
marketplace; a futures price and a plug-in volatility. The first step in our
analysis is to calculate today’s "price” of the arithmetic average. This is
simply a conditional expectation, which is very easy to compute. We then
interpret this price as a financial futures contract, which delivers the value of
the arithmetic average of the underlying asset price at maturity. This means
that an Asian option can be reinterpreted as a European futures option.
We show that this contract is actually lognormally distributed prior to the
averaging period. After entering the averaging period, the arithmetic average
contract is no longer lognormally distributed. We then propose a lognormal
approximation of the contract inside the averaging period. Based on the
analysis above, we calculate a plug-in volatility for the futures option model.
In a Monte Carlo exercise, we show that our model has some advantage over
the Levy (1992) model in terms of accuracy. We finally study the implicit
volatility of the average rate options. We calculate ”exact” market prices by
Monte Carlo simulation and use the Black (1976) formula to back out implicit
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volatilities. An Asian call option in a standard Black-Scholes economy has
an upward sloping implied volatility ”smile” across maturities due to the
deviation from lognormality of the arithmetic average. This smile cannot be
captured by a lognormal approximation.

The paper is organised as follows: In the following section we give a
description of the economy and we state the valuation problem. In section
5.3 the average based futures contract approach is explained. In section 5.4
our closed form approximation to Asian average rate option is presented and
compared to the Levy (1992) formula. Comparisons to Monte Carlo prices
are made, and we investigate the implicit volatility smile graphically. Section
5.5 concludes the paper.

5.2 The economy

Our setting is a standard continuous time Black-Scholes economy where the
uncertainty is characterised by the probability space (§2, F, Q) where F is a
o-algebra of subsets of 2 and Q : F — [0,1] is a probability measure. The
probability measure Q is the equivalent martingale measure by assumption.
All economic activity is assumed to take place on a finite horizon [0,T].
The financial market consists of one traded financial asset. Let X (¢) be the
market price of this risky asset at time ¢t. We fix the standard filtration F =
{F::t €[0,T)} with F; defined as the sigma algebra representing available
information at time ¢ (for technical details see e.g. Duffie (1996)). Frictionless
borrowing and lending is possible at the constant riskless rate r. Furthermore
the dynamics of the asset X is governed by the stochastic differential equation
(SDE)

dX(t) = rX(t)dt + oX(t)dW (), X(0) = X, (5.1)

with solution

X(t) = Xoexp { (r — %ﬁ) t+ aWt} (5.2)

where ¢ is constant and W (t) is a one dimensional Brownian motion under
the measure Q. The asset does not pay any dividends. In the following we
use E2 (-) to denote expectation conditional on F;.
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5.2.1 The valuation problem

In this paper we will concentrate on average rate options. Furthermore we
will focus on continuous averaging. The payoff at maturity of an average rate
Asian call option, AC, is

(A(T,t,,T) — K)* (5.3)

where A (T,t;,T) is the average value of the underlying asset during the time
period [t;, T]. We consider valuation at time ¢. If t < ¢; the option is forward
starting. It is well known from financial theory that the value of a contingent
claim is given by the expectation with respect to the equivalent martingale
measure discounted by the risk free rate. The market value of the Asian
average rate call at time ¢ is

AC(t) = e T TOER [(A(T, t1,T) — K)*) (5.4)

So far nothing has been said about the specific form of A (T,#;,T). When
the average is geometric, the valuation problem in (6.6) has an exact closed
form solution (see Kemna and Vorst (1990)). However, Asian options, which
are traded in various financial markets, are usually based on the arithmetic
average.? If the average is recorded continuously, A (T,¢;,T) is given by:

A(T, 4, T) = Titl /t X (w)du (5.5)

In the case of an arithmetic average, there is no longer a closed form solution
available. Since the geometric average is less than or equal to the arithmetic
average, the corresponding geometric average call will in general be worth
less (and in some cases considerably less) than its arithmetic counterpart.
We will focus on the arithmetic average call option in this paper.

The main idea of this paper is to replace the arithmetic average value,
a number unknown to us prior to maturity, with a futures contract written
on the arithmetic average. A standard futures contract can be interpreted
as the price we are willing to set today to receive the underlying asset at
some future time point. In many cases there is no actually delivery of the
underlying asset. Only the monetary difference between the futures price

2There are other possible weighting schemes which will not be considered here, see
Zhang (1998) for a discussion.



130 CHAPTER 5. APPROXIMATE ASIAN OPTION PRICING

and the underlying asset is exchanged between the holder and the issuer "
of the contract. This is particular convenient if the underlying asset is not
a tradable asset, like electricity or weather. We will investigate a futures
contract written on the arithmetic average of an underlying asset during a
future time period. In our model the underlying asset is a tradable asset.
Denote the time ¢ value of an arithmetic average based futures contract as
F (t,t1,T), where the averaging period is [t;,T] and t < T'. This contract can
be interpreted as a the price set today to deliver at time 7', the monetary
value of the arithmetic average of the underlying asset during the period
{t1, T]. Market values of futures contracts are found by taking expectations
under the equivalent martingale measure (see Duffie (1996), p. 169). Hence,
for ¢ < T the market value of the arithmetic based futures contract is

F(t,t,,T) = EQ {T i - /t TX(u)du] (5.6)

If ¢; is close to T, this contract resembles a standard futures contract, and
indeed lim,, 7 (F; (t1,T)) = e"T~ X,, which is the expression for a standard
futures contract in the Black-Scholes economy. Standard futures contract
converges to the underlying asset price at maturity. This is also the case
for the average based futures contracts. Standard arbitrage arguments imply
that the price at time T', for the average asset price during the interval [t, T
is equal to the realised average, hence F (T,t;,,T) = T—lﬁ f:X (u)du. In
other words, the average based futures contract can replace the arithmetic
average in expression (6.6). Hence, the payoff of an Asian average rate option
can equivalently be stated as

AC(t) = e-T<T-t>E9 [(F(T,t,,T) — K)™] (5.7)

In the next section we will study the dynamic properties of this arithmetic
average rate contract in order to find an explicit expression for the conditional
expectation in expression (5.7).
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5.3 Dynamic properties of arithmetic aver-
age rate futures contracts

Even though average rate futures contracts rarely trade in real life?, from a
theoretical point of view they can be treated as tradable assets, because they
can easily be created synthetically by the risk free and the underlying asset.
In the next section we analyse the dynamic properties of the average based
futures contracts.

5.3.1 The dynamics of F'(t,t;,T) before the averaging
period

Let first ¢t < t; < T, that is, the contract is forward starting. From (6.7) we
calculate the expectation to get

er(T—t) _ e"'(tl —t)
(T -_ tl) T

To arrive at the stochastic differential equation for F (¢,t1,T), we apply Itd’s
lemma to the expression above and arrive at:

F(t,t4,T) = Xi (5.8)

er(T—t) _ e‘r(tl —t)
dF (t, tl,T) = ( (T : )7‘ Xt> O'th
- u
= F (t,tl,T) O'th (59)

From (6.8) we see that the arithmetic futures contract is governed by the
same SDE as a standard futures contract in a Black-Scholes economy, hence
it is lognormally distributed when t < t;.

5.3.2 The dynamics of F(t,t;,T) inside the averaging
period ‘
We now value the average futures contract within the averaging period, that

is when t; < ¢t < T. Define the running average as a(t) = # fttl X (u)du.
Again we can calculate the average futures contract as:

3The futures/forward electricity contracts traded in various power markets are often
arithmetic average based.
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F(t,t,T) = E;Q[ 1T X (u )du}

T —t
= E;Q[ t(/x du+/X du)]
4\,
_t—t 2y
= e it [ B X
_t—t er™-t) 1

We see from (6.7) that the contract now can be divided into two compo-
nents; the first is non- stochastic and second is stochastic. We also see from
the expression above that the last term vanishes as we approach maturity;
then there is no uncertainty about the average anymore, and F (T,t;,T) =
A(T,t,,T).

Recalling Leibniz’ differential rule 2 (T—tl-a(t)) = -,_,},—(_(%, Wwe can express
the SDE for F (t,t1,T) when t; <t < T by Ité’s formula

aF (t4,7) = (oL x4y} caw 5.11
t,t = —X(t t .
0 T) = (g X)) ed () (5.11)
From (5.11) we see that F (¢,t;,T) is no longer lognormally distributed when
t > t;. Dividing each side of (5.11) with F'(¢,t;,T) we get a representation
of the instantaneous return of the contract inside the averaging period:

F(t,t,T)  F(t,t,T)

We will return to this expression when we derive a lognormal approximation
for the dynamics of the average rate contract.

er(T—t)_q
d Tt Xt
Ft,t,T) ( i) ) adW (t) (5.12)

5.4 Lognormal approximations of the Asian
option
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We start this section by examining the formula of Levy (1992), and we show
that it can be considered a modified Black (1976) formula. We then propose
a new lognormal approximating formula, using a plug-in volatility based on
the analysis of the previous section. The accuracy of both models are then
compared with Monte Carlo prices. Finally, we back out implicit volatility
curves using Monte Carlo prices and the Black (1976) formula to give a
graphical understanding of the limitation of the lognormal approximation.

5.4.1 Levy’s approximation

Levy (1992) suggests to approximate the true unknown distribution of the
arithmetic average, A(T,t,,T), with a lognormal distribution where the first
two moments match (termed the Wilkinson’s approximation). Let random
variable, Z, be normally distributed with expectation and variance u, and 02,
respectively. The k’th moments of the lognormal random variable, Y = e?,
is given by E [Y"] = ek +3¥°07 The Wilkinson approximation instructs us

to determine u,and 012, by the following equation:

1% = EXA(T,t,T)]
et = EQ[A(T,t,T)?] (5.13)

Solving yields:

o = IEX[A(T,t,T)?] -2l EZ[A(T,t1,T)]

P

p, = 2lnE?[A(T,t1,T)]—%lnE;Q [A(T,t,,T)?] (5.14)

The expression for the second moment of the arithmetic average is given
explicitly in Levy (1992) and it is not repeated here. Levy’s approximating
formula is simply

AC(t) ~ =T (eﬂpf%v?»@(dl) - K<I>(d2)> (5.15)
with )
d, = pp—InK + 0,
Op
and

d2=d1-—0'p
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We claim that the Levy formula can be interpreted as a modified Black (1976)
futures option formula. To see this note that
1
i + 50—,2, =InER[A(T,t,,T)]=InF (t,t,,7T) (5.16)
where the last equation follows from the definition of the average based fu-
tures contract. This means that Levy’s approximating formula can be ex-
pressed as a futures option. Thus formula (5.15) can be written as

AC(t) m e ™ T (F (t,t,,T) ®(d1) — K®(dp)) (5.17)

with
P pp — In K + 202 + 302
Op
_ InF(t,t,T) —InK + 302
Op
In F(t,t,,T) + 10_2
- ( o ) i (5.18)
Op

and

dy=dy — 0o, (5.19)

Turnbull and Wakeman (1992) match the first four moments of the log-
normal distribution with the corresponding moments of the arithmetic av-
erage (termed Edgeworth approximation). In a comparative study of dif-
ferent approximating methods, Levy and Turnbull (1993) claim that annual
volatility of the underlying asset less than 20% the Levy formula yields satis-
fying results. Volatility between 20%-30% requires an adjustment for higher
moments, and hence the Turnbull and Wakeman (1992) procedure is rec-
ommended. They conclude that neither of the models perform satisfactory
for higher volatility. They furthermore note that when the option is for-
ward starting, approximating the first two moments is the key to accurate
prices. We now know, from the analysis of section 5.3 that the average future
contract is lognormally distributed prior to averaging, hence the matching
procedure described in Levy (1992) is in fact exact. That is the reason why
Levy’s formula performs better when the Asian option is forward starting.
A lognormal approximation will perform better the longer the period before
averaging, i.e. the bigger ¢; — ¢ is, and the shorter the averaging period, i.e.
the shorter T" — ¢, is.
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5.4.2 A new lognormal approximation

Instead of matching the first two moments of the arithmetic average and

the lognormal distribution, we use expression (6.9) as a starting point. The
e1-(T—t)_1){

fraction ;(_:;;T) : in the diffusion term is worrisome, since both the nom-
inator and the denominator is stochastic. We compute our approximation
by simply replacing the stochastic elements in both the nominator and the
denominator by their expected values. Needless to say this approximation is
somewhat ad hoc, but so is the Wilkinson approximation.

Now assume that ¢ = ¢;. The conditional expected value of the nominator

at time s, wheret; < s < T is

r(T—s) _ 1 r(T—s) _ 1
Q _e________ — € r(s—tl)
Py K (T—tl)TXsH ((T—tl)’”the )

e"'(T—tl) _ er(s—tl)
_ ( — th) (5.20)

For the denominator we have

ES [F(SathT)l = F(tlathT)

er(T—tl) -1
_ <___.__(T_t1)7_ th) (5.21)

And so we get

(T-t1) _
EZ [(e—(;—_z—)r—le)] or(T—t1) _ gr(s—t1)

= 5.22
RF 0T o001 5:22)
The approximate SDE governing the arithmetic average rate contract is now
dF (t,t,,T) =2 F (t,t1,T) V(t)odW (1) (5.23)
where
1 - for ¢ <t
Vi = { er(i:‘”_:f'f{ 2 forty <t<T

Furthermore, In F' (T',t,,T) is approximately normal distributed with

In F (T4, T) ~ N (lnF(t,tl,T) - -;- /t " (V(s)o)2ds, /t ' (V(s)a)2ds)
(5.24)
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where Z ~ N (u,0?) denotes a normally distributed random variable, Z,
with expectation y and variance o2.
The approximate input for the variance in the Black (1976) model in

(5.17) for valuing a forward starting Asian call then becomes:

o = /f(V(s)a)?ds
= /t i (V(s)o)* ds + /t ' (V(s)o)*ds

1

T r(T—t1) __ or(s—t1) 2
ey, e e
- -9+ [ ( e a> ds

t1

2 T )
= o*(tp —t)+ 7 5 / (eT(T“tl) — er(s_tl)) ds
(™o 17

27.621'(T—t1) (T = tl) _ 3e2r(T—t1) + 4er(T-—t1) _ 1)

= g% (t; —t) + o?

This is the volatility plug-in we use in (5.17). In the section below, we
compare our model with the one suggested by Levy (1992) and Monte Carlo
prices.

5.4.3 A Monte Carlo comparison

In this section we conduct a simulation study to check the accuracy of the
lognormal approximations. In the simulations, we use the price of a geomet-
ric Asian option as a control variate, a technique proposed by Kemna and
Vorst (1990) to reduce the variance of simulated prices. The two competing
lognormal approximations are based on a continuous average, hence they pro-
vide approximate prices of continuous arithmetic Asian options. In a recent
paper, Fu et. al. (1997) consider Monte Carlo valuation of Asian options
with continuous averaging. They argue that the judicious choice of biased
control variates can, in addition to reducing variance, correct the discreti-
sation bias inherent in simulation, if the object of interest is the continuous
time limit. In accordance with the result in the above-mentioned study, we
use the continuous geometric Asian option as (a biased) control.

In table 5.1 we present numerical comparisons between Monte Carlo
estimates (termed "MC”) and the two different lognormal approximations
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Volatility — Strike MC Std. New Levy
K =90 15.23720 0.0052 15.30758 15.32306
0.30 K =100 9.051251 0.0055 9.090714 9.113903
K =110 4.856152 0.0056 4.838257  4.862787
K =90 18.36302 0.0151 18.53306 18.62493
0.50 K =100 13.21493 0.0162 13.28350 13.39332
K =110 9.291660 0.0164 9.258294 9.373827
K =90 25.65053 0.0698 25.96211 26.54387
0.90 K =100 21.41393 0.0637 21.68586 22.32281
K =110 18.09593 0.0683 18.08589 18.75454

Table 5.1: Comparison of different valuation approaches. The valuation results refer
to an Asian average rate option with continuous averaging. The averaging period starts this instant and
lasts one year (t; = 0 and T = 1). The initial stock price is set to X¢ = 100 and 7 = 0.1. The result from
our proposed method is in the column New, and the method in Levy (1992) is given in the column Levy.
Monte Carlo estimates are conducted using a fine discretization of the stock price of 4000 observations per
year. The number of Monte Carlo runs are 10000 for K = 90,20000 for K = 100 and 30000 for K = 110.

(termed "New” and ”Levy”). We have chosen a fine discretisation of the
stock price of 4000 observations a year. Since the two approaches yield simi-
lar results prior to averaging, we have set t = t, = 0 and 7' = 1, hence we are
pricing an average rate Asian call with maturity in one year at the moment
averaging starts. Furthermore the initial stock price is set to X, = 100 and
r = 0.1. In general the accuracy of the Monte Carlo prices is higher for lower
volatility of the underlying asset. We investigate prices for annualised volatil-
ity of 30%, 50% and 90%, with strike prices set at K = 90, 100 and 110. The
number of Monte Carlo runs are 10 000 for K = 90, 20 000 for K = 100 and
30 000 for K = 110. We increase the numbers of runs along with moneyness
to get approximately equal levels of precision of the computed prices for any
given level of volatility. The estimated standard deviations are given in the
column termed ”Std.”.

The main results are as follows. The new approximation overprices at
K = 90 and K = 100 and underprices at K = 110. This pattern is con-
sistent for all the levels of volatility. Levy’s formula consistently overprices
the options. The pricing errors increase with increasing volatility of the
underlying asset. This is the main drawback of the formula of Levy. The
variance obtained by matching moments of lognormal and the arithmetic
average overshoots the real variance. The overshooting gets worse when
volatility increases.
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5.4.4 Implicit volatility in the Black (1976) framework

This section is a first attempt to learn more about average rate arithmetic
options using implied volatility. In liquid option markets, market partici-
pants calculate volatility implied from the Black-Scholes option pricing for-
mula from market prices, to better understand the limitation of the formula.
Implied volatility is typically not constant across strike prices. This is the
so-called "moneyness bias” or ”volatility smile”. This effort of financial en-
gineering has in turn led to the theoretical development of option pricing
models with more sophisticated asset price dynamics, such as jumps and
stochastic volatility. In our setup we know that the average rate futures
contract is not lognormally distributed within the averaging period. We will
now investigate the ”volatility smile” resulting from this deviation from log-
normality. First we compute prices of the average rate futures contracts.
Furthermore, we do a Monte Carlo experiment to compute the ”correct”
option prices. Finally, we use the Black (1976) formula to back out the im-
plicit volatility. It is well known that lognormality produce constant implied
volatility across strikes. Hence, a lognormal approximation will produce a
horizontal volatility ”smile”.

We use the same initial parameters as described above, and we calculate
prices for average rate call options with K = 80,90, ..., 120 for the following
volatility levels of the underlying asset; o = 0.3, 0.5 and 0.7. We then
back out the implicit volatility from the Black (1976) formula. Plotting the
implicit volatilities (termed "MC”) against the strike prices produced the
volatility curves in figures 5.1 - 5.3.4 We also plotted the volatility using
Wilkinson’s approximation and our new lognormal approximation (termed
"Levy” and "New” respectively).

We see that the implied volatility is increasing in the strike. This is
consistent for all levels of volatility of the basic underlying asset. Further-
more, the difference between our new approximation and the Wilkinson’s
approximation is increasing in the basic underlying asset volatility. Our new
approximation seems to be better except for call option far out of the money.

The fact that the smile is upward sloping is an indication of positive
skewness for the natural log of the arithmetic average. Out of the money
call options are relatively more expensive than in the money options, since
positive skewness makes the right tail of the distribution heavier than the

4Note that the underlying asset volatility in the captions refers to the basic underlying
asset, not the volatility of the average rate contract.



5.4. LOGNORMAL APPROXIMATIONS OF THE ASIAN OPTION 139

018 -

Im plicit volatility

017

80 90 N 100 110 120
Strike

Figure 5.1: Implied volatility when underlying asset volatility is 30%. ”Correct”
prices are estimated using Monte Carlo methods for an average rate Asian call option with continuous
averaging starting today with maturity one year from now (t; = 0 and T = 1). Todays stock price is
Xo = 100 and r = 0.1 and underlying asset volatility is & = 0.3. The implied volatility is backed out
using the Black (1976) formula. "MC”, "New” and ”Levy” are the implied volatility from Monte Carlo

prices, our new formula and the formula presented in Levy (1992) respectively.
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Figure 5.2: Implied volatility when underlying asset volatility is 50%. (See
caption on figure 5.1)
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Figure 5.3: Implied volatility when underlying asset volatility is 70%. (See
caption on figure 5.1)

lognormal. It is not clear from the figures whether this moneyness effect
increases or decreases, when the volatility of the basic underlying asset in-
creases. In table 5.2 we have computed the implied volatility (termed ”imp”)
in percent of the basic underlying asset for K = 80 and K = 120.

We see no conclusive result. From o = 0.3 to ¢ = 0.5 the difference
between implied volatility at K = 80 and K = 120 increases. But the
difference decreases from o = 0.5 to o = 0.7. It is important to note that the
Monte Carlo prices that produce the implied volatility inhabit measurement
errors. Table 5.2 reports a fairly stable moneyness effect in percentage terms.

K=80 K=120
57.0% 59.3%
56.6% 59.9%
56.9% 58.9%

RISEIEER

Table 5.2: Volatility of the arithmetic average relative to the volatility of

the underlying asset. The stock price today is Xo = 100 and r = 0.1. Monte Carlo prices
are calculated for an average rate Asian call option with continuous averaging starting this instant with
maturity one year from now (f; = 0 and 7" = 1). Prices are calculated for different strikes (K = 80 and
K = 120) and different levels of underlying asset volatility. Implied volatility for these Monte Carlo prices
are backed out from the Black (1976) formula. The table reports the ratio of the implied Monte Carlo
prices and the underlying asset volatility.
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Some further testing not reported here, indicate that the implicit smile curve
is unaffected by maturity. For example setting 7" = 0.5 or T' = 2 produce the
same smile curve as for T = 1. This means that an appropriate correction
for moneyness may further improve the accuracy of the formula.

5.5 Conclusions and suggestions for future re-
search

In this paper we develop a new lognormal approximation for the Asian op-
tion. We start our analysis by creating a synthetic asset; a futures contract
written on the arithmetic average asset price, which equals the arithmetic
average at maturity. This way the Asian option can be interpreted as a
European futures option. The average rate futures contract is lognormally
distributed prior to the averaging period. Within the averaging period, the
contract is no longer lognormally distributed, and we propose a new lognor-
mal approximation. We then value the average rate Asian call in the Black
(1976) framework. In a Monte Carlo experiment we show that our formula
gives quite accurate prices as long as the strike is not too far in or out-of-
the-money. The mispricing of the lognormal approximation formula by Levy
(1992) becomes increasingly severe for higher levels of volatility of the under-
lying asset. Finally we shoved, that Asian options interpreted as European
futures option produce implicit volatility curves increasing with strike price.
This analysis using implied volatility in the Black (1976) framework might
be extended to a more realistic model for the underlying asset price dynamics
(for example allowing for jumps and stochastic volatility) in the Monte Carlo
exercise. In such an environment, a lognormal approximation may even per-
form better in terms of accuracy than in a standard Black-Scholes economy,
since pricing errors due to underlying asset price dynamics versus arithmetic
averaging may cancel each other out. This is left for future research.
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Chapter 6

Valuation of Asian options by
matching moments

ABSTRACT - Arithmetic Asian options are difficult to value since the
distribution of the arithmetic average of lognormal random variables
is unknown. Turnbull and Wakeman (1991) suggested matching the
moments of the unknown distribution by the lognormal distribution
using the Edgeworth expansion. It is well known that their method is
inaccurate when the volatility of the underlying asset is high. In this
paper we first investigate a certain futures contract that equals the
arithmetic average of the underlying asset at maturity. We approx-
imate the dynamics of this average based contract with a standard
lognormal futures contract with mean reverting square-root variance.
By adjusting parameter values of this approximate process, we are
able to simultaneously match all four moments of the arithmetic av-
erage. Valuation is achieved by Fourier inversion techniques. The
suggested method is shown to give very accurate option prices, even
at high levels of volatility.

6.1 Introduction

In this paper we propose a new method for valuation of Asian options. Using
the standard lognormal model for the underlying asset, arithmetic average
options are difficult to value. Closed form option formulas for these options
do not exist, since the distribution of the arithmetic average of lognormal
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random variables is unknown. This fact has resulted in a abundant literature
on different valuation approaches, falling into four broad categories:

e Monte Carlo simulation. The seminal paper on Asian options is the
work by Kemna and Vorst (1990). They provide closed form solutions
on geometric average options, and they develop a Monte Carlo pric-
ing approach, using the geometric average option as control variate.
Recently Grant, Vora and Weeks (1997) have developed a simulation
scheme that allows for early exercise features of Asian options.

e PDE-methods. Kemna and Vorst (1990) derive a partial differential
equation, which characterises the price of an Asian option. Numerical
solution of this PDE has been the focus of work by Rogers and Shi
(1995), Alziary et al. (1997) and Zhang (2002).

e Analytical solutions. Yor (1993) and Geman and Yor (1993) develop
analytical solutions to the Asian option problem, but non-standard nu-
merical integration techniques are needed to compute prices (see Ge-
man and Eydeland (1995) for a numerical application).

e Approximate closed form solutions. Closed form solutions are
useful since they provide prices and hedge ratios very quickly. In the
seminal Black Scholes (1973) analysis, the assumption of lognormally
distributed asset prices provides the closed form solution. Vorst (1992)
presents a formula based on an ad hoc adjustment of the strike price
and then replacing the arithmetic average by its geometric counter-
part. Turnbull and Wakeman (1991) use the Edgeworth expansion to
approximate the unknown distribution of the arithmetic average to the
lognormal. Levy (1992) shows that matching only the first two mo-
ments yields a closed form solution that provide sufficient accuracy for
low levels of volatility. Koekebakker (2002) suggests an alternative log-
normal approximation. Levy and Turnbull (1992) compare different
methods and conclude that the approximating formulas are problem-
atic when the volatility is high. Milevsky and Posner (1998) repeat the
analysis of Levy (1992), using the reciprocal gamma distribution as the
approximating distribution of the arithmetic average. Curran (1994)
derives a closed form approximation by conditioning the Asian payoff
on the geometric average.
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This paper falls into the last category and it is linked to the work of
Turnbull and Wakeman (1991). They apply the Edgeworth expansion us-
ing the lognormal density as an approximate distribution. In their work the
series expansion is truncated after the fourth term, hence information from
the first four moments of the arithmetic average is utilised in their valuation
approach. It is well known that this method is inaccurate when the volatility
of the underlying asset is high. In this paper we take a somewhat different
approach to the method of matching moments. We start by defining a fu-
tures contract written on the arithmetic average. At maturity this futures
contract equals the arithmetic average. This means that a European option
on this average rate futures contract is equivalent to an Asian option. We
then investigate the dynamics of this futures contract and we give a stochas-
tic volatility interpretation of the dynamics. Unfortunately the resulting
stochastic differential equation is unfamiliar and a closed form pricing for-
mula cannot be reached. Instead we choose a lognormal futures model with
stochastic variance. The variance is modelled as a mean reverting square-root
process. Valuation is done in the following steps: 1) Calculate the variance,
skewness and excess kurtosis of the arithmetic average. 2) Use an optimising
routine to pick parameters of the approximate model that produce variance,
skewness and excess kurtosis close to (by minimising mean square error) the
arithmetic average. 3) Use the Fourier inversion technique to calculate the
price of a European option on the average rate contract. This procedure
allows us to simultaneously match the first four moments of the arithmetic
average. Our method produces very accurate option prices, also when the
underlying asset volatility is high. From our analyses we can conclude that
the first four moments contain enough information about the density of the
arithmetic average of the geometric Brownian motion to facilitate accurate
option pricing.

The paper is organised as follows: In the following section we describe
our modelling framework and state the valuation problem. Section 6.3 intro-
duces the arithmetic average rate futures contract. Section 6.4 explains the
valuation method suggested by Turnbull and Wakeman (1992) and our new
stochastic variance approach. We present some numerical results in section
6.5, and section 6.6 concludes.
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6.2 The valuation problem

We work in a standard continuous time Black-Scholes economy where the
uncertainty is characterised by the probability space (2, F,Q) where F is a
o-algebra of subsets of 2 and Q : F — [0,1)] is a probability measure. The
probability measure Q is the equivalent martingale measure (EMM) by as-
sumption. All economic activity is assumed to take place on a finite horizon
[0, 7*]. The financial market consists of one traded financial asset. Let X (t)
be the market price of this risky asset at time ¢. We fix the standard filtra-
tion F = {F; :t € [0,T]} with F; defined as the sigma algebra representing
available information at time ¢ (for technical details see e.g. Duffie (1996)).
Frictionless borrowing and lending is possible at the constant riskless rate
r. Furthermore the dynamics of the asset X is governed by the stochastic
differential equation (SDE)

dX(t) =rX({t)dt + o X(t)dW(t), X(0) = Xo (6.1)

with solution

X (t) = Xoexp { (r - %a2) t+ am} (6.2)

where o is constant and W (t) is a one dimensional Brownian motion under
the measure Q. The asset does not pay any dividends. In the following E2 (-)
denotes expectation under EMM conditional on F;.

This paper investigates the valuation of arithmetic average rate options.
The value of such an options is defined as the positive difference (if any)
between the observed difference between the average of observed prices prior
to maturity and a fixed strike, K. Let the tick times at which the underlying
asset is sampled be given by {¢,ts, ...,t,}. We furthermore assume that the
maturity of the option coincides with the last observation, hence ¢, = T.
The arithmetic average at time T, A(T), is given by

A(T) = i X, (6.3)

At time t < ¢, this average is unknown. In the case of continuous sampling
A(T) becomes

T
A(T) = Titl /t X (w)du (6.4)
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The payoff of an average rate Asian call option, AC, is
(A(T) - K)* (6.5)
and the time ¢ value is
AC(t) = e "TIE(A(T) — K)* (6.6)

It is not easy to calculate the expectation in (6.6) explicitly, since the distribu-
tion of A(T) is unknown for t < T. We will instead proceed by investigating
an average based futures contract that equals A(T") at time 7. We study this
contract and its dynamic properties in the next section.

6.3 Introducing the arithmetic average rate
futures contract

Throughout this section we will assume continuous averaging since this sim-
plifies the mathematical exposition. Let F (t,t;,T) denote the time ¢ value
of the arithmetic average over some future time period [t, T|]. Here the sub-
script t is the current time and ¢, and T denote the start and end of the
averaging period, respectively. F(¢,t1,T) can be interpreted as a financial
futures contract which delivers, at time T, the average asset price during the
period [t;, T]. From a theoretical point of view such a contract is a traded
assets, meaning that it can easily be created synthetically by a dynamic strat-
egy of the risk free and the underlying asset. The value (or contract price)
of F (t,t;,T) can be found by calculating the conditional expectation under
the equivalent martingale measure (see Duffie (1996), p. 169) as

T e (T—t) _gr(t; —t)
X(u el N et ¥ when t < t;
F(t,t,T) = E? [ T(_t)_du} = { e G el b
t -1 ftl T du + T X, when ¢t > ¢,
: (6.7)

To arrive at the SDE for F'(t,t;,T), we apply Ito’s lemma to the expression
above to get (see Koekebakker (2002)):

) F(4,4,T)odW(t) when t < ¢

dF (t,t,,T) = er(T—) _
(t,t1,T) { —(m;lX(t)adW(t) when t > t;

(6.8)
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From (6.8) we see that the arithmetic futures contract is governed by the
same SDE as a standard futures contract in a Black-Scholes economy when
t < t;, hence the futures contract 1s lognormally distributed prior to #,. At
time 7' it is obvious that F (T, ¢, T f T X(“) #F=~du = A(T) and consequently
F(T,t,,T) can replace A(T ) (6. 6) In the next sub-section we will further
investigate the dynamics of the return on F (t,t1,T) inside the averaging
period.

6.3.1 A stochastic volatility representation of the av-
erage futures contract

Dividing each side of (6.8) with F (¢,¢1,7) we get a representation of the
instantaneous return of the contract:

dF (t,t,,T)
— " =V{({t)odW(t 6.9
Ty = Ve ) (6.9)
where
1, when t < ¢
V()= 7TSTT—:):rXt (6.10)
- when t > t;

Fia,T)
Applying Ito’s formula on V (t) we arrive at the following SDE for ¢t > ¢;:

.
—T

dv(t) = (;<_T—F__1 - aV(t)) V(t)dt +oV(t) (1 — V() dW(t) (6.11)

From (6.9) and (6.11) we see that the instantaneous return of the futures
contract can be given a stochastic volatility 1nterpretat10n when t > t;. We
note that V(¢t;) = 1 and V(T) = 0 (since %‘f——t—)T—XT = 0). These facts
can easily be explained. When entering the averaging period the uncertainty
of the final contract price (at maturity) decreases, since price information
is constantly revealed to the investor. At maturity all information about
the average is known, and the uncertainty vanishes. We also note that the
diffusion term contains the volatility parameter of the underlying asset. This
means that the higher the volatility of the underlying asset, the bigger the
uncertainty regarding the volatility (the volatility of volatility) of the futures
contract. Unfortunately the SDE in (6.11) is rather complicated. In the
next sub-section we will instead consider an approximate representation that

allows closed form option pricing.



6.3. THE AVERAGE RATE FUTURES CONTRACT 151

6.3.2 An approximate SDE of the average rate futures
contract

In the continuous time finance literature, stochastic volatility is typically
modelled using an additional Brownian motion correlated with the Brown-
ian motion driving the underlying asset. Early contributors to this literature
are Wiggins (1987), Scott (1987), Chesney and Scott (1989), Hull and White
(1987), Stein and Stein (1991) and Heston (1993). These studies differ in
the specification of the stochastic volatility (or variance) and in the different
numerical techniques employed to price options. The square root variance
specification in Heston (1993) has become the most widely used in later re-
search. One important reason for this is that it allows fast numerical calcula-
tions of options prices. This is also our motivation for considering the square
root variance process. A stochastic volatility model typically gives rise to
the problem of market incompleteness, and the specification of market price
of volatility risk. In our model we only have one source of randomness, thus
market incompleteness is not an issue in our setting. To be more specific
we introduce a futures price process, F' with variance v as proxies for the
system (6.9) and (6.11). The differential form of the approximate model is

by assumption:
dF(t) = \/v(t)F(t)dZ(t) (6.12)

and

dv(t) = k(6 —v(t)) dt + oy\/v(t)dZ(t) (6.13)

where Z(t) is a standard Brownian motions under the equivalent martingale
measure. The initial values the two processes are F'; and v, respectively. The
variance is modelled as a square-root process with « controlling the rate of
reversion to the mean of the variance 6, and o, representing the diffusion
term of the variance. All parameters are assumed non-negative. There is
only one source of randomness driving the system above, as is also the case
in the economy defined in section 6.2. In the standard stochastic volatility
model set up, the underlying asset and the stochastic variance are driven by
separate, possible correlated Brownian motions. Still, the system described
in (6.12) and (6.13) is equivalent to the risk neutral processes of Heston
(1993), with the two Brownian motions therein being perfectly correlated.
In the next section we will apply the Fourier inversion technique to find
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approximate prices of Asian options.

6.4 Pricing Asian options by matching mo-
ments

Our Asian option pricing approach can be described in the following manner:
Adjust the parameters in the system (6.12) and (6.13) so that the moments
of F(T) match those of A(T). Then use the price of a European option on
F(T) as an approximation of the Asian option price. Before we detail our
approach, a brief review of the moment matching approach suggested by
Turnbull and Wakeman (1991) is given. Following Jarrow and Rudd (1982)
they suggested to use the lognormal distribution as an initial guess on the
distribution of A(T) and the Edgeworth expansion adjusting for differences
in third and fourth moments.

6.4.1 The Turnbull and Wakeman (1991) approach

The Edgeworth expansion is usually expressed in terms of cumulants instead
of moments. There is a close relationship between the cumulants and the
moments of a distribution. Let ¢(s;Y) = E [esy] denote the moment gen-
erating function of a random variable Y. The j’th cumulant, &;, is defined
aS .

¢(s;Y)

= K
; J
68-7 s=0

Let the unknown distribution of A(T) be given by ¥(A). Furthermore, let
k; (A;9) and m; (A;9) denote, respectively, the j’th cumulant and central
moments of A(T). Then we have the following relationships:

K1 (4;9) = my (4;9)
ko (A;9) = mg (A;9)
k3 (A; ¢) = mg (A;9)

Ka (A;9) = my (A;9) — 3 (mg (4;9))°

Skewness and excess kurtosis can be expressed in terms of cumulants by

K3 (A; ¥)

1 Ay =
Y = )

=
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and

(2 (4;9))°

respectively. All moments of A(T) can be calculated both in the case of
discrete and continuous sampling of the average (see appendix A). But the
distribution is unknown. The Edgeworth expansion is one way of approx-
imating this distribution using the cumulants. The Edgeworth expansion
consists of applying a series expansion for 9(A) to adjust for higher mo-

ments effects. Let ¢(A) be an approximate distribution of A(T), then we
can expand 9 (A) as (see e.g. Jarrow and Rudd (1982))

Yo (A59) =

Y(4) = o(4) - Qo' (A) + 2 (A) ~ B(a) + L) - . (619)

where ¢7(A) ,7 =1,2,... , is the jth derivative of the approximate distribu-
tion and (); are terms involving the differences of the cumulants between the
exact and approximate distribution. Define ¢; = «; (A4;v¥) — k; (A4; ). Then
the first four coefficients @); are given by:

Q1=¢6

Q=€+ ¢y

Qs = €3 + 36169 + €3

Qa = €] + 363 + 4e163 + 6e3ey + €4

Following Jarrow and Rudd (1982) we truncate (6.14) after the fifth term.
The Asian option pricing problem now becomes

AC(t) ~ (T / " (AT) = K) p(A)dA (6.15)
K

where

YA) = o(4) - Que () + () - L(a) + Ror(a)  (616)

The question of choosing the approximate distribution still remains. Turn-
bull and Wakeman (1991) suggest the lognormal distribution as a candidate
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for the approximate distribution. This distribution is completely charac-
terised by its mean and variance, which have to be determined somehow.
Turnbull and Wakeman (1991) suggest that we set the first two moments
equal to each other (known as the Wilkinson approximation). If the ran-
dom variable W is normally distributed with mean p and variance s2, then
the kth moment of the lognormal random variable, Y = €%, is given by
E [Y"] = e*#+3%** The Wilkinson approximation instructs us to determine
p and s? by the following equation:

e#t3% = E, [A(T)]
62;1-{-2.92 — Et

Solving yields:
s2=InE; [(A(T))?] —2lnF(t,t;,T) (6.17)
p=2InF(tt,T)— %m E, [(A(T))?] (6.18)

The Wilkinson approximation implies equality between the first two cumu-
lants of the real and the approximate distributions, and consequently that
@1 = @2 = 0. The approximate Asian option call price according to Turnbull
and Wakeman (1991), ACTY, becomes

ACH)TV = e TD(F(t,t,, T)®(d,) — K®(d))) — My + M, (6.19)

where ®(.) is the standard cumulative normal distribution, M; = e™"T~%) (¢! (K))
and M, = e (T~ (242(K)) are correction terms that picks up differences
between ¢(A) and ¢(A) of the third and fourth moments, respectively. Fi-

nally, ¢’/ (K) is the jth derivative of the lognormal distribution evaluated at
In F(t,t],T) _lsz
K and d; = J———LKS . dy = d; — 5. Levy (1992) suggested matching

only the first to moments of the distribution, resulting in a formula involving
only the first term in (6.19).

6.4.2 The stochastic volatility approach

We suggest the following approximation: Use the process F in (6.12) - (6.13)
as an approximating process for A(T). An Asian option price can be ap-
proximated by the price of a European option written on F'. A European
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call option, FC(t), written on the underlying asset F' with dynamics given
in (6.12) - (6.13) and strike price K can be valued as

FCO(t) = e "T-YER [(F(T) - K)*}
= =T (EG? (D) — KG® (D)) (6.20)

with the Radon-Nikodym derivative

QQ _ - I(D) (6.21)

dQ F(t)
where Q is a martingale measure equivalent to Q and D = {In F(T)>hhK }.
The functions G? and G? can be interpreted as probability distribution func-
tions under two different probability measures (see Zhu (1999) for a nice
exposition). Dropping superscript for convenience and setting v = T —t
and z; = In (F (t)) we can write G; and Gq in terms of the characteristic
functions, g;(.) and go(.), using Fourier inversion

1 [ =it In(K)
Gy=>+ —/ Re (gj (¢, vs; @) -—-———) do, 3=1,2 (6.22)
0

1

2w 1P

where Re(e) returns the real part of the expression in paranthesis. The
explicit expressions for g; can be shown to be (see appendix B)

g; (i x4, v;) = exp (ipx: — p; (v + k0) + A (v; 85, ;) v¢ + C (v; 85, D;5))

(6.23)
with
. 1 k 1 . . 2—741
Sj:—(1+ll¢)(_§+;+§(2_J+¢z)) andpjz-————( i 9)
(6.24)
, _ (1 —e)(2sj +kp;) —ypi (1 +e7™)
A (U, SJ7pJ) = —2ye 1T — (n NP U%pj) (1 — 6_7T) (6.25)
2k6 2yes (=7 4 2 (osk —Kk—7)
C (v;s5,p;) = — In [27(3‘7" PO Y (6.26)
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v = /K% +202s; (6.27)

The integrals in (6.22) can be evaluated efficiently using Gaussian quadra-
ture. The formula in (6.20) gives us the price of a European option given
parameter values of k,0 and o, and the initial values F; and v,. We want
to select these values so that the moments of F(T') and A(T) match each
other. We have the following relationship between the moment generating
function M (¢; z;,v;) for £(T) = In F(T) and the moments of F(T) under
the equivalent martingale:

M (¢: Ty, Ut) = EP [elnﬁ(T)qb] =0 (¢, Iy, Ut) = E? F(T)¢] (6-28)

In other words, we can find the moments of F(T) using the expressions in
(6.23) - (6.27) setting j = 2 and replacing 7 with 1 everywhere. This provides
us with an analytical expression for calculating moments of F(T). Now define
the following scalars

w; = (Variance (A(T)) — Variance (F_(T)))2
wy = (Skewness (A(T)) — Skewness (F(T)))2
wz = (Excess Kurtosis (A(T")) — Excess Kurtosis (—F(T)))2

Our hope is that variance, skewness and excess kurtosis of F(T) and A(T)
are close to each other. If so, then w;, ws and ws will be close to zero. Finally
we define a new scalar, W, given by

3
1
W== E 6.29
3 =1 . ( )

This scalar is our measure of fit between the random variables F(T) and
A(T). Our task is to choose parameters and initial values governing the
dynamics of to minimize the value of W. Technically this can be expressed
as ,
min W
{-F_t,‘l)t},\p

where

¥ = ("‘779,0'11)

We set F;, = F(t,t;,T) to ensure that mean of the two processes are equal.
2 . . . .
Furthermore we set v, = (T_s~25 where s? is given in (6.17). This means that
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in the special case of Kk = 8 = o, = 0, the approximation model collapses
to the model of Levy (1992). ! Let F (¢;¥*) be the process of F () with
parameters U* that minimises W. Then our approximate formula the Asian
call option is

AC(t)NEW = " @T-OEQA(T) — K|*
~ e T (F(t,t,, T)G, (D) — KGo (D)) (6.30)

with D = {InF (T; ¥*) > In K }.

6.5 Numerical results

In this section we present some numerical results of the different valuation
approaches. In table 6.1 we have reported the results for an Asian call op-
tion with continuous averaging. The price of the underlying asset is 100.
The averaging period starts instantly, and maturity is one year from now,
hence t = t; = 0 and T' = 1. The continuously compounded interest rate
is 9%, and the strike prices are set so that we can compare with the results
presented previously in the literature. R—S lower is the lower bound of the
option given in Rogers and Shi (1995) and T upper is the upper bound de-
rived in Thompson (2000). The column termed Zhang reports prices given
in Zhang (2002). He derives an analytical approximate expression and shows
that the resulting error can be expressed explicitly as a partial differential
equation (PDE) that can be solved easily by standard numerical methods.
This method, he claims, is accurate down to five decimals. The last columns
include prices from three moment matching approaches: The Wilkinson ap-
proximation proposed by Levy (1992), the Edgeworth expansion by Turnbull
and Wakeman (1991) and our new stochastic volatility based method. They
are termed Levy, TW and New, respectively.

"We used the minimization routine QNewton in the GAUSS® programming language
to minimize W. Transformed versions of the parameters (using the exponential function)
were employed in the routine to ensure non-negativity. To ensure non-complex moments
of F(T) further restrictions have to be imposed on &, 4, and ¢,. This can be implemented
using an optimising routine with restrictions on the parameters. Trying different starting
values in the unconstrained search will typically result in a non-complex minimum after
a couple of trials. In all the numerical examples reported, the routine picked parameters
resulting in W < 0.00001. This means an essentially identical match between the first
four moments of A(T) and F(T).
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Vol | Strike | R-S lower | T upper | Zhang | Levy T™W New

95 |8.8088 8.8089 | 8.8088 | 8.8089 | 8.8088 [ 8.8088
0.05 | 100 | 4.3082 43084 | 4.3082 | 4.3097 | 4.3082 [ 4.3082
105 | 0.9583 0.9585 | 0.9584 [ 0.9582 [0.9584 | 0.9584

95 |8.9118 8.9130 89118 | 89172 |8.9119 | 89118
0.1 100 | 4.9150 4.9155 |[4.9151 |4.9231 | 4.9146 | 4.9152
105 | 2.0699 2.0704 2.0701 | 2.0705 | 2.0700 | 2.0700

90 14.9827 14.9929 | 14.9840 | 15.0670 | 14.925 | 14.9847
0.3 100 | 8.8275 8.8333 | 8.8288 | 8.8858 | 8.8019 | 8.8290
110 | 4.6949 4.7027 | 4.6967 | 4.6951 |4.7174 | 4.6963

90 | 18.1829 18.2208 | N/A 18.4370 | 17.6999 | 18.1931

95 |[N/A N/A 15.4427 ) 15.6649 | 15.1355 | 15.4449
0.5 [ 100 | 13.0225 13.0569 | 13.0282 | 13.2120 | 12.8994 | 13.0301
105 | N/A N/A 10.9296 | 11.0675 | 10.9540 | 10.9303

110 | 9.1179 9.1561 N/A 9.2132 }9.2655 | 9.1238

Table 6.1: Asian option prices and bounds. The table reports Asian call option prices
with continuous averaging using various methods. The current price of the underlying asset is 100. The
averaging period starts instantly, and maturity is one year from now (t = {; = 0'and 7' = 1). and the
interest rate is 9%. R~S lower is the lower bound of the option given in Rogers and Shi (1995), and T
upper is the upper bound derived in Thompson (2000). The column termed Zhang reports prices given in
Zhang (2002). The last columns report prices from the approximation proposed by Levy (1992) (termed
Levy), the Edgeworth expansion by Turnbull and Wakeman (1991) (termed TW). Prices from our new
method are in the column New.
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We see that all three moment matching methods give very similar results
when the volatility of the underlying asset is 5% or 10%. When raising under-
lying asset volatility to 30% we note that for K = 90, the Levy price is above
the upper bound, and the TW price is below the lower bound. This pattern
repeats itself when the underlying volatility is set to 50%. Now the TW price
is rather far from the lower-upper bound. The prices in the column New is
between the upper and lower bounds and practically indistinguishable from
the prices reported in Zhang (2002). We can conclude that our method is
very accurate. This degree of accuracy results from simultaneously matching
the first four moments.?

To further compare the three moment matching approaches we have com-
puted the implied volatility across strike prices. This needs some explanation.
A standard option pricing model is based on an assumption that the underly-
ing asset is lognormally distributed. Observed option prices from real markets
for instance, can then be inverted into implied volatility; the volatility that
reproduces the observed price. If observed prices coincide with theoretical
prices for all strikes, then implied volatility will be constant across strikes. We
compute the arithmetic average rate futures price, and use the Black (1976)
futures option pricing model to back out the implied volatility from option
prices generated by each of three moment matching methods. In figure 6.1
we have computed implied volatilities for strikes K = {80, 90, 100, 110, 120}
and 30% volatility of the underlying asset. All other parameters are un-
changed. The horisontal implied volatility resulting from Levy prices is due
to the fact that this method assumes lognormality of the arithmetic average
(and consequently lognormality of the arithmetic average futures contract).
This approach clearly produces too high prices for options that are in the
money compared to our new accurate method. For out of the money calls
it produces too low prices. The Turnbull and Wakeman (1991) differs from
Levy (1992) by the adjustment terms M; and M, in (6.19). We see that TW
prices are closer to New prices; the value of in the money call options are
cheaper than out of the money options relative to prices from a lognormal
model. :

In figure 6.2 we repeat the exercise from figure 6.1, but the volatility of
the underlying asset is now raised to 50%. The Levy prices are too high

2We might also be tempted to conclude that moments higher than the fourth have
no impact on option prices. But our approximate model might possibly match higher
moments of the aritmetic average as well as the first four and this might be the reason for
the good performance.
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Figure 6.1: Implied volatility when the underlying asset volatility is 30%.
Asian option call prices are computed using three valuation approaches; the lognormal approximation
of Levy (1992), the Edgeworth expansion method by Turnbull and Wakeman (1991) and the stochastic
volatility approach suggested in this paper. The volatilities are backed out using the Black (1976) option
pricing formula, where the input futures price is calculated from the first moment of the arithmetic
average. Parameters used for option pricing are;: Xo = 100, r =0.09, 0 =0.3,t1 =0, T = land n = ©

(continuously sampled average).
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Figure 6.2: Implied volatility when the underlying asset volatility is 50%.
(See caption on figure 6.1).
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for all strikes. But surprisingly, the TW prices are even worse. This may
seem strange since Levy prices are computed from a simplified version of the
formula producing TW prices. Accounting for higher moments worsens the
performance of the pricing model! The bad performance of the truncated
Edgeworth expansion applied to Asian options contrasts the results reported
in Jarrow and Rudd and more recently in Backus et al. (1997). Why is it
that Edgeworth expansion performs well in some cases and bad in others?
The answer lies in the specification of the approximate distribution. In the
Edgeworth series expansion, setting the first cumulant of the approximating
distribution equal to the cumulant of the true distribution is dictated by
the argument of no arbitrage. Choosing the lognormal distribution as the
approximate distribution, we only need a second parameter to completely
describe the approximating distribution. Jarrow and Rudd (1982) provide
a brief discussion on how to choose this second parameter and they do ad-
mit that the approach is somewhat arbitrary. They mention three distinct
methods: (1) Equate the second cumulant of the approximating distribution
with the true distribution (i.e. setting variances equal). (2) Equate the sec-
ond cumulant of the natural log of the underlying variable with the normal
distribution. (3) Equate the instantaneous variance of the true and approxi-
mating distribution. In this case both the instantaneous return variance and
the instantaneous variance are equal. Jarrow and Rudd (1982) chose the sec-
ond approach, which produced accurate results. The second approach also
has the advantage of being directly in compliance with empirical data. This
fact has lead Backus et al. (1997) to restate the formula directly in terms
of skewness and excess kurtosis of the natural log of the underlying asset.?
In the case of Asian option pricing we have to use method number (1) since
methods (2) and (3) involves the natural log of the arithmetic average, and
we do not know the moments of the natural log of the arithmetic average.

Our method, although motivated by the pricing of options written on
the continuous arithmetic average, can be applied to Asian option where
the average is discretely sampled. The method proposed by Zhang (2002) is
limited to options written on a continuously sampled average. Of course, all
real life Asian options are discretely sampled. Sometimes continuously based
formulas are used as approximations for discrete option pricing. In figure 6.3

3To be precise, Backus et al. (1997) use the Gram-Chalier expansion in stead of the
Edgeworth expansion. Both expansions converge to the same density in the limit but differ
slightly when truncated after a finite number of lags.
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Figure 6.3: Implied volatility for different sampling intervals. Asian option call
prices are computed by the stochastic volatility approach suggested in this paper. The volatilities are
backed out using the Black (1976) option pricing formula. The input futures price is calculated from
the first moment of the arithmetic average. Parameters used for option pricing are: Xo = 100, r = 0.1,

=05t =0,T=1.

we have computed the implied volatility for an Asian call option using our
new method. The first observation in the average is observed today, and the
option matures in one year. The other parameters are: Xo = 100, r = 0.08,
K = 100 and ¢ = 0.5. We note that the fewer observations in the sample
the cheaper is the option. The reason for this is quite obvious; when the first
observation is known, this means that a greater part of the total average is
known when the average consists of only of few observations. Less uncertainty
about the final average means lower option price and lower implied volatility
in figure 6.3. We also see that an weekly sampling produce implied volatility
quite close to continuously sampling. For monthly or quarterly sampling, a
continuously approximation is rather inaccurate.

Finally, in figure 6.4, we compute implied volatility for Asian call options
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Figure 6.4: Implied volatility for different maturities. Asian option call prices are
computed by the stochastic volatility approach suggested in this paper. The volatilities are backed out
using the Black (1976) option pricing formula. The input futures price is calculated from the first moment
of the arithmetic average. Parameters used for option pricing are: Xg = 100, »r = 0.1, ¢ = 0.5, t; = 0,

T=1and n=occ.
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when the maturity of the options are varied. Here we use continuously sam-
pled averages and the parameters from figure 6.3, and maturities were set
to T = 0.2,0.4,0.6 and 0.8. We see that the maturity has very little effect
on the implied volatility. This indicates that the distributional properties of
the arithmetic average remain quite stable independent of the length of the
averaging period.

6.6 Concluding remarks

In this paper we have developed a new approximation for the price of an
arithmetic Asian option. We start our analysis by creating a synthetic asset
- a futures contract written on the arithmetic average. This financial contract
equals the arithmetic average at maturity, hence the Asian option can be in-
terpreted as a European futures option. Unfortunately the dynamics of the
futures contract is too complex for us to reach a closed form European option
pricing formula. Instead, we define a new futures model approximating the
average based contract. The instantaneous return on our contract is speci-
fied with stochastic mean-reverting square-root variance. This representation
leads to a closed form solution to European options. The parameters of this
specification are chosen by matching the variance, skewness and kurtosis of
the arithmetic average and the approximate futures model. Numerical com-
parisons are made to the relevant literature and in particular to the moment
matching approaches presented in Turnbull and Wakeman (1991) and Levy
(1992). We find that our method produce accurate option prices, even when
volatility of the underlying asset is high. Hence the information contained in
the first four moments can be utilised to produce far more accurate results
than the previous mentioned studies. The futures based approach allows us
to back out implied volatility from computed option prices. When compar-
ing the Edgeworth expansion method of Turnbull and Wakeman (1991) and
the simplified Wilkinson approximation of Levy (1992) to our method, we
find that when the volatility of the underlying asset is high the Edgeworth
approximation actually perform worse than the Wilkinson approximation.
Our futures based approach to Asian option pricing can be generalised to
a situation where the underlying asset exhibits jumps. In some markets the
underlying asset will typically experience sudden, discontinuous jumps. The
recursive algorithm described in appendix A can be modified to allow for the
possibility of jumps, as long as the jumps are independent of the asset price.
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Such an extension is left for future research.



Bibliography

[1] Alziary B., Decamps, J. P. and P. F. Koehl, 1997, A P.D.E approach to
Asian options: analytical and numerical evidence, Journal of Banking and
Finance, 21, 613-640.

[2] Backus, D., Foresi, S., Li, K. and L. Wu, 1997, Accounting for biases in
Black-Scholes, manuscript, New York University’s Stern School of Busi-
ness.

[3] Black, F., 1976, The pricing of commodity contracts, Journal of Financial
Economics, 3, 167-179.

[4] Black, F. and M. Scholes, 1973, The pricing of options and corporate
liabilities, Journal of Political Economy, 81, 637-654.

[5] Carverhill, H. and L. J. Clewlow, 1990, Flexible convolution, Risk, 25-29.

[6] Curran, M., 1994, Valuing Asian and portfolio options by conditioning
on the geometric mean price, Management Science, 40 (December), 1705
1711.

[7] Duffie, D., 1996, Dynamic Asset Pricing Theory, Princeton University
Press, Princeton New Jersey, 2nd edition.

[8] Geman, H. and A. Eydeland, 1995, Domino effect: Inverting the Laplace
Transform, Risk, March.

[9] Geman, H. and M. Yor, 1993, Bessel processes, Asian options and perpe-
tuities, Mathematical Finance, 3, 349-375.

[10] Grant, D., Vora, G. and D. Weeks, 1997, Path-dependent options: Ex-
tending the Monte Carlo simulation approach, Management Science, 43,
1589-1602.

167



168 BIBLIOGRAPHY

[11] Heston, S, 1993, A closed-form solution for options with stochastic
volatility, with applications to bond and currency options, Review of Fi-
nancial Studies, 6, 327-343.

[12] Jarrow, R. and A. Rudd, 1982, Approximate option valuation for arbi-
trary stochastic processes, Journal of Financtal Economics, 10, 347-369.

[13] Kemna, A. and A. Vorst, 1990, A pricing method for options based on
average asset values, Journal of Banking and Finance, 14, 133-129.

[14] Koekebakker, S., 2002, Approximate Asian option pricing in the Black
'76 framework, Manuscript, Agder University College (chapter 5 in this
thesis).

[15] Levy, E., 1992, The valuation of average rate currency options, Journal
of International Money and Finance, 11, 474-491.

[16] Milevsky, M. A., and S. E. Posner, 1998, Asian option, the sum of
lognormals and the reciprocal gamma distribution, Journal of Financial
and Quantitative Analysis, 33, 409-422.

[17] Rogers, L. C. G. and Z. Shi, 1995, The value of an Asian option, Journal
of Applied Probability, 32, 1077-1088.

[18] Thompson, G. W. P., 2000, Fast and narrow bounds on the value of
Asian options, manuscript, University of Cambridge.

[19] Turnbull, S.M. and L.M. Wakeman, 1991, A quick algorithm for pric-
ing European average rate options, Journal of Financial and Quantitative
Analysis, 26, 377-389.

[20] Vorst, T., 1992, Prices and hedge ratios of average rate options, Inter-
national Review of Financial Analysis, 1, 179-193.

[21] Yor, M., 1993, From planar Brownian windings to Asian options, Insur-
ance: Mathematics and Economics, 13, 23-34.

[22] Zhang, J.E., 2002, A semi-analytical method for pricing and hedg-
ing continuously-sampled arithmetic average rate options, Forthcoming
in Journal of Computational Finance.

(23] Zhu, J., 1999, Modular pricing of options, Discussion paper nr. 175,
Eberhard-Karls-Universitdt Tiibingen.




6.7. APPENDIX A: MOMENTS OF THE ARITHMETIC AVERAGE 169

6.7 Appendix A: Moments of the arithmetic
average of geometric Brownian motion

In this appendix we demonstrate how to compute the moments of the arith-
metic average of geometric Brownian motion both with continuous and dis-
crete sampling. Throughout this appendix assume that the dynamics of X (¢)
is given by (6.1) with solution (6.2).

6.7.1 Continuous sampling

First consider continuous sampling, hence the average is given by A(T) =
o ftr‘lr X (u)du. The k'th moment of A(T) at t = t,, is given by:

(6.31)

and

See Geman and Yor (1993) for proof.

6.7.2 Discrete sampling

Now consider the discrete average A(T) = 13" | X(t;) where the n tick
times {t; < ... <t, =T} are equally spaced. As shown in Turnbull and
Wakeman (1991) it is possible to set up a recursive relationship to compute

the first k moments of A(T). First we write A(T') as
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A(T) = .
X(t,) X(ta)  X(ts) | X(tn)
T 1+X(t1)+X(t1)m+X(t1)}
= @ [L+ Z(t1,t2) + ... + Z(t1,t0)]
= Xffl) 1+ Z(t1,t2)[1 + Z(t2,t3) %
1+ Z(ts, ta) |1 + Z(tn-g, tn1)[1 + Z(tac1, ta)]]]] (6.32)

It is obvious that

X(tn1) X(tn) _ X(tn)

Z(tn—2,tn——1)Z(tn—1’tn) = X(tn—2) X(tn—l) a X(tn_2)

and that Z(t,_2,%,—1) and Z(¢,-1,%n) are independent due the independence
of increments of Brownian motion. Define the following

Yi =1+ Z(tn—lytn)
Vi =1+ Z(ta-t-1,tn-1)Yi1

We can find the first four moments of Y7 in the following way

EN]=E[1+Z(tn1,t,)]
=14 E[Z(tn-1,tn))

E[Y?] = E [+ Z(ta1,tn))’]

=14 2E[Z(tn-1,ta)] + E [Z(tn-1,tn)’]
E[Y?] = E[(1+ Z(tar,ta))®

=1+ 3E[Z(tn-1,tn)] + 3E [Z(tn-1,tn)?] + E [Z(tn-1,1n)?]
E Y] = E[(1 + Z(ta-1,t))"

=14 4E [Z(tn_1,tn)] + 6F [Z(tn1,1n)’]

+4E [Z(tn-1,t0)%] +4E [Z(tn-1,1n)"]

From the lognormal property of geometric Brownian motion, the kth moment
of Z(tn-1,tn) is explicitly given as
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E [Z(tn——latn)k] — ek(r—%a2)A+k2%a2A
where A = fa=b is time between ticks. The independence of the Z(.)’s
implies independence of the Y’s. Working our way backwards from time ¢,
we can set up the following recursion to compute the moments of Y;:

EY]=E[l+ Z(ts-1-1,tn1)Yi-1]
14+ E[Z(tn-i—1,tn)] E [Yi1]
E[YY] = E [0+ Z(ta-i1, tat)Yin)’] =
1+ 2E [Z(tn-i-1,tn-t)] E [Yi1] + E [Z(tn-ic1, tant)?] B [V24]
E[Y?] = E[(1+ Z(tnaicr, tas)Yin)?] =
1+ 3E [Z(tni-1,tn-1)] + 3E [Z(ta-i1-1,tn)?] E [Y2,]
+ E[Z(tno1-1,ta)?] B [YV24]
E[Y] = E[(1 + Z(taoi-1, ta0)Yin1)’] =
1 +4E [Z(tn-i-1,tn)] E [Yim1] + 6E [Z(tni1, ta)?] E [V24]
+4E [Z(tn-t1-1,ta)’] E [Y2,] + 4B [Z(tacicr, tad)*] B [ViE]

Finally the moments of the discrete average condition on time ¢t < t; can be
written as:

+

E, [A(T)] = E, (X:H) [1+ X(t2)

X(t3) + X(tn)]>k
X(t) X)) X(t)
X, ek(r—%az)(tl—t)+k2 $0%(t1 1)

k
- ; E[V},]

for k =1,2,3 and 4.

6.8 Appendix B: Characteristic functions of
the distributions G? and G;@

In this appendix we will sketch the solution to the explicit expressions of
g1 (i¢; =, v) and ga (i¢; T, v¢). In doing so we follow the exposition in Zhu
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(1999) closely. Let the dynamics of F be given by (6.12) and (6.13). Define
f(t) =InF(t). It is easy to verify that f follows the stochastic process

df(t) = —%v(t)dt + /o) dW (£) (6.33)
du(t) = k (6 — v(t)) dt + o,\/v(t)dW (t) (6.34)

Expressing (6.34) in integral form and rearrange gives

1 (vo +RO(T —1t) & /t " o()ds + U(T)> (6.35)

v

/ oW (s) = -

The characteristic function, g;(.) for 2(T') under the measure Q is given by

F(T)
F(t)

exp i62(7))

(6.36)
with f(T —t) defined in (6.21). The last expression in (6.36) can be further
manipulated

a1 (i 0, v0) = ER [exp (i92(T))] = E2 [e—«r—t)

5 e t)ﬁ((T)) oxp (i62(T))

= E2 [exp (1 +i¢) 2(T) — r(T — t) — ()]
exp< (z(t) +r(T t))iT¢~(l+Ti¢)ftTv(s)ds )}
(1+19) [, Vv(s)dW(s)

Inserting for ft Vu(s)dW (s) in (6.35) yields

= EQ

(@(t) + (T — 1)) i — ‘“‘””ft
exp (1+1¢) (’U + K,e —_ t — K,j; dS + ’U T))

B (z(t) + (T —t)) ig— (1+ig) (&= 1) [Tv(s)ds
“e"p( G22 - 0 ) [p( —(L——fﬂzm )}

oo 0T )28 o o [t )]

= EQ
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where in the last equality we have defined s; = — (1 + i¢) (—-21- + o+ 11+ ¢z))

and p; = Q:vﬂl The expectation value y = E2 [exp (.51 ftTv(s)ds — plv(T))]
can be found by the Feynman-Kac formula. Let v be time to maturity. When
v(t) follows the SDE in (6.34) we obtain the following partial differential

equation

dy _ | dy 1 , 0%
% (v,t) = —s1vy (v,t) + K (0 — V) 3o (v,t) + 50 V5 (v,t)

with boundary condition

y (ve, t) = exp (pyo(t))
This PDE can easily be solved and has the solution

y (’U,'U) — CA(U;31,P1)+C(U;311P1)

where
1 —e7 _ -7
—2ve" — (k+y —oip) (1 —e™)
210 Ives(nNT 4 Lok — Kk —
C (v;s1,p1) = — = g (95k £ —7)

1
2 e+ (rry— ) (1—e )

v =+/K%:+ 2025,

The function gy (i; 2, v;) = EQ [exp (i¢x(T))] can be found in a similar way,
leading to the general expressions (6.23) - (6.27).



