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Preface

This dissertation deals with the field of study known as the apportionment
problem. In addition to giving an overview of the field, it treats some topics in
greater detail. The dissertation is divided in two parts. The first part, chapter 1

through 8, deals with the vector apportionment problem, while the second part,

chapter 9 through 18, treats the matrix apportionment problem. In addition to the
text, the dissertation contains 4 appendices.

The apportionment problem concerns the problem of dividing the seats in an

elected assembly fairly, i.e. proportionally, among the constituencies and/or
parties according to the populations/votes. What makes it impossible to achieve a
perfectly proportional division in every situation is the indivisibility of seats.

During history many methods for apportioning seats have been proposed. The

most important of these are presented in chapters 1 and 2. Due to the indivisi-

bility of seats, it is not clear what one should put into the term proportional in the

apportionment context. Chapter 3 reviews some natural principles in the vector

case, while chapter 9 presents some principles in the matrix case. Although the
common use of apportionment methods is distribution of seats in elected
assemblies, it should be noted that such methods are applicable in every situation
where indivisible entities are to be distributed proportionally. The test of time has
revealed the properties of different apportionment methods. Chapter 4 studies
some properties, while chapter 8 contains a discussion regarding suitable
properties for different kinds of apportionment. Apportionment methods may
also be formulated as constrained optimization problems. Chapter 6 presents
formulations for the vector case and chapters 10 - 11 for the matrix case.

I first became aware of the apportionment problem when I read Balinski and
Young's book "Fair Representation: Meeting the Ideal of One Man, One Vote" in

the early 1990s. My mentor, Professor Kurt Jornsten of the Norwegian School of

Economics and Business Administration, then drew my attention to the matrix
apportionment problem. An unpublished working paper he had written together

with Professor Thorkell Helgason of the University of Iceland, which presented
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Preface

an entropy formulation of the matrix problem, became the starting point for my
HAS-thesis. During the work with that thesis I tried to fmd an efficient algorithm
for solving the matrix apportionment problem. The thesis (1992) ended with a
sketch of an apportionment algorithm.

The early part of the work with the doctoral dissertation focused on developing
the apportionment algorithm. The process of programming the algorithm

contributed to its development. Chapter 12 presents the proposed algorithm.

Another task has been the testing of different set-ups of the algorithm. The results
of these tests are presented in chapter 14. Chapter 17 is also connected to the

algorithm. It presents a way of decomposing the multiplier set for an optimal

matrix apportionment. An important part of the dissertation is the empirical
measurement of bias for both the vector and matrix apportionment problem. In

this connection I propose new ways of grouping the constituencies in chapter 5.

The results of the bias tests are presented in chapters 5 and 16 respectively. Three

other chapters worth mentioning are chapter 7 which deals with thresholds,
chapter 15 which describes controlled rounding, and chapter 18 which presents
the three-dimensional apportionment problem.

Compared with my HAS-thesis, the contents of chapters 5, 7, and 12 - 18 are
new, while the contents of the other chapters have been refined. In a wider per-
spective, I consider the following to be the new contributions of the dissertation:

- The apportionment algorithm.
[The apportionment initialization procedure (section 11.3) plus the rules for the adjustments (chapter 12)]

- A constructed measure for Norway.
[Section 8.2]

- The measurement of bias of matrix apportionments.
[Chapter 16]

- Division of constituencies (cells) in new ways when measuring bias.
[Sections 5.3 - 5.6]

- Some minor results in part I regarding CPt may also be characterized as new.'

- The payoff functions in chapter 7 were derived independently of Lijphart and

Gibberd. Compared with their article, only the general functions for constant

parametric divisor methods represent something new.
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During the last couple of years I have revised the dissertation. A lot of errors
have been corrected during this revision. The contents of the language have also
been improved. However, since my English could have been better, there IS

certainly some bits of incorrect English left.

The comments of Professor Thorkell Helgason of the University of Iceland have
been valuable during the revision process. Thanks also to my mentor, Professor
Kurt Jornsten of the Norwegian School of Economics and Business Administra-
tion, for ideas and discussions along the way. Finally, thanks to Professor Aanund
Hylland of the University of Oslo for his comments on my HAS-thesis.

I also wish to thank the Norwegian School of Economics and Business
Administration and Sør-Trøndelag College, School of Economics and Business
Administration for financial support during the lengthy work with the
dissertation. Finally, thanks to the Norwegian School of Economics and Business
Administration, Department of Finance and Management Science for provision of
office after my employment period there.

Trondheim, December 1998 / October 1999

Bjørne-Dyre Hougen Syversten
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Part I:

The Vector
Apportionment

Problem





Chapter 1: Introduction

Chapter 1 presents the vector apportionment problem. Section 1.1 introduces the
basic terminology and presents some basic conditions, while the main topic in the
last section is the apportionment method called the method of the largest fraction.

1.1 Basic terminology and conditions

To introduce the basic terminology for the vector apportionment problem we
look at the situation where h seats shall be distributed among m constituencies
based on the populations of these constituencies. We could just as well have
looked at the apportionment of seats among parties because the methodology is
similar. However, the apportionment among constituencies is chosen. h = O
results in the trivial situation where no constituency gets any seat, while m = O
means that there is not any constituency to distribute the seats to. We therefore let
the house size h and the number of constituencies m be positive integers. If
m = 1, the sole constituency must get all h seats available. Thus, for all practical
purposes we can assume that m ~ 2. The index i, where i E M = {l, 2, ..., m} is
used for the constituencies. The populations of the constituencies, or alternatively
the number of eligible voters in the constituencies, are represented by the
population uector, p = (p i). A constituency with a population of zero is
meaningless, so we assume that all populations are positive p > O.Usually Pi is
integer, but when the result of an election is given as percentages, Pi is rational.
For other areas where the use of apportionment methods might be desirable, Pi
may be real. To cover all possibilities we assume that Pi is positive and real.
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Chapter 1: Introduction

Population is just one possible basis for apportionment of seats in parliament.
Other possible bases are the number of eligible voters, the number of votes, or
another quantitative measure, including constructed measures. An example of
a constructed measure is: Population + Eligible voters + 20·Area, which is used in
Denmark, [H-S] (page Ill.d), In section 8.2 we propose a constructed measure for

Norway.

The final apportionment of seats among the constituencies is represented by the
apportionment uector, which we denote a = (ai). A seat cannot be divided, so

ai must be integer valued. It is possible that constituency i is not apportioned any
seat. Thus, ai is a non-negative integer, i.e. a ;;:::O and integer. It is obvious that
the sum of seats over all constituencies aMequals h:

(1.1) 'Lai=aM=h
ieM

We let PM denote the total population of the country:

(1.2)

The vector (p}, P2, ... , Pm, h), which we usually abbreviate to (p,h), contains all
data of interest for the apportionment. We call such a vector an election
situation for the uector apportionment problem. The task ahead is to
determine an apportionment vector which is ''proportional'' to the population
vector. A method utilized in such a determination process is called
apportionment method and denoted A.

An apportionment method should be able to handle every possible election
situation, i.e. A should be well defmed and non-empty for all election situations.
It is reasonable to allow more than one possible apportionment for election

situations where there is a tie between two or more constituencies for the last

seat(s). A simple example:

4



Chapter 1: Introduction

Example 1.1
We face an election situation where h is an odd number and the country consists
of two constituencies with equal populations. Then any reasonable apportionment

h+ 1 h-l h-l h+ 1 .
method should allow both a = (2' 2) and a = (2' 2) as apportionments.

Ties can also arise when populations are unequal, but this depends on the
properties of the apportionment method being used. Even if p is integer or
rational, ties may involve irrational numbers. A tie can be broken by lottery, toss
of coin or another tie breaking procedure. However, in most practical election
situations the populations are so large that ties rarely occur.

A tie can be thought of as a point where the apportionment is about to change. In
the immediate neighbourhood of a tie point arbitrarily small population changes
will lead to different apportionments, and all these apportionments should be

allowed at the tie point. The fact that a tie point together with its immediate
neighbourhood involve irrational numbers is why we allowed p to be real from

the beginning. [B&Y] (page 98) define a condition called completeness:
Completeness is a continuity condition which extends the concept of apportion-
ment methods to all real populations. An apportionment method A is completed
by letting a E A(p,h) for real population vectors p E 9lm if and only if there is a
sequence ofrational m-vectors pa converging to p such that a E A(pa,h) for all
a. The mathematical formulation of completeness in [B&D-l] (page 711) is:

Definition 1.1
A is complete ifJf ~ p and a E A(pa,h) for every a, then a E A(p,h).

The central question regarding the apportionment problem is: When restricted to
integer solutions, what do we mean by proportional? Below we review some

basic conditions concerning proportionality.

Proportionality concerns the size of populations, not their names or other

characteristics. Therefore, permuting the populations should only result in
apportionments that are permuted in the same way. [H-A] (page 23) calls this

condition neutrality:

5



Chapter 1: Introduction

Definition 1.2
A is neutral if for all h, p, and a and all permutations ro ofM,
a E A(p,h) if and only if am E A(Pm,h).

Other names which have been used for this condition are symmetry, [B&Y]
(page 97), and anonymity, [B] (page 139). An apportionment method which
orders constituencies alphabetically and breaks ties in favour of the constituency
ordered first is not neutral.

The same proportional change in the population of every constituency should not
alter the apportionment, since there is no change in the proportional shares of the
constituencies. [B&Y] (page 97) call this condition homogeneity, while [H-A]
(page 9) uses the name scale independence.

Definition 1.3
A is homogeneous if A(p,h) =A(~·p,h) for all (p,h)
and all real numbers ~ > O.

We use the notationp for the national auerage population per seat:

(1.3) P - .E..M- h

The quota of constituency i is denoted qi and defmed as the population of this
constituency divided by the national average population per seat:

(1.4)

qi shows the exact number of seats constituency i would be entitled to if partial
seats were allowed. The quota uector is denoted q = (qi). It can be interpreted
as the ideal assignment. Clearly, the sum of all quotas equals h:

(1.5) ~ q.= ~ K.h = l!_.~p. = .s.. P,II= h£..J l £..J PM PM £..J l PM jY.l

ieM ieM ieM

6



Chapter 1: Introduction

In practice there are few election situations where any qi is integer. When the
quota of every constituency is integer, we have euact proportionality. In case

this highly unlikely event occurs, the apportionment method should distribute the
seats according to the quotas. This condition is called euactness, [B] (page 139),
or weak proportionality, [B&Y] (page 97).

Definition 1.4
A is eHact if qi E N for every i implies that A(p,h) = q = (qi).

[B&Y] (page 97) and [B] (page 139) present the condition that as the house size

grows the apportionment should become "no less proportional". Let us call this
condition integer proportionality:

Definition 1.5
A is integer proportional if a E A(p,h) and il= ~'a is integer valued,
where O< ~< 1 and rational, imply that il =A(p,h), where h = ~·h.

Notice that il should be the unique apportionment with the smaller house size h.
Consider an election situation with two constituencies and a house size of 6. IfA
apportions 4 seats to the first and 2 seats to the second constituency, then integer
proportionality demands that A gives 2 seats to the first and 1 seat to the second
constituency when the house size is only 3.

An apportionment method which is neutral, homogeneous, exact, and integer
proportional is proportional, [B] (page 139). All methods we encounter in this

and the next chapter are proportional and complete.

Whenever two constituencies have equal populations, it seems reasonable that

their apportionments do not differ by more than one seat. The reason for
allowing the apportionments to differ by one seat is that the two constituencies

may have to share an odd number of seats, as in Example 1.1 above.
Apportionment methods which obey the stated condition are called balanced,
[B&Y] (page 144), or strongly balanced, [H-A] (page 24):

7
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Definition 1.6
A is balanced if a E A(p,h) and Pi = ps imply Iai - as I ~ 1.

A natural requirement is that a constituency with a larger population than another

constituency should never get less seats. This condition has been presented under
the name weak. population monotonicity, [B&Y] (page 147). [H-A] (page 27) calls
it internal uote monotonicity:

Definition 1.7
A is internal uote monotone if a E A(p,h) and Pi > Ps imply ai ~ as.

1.2 The method of the largest fraction

Let ~ ~ Obe a real number. We define L~ J and I ~ l the following way:

(1.6) L~ J = The greatest integer equal to or lower than ~.
I ~ l = The smallest integer equal to or higher than ~.

It is clear that L~ J = I ~ l if and only if ~ is integer valued. A constituency's
quota can be divided in two parts, an integer and a fractional part. We denote the
fractional part ri, so the quota can be written as:

(1.7) qi = Lqi J + ri where O~ ri < 1

It seems reasonable that each constituency should get at least as many seats as the

integer part of its quota Lqi J. After such an assignment there are still ~ ri = ru
seats left for distribution. The number of remaining seats rM is bolinded the
following way: O~ 1"M ~ m-I.

The normal way of dealing with fractions is to round fractions greater than i
upwards and fractions smaller than i downwards, with i as the tie point where
fractions are rounded either upwards or downwards. We ignore the possibility of

8



Chapter 1: Introduction

fractions equal to ~ in the following explanation: The described rounding

procedure only works if the number of fractions greater than ~ is equal to ru. If

there are more than ru fractions greater than ~, too many seats will be
distributed, and if there are less, too few seats will be distributed.

The natural modification of the rounding procedure above is to sort the fractions

in descending order and distribute the remaining ru seats to the constituencies
with the largest fractions. With this procedure the smallest fraction which
qualifies for a seat will differ from one election situation to another. We denote

such a "threshold" fraction r*. For most election situations r* is in the
neighbourhood of 0,5. In the case of exact proportionality r* is undefined.

The procedure described above is a well-known apportionment method. It is
often called the method of the largest remainder. We prefer the name the
method of the largest fraction, since this name is closest to our description

of the method. The method is also known as Hamilton's method, named after
Alexander Hamilton who proposed the method in 1792. Alexander Hamilton was
the first Secretary of the Treasury of the United States and a prominent political
figure in the early years of the US. We use the abbreviation LF for the method of
the largest fraction. Algorithm 1.1 is a formal description of how the apportion-

ment process is carried out with LF:

Algorithm 1.1
Step 1: Give each constituency as many seats as the integer part of its quota

Lqi J.
Step 2: Order the fractional parts ri in descending order. If there is a tie for a

position, break it in favour of any of the eligible fractions. Find the sum

of all fractional parts ru; either a~ ru ~ h - ~ Lqi J or ru = ~ ri. .Give
one seat each to the first ru constituencies on the ordered fraction hst.

Step 3: The fmal apportionment to a constituency is the sum of seats given to it

in step 1 and 2.

9



Chapter 1: Introduction

Another way of distributing the last ru seats is to let the constituencies with the
largest fraction-integer ratios L ~i J get one seat each. This method was proposed
by William Lowndes in 1822 and is known as Lowndes' method. The criterion
for apportioning the last ru seats seems rather peculiar, and the method has never
been used in practice.

Lowndes' method as described above is incomplete because _!L is undefmed for
L qi J

O< qi < 1. A defmition like _!L > _!L_ ~ 1 if O< qs < qi < 1 would make the
L qi J L qs J

method complete.
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Chapter 2: Divisor methods

Most of the common apportionment methods belong to the class of divisor

methods. The definition in section 2.1 is a broad definition of divisor methods. In

section 2.7 we present an alternative definition which is narrower and better
suited for our purpose. Each of the five sections between section 2.1 and section

2.7 presents a specific divisor method. In section 2.8 we divide the divisor
methods in four categories. The following section describes the category we call
constant parametric divisor methods. In the last section we look at the
relationship between the family of constant parametric divisor methods and three
other apportionment methods in some practical election situations.

2.1 A definition of divisor methods

Let us first introduce the index I E H = {l, 2, ..., h}, which is related to the seats.

Definition 2.1
Let dl be a non-negative real number where dl ~ d(l+l) for alII. Then Os dl s d2
~ ... ~ dl ~ ... ~ dh is a non-decreasing series of non-negative real numbers called

divisors. If O~ dl < d2 < ... < dl < ... < dh we have a strict diuisor method. ~
is the Ith quotient for constituency i.We permit dividing by O and defme -w > 1f
if Pi > Ps. Moreover, 11 > ~ where ~ is any positive real number. The divisor
method apportionment can then be found recursively as follows:

(2.1) A(p,h) = {a I L ai = h, max ps s min ~}
ieM seM d(as+l) ieM da;
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Chapter 2: Divisor methods

The easiest implementation of (2.1) is Algorithm 2.1 below, where the comments
in parentheses refer to the first time the step is executed.

Algorithm 2.1
Step 1: Calculate the first quotient f.- for every constituency. The constituency

with the largest first quotient, any tie broken arbitrarily, wins the first
seat.

Step 2: If h seats have been distributed, the final apportionment has been found.
Step3: Eliminate the quotient which won the last seat (seat no. 1) and calculate

the next quotient (the second quotient "*) for this constituency. The
other constituencies retain their current quotients. The constituency
which now has the largest quotient wins the next seat (seat no. 2). If
there is a tie between two or more quotients for this position, give the
seat to any of the eligible quotients. Go to step 2.

We denote the sth largest quotient overall by qs. All divisor methods assign one
seat to each of the h largest quotients. With the algorithm above one only has to
calculate m + h - 1 quotients to apportion the h seats.

Multiplying all divisors in a series by a positive real factor ~ does not alter the
divisor method, because the ordering of the quotients does not change. Two
divisor methods are identical if all divisors in the two series are equal after a
scaling:

(2.2) A and A are identical if dl =~'dl for all I

There are infinitely many divisor methods. Some methods of practical and
theoretical importance are presented in the next sections.
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2.2 The method of the highest average

The method of the highest auerage is but one of several names for this
common divisor method. Its divisor series consists of all positive integers, where
the lth divisor in the series is defined as:

(2.3) dl = l

Constituency i competes for its lth seat with the quotient .If. This quotient shows
the average population behind each seat for constituency i if it wins its lth seat.
This explains the name the method of the highest average, which we later
abbreviate to HR. Another name for the method is the method of the
greatest diuisor. In Europe the method is known as d'Hondt's method after
Victor d'Hondt, a Belgian lawyer, who proposed the method in 1878. Yet another
name is Jefferson's method, due to Thomas Jefferson, the third president of
the US, who proposed the method in 1791. His formulation of the apportionment
procedure differs from that shown above, [B&Y] (page 18):

"For a given house size h, fmd a value for the common divisor ZJ so that the
integer parts of the constituency quotients ¥f sum to h."

In section 2.7 it is explained why this formulation yields the same method.

13
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2.3 The method of major fractions

This method is also widely used. The divisor series consists of the positive odd
numbers. Therefore, it is often called the method of odd numbers. The Ith

divisor is given as:

(2.4) dl = 2,1- 1

Another name for the method is Lague's method after the French mathe-

matican Andre Sainte-Lague, who proposed the method in 1910. In general
elections in Norway a modified version of the method is used. The first divisor in
this modified method is 1,4, while the rest of the divisors are as defmed above.

The purpose of the modification is to make it harder for small parties to win
their first seat.

As mentioned at the end of section 2.1, we are allowed to multiply all divisors in

a series by a positive real factor. When we multiply the series in (2.4) by ~ the
formula for the Ith divisor becomes:

(2.5) 1
dl = 1- "2

Usually it is more convenient to have the series in this form, and from now on we

assume that it is.

The method is also called Webster's method. Daniel Webster was a lawyer and
politician, US Secretary of State, who as early as 1832 proposed the method. His
formulation follows Jefferson's approach, but rounds the constituency quotients
in a different way, [B&Y] (page 32):

"For a given house size h, fmd a value for the common divisor zw so that the

constituency quotients ~ rounded in the normal way sum to h."
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This rounding procedure explains the name the method of major fractions,
later abbreviated to MF.

2.4 The method of equal proportions

This method is used in the US for the apportionment of seats in the House of
Representatives among the states. Its divisor series consists of the geometric
means of all successive pairs of non-negative integers. The Ith divisor in the
series is defmed as:

(2.6) dl = V (l - 1) . 1

Since dl = 0, all constituencies will get at least one seat as long as the number of
constituencies does not exceed the number of seats to be apportioned, i.e. m ~ h.

If there are fewer seats than constituencies, Definition 2.1 demands that the h
largest constituencies get one seat each. The first divisor is dl = 0, while the next
four divisors in the series are approximately: 1,41, 2,45, 3,46, and 4,47. We notice
that the divisors approach the corresponding divisors for MF as 1 increases.
However, they will never be equal to those divisors, since V (I - 1) . 1 < (I - ~).

The method got its name from Edward V. Huntington, a professor of mechanics
and mathematics, who was a strong supporter of the method. Another name for
the method is Hill's method after Joseph A. Hill, a statistican, who proposed the
method in 1911, [B&Y] (page 48):

"For a given house size h, give to each state (constituency) a number of seats so
that no transfer of anyone seat can reduce the percentage difference in
representation between those states (constituencies)."

This procedure explains the name the method of equal proportions. For a
further explanation of the procedure see section 6.9. Later the abbreviation EP is
used to refer to the method.
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2.5 The harmonic mean method

The divisor series for the harmonic mean method consists of the harmonic
means of all successive pairs of non-negative integers. The formula for the Ith
divisor in the series is:

(2.7) _(1,_-_1 ),-·_1d/--- I
1- "2

The first divisor is dl = O,while the next four divisors are approximately: 1,33,

2,40, 3,43, and 4,44. With the exception of dl, all divisors are smaller than the
corresponding divisor for EP. We use the abbreviation HM for the method. HM
was proposed in 1832 by James Dean, a professor of astronomy and mathematics,
and is also known as Dean's method, [B&Y] (page 30):

"For a given house size h, find a common divisor ZD so that the whole numbers
which make the average population per seat for the states (constituencies) closest
to zo sum to h."

This translates into giving constituency i ai + 1 seats if -i! - ZD ~ ZD - aiFt l ~ O
d ·f __lL l!! O· h .Ei __lL he ti .an ai seats I ZO - ai + l ~ a; - ZO ~ ,WIt ai - ZO = ZD - ai + l as t etle pomt.
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2.6 The method of the smallest divisor

This method was used for the apportionment of seats in the French Assemblee
Nationale among the departements in 1986, [B&D-2] (page 205). The divisor
series consists of all non-negative integers. The Ith divisor is defined as:

(2.8) dl = 1- 1

Like the two preceding divisor methods, dl = O.When h > m the method can be
described as follows: Give each constituency one seat and distribute the remaining
h - m seats with HA. We recall that one of the names for HA was the method of
the greatest divisor. It should now be clear why the method of the smallest
diuisor is one of the names for the method presented here. We abbreviate this
name to so.

Yet another name for the method is Rdams' method, due to John Quincy
Adams, the sixth president of the US, who proposed the method in 1832. His
formulation of the apportionment procedure was, [B&Y] (page 28):

"For a given house size h, find a value for the common divisor ZA so that the
constituency quotients* rounded up to the nearest integer sum to h."

While HA rounds all constituency quotients downwards to the nearest integer, SD
rounds them upwards to the nearest integer. Thus, SD's rounding procedure is
the mirror image of HA' s.
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2.7 An alternative formulation of divisor methods

Before we present the alternative divisor method formulation, let us formally
defme a term we have used in the preceding sections: A constituency quotient
li is the quotient one gets when dividing the population of a constituency by a
common diuisor z, where z is a positive real number. The common divisor z
must not be confused with a divisor dl in a divisor series.

Definition 2.2
We form a subclass of the senes of strict increasing divisors defmed in
Definition 2.1 by imposing the condition that the divisor function is a strictly

monotone real function defined on the positive integers l e 1 and satisfying:

(2.9) l - 1~ dl ~ l and
not dl = I and db = b - I for integers l e 1 and b > 1

A divisor rounding of the constituency quotient ? is defmed by:

(2.10) =0
= O or 1
=1
=lorl+1

if? < dl
if? = dl
if dl <? < <1(/+1)

if? = d(/+l)

With this defmition, the divisors dl are the tie points where constituency quotients
? are rounded either up or down. The divisors can be seen as sign posts; when a
constituency passes the sign post dl, it gets its lth seat. There is one or two sign
posts in the interval [I - 1, 1]. The usual situation is one, but when dl = I - 1 or I,
and d(l+l) = dl + 1, there are two. The last part of (2.9) makes sure that the
divisor method is exact, [B] (footnote page 139). Defmition 2.2 holds for methods

with dl = Oif h ;;:::m.
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Definition 2.2 is narrower than Definition 2.1. Take dl = 12 as an example.
According to Defrnition 2.1 this is a strict divisor method. However, it is

impossible to find a positive real factor ~ which scales this divisor series such that
the interval requirement in (2.9) is satisfied for every divisor in the series. Proof:

~.<4= ~·16 ~ 3 and ~·d6 = ~·36 s 6 imply 1
36 :s; ~ s !,which is a contradiction.

From now on we assume that methods we refer to as strict diuisor methods
satisfy Definition 2.2. Moreover, we assume that h ~ m if divisor methods with
dl = Ois used.

For a given election situation and divisor method we must find a value for the
common divisor z which distributes exactly h seats. How can appropriate z values
be determined? We go back to Algorithm 2.1 in the first section to answer this
question: For each divisor method there are two quotients of special interest,
namely the largest quotient which does not win a seat, Le. the (h + 1)-th largest

quotient overall q(h+ 1), and the smallest quotient which does win a seat, i.e. the
hth largest quotient overall qh. It can be shown that proper values for z willlie in

the interval (q(h+ 1), qh], which with ai denoting the fmal number of seats appor-
tioned to a constituency i can be expressed as:

(2.11) . I ( ] ( Ps . Pi ]z mterva = q(h+1), qh = max d ' min -d
seM (as+l ) leM aj

In sections 2.2, 2.3, and 2.6 we have denoted the common divisors for HA, MF,
and SD z], zw, and ZA respectively after Jefferson's, Webster's, and Adams'
formulations. Below we investigate the relationsships between the national
average population per seat p and these common divisors. The starting point in all

three investigations is z set equal to p, which means that the quotas and the

constituency quotients are equal at the outset.

HA rounds all constituency quotients down to the nearest integer. When the

quotas are rounded this way, too few seats are distributed. The only exception to
this rule is the case of exact proportionality where no rounding is required since
all quotas are integer valued. To distribute more seats we must decrease ZJ until

exactly h seats are apportioned. Since all constituency quotients are rounded
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downwards, the sum of these quotients will never be smaller than the number of
seats. In (2.12) we also utilize that the number of seats can be expressed as Ff .
(2.12)

Simple manipulation of this expression yields that Z J will never exceed the
national average population per seat zJ ~ p, and with the possibility of ZJ =p only
in the case of exact proportionality.

SD rounds all constituency quotients up to the nearest integer. When the quotas
are rounded this way, too many seats are distributed. The exception to this rule is
the case of exact proportionality. To distribute fewer seats ZA must be increased
until exactly h seats are apportioned. Since all constituency quotients are rounded
upwards, the sum of these quotients will never exceed the number of seats:

(2.13)

From (2.13) we conclude that ZA will never be smaller than the national average
population per seat ZA ~ p, and with the possibility of ZA =P only in the case of
exact proportionality. This is the complete opposite of the relationship with HA.

MF rounds constituency quotients the normal way. When the quotas are rounded
this way, we can distribute too many seats, the right number of seats, or too few
seats. Hence, zw may be greater than, equal to, or smaller than the national
average population per seat. It depends on the election situation at hand.
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2.8 Categories of strict divisor methods

All divisor series which satisfy Defmition 2.2 have at least one divisor in each of
the closed intervals [1- 1,1], so a general expression ofthem is:

(2.14) dl = (1- 1) + F(I) where °s F(I) ~ 1 and real

We have let the parameter function F(I) be a real valued function dependent on
the number of the divisor l, but it is also possible to let it depend on more than
one parameter. F(I) only needs to be defined for integer values of l, although the
function itself may be continuous in l.

It is natural to divide the strict divisor methods in four categories dependent on
the behaviour of F(I). When F(I) is differentiable this can be done via the
derivative.

Category 1: F(I) is a constant (sequence in I): F(l+ 1) = F(I) for alll.
Category 2: F(I) is an increasing sequence in l: F(I+1) > F(I) for alll.
Category 3: F(I) is a decreasing sequence in l: F(l+1) < F(I) for alII.
Category 4: F(I) is an unregular sequence in l: F(l+ 1) >/=/< F(I).

F(I) = ~ falls into category 2, while F(I) = hit l belongs to category 3. Modified
Lague has F(1) = 0,7, but F(I) = 0,5 for l ~ 2, so it belongs to category 4. Strict
divisor methods belonging to category 1 are of special interest because they are
tractable. We take a closer look at these methods in the next section.
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2.9 The constant parametric divisor methods

[O] (page 201~) defines the "parametric divisor method", which is category 1
above with F(l) = t. We call methods in category 1 constant parametric
diuisor methods. The constant parametric divisor methods are a family of divi-
sor methods dependent on the real parameter t and with divisor series defined as:

(2.15) dl = (1- 1) + t where O ~ t s 1 is a constant

Notice that t = O, t = ~, and t = 1 correspond to SD, MF, and HA respectively.
We use the abbreviation CP t for the constant parametric divisor method with
parameter t. (2.15) is similar to the divisor method defmed in [H-A] (page 45),
where dl = l +Y and -1 ~ ~ ~ 1 and real. This corresponds to t = ~; 1 , so the
definitions are equal.

In general elections in Denmark the divisor series dl = 3·(1- 1) + 1 is used for the
apportionment of the parties' supplementary seats among the constituencies, [H-S]
(page 111.13).Multiplying this series by i results in the equivalent divisor series
dl = (l - 1) + j. We call this divisor method the Danish method and abbreviate
it to OM. Clearly, DM and CP.! are the same method.

3

HM and EP are not constant parametric divisor methods because their parameter
functions F(l) are increasing sequences in l. F(l) for HM is i.l- _11' while F(l) is
V (l - 1) . l - (l - 1) for EP. Both these parameter functions approach i asymp-
totically when l ~ 00.
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2.10 Approximative t values for non-Cf', methods

Based upon the Japanese 1985 census, [O] (page 206~) investigates which
constant parametric divisor methods, i.e. which t values, that result in the same
apportionment as with LF, HM, and EP respectively for Japan's House of
Representatives. We have carried out a nearly similar analysis based on 13
countries. Our intervals for Japan only partially coincide with Oyama's reported
intervals, and he does not explain in detail how his intervals have been
determined. [B] (page 143) also comments on Oyama's investigation.

Before we describe how our analysis has been carried out, let us explain why we
fmd the analysis interesting: Three very common apportionment methods belong
to the family of constant parametric divisor methods; with SD and HA as the two
extreme points and MF as the middle point on the t scale. The determination of
the approximative placing of non-CP t apportionment methods on the t scale
makes the t scale a kind of common ground and facilitates the comparison of
different apportionment methods.

The usual situation is that many different constant parametric divisor methods,
corresponding to different t values, result in the same apportionment. All t values
which give the same apportionment form a tinterual. The t intervals of special
interest to us are the ones which result in the same apportionment as one of the
non-CP t apportionment methods investigated. These intervals differ from one
election situation to the next. Our reported t intervals for each combination of
country and non-CP t apportionment method are based on the whole election
situation. To denote the apportionment with a specific apportionment method we
use a with the abbreviated name of the method as topscript, so aLF is the
apportionment with LF etc. Some places in the description below we let aA stand
for the apportionment with a non-Cl', apportionment method.
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The t interval for a particular non-Cl', apportionment method in a given election
.situation consists of the t values for which a constant parametric divisor method

gives the same apportionment:

(2.16) t interval = { t I aCPt = aA for t E [0, l]}

This is easier said than done. The first task is to determine the non-CP t appor-

tionment, such that we know which apportionment aCPt shall be equal to. Below
we present a systematic search process for determining the t interval, but let us

first introduce the procedure and terminology we use when comparing
apportionments:

We start by ordering the constituencies in descending order based on population

size. This ordering facilitates the comparison of apportionments. There are two
apportionments, denoted a and il, which shall be compared. Our comparison

procedure starts with the constituency at the top of the constituency list. As long
as the apportionments for the actual constituency are equal, i.e. a i = ai, we

continue down the list. The largest constituency for which the apportionments
differ, here denoted s, is used to classify the relationship between the two appor-
tionments. a is of lower order than il if as < as and of higher order if as > as.
If the end of the constituency list is reached without any apportionments being
unequal, a and il are identical. The described procedure can be used for
comparing any two apportionments for the same election situation.

Our search for t intervals starts by determining the apportionments for the

reference methods CP o, CP.!, and CP 1. We have the following rules which guide
2

our adjustment of t: When t is increased and this results in a transfer of a seat

from one constituency to another, the constituency which loses the seat will
always be smaller than the constituency which gains. If t is decreased and this
results in a transfer of a seat, the opposite holds. Section 4.3 presents the

theoretical background for these rules.
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For every chosen t value we compare the actual CPt apportionment with the non-

CPt apportionment. If the CPt apportionment is of lower order than the non-Cl',
apportionment, t must be increased, while t must be decreased if the CP t appor-
tionment is of higher order. If the CPt and non-Cl', apportionments are equal, we
have discovered a value in the t interval.

We try to find the aCPt = aA apportionment by adjusting t as described above. It is
possible that such a CPt apportionment does not exist, because LF is not a divisor
method and HM and EP are not constant parametric divisor methods. If we have

established that the aCPt = aA apportionment exists, the next step in the determin-

ation of the t interval is to find the two neighbouring CPt apportionments, i.e. the

CPt apportionment of lower order just "below" the aCPt = aA apportionment and
the CPt apportionment of higher order just "above" the aCPt = aA apportionment.
A necessary condition for two CP t apportionments to be neighbours is that they
differ for only two constituencies. However, this is not a sufficient condition as
Example 2.1 below illustrates.

We now present a procedure for determining the t value for the tie point between
two neighbouring CP t apportionments: The first step is to identify the two
constituencies for which the apportionment changes. We denote the largest of
them s and the smallest i. They get as ;;:::1 and ai;;:::1 seats respectively with the

CPt apportionment of lowest order, i.e. the one with the lowest t. At the tie point
between the two apportionments, s' quotient no. as + 1 and i's quotient no. ai are

equal:

(2.17)
__k_ _ .EL ps _ pi
d(as+l) - dai ¢:> (as + 1) - 1+ t - ai - 1+ t

We solve for t > Owhich yields:

(2.18) t = [pi· as] - [ps . (ai - 1)]
ps - Pi
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To check whether the two CP t apportionments which were the basis for the
calculation in (2.18) reallyare neighbours, we do the following: Let 8 be a very

small positive real number and determine the CP t apportionments for the
parameter values t - 8 and t + 8. If these apportionments are equal to the two
apportionments we started out with, the calculated t value is the dividing point
between two neighbouring t intervals, which means that the procedure for
determining a tie point t value is brought to its end. On the other hand, if aCP(t-e)

and/or aCP(t+e) are different from the two CPt apportionments we started out with,

the calculated t value does not represent a tie point. This means that we have
discovered one (or two) CPt apportionments which lie between these two appor-
tionments. With the help of the CPt apportionment(s) found for t - 8 and t + 8 and

the two original CP t apportionments, we create new pairs of possible neigh-

bouring CP t apportionments. For each pair we go through the procedure for
determining the t value for the possible tie point. These actions are repeated until
all tie points of interest have been determined. A t interval consists of all t values

between two neighbouring tie points, including the tie points. Below we present

the t intervals with three decimals accuracy. Moreover, we round alllower bound

t values upwards and all upper bound t values downwards. Example 2.1 illustrates
the procedure for determining tintervals:

Example 2.1
We utilize Japanese census data from 1985, see [O] (page 208-210). For a subset
consisting of 3 constituencies and 9 seats, the apportionments with CPO,32 and

CPO,34 are as follows:

Table 2.1

Constituency Population aCPO,32 aCPO,34

Kanagawa-5 1068400 4 5

Mie-2 574838 3 3

Hyogo-5 329052 2 1

Apportionments for three Japanese constituencies with CP0,32 and CP0,34'
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These apportionments only differ for two constituencies, so they might be
neighbouring apportionments. The t value for the possible tie point between
Kanagawa-5 and Hyogo-5 is found with the help of formula (2.18):

t - (329052 . 4) - (lO68400 . 1) - 0335
- 1068400 - 329052 -,

In this example we operate with E = 0,001. Both t - E = 0,334 and t + E = 0,336
result in the apportionment (5, 2, 2). This CPt apportionment lies between the
two we started out with. Moreover, (4, 3, 2) and (5, 3, 1) are possible neighbours
to (5, 2, 2) on either side, so both (4, 3, 2) together with (5, 2, 2) and (5, 2, 2)
together with (5, 3, 1) are pairs of possible neighbouring apportionments. There
is a possible tie point within each of these two apportionment pairs. We calculate
the t values for these points:

t - (574838 . 4) - (1068400 . 2) _ 0329 d t - (329052 . 2) - (574838 . 1) - 0339
- 1068400 - 574838 -, an - 574838 - 329052 -,

The apportionments for t - E = 0,328 and t + E = 0,330 are (4, 3, 2) and (5, 2, 2)
respectively. Furthermore, the apportionments for t - E = 0,338 and t + E = 0,340
are (5, 2, 2) and (5, 3, 1) respectively. Hence, both apportionment pairs consist of
neighbouring CP t apportionments. The t intervals for the three CP t apportion-
ments we have encountered in this example are:

Table 2.2

Constituency Population t E [0,302, 0,329] t E [0,330, 0,338] t E [0,339,0,342]

Kanagawa-5 1068400 4 5 5

Mie-2 574838 3 2 3

Hyogo-5 329052 2 2 l

CPt apportionments for three tintervals.

Both the lowest and the highest t value in Table 2.2, 0,302 and 0,342 respectively,
have been determined from the whole election situation for Japan. Between these
t values the presented subset of three constituencies determines the t intervals for
the whole Japanese election situation.
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Let us take a closer look at what happens when a CP t apportionment changes.

Recall that when t increases, the constituency which wins a seat will always be
larger than the one which loses the seat. In the first transition in Table 2.2, the

largest constituency wins a seat from the medium sized constituency, and in the

second transition the medium sized constituency wins a seat from the smallest

constituency. Thus, a seat is transferred from the smallest to the largest

constituency in two steps. Such transfers involving several steps is why a
difference in apportionment for only two constituencies is not a sufficient

condition for two CP t apportionments to be neighbours. The steps can also take
place in reverse order. For a transfer process involving three constituencies this
means that the medium sized constituency first takes a seat from the small
constituency and thereafter loses it to the large constituency. Transfer processes
may also involve more than three constituencies.

It should now be clear how t intervals are determined. Our results for the 13

countries investigated are presented in Table 2.3:

Table 2.3

Coun!!y Year Basedon Seats m HM EP LF
Japan 1985 Population 512 130 ø ø 0,397 0,455 0,456 0,481

Thailand 1970 Population 219 71 0,262 0,352 ø ø 0,498 0,606

Greece 1981 Population 300 56 0,377 0,380 0,421 0,486 0,528 0,577

USA 1990 Population 435 50 ø ø 0,385 0,498 0,510 0,537

Sweden 1990 Voters 349 28 0,366 0,701 0,366 0,701 0,366 0,701

Switzerland 1990 Population 200 26 0,294 0,399 0,294 0,399 0,488 0,529

Norway 1989 Voters 165 19 0,436 0,610 0,436 0,610 0,436 0,610

Denmark 1990 Voters 175 17 0,375 0,573 0,375 0,573 0,328 0,374

Germany 1990 Voters 656 16 0,143 0,514 0,143 0,514 0,515 0,553

Finland 1991 Voters 200 15 0,000 0,550 0,000 0,550 0,000 0,550

Canada 1981 Population 282 12 ø ø ø ø 0,530 0,622

Austria 1991 Population 183 9 0,078 0,673 0,078 0,673 0,078 0,673

Iceland 1987 Voters 63 8 0,092 0,474 0,092 0,474 0,475 0,686

Average 0,242 0,523 0,272 0,539 0,401 0,577

t intervals for which the non-Cf', methods HM, EP, and LF give the same apportionment as CP 1"
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Comments on the t intervals for HM, EP, and LF in Table 2.3: Equal intervals
for the same election situation mean equal apportionment, while non-overlapping
intervals mean different apportionments. If an interval includes 0, 0,5, or 1, the
apportionment is the same as with SD, MF, or HA respectively. Thus, the appor-
tionment with HM, EP, and LF for Finland is the same as with SD and MF. We
notice that Greece is the only country where the HM, EP, and LF apportionments
all are different and at the same time correspond to CP t apportionments.
Moreover, Denmark is the only country where the LF apportionment is of lower
order than the HM and EP apportionments. Finally, the HM and EP apportion-
ments are identical for 8 of the countries, while aRM = aEP = aLF for 4 countries.

So far we have talked about t intervals for non-CP t apportionment methods, see
equation (2.16). As should be clear from the explanations above, it is meaningful
to talk about the t interval for a particular CPt apportionment method in a given
election situation. For instance, the t interval for MF (CPo,s) in the Finnish
election situation from 1991 is [0,000,0,550].

A few thoughts about the number of CP t apportionments for a given election
situation, i.e. how many different apportionments there are when t varies from °
to 1: This number is presumably positively correlated with the number of constit-
uencies m and with the house size h. Another important factor is supposedly the
distribution of constituency sizes.

From Table 2.3 one gets the impression that the LF apportionment always has a
coinciding CPt apportionment. This is a fact:

Theorem 2.1
There is always a t value for which aLF = aCPt•

Proof. Let us first consider the case of exact proportionality. Both LF and CPt
are exact apportionment methods, so any CPt will give the same apportionment
as LF in this case. We move on and consider an arbitrary election situation where
exact proportionality is not present. Make the LF apportionment and identify the
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smallest fraction which qualifies for a seat r*. It follows from the description in
section 1.2 that r* E (0, 1). Consider the common divisor equal to the national
average population per seat, Le. z =p. With this common divisor the constituency
quotients I¥ are identical to the quotas ~. The constant parametric divisor
method with t = r* rounds these constituency quotients the same way LF rounds

the quotas. CP r* distributes exactly h seats and any tie in the LF apportionment
has a corresponding tie here. Thus, aCPr* is the counterpart to aLF in every

election situation where exact proportionality is not present. All kinds of election

situations have now been covered. It has been verified that there exists a
coinciding CP t apportionment in every election situation. This completes the

proof of Theorem 2.1.

The result in Theorem 2.1 makes it interesting to take a look at r* for the
election situations in Table 2.3:

Table 2.4

Threshold fraction r* with LF for the 13 countries inTable 2.3.

aHM for Japan, the US, and Canada and aEP for Thailand and Canada are
represented by ø in Table 2.3. This means that they have not got a aCPt
counterpart in these election situations, i.e. the non-existence of identical CPt app-
ortionments. We use EP and its first two divisors to explain why this happens:
The aEP (l aCP t = ø situation may involve other divisors, but the first two

divisors, which are separated by the longest distance, are used for illustrative
purposes. EP guarantees each constituency, however small, at least one seat. Of

the constant parametric divisor methods only CP o (SO) does the same. At the

same time, EP's next divisor d2 =Vi is well above 1. The distance between the
first two divisors is Vi ::::1,41 for EP compared to 1 for any CPt. Viewed alone,

EP's second divisor indicates a constant parametric divisor method somewhere in

the neighbourhood of CPO,41.Election situations with constituency quotients close

to both 0,00 and 1,41 are sometimes a too difficult task to handle for one constant
parametric divisor method, with the result that aCPt (l aEP =ø.
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Example 2.2 illustrates how we discovered that aCP' n aHM = ø for the Japanese

election situation from 1985:

Example 2.2
The three constituencies in Table 2.5 form the subset which can be said to be
responsible for the non-existence of a CP t apportionment equal to the HM
apportionment for the whole Japanese election situation:

Table 2.5

Constituency Population aCPO.33 aRM aCPO.3S

Tokyo-lO 1556469 6 7 7
Hokkaido-3 574984 3 2 3
Hyogo-5 329052 2 2 1

Election situation where aCPt fl aRM = 0.

It can be verified that aCP0,33 and aCPO,35 are neighbouring apportionments within

the class of constant parametric divisor methods and that t::::: 0,340 is the tie point
between them. The CPO,33apportionment is of lower order than the HM appor-
tionment, which itself is of lower order than the CPO,35apportionment. Since the
two CPt apportionments are neighbours, there does not exist a CPt apportionment
equal to the HM apportionment for the election situation in Table 2.5.

HM gives Hokkaido-3 only 2 seats, while CPt insists on giving it 3 seats. Not
before t > 0,929 does CP t reduce its apportionment to Hokkaido-3 to 2 seats,
resulting in the apportionment (8, 2, 1). On the other hand, only when t 5 0,340
does CP t distribute 2 seats to Hyogo-S. These two inequalities are clearly
incompatible. Discovering such a contradiction is the normal way of finding out
that there does not exist a CPt apportionment equal to the non-Cf', apportionment.

For the HM apportionment in Table 2.5 to have a CPt counterpart, Tokyo-lO

should have won its seat from Hokkaido-3 and not from Hyogo-S when twas
increased from 0,33. The divisors d2 = 1i and d3 = 2; are the reasons why

Hyogo-S holds on to its second seat and Hokkaido-3 is not able to win its third

seat with HM.
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In chapter 1 we presented what we called basic apportionment conditions. This
chapter introduces some additional conditions. First we examine conditions which
deal with the behaviour of the apportionment method when populations and!or

the house size change. These dynamic conditions are important because the
populations do change between elections and the house size may change. The
second type of conditions examined are related to the quota. These static
conditions set limits to the discrepancy between the actual apportionment and the

quota. Unfortunately, it turns out that some dynamic and static conditions are
incompatible.

3.1 House monotonicity

When the number of seats in the parliament changes while the populations of the
constituencies remain unchanged, the apportionment should change in the same
direction as h. The name of this condition is house monotonicity or
membership monotonicity, [H-A] (page 19):

Definition 3.1
A is house monotone if for all (p,h): a E A(p,h) implies that there exist
an apportionment å E A(p,h+ 1) where ai ~ ai for all i and
an apportionment å E A(p,h-1) where ai ~ ai for all i.

When the house size is increased by one, Definition 3.1 requires that it is possible
to give the extra seat to one of the constituencies and leave the representation of

the other constituencies unchanged. The last part of the definition takes care of
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the situation where the house size is decreased by one. The possibility of ties
means that it is unreasonable to require that å and il are the only apportionments
in these situations. [B&Y] (page 117) and [B] (page 140) include only the first
part of Definition 3.1 in their definitions of house monotonicity.

Theorem 3.1
Divisor methods are house monotone.

[H-A] (page 25) proves that a class of apportionment methods, which includes
divisor methods, is house monotone. Let us present an intuitive explanation of
Theorem 3.1: First we consider election situations without ties. Divisor methods
distribute one seat at a time. It is meaningful to say that constituency i won the lth
seat in the parliament. If the lth seat is given out or taken back, it only has
implications for i's apportionment. Thus, divisor methods are house monotone.
This explanation holds for tie situations too, but then we must keep track of how
the ties are broken for different house sizes.

LF is not house monotone; a fact brought to light in the 1882 apportionment of
the House ofRepresentatives in the US. Then the state of Alabama would have got
8 seats with a house size of 299, but only 7 seats if the house size was increased to
300. This paradox has been known as the Rlabama paradoH. Example 3.1 in
the next section illustrates the paradox.

3.2 Consistency

An apportionment which is acceptable to all constituencies should also be accept-
able if restricted to any subset of constituencies considered alone. Thus, the way
in which a group of constituencies share a given number of seats should be inde-
pendent of the populations of the constituencies outside this group. This condition
is called uniformity, [B&Y] (page 141), or consistency, [H-A] (page 17-18)
and [B] (page 140). Consistency is an important condition because a constituency
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will always compare its representation with other constituencies, especially those
which fared better than itself.

The following notation is needed below: kl is the subvector and h: the number of
seats for the constituencies in the subset I cM.

Definition 3.2
A is consistent ifa E A(p,h) implies that al E A(pl,hl);
and if il] is another apportionment for the subproblem,

then å defined to be equal to ål on I and a elsewhere
is also an apportionment: å E A (p ,h).

The part of the definition involving å is necessary to handle tie points. It says that
if a subproblem admits a tie, then there is a corresponding tie in the entire
problem. In the definition of consistency in [H-A] (page 17-18) the set I consists
of only two constituencies. By utilizing membership monotonicity and consist-
ency, [H-A] (page 20-23) generalizes consistency to situations with more than two
constituencies.

Theorem 3.2
Divisor methods are consistent.

Divisor methods are consistent because the seats are distributed one at a time such

that the min-max inequality: max d(P:1) ~ min1is always satisfied, see [B&Y]
seM as leM ai

(page 142). It makes no difference if i and s are members of a more restricted

subset, because the ordering of their quotients is the same.

LF is neither consistent nor house monotone, as Example 3.1 illustrates:

Example 3.1
We utilize data from the general election in Sweden in 1991. The Riksdag has 349
seats, of which 39 are supplementary seats. The 310 fixed seats are apportioned
among the 28 constituencies based on the number of eligible voters in the

constituencies. LF is used for this apportionment, [H-S] (page 111.18). In the

35



Chapter 3: Conditions

following we focus on the subset consisting of Stockholm county, Gothenburg
municipality, and Ålvsborg county South, which data are presented in Table 3.1.
Together these three constituencies had 17,61% of the country's eligible voters
and a combined quota of 54,60. We have calculated the quota for each
constituency for a house size of both 54 and 55 seats. Table 3.1 shows the quotas
and LF apportionments for these election situations. We notice that Ålvsborg
county South gets 7 seats when 54 seats are apportioned, but only 6 seats when 55
seats are apportioned. Hence, house monotonicity is violated.

Table 3.1

h =54 h = 55
Constituency Eligible voters _Quota Seats Quota Seats
Stockholm county 672265 32,153 32 32,749 33
Gothenburg municipality 321822 15,392 15 15,677 16
Ålvsborg county South 134949 6,454 7 6,574 6

Total 1129036 53,999 54 55,000 55

Ålvsborg county South loses a seat when the total number of seats is increased from 54 to 55.

Gothenburg municipality and Ålvsborg county South are geographical neighbours
which presumably are interested in comparing their apportionments. Their quotas
and LF apportionment for the election situation with 54 seats in Table 3.1 are
repeated under the heading with Stockholm in Table 3.2. They get 15 and 7 seats
respectively in this election situation. We are not interested in Stockholm county
anymore and exclude its influence by calculating the quotas for Gothenburg
municipality and Ålvsborg county South based on the 22 seats they win. The
quotas calculated and the resulting LF apportionment are shown under the
heading without Stockholm in Table 3.2. The interesting point is that Ålvsborg
county South now only gets 6 seats, while Gothenburg municipality increases its
representation to 16 seats. This is a violation of the consistency condition since
LF gives a different apportionment to these two constituencies here than it did
when they were a part of the three constituency subset.
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Table 3.2

with Stockholm without Stockholm

Constituency Eligible voters Quota Seats _Q!lota Seats
Gothenburg municipality 321822 15,392 15 15,5003 16
Ålvsborg county South 134949 6,454 7 6,4997 6

Total 456771 21,846 22 22,0000 22

Quotas and LF apportionment for two election situations, of which the rightmost is a subset of the
other.

The actual election outcome was that Stockholm county got 32, Gothenburg
municipality 16, and Ålvsborg county South 7 seats. From this information and

the data in Table 3.1 we can conclude that there is another violation of the
consistency condition, because the three constituencies divide the 55 seats
differently in these two situations. Compared with the election situation where all
28 constituencies are taken into account, Stockholm county wins one seat from

Ålvsborg county South when restricting the attention to the election situation with

h = 55 in Table 3.1.

3.3 Population monotonicity

Shifts in populations should be reflected in the apportionment. If the population
of a constituency grows while the populations of all other constituencies remain
the same, the constituency which population grows should get at least as many
seats as before. Weak: population monotonicity reflects this idea:

Definition 3.3
A is weak:ly population monotone ifa E A(p,h) and it E A(p,h)

with Pi > Pi and Ps = ps for all s *- i imply ai ~ ai·

Definition 3.3 is used in [H-A] (page 27) and [B] (page 140). In the former it is
called external uote monotonicity. [B&Y] (page 147) use the name weak

population monotonicity for the condition we have called internal vote monoton-
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icity. There is a difference between internal and external vote monotonicity as
explained by [H-A] (page 27~). The only thing Definition 3.3 says about the
apportionments for the constituencies whose populations remain the same is that

L ås ~ L as, so the new apportionment for a particular constituency in this group
r;may be smaller than, equal to, or greater than as. All apportionment methods

described earlier are weakly population monotone.

Other defmitions regarding how an apportionment method should behave when
populations shift are conceivable; [B&Y] (page 117) use a definition which looks
at the relative change in populations between two constituencies and call it
population monotonicity. With this definition, [B&Y] (page 108-117) prove that a
method is population monotone if and only if it is a divisor method. They are also
able to prove that population monotonicity implies consistency and house

monotonicity .

[B] (page 140) defines population monotonicity a little bit differently:

Definition 3.4
A is population monotone if a E A(p,h) and it E A(p,h)

with Pi > Pi and ps > Ps imply not {ai> ai and as > as}.

Definition 3.4 with words: No constituency which gains in population should give
up seats to a constituency which loses population.

3.4 Quota related conditions

It is reasonable that the actual apportionment is close to the quotas. The

conditions presented in this section are different ways of measuring this. Westart
with the conditions staying abnue lower quota and staying below upper
quota:
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Definition 3.5
A stays aboue lower quota if Lqi J ~ ai for all i whenever a E (p,h).

Definition 3.6
A stays below upper quota if Fqi l ~ ai for all i whenever a E (p,h).

In [H-A] (page 15) these conditions are called lower bound condition and

upper bound condition respectively. Theorem 3.3 and Theorem 3.4 below are
given as a proposition in [B&Y] (page 130):

Theorem 3.3
HA is the unique divisor method which stays above lower quota.

Theorem 3.4
SD is the unique divisor method which stays below upper quota.

To prove that HA and SD stay above lower quota and below upper quota
respectively, we go back to the alternative divisor formulation in section 2.7. In
that section we found out that the common divisor for HA never is greater than
the national average population per seat ZJ ~ p, while the opposite ZA ~ P is true
for SD. By combining these relationships with the expression for the constituency

quotient ~, we get the relationship ¥i ~ ~ for HA and -¥; s ~ for SD. The right
hand side of these inequalities is nothing but the quota q i = ~. Since the
constituency quotients for HA are rounded downwards to the nearest integer to

determine the apportionment while the constituency quotients for SD are rounded

upwards, we have ai = L¥f J ~ Lqi J for HA and ai = r -¥; l s r qi l for SD. This
proves that HA stays above lower quota and SD stays below upper quota.

To prove the uniqueness part of Theorem 3.3 we construct an election situation

where only HA stays above lower quota. This is done as follows: From Definition
2.2 in section 2.7 we know that a divisor dr lies in the interval [l - 1, l]. All

divisors in the divisor series for HA are at the upper bound of such an interval
because d[ = l. Thus, a divisor method which is different from HA must have at
least one divisor which is lower than the corresponding divisor for HA. We
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assume that only divisor number l is different, i.e. dl = l - e where 1 > s > O is a
real number. Suppose that this divisor method stays above lower quota. Then
consider the following election situation: As usual we assume that m ~ 2.
Constituency i competes for s seats, where 1 ~ s ¢ l, while the remaining

constituencies compete for l seats each. We assume that these m-I constituencies
are identical with a quota of l'("'m-_l~- 1 each, i.e. a quota Gust) below the integer

l. The quota of constituency i is therefore:

l-tm - 1) - 1
qi = h - (m - 1)' m-I = h - l-im - 1) + I

qi is integer so staying above lower quota is satisfied when ai ~ h - I-tm - 1) + 1.

This happens when i's quotient number s = h - l-im - 1) + 1 is higher than
quotient number l for one of the other parties:

Hm - l) - l.9!. _ h -I'(m - 1) + 1 > m -l
ds - d[h -l·(m - l) + l] dl

Hm -1)-1
h - I'(m - 1) + 1 > m - l

¢:> h -I-tm - 1) + 1 1-&

(1- e)'(m - 1) > l-im - 1) - 1 ¢:> e'(m - 1) < 1 ¢:>

(3.1) 1
e < m-I

When m ~ 00, the right hand side of (3.1) approaches zero. Since e must be
lower than the right hand side, only e = O suffices, which further means that only

dl = l guarantees that the staying above lower quota condition is not violated.
Thus, (3.1) contradicts the assumption that the divisor method here is different
from HA. It is clear that when more than one divisor differs from HA's divisor

series, election situations where staying above lower quota is violated can be

constructed similarly. Hence, there exists no other divisor method than HA which

stays above lower quota for all possible election situations.

The proof of that SD is the only divisor method which stays below upper quota
follows a similar path as the proof for HA. Again we assume that only divisor
number l is different from the original divisor series, i.e. dl = l - 1 + e. The quo-

f h f h l Identi l . .. (l - 1)'(m - 1) + 1 . G ) bta o eac o t e m-I ennca constituencies IS m-I ,I.e. ust a ove
the integer l - 1. Constituency i's quota is therefore qi = h - [(l - l)'(m - 1) + 1],
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i.e. an integer. The apportionment to i must be ai $; h - (l - I)-(m - 1) - 1 to stay
below upper quota, and this happens when:

(1- I)-(m - l) + 1
h - (1- 1)·(m - 1) - 1 < m - I 1< (l - l}-{m - 1) + 1

d[h - (1- I)o(m - I)] dl <=> (m - 1)·(1- 1 + e) <=>

(3.2) 1
E < m-I

(3.2) is exactly the same condition as (3.1). When the number of constituencies m
increases, we see that only dl = l - l guarantees that the staying below upper quota

condition is not violated. Thus, SD is the unique divisor method which stays

below upper quota for all possible election situations.

Combination of Definition 3.5 and Definition 3.6 yields the stronger condition
staying within the quota:

Definition 3.7
A stays within the quota if Lqi J s aj s f qi l for all i whenever a E A(p,h).

An equivalent formulation of staying within the quota is to require that the actual
apportionment for every constituency is within one seat of the quota:

(3.3) I qi - ai I < I for all i whenever a E A(p,h).

It is clear from the description of LF and Lowndes' method that they both stay

within the quota. There is another story for the divisor methods:

Theorem 3.5
There is no divisor method which stays within the quota.

[H-A] (page 47-48) and [B&Y] (page 129-130) prove this theorem. In addition,

they present the following results: All divisor methods stay within the quota when

there are only two constituencies and MF even does so when the number of
constituencies is limited to three. With four constituencies MF does not stay
within the quota, as Example 3.2 below illustrates.
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Let us present an intuitive explanation of Theorem 3.5: HA is the unique divisor
method which stays above lower quota while SD is the unique divisor method
which stays below upper quota. Since these two methods are different, there
cannot exist a divisor method which stays within the quota.

Example 3.2
Table 3.3 shows all relevant data for the election situation:

Table 3.3

Constituency A B C D Total

Population 241 74 53 32 400
Quota 12,05 3,70 2,65 1,60 20
LF apportionment 12 4 3 l 20
MF's divisor no. 12 4 3 2

and its associated quotient lO.!! lQ± 10l 10~23 7 5 3

MF apportionment 11 4 3 2 20
MF violates staying above lower quota and thereby staying within the quota.

Let us step into the MF apportionment process after 17 seats have been
distributed. Then A, B, C, and D have got 11, 3, 2, and 1 seat respectively. This
means that they compete for their next seat with their 12th, 4th, 3rd, and 2nd
quotient respectively, which values are shown in the second row from the bottom
in Table 3.3. The quotients for the three latter constituencies are greater than the
quotient for A, which mean that the three remaining seats are given to D, C, and

B, in that order. A's quota is greater than 12, but A does not get more than 11
seats, so the staying above lower quota condition is violated. It is also possible to
construct examples where MF violates the staying below upper quota condition.

Staying within the quota looks at the absolute deviation between apportionment
and quota. In relative terms this gives less leeway for the representation of a

constituency with a large population than for one with a small population. Let us

illustrate this by data from Example 3.2: A's apportionment is allowed to be at
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most lOiog5 ~ 0,4% smaller than or lOi9g5 ~ 7,9% greater than its quota. On the
other h~d, D's apportionment can be ~,~= 37,5% smaller than its quota without,
violating the condition. Proportionality is about relative sizes. [B&Y] (page 80)
therefore conclude that staying within the quota is not a reasonable condition for
proportional apportionment methods.

There exist methods which are house monotone and stay within the quota, but
they are not consistent, see [B] (page 141) and [B&Y] (page l34~). The reason
why we have to choose between staying within the quota and consistency is the
following impossibility theorem:

Theorem 3.6
No consistent apportionment method stays within the quota for all election
situations.

[H-A] (page 47-48) proves the theorem. Theorem 3.6 is the main lesson from this
chapter. Two important apportionment conditions are in conflict with each other.

The condition below is a digression in connection with the exactness condition
from section 1.1. Zero restrictedness requires that whenever the quota of a
constituency is integer, this is the apportionment for the constituency:

Definition 3.8
A is zero restricted if qi E N implies ai = qi whenever a E A(p,h).

We have borrowed the name zero restrictedness from a similar condition for the
controlled rounding problem, see chapter 15. A more appropriate name in the
apportionment context might be partial exactness. From the description in section
1.2 we draw the conclusion that both LF and Lowndes' method are zero
restricted. None of the divisor methods is zero restricted. To illustrate this we
manipulate Example 3.2 a little: Let A's quota be 12,00 and distribute the
remaining 0,05 to B, C, or D. Clearly, A still would not get more than 11 seats.
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Another condition which utilizes the quota is staying near quota, see [B&Y]
(page 132), or relatiue well roundedness as [H-A] (page 41) calls it. A
method satisfies this condition if it is impossible to take a seat from one
constituency and give it to another and simultaneously bring both constituencies
nearer to their quotas on a percentage basis:

Definition 3.9
A stays near quota iffor all a E A(p,h)

there are no pair of constituencies i '* s
h th t 1 _ aj - 1 < aj _ l d as + 1 _ l < l _ assue a qj qi an qs qs •

Definition 3.9 is staying near quota in relative terms. The formulation in absolute
terms is equivalent. In that case the requirements are: Not {qi - (ai - 1) < ai - qi
and as + I - qs < qs - as}. By dividing these expressions by qi and qs respectively,
we arrive at the requirements in relative terms.

Theorem 3.7
LF and MF stay near quota. MF is the only divisor method which does so.

We start by establishing that LF stays near quota: Rearrangement of the
requirements in absolute terms gives ~ < ai - qi and ~ < qs - as. For both these
requirements to be satisfied, i's fraction ri = qi - (ai - 1), which is smaller than ~,
must be rounded up at the same time as s' fraction rs = q, - as, which is greater
than ~, is rounded down. This is impossible with LF, which therefore stays near
quota. However, with Lowndes' method these roundings are possible. Consider
the election situation with q = (10~, 1~). The apportionment with Lowndes'
method is a = (10, 2), which clearly violates staying near quota. Thus, staying
within the quota does not imply staying near quota or vice versa.

[H-A] (page 42) and [B&Y] (page 132-133) prove the part of Theorem 3.7
regarding MF. That MF stays near quota is proved by assuming that an
apportionment a does not stay near quota. Manipulation of the requirements
yields that a then has to satisfy: ~ < 1 and ~ > 1 for some i '* s. This

ai-"2 aS+"2
violates the min-max inequality for MF. Thus, a cannot be an apportionment for
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MF, which implies that MF stays near quota. That MF is the only divisor method
which stays near quota is proved by showing that all other divisor methods
violate staying near quota for some election situation.
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The first section of this chapter looks at how apportionment methods treat
merger and division (of constituencies). These properties are of special interest
when seats are distributed among political parties, because the political landscape

is in continuous change. In section 4.2 we test assumptions regarding the distri-
bution of remainders of constituency quotients and fractional parts of quotas.

Closely related to merger and division is the treatment of small versus large

constituencies. The theoretical part of this issue is dealt with in the last section,
while the empirical side is the topic in the next chapter.

4.1 Treatment of merger and division

In this section we present four definitions concerning the behaviour of apportion-
ment methods when constituencies merge or divide. We let p be the population
vector before the merger (after the division) and p the population vector after the
merger (prior to the division). p and p are equal with the exception of the

elements Pi and Ps in p, which are replaced with the element Pi = Pi + Ps in p.
Thus, the former vector includes one more constituency than the latter, but the
total populations p M and PM are the same. [H-A] (page 66) presents

Defmition 4.1:

Definition 4.1
A encourages merger if a E A{p,h) implies the existence of

ilE A{p,h) with å(i+s) ~ ai + as for all i,* s and all (p,h).
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An apportionment method A encourages merger if there always exists an
apportionment where the merged constituency does not lose compared with the
election situation before the merger.

Definition 4.2
A encourages diuision ifå E A(p,h) implies the existence of
a E A(p,h) with å(i+s) ~ ai + as for all i -:I; s and all (p,h).

An apportionment method A encourages division if there always exists an
apportionment where the two new constituencies do not lose compared with the
election situation before the division.

The word "existence" is included in Definition 4.1 and Definition 4.2 to take care
of election situations involving ties. These definitions tell us that no matter how
ties are broken prior to the merger/division, it is possible to break them in such a
way after the merger/division that the actual constituency/constituencies do not
lose. To handle a merger or division which involves more than two constit-
uencies, we use the actual definition iteratively.

Theorem 4.1
HA is the unique divisor method which encourages merger.

Theorem 4.2
SD is the unique divisor method which encourages division.

These theorems are stated by [B&Y] (page 150-151). [B&Y] (page 150) prove
Theorem 4.1 by using the condition from Definition 4.1 iteratively. Below we
present a proof of Theorem 4.2 along the same lines as their proof of
Theorem 4.1:

Proof We start by demonstrating that SD does encourage division: To obtain a
SD apportionment after a division, we begin by using the same value for the
common divisor ZA as before the division. The sum of the two newly formed
constituency quotients ~ + ¥!- is equal to the constituency quotient piz:ps before
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the division. In the following we assume that ties are broken the same way after
the division as they were before the division. This assumption does not violate the
premise in Definition 4.2. SD rounds constituency quotients up to the nearest
integer to determine the current assignment. Since r-¥;: l + r i!: l ~ r Piz: ps l, i

and s are never awarded fewer seats than before the division, and they are
sometimes awarded one seat more. An extra seat to i or s means that there has
been awarded one seat too much for the whole election situation. Then ZA must be
increased until some constituency loses a seat, i.e. until some constituency
quotient falls below a divisor dl = I - 1. i or s may be the constituency which loses
this seat. In any case i and s have not lost compared with the election situation
before the division.

Next we prove that SD is the unique divisor method which encourages division:
Let A be a strict divisor method and suppose that it encourages division. Then
consider the following election situation (p,h) with two constituencies: The
population vector is p = [~, ~],where ~ is a positive real number. There are a
total of h = 2·b·(m - 1) + 1 seats for distribution, where b ~ 1 and m ~ 2 are
integers. Since a strict divisor method is balanced, there exists an apportionment
it = [b·(m - 1), b·(m - 1) + 1] for the election situation (P,h). We form m-I new
constituencies by dividing the second constituency in m-I identical parts with the
population vector p = [~, nET, ... , nET] as the result. A encourages division so

m

there exists an apportionment for which ~ ai ~ b·(m - 1) + 1 and al :5: b·(m - 1).
By exactness, a = [b·(m - 1), b, ..., b] is the unique apportionment for the smaller
house size li = 2·b·(m - 1). Since A is house monotone, al ~ b·(m - 1) for the
house size h = 2·b·(m - 1) + 1. A is balanced so one of the constituencies with
population m~I gets (b + 1) seats while the remaining get b seats each. Therefore,
a = [b·(m - 1), b, ..., b, (b + 1)] is an apportionment for the election situation
(p,h). From the apportionment to the first and last constituency we get the
inequality:

(4.1)
.s,

, < _!!!:L
d[b'(m-I) + I] - d(b+l)

which by making use of the interval condition from equation (2.9) implies:
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(4.2) d < d[b'(m-I)+ l) < b'(m - 1)+ 1 = b + _1_
(b+l)- m-I - m-I m-I

When the number of constituencies m ~ 00, d(b+1) ~ b, which proves that only
SD encourages division. Theorem 3.3, Theorem 3.4, Theorem 4.~ and
Theorem 4.2 mean that HA and SD can be seen as the extreme opposites within

the class of strict divisor methods.

[B&Y] (page 152) define coalition-neutrality the following way: A divisor

method is coalition-neutral if a coalition of two constituencies is just as likely to

gain a seat as to lose one. Let us extend coalition-neutrality to all apportionment

methods and define it in terms of probabilities. Below Pr[K] denotes the

probability of an event K.

Definition 4.3
A is coalition-neutral if for an arbitrary election situation (p,h)
Pr[fl(i+s)= ai + as + 1] = Pr[fl(i+s)= ai + as - 1] for all i -::;:.s.

Let ri denote the remainder of a constituency quotient: ri = ~ - da; where ai is the
final apportionment to constituency i. For all constant parametric divisor methods
ri E [0, 1), and it seems reasonable to assume that the remainders are

independently and uniformly distributed between ° and 1. Given a similar
assumption, [B&Y] (page 152-153) show that MF is approximately coalition-
neutral. Moreover, they state the proposition that MF is the unique coalition-

neutral divisor method.

Let E[k] denote the expected value of a variable k. The fractional parts of the
quotas ri E [0, 1), so a natural assumption is that these fractions are independently

and uniformly distributed between ° and 1. This assumption implies that the
expected value of an arbitrary fraction is E[r;] = 0,5. Furthermore, the expected

value of the smallest fraction which qualifies for a seat with LF, r*, is also equal

to 0,5, E[r*] = 0,5. By utilizing the same arguments as [B&Y] (page 153) use for
MF, it can be shown that LF is approximately coalition-neutral.
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Definition 4.3 says something about situations where the difference between fl(i+s)
and ai + as is one seat. With strict divisor methods the difference between these
two apportionment figures is at most one seat if ties are broken the same way in
both election situations. Stability, [B&Y] (page 151), is a condition which

restricts the difference between fl(i+s)and ai + as to at most one seat:

Definition 4.4
A is stable ifa E A(p,h) implies the existence of å E A(p,h)

where ai + as + 1 ~ a(i+s) ~ ai + as - 1 for all i,* sand (p,h).

In words: An apportionment method is stable if a coalition of two constituencies
does not win or lose more than one seat compared with their combined total prior

to the merger. All apportionment methods considered so far are stable.

4.2 The distribution of remainders and fractions

To reach the results following Definition 4.3 it was assumed that the remainders
of the constituency quotients ri and the fractional parts of the quotas ri were
uniformly distributed between O and 1. In this section we test these assumptions
empirically by utilizing the election situations for the 13 countries in Table 2.3.
We apply the chi-square test with a 5% level of significance. The two tests below
may be viewed as tests of ''the obvious". Our reason for including them is that we
have not seen the assumptions being tested before.

The two tests are quite similar, only the way we prepare the data sets differ. Let
us explain the test for the fractions first: Our null hypothesis is that ri is
uniformly distributed over the interval [O, 1). The alternative hypothesis is that

the distribution is not uniform. We divide the interval [O, 1) in n subintervals of

even length such that the expected number of fractions in each subinterval is at

least 5. Then we can use approximation to the chi-square distribution with n - 1

degrees of freedom, [Li] (page 220-222). For Austria and Iceland, which each has
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less than 11 constituencies, we construct a composite set. The fractions from all
countries could have been collected in one data set, but we have chosen not to do
so since Japan with its large number of constituencies would have been too
influental. Since the fractions for an election situation sum to an integer, the last
fraction is determined by the m-I other fractions. We make sure that the
fractions we utilize in the test are independent by randomly eliminating one
fraction from each election situation. Our test statistic is:

(4.3)

where Xa is the observed number of fractions in subinterval a. Q is chi-square
distributed with n - 1 degrees of freedom if the null hypothesis is correct.

We move on to the test for the remainders. Our null hypothesis for every
constant parametric divisor method is that ri is uniformly distributed over the
interval [O, 1). We test this hypothesis for SD, MF, and HA using the same test as
for the fractions, but with a minor modification regarding the preparation of data
sets: From equation (2.11) we know that the common divisor z can be chosen
within an interval. For each election situation we choose the highest possible
common divisor which distributes the right number of seats, Le. z = qh. The
remainder for the constituency which wins the last seat in parliament is always O
with this procedure. This violates the assumption of independence so we eliminate
this remainder from each data set.

We have calculated the test statistic Q for each combination of data set and
apportionment method. Based on the degrees of freedom for the actual data set,
the P-value for the observed Q is determined. These P-values are presented in the
right part of Table 4.1 Furthermore, the table contains two columns with
headings EX and DOF respectively. We have calculated the figures in these
columns as follows: The expected number of fractions/remainders in each
subinterval is EX = m~ 1 (m ~ 2 for the set consisting of Austria and Iceland),
while the number of degrees of freedom is DOF = n - 1.
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Table 4.1

CountrY Year Basedon Seats m n EX nOF LF sn MF HA
Japan 1985 Population 512 130 20 6,450 19 0,98 0,14 0,51 0,43

Thailand 1970 Population 219 71 10 7,000 9 0,11 0,08 0,09 0,82

Greece 1981 Population 300 56 8 6,875 7 0,62 0,76 0,97 0,14

USA 1990 Population 435 50 8 6,125 7 0,50 0,40 0,77 0,03

Sweden 1990 Voters 349 28 4 6,750 3 0,12 0,43 0,12 0,87

Switzerland 1990 PO_Q_ulation 200 26 4 6,250 3 0,23 0,03 0,39 0,27

Norway 1989 Voters 165 19 3 6,000 2 0,51 0,61 0,85 0,51

Denmark 1990 Voters 175 17 2 8,000 1 0,32 1,00 0,62 1,00

Germany 1990 Voters 656 16 2 7,500 1 0,44 0,80 0,80 0,44

ICE + AUT 1987/91 Vot./Pop. 63/183 8+9 2 7,500 1 0,80 0,20 0,80 0,80

Finland 1991 Voters 200 15 2 7,000 1 1,00 0,59 1,00 0,29

Canada 1981 Population 282 12 2 5,500 1 0,37 0,76 0,76 0,37

EX =Expected number in each subinterval OOF =Degrees of freedom

P-values for the test of uniform distribution offractions (LF) and remainders (SD, MF, and HA)
between Oand 1.

The null hypothesis for the fractions is not rejected for any of the 12 data sets.
However, the null hypothesis for the remainders is rejected for the US with HA
and for Switzerland with SD, Le. for 2 out of 36 cases. A rejection percentage
for the remainders test of just above 5% is about what to expect with a level of
significance equal to 5%. The tests above are based on a relatively small sample,
but our conclusion is clear: Both fractions and remainders are uniformly
distributed between Oand 1.
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4.3 Treatment of small versus large constituencies

In the following we focus on pairs of constituencies for which Pi < Ps. It is
reasonable to say that an apportionment method fauours small constituencies
compared to another apportionment method if the two methods give the same
number of seats to this subset of two constituencies and the first method gives the
smallest constituency in the subset at least as many seats as the other method does,
[H] (page 83):

Definition 4.5
A fauours small constituencies compared to A*
. * * * *If a E A(p,h), a E A (p,h), Pi < Ps, and ai + as = ai+ as
imply ai ~ a; for all (p,h).

Observe that the definition says nothing about situations where the two
apportionment methods give different seat totals to the subset consisting of i and
s, Le. situations where ai + as :1= a; + a;. Moreover, because we usually assume
that ties are broken arbitrarily, A will not generally favour small constituencies
compared to itself. Definition 4.5 is symmetric so if A favours small
constituencies compared to A *, then A * favours large constituencies compared to
A. We can rank some of the divisor methods in the matter of favouritism:

Theorem 4.3
The divisor method A favours small constituencies compared to
the divisor method A * if ~~> :f for all integers l > s ~ I
and where dl > O and di > O.

For proof of Theorem 4.3 see [H-A] (page 84) or [B&Y] (page 118). From the
divisor ratio ~~we can see how fast the divisors grow. The faster they grow the
more favourable is the divisor method for small constituencies.
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dl di. * dl di. *Ifwe define O > di If dl > O and o > o If dl > dl> O, Theorem 4.3 also holds
for divisor methods with dl = O and di = O. The last part of this additional
defmition contradicts what one might expect, but is necessary to rank for example
HM and EP. It is clear that HM favours small constituencies compared to EP for
divisor ratios where s ~ 2. However, if we had defmed the relationship between
divisor ratios involving dl = O another way, the two methods could not have been
ranked by the premise in Theorem 4.3. With the additional definitions regarding
instances with d I = O we have the following transitive ranking of the five
traditional divisor methods: SD > HM > EP > MF > HA, where the method to the
left of the > sign is more favourable to small constituencies than the method to
the right.

We cannot rank all apportionment methods, not even within the class of strict
divisor methods. The reason is that for some election situations a method may be
favourable for small constituencies relative to the other method, while for some
other election situations the opposite might be true. DM has not been included in
the ranking above because it cannot be ranked versus HM and EP: The first
divisor of HM and EP, dl = O, is more favourable to small constituencies than
DM's first divisor, di = j, because ~l > f for every l ~ 2. However, for other
divisor ratios the favouritism goes the othk- way. By restricting our attention to
divisor ratios where s and I are consecutive integers, we fmd that the ratio for
DM is larger than EP's ratio when s = 2 and I = 3, while it is equal to HM's ratio
when (s, l) = (3,4) and larger when (s, l) = (4, 5).

Within the family of constant parametric divisor methods it is easy to rank the
methods. Manipulation of a divisor ratio for such a method yields:

(4.4) dl _ l - l + t _ l - s + (s - l + t) _ 1 + l - s
ds-s-l+t- s-l+t - s-l+t

The special case with s = 1 and t = O, i.e. zero in the denominator, is covered by
the definition following Theorem 4.3. To study the impact of the parameter t on
the divisor ratio we find the derivative with respect to t:
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(4.5)
dla:=t s-l_' - _;;____

at -, (s - 1+ t)2

The numerator in (4.5) is negative, while the denominator is positive with one
exception; for the combination s = 1 and t = Oit is zero. Thus, every divisor ratio
t is a strictly decreasing function of t E [O, 1]. This means that the constant
parametric divisor methods can be ranked by simply looking at t:

Theorem 4.4
CPt favours small parties compared to CP; if and only if t < 1*.

This result is also given in [H-A] (page 85). It means that the transitive ranking of
the CP t divisor methods we have encountered is: SD > DM > MF > HA. It is
interesting to notice that SD which encourages division also favours small
constituencies compared to all other constant parametric divisor methods, while
HA which encourages merger also favours large constituencies compared to all
other constant parametric divisor methods.

After these rankings of divisor methods it is interesting to look at the relationship
between LF and divisor methods in the matter of favouritism:

Theorem 4.5
SD is the unique constant parametric divisor method which favours small
constituencies compared to LF.

Theorem 4.6
HA is the unique constant parametric divisor method which favours large
constituencies compared to LF.

Below we prove Theorem 4.5. We start by proving that SD favours small
constituencies compared to LF and follows up by proving that SD is the only
constant parametric divisor method which does so. The proof of Theorem 4.6 is
similar and is not shown.
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Proof. We study an arbitrary election situation where m ~ 2. Our focus is on the
two constituencies i and s, where the population of the latter is larger, Le. Ps> Pi
which further implies qs > q, To prove that SD favours small constituencies
compared to LF, we compare their apportionments to i and s:

Westart with the LF apportionment for the whole election situation, Le. for all m

constituencies. Our two constituencies i and s are at least apportioned L qi J and
Lqs J seats respectively. The fractional parts of their quotas, ri and rs. will qualify
for a total of zero, one, or two seats dependent on the threshold r* for this
particular election situation.

We now switch our attention to SD. In the following we utilize terminology and
results from section 2.7. As the initial value for ZA, the common divisor for SD,
we use the national average population per seat p. This means that constituency
quotients and quotas are identical at the outset, Le. ¥;. = qi and ~ = qs- All
constituency quotients are rounded upwards to the nearest integer to get the SD
apportionment, Le. i and s are assigned r qi l and r qsl seats initially. The result is
that too many seats are distributed when ZA = p; the only exception is the case of
exact proportionality where the right number of seats is distributed. By
increasing ZA from p, all constituency quotients are decreased. To determine the
SD apportionment for the whole election situation, ZA is increased until exactly h
seats are distributed. Below we explain what happens to the remainders of the
constituency quotients during this adjustment process:

The remainder for constituency i with SD is ri = ¥;. - dai = ~ - ai + l, where ai is
the current assignment to i. At some stage of the adjustment process some
constituency quotient becomes equal to one of the divisors dl = l - l, which means
that the remainder of this constituency quotient is equal to zero. When ZA is
increased just a little bit more, the constituency quotient becomes smaller than the
divisor dl, and the constituency loses a seat. We say that the remainder vanishes
since the constituency quotient gets a kind of new remainder. How many
remainders which have to vanish before an appropriate ZA value is reached
depend on the actual election situation. Our primary concern is what happens to
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the remainders for constituencies i and s. We investigate this matter below.

When ZA is increased, all constituency quotients decrease by the same relative
amount. This means that the remainder for the largest of our constituencies rs
decreases more in absolute terms than the remainder for our smallest

constituency ri. At the starting point, with ZA =p, the remainders are equal to the

fractional parts of the quotas, i.e. ri = ri and rs = rs. There are two possibilities
regarding the initial relationship between the remainders (fractions) for our two

constituencies, namely ri ~ rs and ri < rs. Below we investigate in which succession

the remainders for i and s vanish given that the appropriate adjustment of ZA

makes them vanish. rs decreases faster than ri so when ri is not smaller than rs at

the start, i.e. ri ~ rs, rs vanishes first. Moreover, rs may vanish twice before ri
vanishes for the first time, but this depends on the relative size difference
between the quotas (initial constituency quotients) qi and qs. Even with a smaller

ri than rs initially, i.e. ri < rs, rs may vanish twice before ri vanishes for the first
time. When ri < rs it is possible that ri vanishes first, Since rs decreases more in
absolute terms than ri does, it is impossible for ri to vanish twice before rs
vanishes for the first time. Let us combine the information above with the LF
apportionment to the fractions ri and rs. Table 4.2 summarizes the possible
outcomes for different combinations:

Table 4.2
Total number of seats n ~rs n <r»to ri and n with LF

2 seats -Nochange -Nochange
-Fewer seat(s) to i Us -Fewer seat(s) to iU s

I seat -Nochange -No change
-A different number of seats to i U s -i gets one more seat and sone less

-A different number of seats to i U s

Oseats -Nochange -Nochange
-i gets one more seat and sone less -i gets one more seat and sone less
-A different number of seats to i U s -A different number of seats to i U s

Change in the apportionment to the subset consisting of constituencies i and s when we go from
LFtoSD.
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The possible outcomes can be classified in three groups:

1) The same apportionment to i and s with LF and SD.
2) A different number of seats to i us with SD than with LF.
3) SD gives i one seat more and s one seat less than LF does.

Since we only are interested in election situations where LF and SD give the same
number of seats to the subset consisting of constituencies i and s, consult
Definition 4.5, group 2) is not of interest here. Below follows a brief description
of how the two other groups occur:

If a remainder vanishes once if the corresponding fraction is not awarded a seat
or does not vanish if the corresponding fraction is awarded a seat, the actual
constituency wins the same number of seats with SD as with LF. When this
happens to both i and s, we get group 1). Group 3) occurs when the remainder rs
vanishes twice, ri does not vanish, and SD gives the same number of seats to i us
as LF does.

All election situations where SD and LF give the same number of seats to the
subset consisting of i and s have now been covered. For no situation will SD give
less seats to i than LF does, and it may give i more seats. This proves that SD
favours small constituencies compared to LF.

Above we demonstrated what happens when the common divisor Z is increased
from its initial value of p. When HA is the divisor method, ZJ has to be decreased
from its intial value of p. The only exception to this rule is the case of exact
proportionality, where no change in ZJ is needed. In fact, in the case of exact
proportionality Z =p will do for all exact divisor methods, i.e. all methods which
satisfy Defmition 2.2. Moreover, their apportionment will be equal to the LF
apportionment. The effect of lowering Z is the opposite of the effect of
heightening z. That HA favours large constituencies compared to LF is proved
this way.
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Notice that for both SD and HA the direction of the needed change in z from its
initial value of z = p is independent of the election situation, as explained in
section 2.7. For all other constant parametric divisor methods the direction of the
needed change in z depends on the actual election situation. To prove the
uniqueness of SD we construct an election situation where all other constant
parametric divisor methods fail to favour small constituencies compared to LF:

We face an election situation with m ~ 2 where the quota sizes of the constituen-
cies are as follows: Constituency i has a quota of qi = 1 - 1 + !, the larger
constituency s has a quota of qs = L-l + !where L > I,while the quota of each
of the other constituencies is 1 - I + !.Thus, any constituency may win the only
seat distributed to the fractions with LF. Let us assume that constituency i is
awarded this seat. Then consider a constant parametric divisor method with t > O
which we suppose favours small constituencies compared to LF. When t > !, i.e.
dl > 1 - 1 + !,only h - 1 seats are distributed with z = p. Thus, z has to be
decreased, with the result that constituency s wins its L-th seat. Even the
possibility of s winning its L-th seat is a violation of the premise in
Defmition 4.5. Hence, for a constant parametric divisor method to favour small
constituencies compared to LF its parameter must satisfy the following condition:

(4.6) t < .Lm

When m --+ 00 the term on the right hand side approaches O,which means that
only t = O(SD) guarantees that constituency s is not awarded its L-th seat. This
contradicts the earlier assumption that a constant parametric divisor method with
t > Ofavours small constituencies compared to LF, thereby proving that SD is the
unique constant parametric divisor method which favours small constituencies
compared to LF. The uniqueness of HA among the constant parametric divisor
methods regarding favouring of large constituencies compared to LF is proved
by utilizing an election situation where the fractional parts of all quotas are m~ 1.
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The reason why the two theorems above only concern the relationship between
the family of constant parametric divisor methods and LF is that there exist

"house size dependent" divisor methods which favour small (large) constituencies
compared to LF. Below we present two examples of such methods:

Consider the divisor series: dl = l - 1 + k -_11. This series defines a divisor method
which can be described as an "even step stairway parametric divisor method". It
can be proved that this method favours small constituencies compared to LF.
However, multiplication of the divisor series by the factor hit 1 reveals that the

method is SD in disguise!

To find a "house size dependent" divisor method which really is different from
SD and favours small constituencies compared to LF, we look at a divisor series

which is equal to the series for SD with the exception of one divisor da. This
divisor is bounded the following way: a-l < da < a, where the upper bound

follows from Definition 2.2 and the fact that d(a+1) = a. We let h ;;:::a > ~ such

that only the largest constituency may be affected by da directly. However, that it

is more difficult for the largest constituency to win its ath seat is to the smaller
constituencies' advantage. Example 4.1 shows possible consequences of the use of
such a divisor method:

Example 4.1
We face an election situation where three constituencies, labelled A, B, and C,
compete for 9 seats. These constituencies have quotas of qA = 4,9, qs = 3,0, and
qc = 1,1 respectively. Consider the divisor method defined by the same divisor
series as SD, but with the exception that ds = 4,95 instead of 4. The apportion-
ment with this method plus the apportionment with LF and SD are given in

Table 4.3 below:
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Table 4.3

Constituency Quota LF SD ds = 4,95

A 4,9 5 5 4

B 3,0 3 3 3

C 1,1 1 1 2

Apportionments with LF, SO, and the divisor method defmed by the divisor series:
dl = 0, ... , d4 = 3, ds = 4,95, ~ = 5, ..., ~ = 8.

The LF apportionment is easily found from the quotas. The SD apportionment is

identical with the LF apportionment here because ¥s- > ~ > ~. There is a

different story with the other divisor method, because then ~ > ~ > *. This
demonstrates that there exist divisor methods which are more favourable to small
constituencies than SD for some election situations. As mentioned in connection
with Theorem 4.3, the premise for a divisor method to favour small constituen-

cies compared to another divisor method is only satisfied for a subset of the

divisor methods.

It is debatable whether a "house size dependent" divisor method can be character-
ized as a complete divisor method because its divisor series changes with the
house size. Consider the following divisor series for a house size of 10: dl = l - 1

for l E {l, ..., 5, 7, ..., lO} and d6 = 5,95. Have this divisor series enough in
common with the divisor series in Example 4.1 to be characterized as the "same"
method? With respect to Definition 4.5 the answer has to be no, which clears the
ground for the following propositions:

Proposition 4.1
SD is the unique divisor method which favours small constituencies compared to

LF.

Proposition 4.2
HA is the unique divisor method which favours large constituencies compared to

LF.
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The topic of this chapter is bias of vector apportionment methods. To measure

the bias we need to group the constituencies. We call methods used for this task

division methods. In the first section we introduce the bias problem and present
some basic terminology regarding division methods. During the chapter we
present four division methods, namely number division in section 5.2, quota

division in section 5.3, size division in section 5.5, and cluster division in section
5.6. To get an impression of the difficulties these methods have to deal with we

take a look at the distribution of constituency populations in section 5.4. Section
5.7 illustrates the application of the four division methods on a real election
situation. In the last section we carry out an empirical test of bias.

5.1 Introduction and basic grouping terminology

An apportionment method which regularly favours any group of constituencies is
biased. For an apportionment method to be unbiased, it must give all groups of

constituencies their exact quota in the long run. By the apportionment to a group
we mean the sum of the seats given to the individual constituencies in this group.

The debate regarding how to measure bias of vector apportionment methods has

based itself on the US experience, see [B&Y] (page 118---+)and [E]. In their
empirical testing [B&Y] utilize US data from 19 censuses. To give a broader
foundation for conclusions about bias, we utilize data from 13 different countries,
though only one data set from each, in our empirical test in section 5.8.
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How do we pick out constituencies which "belong" to a specific group such that it
is reasonable to say that this group comprises the same kind of constituencies for
different election situations? Our answer to this question is methods which group
constituencies in a consistent manner. Since the process of grouping constituencies

can be seen as a process where the set of all constituencies M is divided in a
predetermined number of groups, we call methods used for the grouping process
diuision methods.

Our starting point for all division methods is the constituencies sorted in descend-

ing order based on population. The constituencies shall be divided in c disjoint
groups. We use the index g for the groups and denote the set of all groups C.

Hence, gee = {l, ..., c}. The number of constituencies in group g is denoted
ngo We gather all such numbers in the grouping vector n = (nj, ..., ng, ... , ne).
Obviously, ~ ng = m. Each group must have at least one member, which means
that ng ~ 1 ~d c ~ h. In the bias test in section 5.8 we divide the constituencies in

2, 3, and 4 groups, Le. c E {2, 3, 4}. We let G stand for the set of constituencies
which belong to group g. The ordering of the constituencies means that g = 1 is

the group of the largest constituencies while g = c is the group of the smallest
constituencies. Another consequence of the ordering is that the smallest
constituency in one group is never smaller than the largest constituency in the
next. To find out which group a constituency belongs to, one needs to know its
placing on the sorted constituency list. Constituency nos. 1 - n I belong to the first
group, nos. (ni + 1) - (nj + n2) to the second group, ..., and nos. (m - Dc + 1) - m

to the cth (last) group.

[B&Y] (page 126) eliminate states (constituencies) with a quota of less than 0,5
from their test. We have not eliminated such constituencies. One reason for this
choice is that we ignore law determined minimum requirements in our test.
However, small constituencies may lead to violation of guideline 2) below. How

such violations happen is explained later. What requirements should a division
method used for bias analysis satisfy? We suggest the following rather weak

guidelines:
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1) Because population size is the basis for the grouping, the members of a
group should be as equal as possible sizewise.

2) The total quota of each group should be of some magnitude in order to

avoid situations where a group is not assigned any seat.

5.2 Number division

[B&Y] (page 126) divide the constituencies evenly in three disjoint groups:

Large, medium, and small, where the middle group takes up the extras if the
number of constituencies m is not divisible by three. The constituencies may also
be divided in another number of disjoint groups. Our division in the same spirit
as [B&Y] is carried out in a slightly different way since we distribute the extras
one at a time, starting with the group of the smallest constituencies. We call this
way of creating groups number diuision, because its objective is to make the

number of constituencies in each group as equal as possible. Mathematically it can

be described as:

Algorithm 5.1
Step 1: Determine the maximal whole number of constituencies which can be

assigned to each group m and the remainder of this division r:

(5.1) m=m dive
r =m mode

Step 2: For g = 1, ..., e let the group consist of the following number of

constituencies:

(5.2) ng = m if g $; e - r
ng = m + 1 if g > e - r
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Thus, the number of constituencies in a group deviates by at most one from the
number in any other group. A consequence is that the group of the largest
constituencies usually contains much more seats than the group of the smallest
constituencies. Number division does not generally satisfy any of the division
guidelines. The advantage ofnumber division is its simplicity.

5.3 Quota division

The objective of quota diuision is to divide the constituencies such that the

quota sizes of the groups are as equal as possible. Let q = ~ denote the average

quota per group and q(g) =! qi the total quota of the constituencies assigned to
~

group g.

A possible objective function for quota division is found by squanng the
deviations between group quotas and the average group quota and minimizing the

sum of these squared deviations, i.e. mjn L [q(g) - <if. By eliminating constant
terms it can be shown that this objective Mi'c1ion is equivalent to:

(5.3)

However, we have chosen another objective function. We minimize the maximal
deviation between the quota of a group and the average group quota:

(5.4) min max I q(g) - q I
n gee

We use (5.4) lexicographically. This means that after the group with the

minimum maximal deviation has been located, (5.4) is used again, if necessary, to

locate the next group etc. Because the groups are interdependent, the use of (5.4)
once is often enough to determine the whole grouping vector. Quota division is

trivial when c is equal to 1, 2, m-I, or m . We determined the quota divisions

utilized in the empirical test in section 5.8 by trying and failing. This was
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manageable since the highest number of groups was as small as 4. We have later

developed a Pascal program for quota division, which can be found as a part of
the MatrixBias program in Appendix 2.

Quota division can be formulated as a simple version of the political districting
problem, see [G&N]. In addition to constraints (6) - (8) in [G&N] (page B-497),
we include the condition:

(5.5) min qi ~ max qs
ieG se(G+l)

where g E {l, ..., c - l}

Thus, the smallest constituency in one group should never be smaller than the
largest constituency in the next. This is a kind of contiguity condition in the
terminology of the political districting problem. [G&N] solve the problem of

determining political districts which minimize the maximal deviation in two
phases. In the first phase they generate feasible districts, before they in the second

phase optimize. Below we explain how we generate feasible groups:

For use in Algorithm 5.2 below we introduce the following notation and

terminology: With the constituencies sorted in descending order we let (x,y),
where x, y E M and 1 ~ x ~ y ~ m, denote the group consisting of all

constituencies from x to and including y. q(x,y) denotes the total quota of this
group. The absolute value of the deviation from the average group quota

I q(x,y) - q I = Iq(g) - q I plays an important role in quota division. The
determination of a tight upper bound for such deviations speeds up the solution
process. Let 1iJ denote such an upper bound. We defme a group (X,Y) as

connected to a preceding group (x,y) if the largest constituency in (x,Y) is
the immediate neighbour of the smallest constituency in (x,y), i.e. if X = Y + 1.
Two connected groups are clearly disjoint. Together they contain all constituen-
cies from x to and including Y. We defme a string of c connected groups which
together contain all m constituencies as a connected tree of groups.
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Algorithm 5.2 below consists ofthree steps. In the first step we determine a weak
upper bound ID and generate candidates for the first group (g = 1). Candidates
for the other groups are generated in step 2. In the last step we eliminate
candidates which are not part of a connected tree of groups.

Algorithm 5.2
Step 1: Starting from the top of the sorted constituency list we determine the
highest number of constituencies z for which the group quota is lower than the
average group quota, Le. z is maximized subject to q(l,z) - Cl < O. From the
determination of z it follows that q(l,z+l) - Cl ~ O.By expressing the group quota
q(l,z+l) as q(l,z)+ q(z+l)we get:

(5.6)

Because the constituency sizes are non-increasing, it is impossible for a group
further down the list to be part of an optimal solution if its size deviates from the
average group quota by more than q(z+l} We therefore set the (initial) upper
bound equal to the size of constituency z + 1, Le. ID = q(z+l} Next we generate
candidates for g = 1 (the first group). All groups (l,y) for which constituency y
is chosen such that Iq(l,y) - Cl I ~ ID are candidates for g = 1.

Step 2: For every candidate (x,y) for group g - 1 we generate candidates for
group g as follows: A candidate (x.v) for gmust be connected to the candidate
for g - 1, so the first constituency is X = Y + 1. All groups (X,Y) for which
constituency y s m is chosen such that Iq(X,Y) - Cl I ~ ID are candidates for g. The
upper bound ID may be strengthened by considering deviations regarding
candidates for g = 2 etc, but we have not elaborated this possibility. We repeat
step 2 until candidates for group g = c (the last group) have been generated.

Step 3: The candidates for the different groups have been generated by starting
from the top of the sorted constituency list. We must check whether they are
feasible starting from the bottom of the list. A candidate for the last group must
include the smallest constituency, i.e. y = m, to be feasible. Every candidate
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which does not "reach the bottom" of the constituency list is eliminated. Further-
more, a candidate for group g - 1 must be connected to a feasible candidate for
group g to be feasible itself. We eliminate all infeasible candidates. To
summarize: All candidates which are not part of a connected tree of groups are
infeasible and are therefore eliminated.

Algorithm 5.2 is exemplified in section 5.7. The candidates may be represented
by a matrix. Each row of this matrix represents a constituency, while each
column represents a candidate. The entries, which we denote his, are either O or
1. his is equal to 1 if candidate s includes constituency i and equal to O if not.
Divisions with minimum maximal deviation can be found with the algorithm
presented in [G&N] (page B-S02). Moreover, this algorithm can be used to
.determine all remaining minimum maximal deviations.

We end this section with some comments regarding optimal quota divisions:
Because group members become smaller and smaller as we move down the sorted
constituency list, it is usually easier to bring a group of small constituencies close
to the average group quota than a group of large constituencies. This explains
why the maximal deviation often occurs for g = 1. Given that all constituency
sizes are different, the number of constituencies in a group will never decrease
with increasing group number, i.e. ng ~ n(g+l) where g E {I, ..., c - I}. This
follows from the initialordering of the constituencies and the objective of quota
division. The strong point of quota division is that all groups contain about the
same number of seats, which means that division guideline 2) is satisfied. On the
negative side; quota division does not necessarily satisfy division guideline 1).
Moreover, it requires more work than number division.
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5.4 The population distribution

Our empirical bias test in section 5.8 utilizes data from 13 countries. Different
countries mean different distributions of constituency populations. Figure 5.1 and
Figure 5.2 below show two of the most extreme distributions in our sample. The

measures used for the axes in these figures need an explanation:
We determine the normalized (population) size of a constituency by dividing its

population by the population of the most populous constituency, i.e. the
constituency at the top of the sorted constituency list:

(5.7) N 1· d si f consti Psorma ize SIze o constituency s = max p,. M lIE

Thus, the largest constituency has a normalized size of 1, and the normalized size
of any constituency is within the interval (0, 1]. The normalized sizes could have

been illustrated in a one-dimensional diagram. We fmd it more informative to

illustrate them as a kind of cumulative distribution function. The cumulative

values, i.e. the y-coordinates in the figures, are found by first sorting the
constituencies in ascending order and then calculating the values for constituency
s = 1 to m as:

(5.8) Cumulative value for constituency s = !

The formula is m +~ - S if the constituencies are sorted in descending order.

Each of the rectangular boxes in Figure 5.1 and Figure 5.2 encloses a cluster of
constituencies. The encircled number inside such a box is the cluster (group)

number. We treat cluster division in section 5.6.
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Figure 5.1
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With (0,0) included as the first point, we have tried to estimate simple functional
expressions for the different countries' "cumulative distribution functions". These
attempts were not successful because they resulted in very large residuals for
points near both ends, i.e. for (0,0), (1,1), and their neighbouring points.

Figure 5.1 and Figure 5.2 visualize the great difference between different
population distributions. We categorize the US distribution as bowed and the
Swedish distribution as S-shaped. To get an impression of the other population
distributions without drawing figures we have calculated some descriptive
statistics regarding the normalized sizes. These statistics are presented in
Table 5.1 below. The column with the heading "% above mean" shows the
percentage of constituencies with a normalized size above the mean.

Table 5.1
Country m Mean %abovemean Minimum 1st Quartile Median 3rd Quartile
Austria 9 0,575 44,44% 0,187 0,316 0,417 0,898
Denmark 17 0,506 35,29% 0,076 0,360 0,433 0,558
Norway 19 0,473 47,37% 0,156 0,304 0,424 0,527
Finland 15 0,456 46,67% 0,033 0,317 0,440 0,581
Japan 130 0,429 41,54% 0,071 0,285 0,391 0,538
Sweden 28 0,341 25,00% 0,065 0,281 0,305 0,339
Iceland 8 0,318 25,00% 0,101 0,127 0,175 0,345
Germany 16 0,288 31,25% 0,040 0,139 0,182 0,356
Canada 12 0,235 33,33% 0,003 0,053 0,105 0,274
Thailand 71 0,226 36,62% 0,028 0,114 0,160 0,284
Switzerland 26 0,224 30,77% 0,012 0,057 0,173 0,267
USA 50 0,167 30,00% 0,015 0,044 0,114 0,198
Greece 56 0,159 33,93% 0,029 0,087 0,124 0,196

Descriptive statistics regarding normalized sizes of the constituencies within 13 countries.

We categorize the Norwegian population distribution as linear, although it has a
little bow at the end. The Norwegian distribution is illustrated in Figure 5.3 in
section 5.7. With the US, Sweden, and Norway as references, we classify the
countries in Table 5.1 as follows: Iceland, Canada, Germany, Switzerland, USA,
Greece, and Thailand have population distributions which are bowed. The
remaining countries, Norway, Austria, Finland, Denmark, Japan, and Sweden,
have distributions ranging from linear to S-shaped. We observe that the medians
for these countries are much higher than the ones for countries with bowed
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distributions.

5.5 Size division

Why not utilize the normalized sizes to group the constituencies? A natural way is
to let each group cover ~ of the interval between Oand 1. We call this method
size diuision. The number of constituencies in each group is determined as
follows:

Algorithm 5.3
Calculate the normalized size of every constituency by (5.7). For group g = 1 to c
let ng be the number of constituencies with a normalized size in the interval:

(5.9) (£.:.K C-(g-l)]
c' c

Since the normalized sizes of all constituencies have to be calculated, size division
requires more work than number division, but much less than quota division.
Notice that size division is heavily influenced by the population of the most
populous constituency via equation (5.7). The most important drawback of size
division is that it may result in empty groups; only g = 1 is a guaranteed non-
empty group. [B&Y] (page 128) present an example of "absolute size divison",
i.e. the different groups are given in terms of quota sizes.

Number, quota, and size division have the common weak side that they do not pay
enough attention to the population distribution. A consequence is that they may
separate constituencies of almost equal size, thereby violating guideline 1). We
continue our search for a division method which satisfies this guideline in the
next section.
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5.6 Cluster division

Cluster diuision makes the groups as homogeneous as possible internally. The
different groups are thereby made as heterogeneous as possible. To determine the
optimal division we minimize the following objective function, [Sp] (page 17):

(5.10) min D(C) =L e(g)
gee

where e(g) is the sum of squared deviations within cluster (group) g:

(5.11) e(g) =L [Pi - p(g)f
and p(g) is the average pop~ation of cluster g:

(5.12) p(g) = ~g ·Lpi
ieG

Because quotas and populations are proportional, defining e(g) as ~ [qi - q(g)f
will result in the same optimal division. Since the number of group; c is as small
as 4 or lower in the test in section 5.8, the optimal cluster divisions were
determined by complete enumeration. The investigation of the (m - ~ different

c-I)
group combinations was carried out with a Pascal program. This program has
later been refmed and is now a part of the MatrixBias program in Appendix 2.
During enumeration it terminates calculations for inferior combinations.

For examples of optimal cluster divisions see Figure 5.1 and Figure 5.2 in section
5.4. Sometimes clusters (groups) with few members are produced. If this happens
to the last group, division guideline 2) is usually violated. Such violations lead to
very volatile seat-quota ratios, see section 5.8 for the defmition of seat-quota
ratio. We show what may happen with an example from Finland: When the 15
Finnish constituencies are divided in 4 clusters (groups), Åland becomes the only
constituency in the last group. Åland is apportioned Oseats with HA, which gives
a bias of -100% in comparisons with the three other groups. Even if this example
is rather extreme, it illustrates why violations of division guideline 2) should not
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be tolerated.

At the end of section 5.1 we presented 2 guidelines we wanted a division to
satisfy. We have no guarantee that any of the presented division methods will
produce divisions which satisfy both. However, cluster division satisfies guideline
1) and quota division satisfies guideline 2). We therefore rate these division
methods above size and number division. Since cluster and quota division
together satisfy both guidelines, it is natural to combine their strong points. A
possibility is to use cluster division and its objective function as the basis and take
precaution against its shortcomings by introducing a lower bound for group
quota. The formulation of a combined cluster/quota division might look like this:

(5.13) min D(C) =L e(g)
gee

subject to the constraint

(5.14) 'Vg

One could also consider introducing elements from size and number division as
additional constraints. We have not tested any kind of combined division method.
Let us evaluate size and number division when they stand alone: Size division
takes relative size into consideration, but it leads to too many instances of empty
groups. To make size division workable some subjective judgement regarding the
placing of dividing lines must be applied. Number division is a mechanical rule
which does not pay any attention to the characteristics of the population
distribution. It satisfies division guideline 1) better for linear distributions than
for S-shaped and especially bowed distributions. The best thing which can be said
about number division is that it requires little work.
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5.7 Illustration of the division methods

In this section we show how the four division methods would have divided the
Norwegian constituencies (counties) in 1989. We have chosen to divide the 19
constituencies in three groups, i.e. c = 3. The basis for the divisions is the number
of eligible voters in the constituencies. These and some other relevant data are
presented in Table 5.2:

Table 5.2
Eligible voters Nonnalized size

5 75 1 , 1, 00
307608 15,91 0,867
303618 15,70 0,856
2 77 12, O O, 70
191015 9,88 0,538
183192 9,47 0,516
1 2754 9,45 0,515
178764 9,25 0,504
170429 8,81 0,480
150 23 7,77 0,424
146215 7,56 0,412
141643 7,33 0,399
1 944 , 6 ,352

Troms 111295 5,76 0,314
Vest-A der 104443 5,40 0,294
Nord-Trøndelag 95505 4, 4 0,2
Sogn og Fjordane 79484 4,11 0,224
Aust-Agder 71123 3,68 0,200
Finnmark 55477 2,87 0,156
SUM 3190311 165,00

Eligible voters, quotas with a house size of 165, and normalized sizes for the 19 Norwegian
constituencies in 1989.

We start with number division. The figures m = 19 div 3 = 6 and r = 19 mod 3 = 1
mean that the last group contains 6 + 1 = 7 constituencies, while the two other
groups have 6 each. Hence, the number division is n = (6, 6, 7). By summing the
quotas of constituencies which belong to the same group, we find that the quota
sizes of the groups are 81,61, 50,17, and 33,22 respectively.
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The size division is found by inspection of Table 5.2. By counting the number of
constituencies with a normalized size higher than ~, we fmd that 4 constituencies
belong to the first group. There are 6 constituencies with a normalized size of }
or lower. They belong to the last group. The remaining 9 constituencies belong to
the middle (second) group. Thus, the size division is n = (4, 9, 6). These groups
have quota sizes of 62,26, 75,98, and 26,76 respectively.

The average quota per group q is a central figure when quota division is applied.
Here q = l~S = 55. We use Algorithm 5.2 to generate candidates for the different

groups. From the size division above we know that the total quota of the four

largest constituencies is q(1,4)= 62,26. This total is higher than the average group

quota Cl, so the total quota of the three largest constituencies must be calculated. It
is q(1,3)= 49,96, i.e. lower than q. Thus, z = 3, which means that the upper bound
is set equal to the quota of the fourth largest constituency, i.e. m = qa = 12,30. We

move on to the generation of candidates for g = 1. Because 1q(l,S) - Cl 1 =
172,14 - 551 > m, only (x,y) = (1,3) and (1,4) are candidates for the first group.

The absolute deviations from the average group quota for these two candidates

are 1q(1,3) - q 1 = 5,04 and 1q(1,4) - q 1 = 7,26 respectively.

The next task is generation of candidates for g = 2. Let us start by generating
candidates connected to (x,y) = (1,3). We calculate q(4,y) for different choices of
y and find that 1q(4,y) - q I s m for (x,y) = (4,8), (4,9), and (4,10). The quota
sizes ofthese candidates are q(4,8)= 50,35, q(4,9)= 59,16, and q(4,lO)= 66,93, with
absolute deviations of 4,65, 4,16, and 11,93 respectively. Similarly, candidates

connected to (x,y) = (1,4) are generated. Their quota sizes are q(S,9) = 46,86,

q(S,lO)= 54,63, and q(S,ll) = 62,19 with absolute deviations of 8,14, 0,37, and 7,19

respectively.
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Now it is time to generate candidates for the third group. These candidates must

be connected to a candidate for the second group and include the smallest

constituency. We calculate the total quota for possible candidates: q(9,19)= 64,69,

q(10,19)= 55,88, and q(11,19)= 48,11, with absolute deviations of 9,69, 0,88, and
6,89 respectively. Since q(12,19) = 40,55 < 55 - 'OJ, (X,Y) = (12,19) is not a

candidate for g = 3. Moreover, this means that the connected candidate for the
second group (x,y) = (5,11) must be eliminated. The candidates which are left

after the elimination process are summarized in Table 5.3:

Table 5.3

s (x,y) Absolute deviation from q Candidate for A B C D E

1 (1,3) 5,04 g=1 * * *
2 (1,4) 7,26 g=1 # #

3 (4,8) 4,65 g=2 *
4 (4,9) 4,16 g=2 *
5 (4,10) 11,93 g=2 *
6 (5,9) 8,14 g=2 #

7 (5,10) 0,37 g=2 #

8 (9,19) 9,69 g=3 *
9 (10,19) 0,88 g=3 * #

10 (11,19) 6,89 g=3 * #

Candidates for groups, their absolute deviation, and the combination of them into connected trees
of groups (A - E).

Below we use the words "group combination" instead of the term "connected tree
of groups". Table 5.3 reveals that there are 5 group combinations with a maximal
absolute deviation of m = 12,30 or less. The maximal absolute deviations are 9,69

for group combination A, 5,04 for B, 11,93 for e, 8,14 for D, and 7,26 for E.
Thus, B is the optimal group combination, which means that the quota division is
n = (3, 6, 10). The quota sizes of these groups are 49,96, 59,16, and 55,88

respectively.

. '
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A reason why the number of "interesting" group combinations is as small as 5
here is the small number of groups c. We observe that the number of candidates
for the second group is equal to the total number of candidates for the end groups
(g = 1 and g = 3). Candidates for the end groups are restricted on one side, while
candidates for the middle group (g = 2) are freer. We expect the number of
group combinations with a maximal absolute deviation not larger than 'ID to
increase sharply for problems with a higher number of groups.

Before we present the cluster division, let us take a look at a graphical illustration
of the population distribution:

Figure 5.3

1,00

0,90

0,80

0,70

~ 0,60
;>

~.~ 0,50

S 0,40

0,30

0,20

0,10

0,00

°

•• I• \
Rogaland

Oslo••••
Finnmark\ .....

•

•••....4.....---Telemark:

0,1 0,2 0,3 0,4 0,5 0,6
Nonnalized size

0,7 0,8 0,9

Distribution of Norwegian constituency populations in 1989.

We calculated D(C) for all (19 - 1J = 153 group combinations to determine the
3 - 1

optimal cluster division. The optimal cluster division is n = (3, 9, 7), which
means that group 1 starts with Oslo, group 2 with Rogaland and group 3 with
Telemark, see Figure 5.3. The quota sizes of these groups are 49,96, 81,82, and
33,22 respectively. We illustrate the calculations which have been carried out for
every group combination by presenting calculations for the optimal combination:
For each group we calculate the average quota and the sum of squared deviations,
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which for group 1 are:

(5.15) q(l) = 18,35 + 15391+ 15,70 ~ 16,65

e(l) = (18,35-16,65)2 + {15,91-16,65)2 + (15,70-16,65)2 ~ 4,34

Similar calculations for groups 2 and 3 give q(2) ~ 9,09, e(2) ~ 18,49, q(3) ~ 4,75,

and e(3) ~ 9,49. The value of the objective function then becomes:

(5.16) D(C) = e(l) + e(2) + e(3) ~ 4,34 + 18,49 + 9,49 = 32,32

For quota division we were able to restrict the number of group combinations
which had to be evaluated. It should be possible to reduce the workload for
cluster division too. A possibility is to use visual inspection of the "cumulative
distribution function" to fmd a "good" group combination. The value of the
objective function for this group combination can then be used as an initial upper
bound.

5.8 Bias test

Bias is the systematic deviation between the apportionment to subsets of constit-
uencies and the quota (fair share) of these constituencies. Thus, bias is related to
the apportionment method employed. The deviation between apportionment and
quota varies from one election situation to the next, so we need observations from
several situations to draw general conclusions. It is unsuitable to let each
constituency be its own group, so we divide the constituencies in a small number
of groups. As will be seen from the figures later in the section, division methods
have an impact on the reported biases through their selection of constituencies. A
natural bias measure for a group g is the seat-quota ratio:

Lai
kg= ~

~cu
ieG

(5.17)
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kg is a kind of bias index, with kg = 1 as the unbiased point. When kg > 1, the

constituencies in group g have got more seats than they deserve, while kg < 1

means that the group has been apportioned fewer seats than its fair share. The
percentage bias of the apportionment to the constituencies in g is (kg - 1) . 100%.
This percentage measures the bias for this particular group. Sometimes it is more
interesting to compare two groups directly. This is what we do in our bias test. In

this test we employ a modified version of the empirical measure from [B&Y]

(page 126). Let D and E be two disjoint groups of constituencies D fl E = 0,
where neither is empty and the constituencies in group D are larger than the ones

in E. We define the bias between these two groups as:

(S.18)

We calculate the bias towards the D group instead of the bias against the D group
as [B&Y] do. This implies a sign shift compared with their formula. Another

difference is that [B&Y] use Pi in place of qi in (S.17). qi is equal to Pi multiplied

by the constant :M' so the absolute value of our bias percentage 6DE is equal to
the absolute value of theirs. The advantage of using qi is an interpretable kg,
because its value is in the neighbourhood of 1. When 6DE is positive, group D is
favoured compared with group E. A negative 6DE means that the favouritism
goes the other way. Let Q be the country (observation) index, n the number of

countries (observations), and 6DEa the observed bias between group D and E for
country Q. The mean of the bias observations, denoted EDE, is our estimate of the

bias percentage:

(S.19)
n

- 1 "6DE = n .£..J 6DEa
a=1

The number of pairwise bias comparisons depends on the number of groups

through the formula (;} We carry out tests with the constituencies divided in 2,
3, and 4 groups, which result in 1, 3, and 6 comparisons (group pairs)
respectively. Bias percentages are estimated for every group pair. We assume that

all bias observations 6DEa for a particular group pair are normally distributed
with the same mean and variance. With the additional assumption of independence
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we can apply the t-test to draw conclusions about bias directions of different
apportionment methods. Since the population .distributions in our test differ
substantially, there may be a question mark with the assumption that all
observations of &DE are from the same normal distribution. However, based on a
brief inspection of bias observations, the normality assumption does not seem
unreasonable.

We call a test where all observations are from the same country a country test.
The results of a country test are of interest in the determination of which
apportionment method to apply in this country. Because successive election
situations within a country are correlated, we suspect that successive bias
observations are correlated too. If this is the case, the independence assumption is
doubtful for country tests. We have neither carried out country tests regarding
bias nor checked the correlation between successive bias observations.

We return to our bias test. The null hypothesis for every apportionment method
is that the method is unbiased:

(5.20) Ho: &DE = O

The alternative hypotheses for the different apportionment methods build on the
theoretical framework from chapter 4. Both MF and LF are approximately
coalition-neutral, which is a theoretical property. The alternative hypothesis for
them is that they are biased in one direction or the other, which implies a two-
sided test. The tests for the remaining methods are one-sided. Supposedly, MF is
the middle point among the divisor methods. Then it is reasonable to let the
alternative hypotheses for the other divisor methods be as follows: HA is biased
towards the group consisting of the larger constituencies in the group pair, while
SD, HM, and EP are biased towards the group consisting of the smaller
constituencies. A summary of the alternative hypotheses:
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(5.21) HA: EDE* O
EDE> O
EDE<O

for MF, LF
for RA
for SD, HM, EP

We use Te as our test statistic, see [Li] (page 265-267):

EDE - O
Te=---se

Yo
where Se= ~ is the sample standard deviation and s~is calculated as:

(5.22)

(5.23)
n

s~= n ~l·L (EDEa - EDE)2
a=1

We calculate the test statistic Te for every estimated bias percentage. Student's t-
distribution with n - 1 degrees of freedom is used to draw conclusions about the
statistical significance of the estimates. We use a level of significance of 5% in
the test. How the four division methods divide the different countries in 2, 3, and
4 groups is shown in Appendix 1. Appendix 1 also presents estimated bias
percentages, standard errors of these estimates, t-statistics, and P-values for the
different apportionment methods given these divisions. The estimated bias
percentages with division in three groups, Le. with c = 3, and the statistical
significance of these estimates are shown in Table 5.4:

Table 5.4
Division e SD HM EP MF HA LF
Number (L,M) -4,08% ** -0,75% -0,60% 0,17% 4,07% ** 0,12%

(L,S) -14,36% ** -5,67% * -3,91% * 1,07% 13,73% ** 1,95% *(M,S) -9,81% ** -4,87% * -3,29% * 0,86% 10,14% ** 1,78%
Quota (L,M) -3,47% ** -0,63% -0,52% -0,42% 2,11% ** -0,57%

(L,S) -9,11% ** -2,12% * -1,44% 0,59% 8,53% ** 0,58% *(M,S) -5,39% ** -1,47% * -0,90% 1,00% * 6,60% ** 1,14% **
Size (L,M) -2,36% ** -0,35% 0,03% 0,32% 2,27% ** 0,29%

(L,S) -9,57% ** -2,36% * -1,59% * -0,06% 8,38% ** -0,10%
(M S) -6,99% ** -1,99% * -1,63% * -0,40% 628% ** -0,41%

Cluster (L,M) -2,92% ** -0,22% -0,09% 0,06% 2,48% ** 0,01%
(L,S) -9,80% ** -2,58% * -1,73% * 0,15% 9,32% ** 0,32%
(M,S) -6,62% ** -2,36% * -1,66% 0,06% 7,06% ** 0,29%

Estimated bias percentages with division in 3 groups: Large (L), Medium (M), and Small (S).
Two-sided test for MF and LF, one-sided for the other apportionment methods.
** = Significant at the l%-level * = Significant at the 5%-level
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We observe that the bias percentages are increasing from left to right in
Table 5.4, with the exception of LF which is not a divisor method. This confirms

the theoretical result SD > HM > EP > MF > HA deduced from Theorem 4.3.
With a few exceptions, the absolute values of the bias percentages with number

division are larger than the corresponding bias percentages with the other

division methods. Quota, size, and cluster division result in about the same bias

percentages. The estimates with size division are based on 12 countries, because

the middle group was empty for Canada when divided in three groups. As
mentioned in section 5.6, cluster division is unsatisfactory if the last group

consists of constituencies which in total are apportioned no or very few seats. The
result of such unsatisfactory cluster divisions can be seen in Appendix 1, where

the estimated bias percentages for HA with g = 4 are very large for comparisons
which involve group 4.

What conclusions regarding bias directions can be drawn from the data in
Table 5.4? All estimates for SD and HA are significant at the 1%-level. SD is

biased towards the group of smaller constituencies in the group pair, while HA is
biased towards the group of larger constituencies. Regarding HM, all estimated
bias percentages for group pairs which involve the smallest group S are
significant at the 5%-level. Thus, HM is biased towards S. The same may be said
for EP, but in this case only 5 out of 8 estimates are significant at the 5%-level.
Are MF and LF unbiased? The estimated bias percentages suggest that they both
are slightly biased towards the group of larger constituencies in the group pair.

However, only a few of these estimates are statistically significant, so we do not
reject the null hypothesis that MF and LF are unbiased.

Let us compare our estimates with the bias percentages in [B&Y] (page 126).
Their fmdings are based on 19 apportionments of the House of Representatives in

the US until 1980, where states (constituencies) with a quota less than 0,5 are
eliminated. [B&Y] apply their version of number division and present bias

percentages for the comparison between the group of the largest and the group of

the smallest states. We compare these percentages with our estimates E(L,S) with
number division. With the exception of MF, the bias directions are the same. The
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absolute values of our bias percentages for SD and HA are smaller than theirs,
while for HM, EP, and MF ours are higher. [B&Y] do not calculate the bias
percentage for LF.

To round off this section we deduce how the third pairwise bias percentage is
determined by the two others when c = 3. We assume that ki, > O and kM > O in
this deduction, Le. that both L and M are awarded seats. From (5.l8) we find the
formulas for the biases in Table 5.4:

(5.24) kL -kM
E(L,M) = kt,

kL - ks
E(L,S) = kL

kM - ks
E(M,S) = kM

The difference between E(L,S) and E(L,M) can be expressed as:

(5.25) kM -ks
E(L,S) - E(L,M) = ki,

The numerator here is the same as in the expression for E(M,S) in (5.24). E(M,S)

can therefore be expressed as:

(5.26) kL
E(M,S) = kM . [E(L,S) - E(L,M)]

To get rid of kt, (and kM), we deduce an expression for kL from the formula for

E(L,M) in (5.24):

(5.27) kM
kL = 1 - S(L,M)

By putting this expression for kL into (5.26) and simplifying, we get:

(5.28)
E(L,S) - E(L,M)

E(M S) =, l -E(L,M)

which shows that E(M,S) is fully determined by the two other bias percentages.
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The normal formulations of the different apportionment methods were presented
in chapters 1 and 2. In this chapter we show how the apportionment methods can
be formulated as constrained optimization problems. What distinguish the
methods from each other are the objective functions. During the first 8 sections
we investigate which objective functions that lead to the different apportionment
methods. The common constraints for all these formulations are the basic ones,
namely that the variables ai are non-negative integers which sum to h:

(6.1)

(6.2)

ai E No for all i

Iai=h
ieM

The last two sections present formulations with a somewhat different perspective.
In section 6.9 we study how divisor methods are connected with the utility

concept, while formulations which compare pairs of constituencies is the topic in
the last section.

6.1 The method of the largest fraction

An ideal for an apportionment is that it is close to the quotas. The absolute value
of the deviation between the apportionment and the quota I ai - qi I can be used
to measure this closeness. Let us make the largest such deviation as small as

possible:

(6.3) min max I ai - qi I
a ieM
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It is clear from step 2 of Algorithm 1.1 that this is exactly what LF does, so the
objective function given by (6.3) results in the LF apportionment. What happens
if the sum of the deviations is minimized?

(6.4) minL I ai - qi I
ieM

(6.4) also yields LF. Consider the following objective function:

(6.5) where p ~ 1 and real

The p used here must not be confused with the notation of population p. [H-A]
(page 10-13) treats the close relations between the objective function in (6.5) and
what is known as the lp-norm (and loo-norm). The higher p is, the more weight
is given to large deviations. However, (6.5) characterizes LF for all p ~ 1, even
for p = 00 with some minor modifications. The lp-norm is also encountered in
connection with controlled rounding in chapter 15.

6.2 An attempt for Lowndes' method

It is tempting to try the following objective function for Lowndes' method:

(6.6) min max qi - ai
a ieM LqiJ

To follow up the suggested definition from section 1.2, we define .....9L > ~ ~ 1
. _ 1 • L.qij L qs J

if O < qs < qi < 1 and ~'qi J < O if O < qi < 1. (6.6) works well if the quota of
every constituency is at least 1. However, it may run into problems if there are
two or more constituencies with quotas smaller than 1. Consider the quota vector
q = (2 j, j, j). According to (6.6), the optimal apportionment for this election
situation is a = (1, 1, 1). Lowndes' method would have distributed 2 seats to the
first constituency, so the objective function given by (6.6) does not imply
Lowndes' method.
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6.3 Attempts for the harmonic mean method

Neither the objective function in (6.7) nor in (6.8) gives HM. For an example of
their failure see [B] (page 137).

(6.7) · "I£! ~Imin ~ ai - h
ieM

(6.8) · I£! ~Immmax a' - ha ieM l

However, [E] (page 1216) states that if HM produces an apportionment which
stays within quota, then this apportionment minimizes (6.7) among all
apportionments which stay within the quota. Since HM does violate staying within

the quota for some election situations, this result is not very useful from a
practical viewpoint.

6.4 The method of the highest average

An important ratio when comparing apportionments for different constituencies

is the auerage number of seats per indiuidual for a constituency ::. The
reciprocal of this ratio, i.e. the auerage number of people per seat for a
constituency -i!, may also be used. The greater the former ratio is, the better
the constituency has fared in the apportionment. One way of utilizing the ratio is

to require that the most favoured constituency is as little advantaged as possible.

Mathematically:

(6.9) · aimm max p'a ieM l

(6.9) gives HA as do the objective function: max min ~.
a leM l
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6.5 The method of the smallest divisor

Another way of utilizing the ratio :~ is to make the least favoured constituency as
advantaged as possible:

(6.10) . ai
max mm p.
a ieM I

(6.10) yields SD. Another objective function which implies SD is: min max ~.
a leM I

Notice that (6.10) is the mirror image of (6.9).

6.6 The method of major fractions

When the apportionment to a constituency deviates from the quota, i.e. ai"¢ qr, the
average number of seats per individual for this constituency : deviates from the

national auerage number of seats per indiuidual P:' By squaring this
deviation, i.e. (:~ - :M)2, positive and negative deviations are treated equallyand
large deviations are given more weight than small ones. In 1910 Andre Sainte-
Lague argued that the individuals are the basic elements which shares should be
made as equal as possible, see [L]. He therefore weighted the squared deviation
for a constituency by the number of people in the constituency. Minimization of
the sum of such terms over all constituencies led him to the objective function:

(6.11) L a; h 2min [p .. (- - -) ]
I Pi PM

ieM

We simplify and get: min L (~t- ;~.The last term is a constant, so (6.11) is
equivalent to: ieM

(6.12) . "" (aiimm~p;
ieM

[B&Y] (page 103-104) prove that this objective function implies MF.
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6.7 The method of equal proportions

Rather than making the shares of the individuals as equal as possible, we could try

to make the average number of people per seat for the different constituencies as

equal as possible. To accomplish this we use the squared deviation (-i! - Ff-)2 with
ai as weight and sum over all constituencies:

(6.13) min I [ai· (i! - Ff-)2]
ieM

This objective function c~ be simplified to: min ~ (P;!2 - (pr)2, which further is

equivalent to: min:L ¥. By using the same approach as [B&Y] apply for MF,
it can be proved th~t(6.13) results in EP.

6.8 The constant parametric divisor methods

[O] (page 205) gives the result that a constant parametric divisor method
minimizes the objective function:

(6.14)
l

. "" [p (ai + t -"2 _ phM)2]mm £..J t: Pi
ieM

{ao+t-1i
He shows that (6.14) is equivalent to: min! I Pi 2 and proves, in the samefEil
way as [B&Y] do for MF, that this objective function implies the constant

parametric divisor method with parameter t.
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6.9 Maximization of utility

Utility is an important concept in welfare economics. In this section we relate it
to the apportionment of seats. We make the following assumptions regarding the
relationship between number of representatives and utility:

The utility an individual in constituency i derives from having I representatives to
represent his/her constituency is denoted Ui(l). In particular, the utility of being
without any representative is zero, Le. u,{O)= O.All people in the country derive
the same utility from being represented by I representatives:

(6.15) Ui(l) =us( l) for all i, sEM

When there is no need to know the specific constituency involved, we write u(l)
instead of Ui(~. The total utility for the whole country is found by adding the
utilities of all people. Our typical individual wants to be represented by as many
representatives as possible. This is the normal assumption for utility functions
that more is preferred to less. It means that the utility function is an increasing
function of the number of representatives:

(6.16) u(l- 1) < u(l)

The first seat won is more precious than the second seat won etc. Hence, the
utility gained by increasing the representation from I to I + 1 is always less than
the utility gained by increasing the representation from 1- 1 to I:

(6.17) u(l + l) - u(l) < u(l) - u(l - 1)

This is the assumption of diminishing marginal utility, i.e. the utility function is a
strictly concave function. Our utility function is only defmed for non-negative
integers, so it is discontinuous. An alternative to (6.17) is to assume that the
utility gained from getting the (I + l )th seat is never greater then the utility

92



Chapter 6: Formulations

gained from getting the Ith seat, Le. the substitution of ~ for < in (6.17). With
this alternative assumption the utility function would have been concave. But we

stick to the assumption made by (6.17).

We call the increase in utility from u(l - 1) to u(l) utility increment and denote it

Ul:

(6.18) Ul = u(l) - u(l - 1)

It follows from (6.16) that Ul is positive for alII. Furthermore, (6.17) tells us that

the utility increments form a decreasing sequence in I. When it is of interest to
know which constituency a utility increment is associated with, we denote it Ui/.

We want to apportion seats among constituencies in such a way that the national
utility is maximized subject to constraints (6.1) and (6.2):

(6.19) max L [Pi· Ui(l)]
ieM

[H-A] (page 65) proves that this utility maximizing approach implies that a strict
divisor method in the sense of Definition 2.1 is being used. The divisors in such

a method are given as:

(6.20) 1
dl = Ul

which means that the relationship between utility function and divisor series is:

(6.21) u(O) = O
s

u(s) =L ~l
1= I

seH
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We introduce ail as a 0!i -variable and defme it as follows: It is 1 if constituency i

has got its [th seat and O if not. Notice that this definition means that ai(l+l) = 1
implies ail = 1. By combining the defmition of ail with (6.20), the total utility
gained by constituency i getting its [th seat can be written as:
(6.22) Pr ' Uil= ~ = (~) . ail

The national utility is therefore maximized by giving out one seat at a time to the
constituency which gains most by getting the next seat. This is exactly the same
procedure as for the distribution of seats with a divisor method, see Algorithm
2.1.

We assume that m ~ h and permit division by O the same way as in Definition 2.1.
With this in hand we present a constrained optimization formulation of strict
divisor methods:

(6.23) maxL L [(~).ail]
ieM leH

subject to the constraints

(6.24)

(6.25)

ail = O or 1 for all i E M, [ E H

LLail=h
ieM leH

This way of formulating the apportionment problem will be important when we
reach the matrix apportionment problem in part II.
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6.10 Pairwise comparisons

Pairwise comparisons of constituencies is one way of measuring the inequality an
apportionment has created. The difference between two terms which express
how two constituencies have fared is called amount of inequality. To compare
how two constituencies i and s have fared in the apportionment we could look at
the absolute difference between the number of seats per individual ratios, Le.
ai as hl' diff bh' [ai as ] / as F hPi - ps' or t e re atrve 1 rerence etween t ese ratios Pi - ps ps . urt ermore,
these differences can be rearranged by crossmultiplying them in many ways. For
instance, crossmultiplying ~~- ~ by Pi yields (ai - Pi' ~:). A total of 16 different
absolute differences can be found by crossmultiplication, considering only
positive differences. [Hu] (page 104-108) showed that 4 of these absolute
differences are unworkable, see Table 6.2, while the 12 remaining imply one of
the five historical divisor methods, see Table 6.1. Moreover, he showed that all
16 relative differences give EP, which was the main reason for his strong
recommendation of this method.

The idea behind pairwise comparisons is to transfer seats from the advantaged
constituency in a pair to the disadvantaged constituency until the amount of
inequality is minimized for all (:) pairs of constituencies. A transfer should be
made if it leads to a decrease in ihe amount of inequality, and it may also be made
if the amount of inequality stays the same. When the amount of inequality does
not change following a transfer, we have a tie involving these two constituencies.
This can be seen by considering only the equality case in Example 6.1 below. We
label constituencies such that constituency i is never disfavoured in the pairwise
comparison with constituency s, i.e. ~~~ ~. If the transfer of a seat from i to s
reverses the sign of this inequality, we relabel the constituencies. Thus, all
differences considered are non-negative; only in the case of i and s being equally
well represented is the difference equal to zero.
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Table 6.1

MF HM SD HA EP

Comparison1 ai as E! Ef as ai ai·E!_1- -- - ai - Pr ps Ps· Pi - asPi ps as ai Pi as

Comparison2 1 l a··E! _p. .£!: l_as ..£!a;-ps - as·Pi - - - ps - as·aipra, ps·ai I as I ps ai

Comparison3 1 ai l 1 1 as-.- _- - --.-as Pi ps Pi ai ps

Pairwisecomparisonsfor the fivehistoricaldivisormethods.

All 12 absolute pairwise comparisons in Table 6.1 are such that we sooner or
later arrive at an apportionment where further transfers of seats will not reduce
the amount of inequality for any pair of constituencies.

Table 6.2

Comparisons ai E!. E! as _l _ .!.. ..£! _l.E! _ l- - -as ps Pi ai as ps ai Pi as ai

Unworkablepairwisecomparisons.

[Hu] (page 104-106) presents examples which show that the 4 absolute pairwise
comparisons in Table 6.2 are unworkable. For many election situations with three

or more constituencies these comparisons are unable to determine which is the

optimal apportionment. This happens because it is possible to reduce the amount
of inequality for one of the constituency pairs by carrying out yet another

transfer.

In practice it is timeconsuming to use pairwise comparisons to apportion seats.
m.(~-l) pairs have to be investigated and for each ofthem at least one comparison

has to be made. It is much easier to use Algorithm 2.1 for the appropriate divisor

method, then only h +m-I quotients have to be calculated.

Example 6.1 demonstrates how we determine which divisor method, if any, a

particular pairwise comparison implies:

96



Chapter 6: Formulations

Example 6.1
We focus on the pairwise comparison: ~~.~ - 1. Table 6.1 tells us that this
comparison implies EP. We are now going to prove this:

The starting point is the final apportionment, which is the result of all pairwise

comparisons. We focus on a pair of constituencies with apportionments ai and as.

Because we always consider non-negative differences, constituency i is not

disfavoured compared with constituency s. In the following we permit division by
zero the same way as in Definition 2.1. The situation where neither i nor s has

got any seat is trivial, there is no seat to transfer so the amount of inequality
cannot be reduced. We therefore assume that ai ~ 1 and as ~ O. Since constituency
s is not apportioned more seats, the transfer of one seat from i to s will not

decrease the amount of inequality. In other words, constituency s will not be less
favoured over constituency i after such a transfer than i is favoured over snow.
Thus, the following inequality holds:

(6.26)

Elimination of the last terms and multiplication of both sides by (Pi . Ps) yields:

(6.27) ps < Pi
V aS'(as+ l) - V (ai- lj-a.

We recognize the denominators in these expressions as the divisors d(as+l) and dai
for EP. Thus, (6.27) is the min-max inequality for EP. This proves that the

pairwise comparison ~~.~ - 1 implies EP. The proofs for the other workable
pairwise comparisons are similar.

In the following we use the abbreviation UW for unworkable pairwise compari-
sons and number these comparisons from left to right in Table 6.2. Moreover, we
let Aa stand for pairwise comparison number a for apportionment method A. In
this connection we regard UW as an apportionment method. The number a is
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taken from Table 6.1 or Table 6.2, so Ps - as·-i1is HA2, ~ - :; is VW 2 etc. The
populations Pi and Ps are constants in the pairwise comparisons, while ai and as
are variables. All pariwise comparisons can be expressed as another comparison
multiplied by a constant. We have the following relationships:

(6.28) MFl
I I I

= pi· ps . MF2 = Pi . SDI = - ·HAIps

HMI =Pi· Ps· HM2 =.»: VW3 =w UW4

EPI
I

=Ps· SD3 = ~. VWI= Pi . SD2

EP2
I =w HA3 = EL. UW2= -. HA2ps ps

Until now we have only considered non-negative absolute differences. What
happens if we drop the requirement that i is never disfavoured compared with s
and use the absolute values of the differences in Table 6.1 and Table 6.2? [Hu]
(page 107-108) presents the answers. For MFl and MF2 we get the same method,
Le. MF, if we base the pairwise comparisons on the absolute values of the

differences. Also the absolute value versions of HM I and HM2 result in the same
method, Le. HM. The reason for these results is the symmetry of the two terms in
these 4 pairwise comparisons. The absolute value versions of the pairwise
comparisons for SD, HA, EP, and UW are either unworkable or result in MF or
HM. 8 are unworkable. It turns out that all pairwise comparisons which can be
expressed as MFl or HMI multiplied by a constant, see (6.28) for the relation-
ships, give MF and HM respectively when the absolute value versions are used.

Thus, the absolute value versions of SD I and HA I imply MF, while the absolute

value versions of UW3 and UW4 yield HM.

We end this section by constructing what we call weighted pairwise comparisons.

Let us multiply MF I by the constant (p i + Ps). The pairwise comparison thus

created is:

(6.29) a' as as a'(Pi + Ps)·(p~ - Ps) = (ai - pr Ps) + (Ps·p'i - as)
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It can be shown by using the same technique as in Example 6.1 that this weighted
pairwise comparison implies MF. We recognize the terms in the first parenthesis
on the right hand side of (6.29) as SOl and the terms in the second parenthesis as
HAl. Recall that SOl and HAl are the only pairwise comparison tests for SO and
HA which have workable absolute value versions. Moreover, both ofthese lead to
MF. Another way of getting the pairwise comparison in (6.29) is by multiplying

I I
MF2 by (Pi + p).

We construct a weighted pairwise comparison test which implies HM similarly;

either by multiplying HMI by (~i+ ~s) or by using the weight (Pi + Ps) on HM2:

(6.30)

The comparison within the first parenthesis on the right hand side is UW 3, while

the comparison within the second parenthesis is UW 4. Recall that both UW 3 and

UW 4 have absolute value versions which give HM. We have not been able to
create weighted pairwise comparisons for other apportionment methods than MF

and HM.
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Chapter 7: Thresholds and payoffs

The vote share needed to win a seat is an important figure when parties compete
for seats. This vote share is known as the threshold. In many countries a party
must surpass a threshold fixed by law to win seats in the parliament. Such
thresholds are usually in the range 1% - 5%. In this chapter we investigate the
thresholds built into different apportionment methods. The threshold for a
divisor method is heavily influenced by the size of the first divisor. Since dl = O
for SD, HM, and EP, one might say that these methods have a threshold of 0%.
The threshold is greater than 0% when MF, HA, or another divisor method with
dl> O is used. It is possible to generalize the threshold idea to the vote share
needed to win l seats. Then we talk about the payoff for l seats.

The structure of this chapter is as follows: The first section introduces the
terminology and gives a brief presentation of the scenarios the payoff functions
are derived from. In section 7.2 we deduce payoff functions and threshold
formulas for the family of constant parametric divisor methods. We deduce
similar formulas for LF in section 7.4. Section 7.3 makes use of a payoff function
to analyse the condition called preservation of the majority. The penultimate
section presents apportionment methods with built-in thresholds. We try out some
of these methods on a real election situation in the last section.
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7.1 Terminology

Let us start by issuing a warning: Many of the thresholds found in the literature
are incorrect. The correct thresholds and payoff functions for HA, MF, modified
MF, and LF are presented in [L&G].

There are two theoretical thresholds for each apportionment method, a lower and
an upper. [R] (page 193) calls them threshold of representation and
threshold of eHclusion respectively.

Definition 7.1
The threshold of representation is the lowest vote share which may give the
party a seat.

Definition 7.2
The threshold of euclusten is the highest vote share for which a party may fail
to win a seat.

Notice that the meaning of the word threshold differs slightly between these two
definitions. Normally, the distinction has not any practical consequences. When a
party's vote share is below the threshold of representation the party will not be
represented, while it is assured of representation if its vote share is above the
threshold of exclusion. The interval between these two thresholds, including them
both, is the grey zone where the actual threshold will lie. We call this interval the
threshold interual.

Definition 7.3
Threshold interual = [Threshold of representation, Threshold of exclusion]

A party's vote share can be seen as the price the party has to pay for its seats. The
threshold of representation is the lowest price a party might pay and have a
chance of getting its first seat, while the threshold of exclusion is the highest price
that might be paid without getting a seat. We generalize this pricing idea for the
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two theoretical thresholds to situations where a party competes for its lth seat.
The payoff functions thus created are called representation payoff and
eucfusten payoff respectively. These functions are defmed for the positive
integers l E H. The actual payoff for l seats will lie somewhere in the interval
between these two payoff functions. We call this interval, including both end
points, threshold interual for the fth seat. The words "for the lth seat" are
only used when l ;::::2. [L&G] (page 230) defme their payoff functions in terms of
minimum and maximum payoff for l seats. Our representation payoff for l seats
is equal to their minimum payoff for l seats, while our exclusion payoff for l
seats corresponds to their maximum payoff for l - 1 seats.

Since the description of thresholds and payoff functions is based on a party
setting, we need to introduce some notation regarding parties: n is the number
of parties, N is the set of all parties, and we use the index j E N = {l, 2, ..., n}
for the parties. In the constituency context in chapter 1 we assumed that all
populations were positive. In this chapter we allow some parties with no votes,
i.e. we assume that the party votes (populations) are non-negative Pj ~ O. The
total number ofvotes is denoted PN. To be possible for a party to win l seats, the
house size must be big enough, i.e. h;:::: l e 1. Moreover, we assume that there are
at least two parties, i.e. n ~ 2. The situation with h = 1 and n = 2 is trivial. From
Defmition 7.1 and Definition 7.2 it is clear that the two thresholds are identical
and equal to i,which further means that the threshold interval contains one
point, ~. All other situations are more complex than this border case.

The following tie situation is the focus of attention in the deduction of payoff
functions for both CPt and LF: We have a tie which involves all n parties. In all
deductions we follow party s which tries to get its lth seat. We deduce the
function for the representation payoff for l seats from the best case scenario for
s: The tie is for the last seat and s wins this seat. The worst case scenario for s
determines the function for the exclusion payoff for l seats. In this scenario the
tie is for the last n - 1 seats and s is the only party which loses out in the tie-
break.
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7.2 Payoff functions for CPt

In this section we derive payoff functions for the family of constant parametric
divisor methods. We assume that t > O in these deductions. The following
relationships hold for the divisor series given this restriction: O< dl = t ~ 1 and
dl = d(l-l) + 1 for I ~ 2. When setting up the election situations the payoff
functions are derived from, we bear in mind Defmition 2.2 which sees the
divisors as sign posts. With the exception of CP I (HA), the distance from the
origin to the first sign post is shorter than the distances between neighbouring
sign posts, Le. dl - O< dl - d(l-l). CPI is the border case because dl = dl - d(l-l).
We interpret the distance between the origin and the first sign post as the cost of
a party's first seat, the distance between the first and the second signpost as the
cost of a party's second seat etc. Thus, when a constant parametric divisor method
with t < 1 is used, a party's first seat is less expensive than any other seat the
party might win. Furthermore, the cost of the Ith seat is the same for all I ~ 2;
with t = 1 (HA) this statement holds for I ~ 1. Recall that our attention is centered
on party s which competes for its Ith seat.

The optimal situation for s is that all other parties just fail to win the last seat they
compete for. Since the cost is the same for all other seats than the first, we might
just as well assume that as many as possible of the other parties compete for their
first seat. This is what we do in the deduction of the representation payoff
function.

Since the cost of a party's first seat never is larger than the cost of any other seat
it might win, it is clear that the worst case scenario for party s is that there are as
many other parties as possible which all just succeed in winning their first seat.
This explains the assumed sizes of the parties in the deduction of the exclusion
payoff function.

Hence, in both scenarios we assume that the bulk of the other parties compete for
their first seat. We divide the other parties in two groups as follows: The first
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group consists of n - 2 parties which all try to win their first seat, while the

second group consists of party j. In both scenarios s and the n - 2 small parties

are tied, so the size of each small party can be expressed as ~~·Ps. The size of j,
which has the task of picking up the remaining votes and seats, is therefore:

(7.1) Pj = PN - ps - (n - 2)' ~~'Ps = PN - [dl + (n - 2)-d1J-t

j is also tied with s. To determine the payoff functions we set the quotients for s
andj equal to each other. Afterwards we must control that the derived functions
do not imply that j has negative support.

Westart by deducing the representation payoff formula from the best case

scenario for s. Since none of the small parties wins a seat, party j is competing
for its seat number h - (1 - 1). We set the quotients for s and j equal to each other

and get:

dl
~ PN - ps - (n-2)'T 'ps
di = d(h-l+l) I <=>
.Bt- dl _ 1-1+t
PN _ d(h-l+l} + dl + (n-2)'dl _ (h-I+1-l+t) + (/-1+t) + (n-2)·t <=>

(7.2) .Bt- /-l+t
PN _ h - 1+ n·t

(7.2) is the formula for the representation payoff for a constant parametric

divisor method with t> 0, Le. it shows the lowest possible payoff for 1 seats. To
verify that j has not negative support, we look at the number of the divisor in j's

quotient. This number cannot be smaller than 1, corresponding to the divisor dl.

Hence, h - 1+ 1 ~ 1 <=> 1~ h, which is satisfied.

By inserting 1= 1 in (7.2) we get the formula for the threshold of representation:

(7.3)
.Bt _ t
PN _ h - 1 + n·t

By letting t take on the values j-, i,and 1 respectively, we find that the threshold

of representation is 3.h1n _3 for DM, 2·h1n _2 for MF, and h + ~ _ 1 for HA.
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We move on to the deduction of the exclusion payoff function. Since all n - 2
small parties get one seat each,j competes for its seat number h - (n - 2) - (l - 1).
When s' and j' s quotients are set equal to each other we get:

dl
n. PN - ps - {n-2)·'d ·ps.c. _ I <=>
dl _ d{h-n-I+3}

k- dl _ I-l+t
PN _ d{h-n-I+3} + dl + {n-2)·dl _ (h-n-I+3-1+t) + (/-1+t) + (n-2)"t <=>

(7.4) k- I-l+t
PN _ h + 1 - n"(1 - t)

(7.4) is our provisional formula for the exclusion payoff. We check whether j
gets at least one seat via the divisor: h - n -l + 3 ~ 1 <=> n + l - 2 ~ h. (7.4) is not
valid in situations where n + l - 2 > h. What happens in such situations is dealt
with later.

By substituting 1 for l in (7.4) we get the provisional formula for the threshold
of exclusion:

(7.5) k- t
PN _ h + 1 - n"(1 - t)

By letting t take on the values -3
1
, 2

1
, and 1, we get Iland3"h - 2"n + 3' 2"h - n + 2'

1
h + 1 . as the provisional thresholds of exclusion for DM, MF, and HA
respectively.

We notice that the threshold of exclusion for HA is independent of the number of
parties competing for seats. The reason is that HA (CP 1) is the only constant
parametric divisor method where every seat costs the same. With HA, s' struggle
to win its first seat can also be illustrated by the following worst case scenario: j
is so big that it threatens to win all h seats, s competes for its first seat, while the
other n - 2 parties have zero support. For s to be assured of winning a seat its
first quotient must be greater than j' s hth quotient:
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The formulas above have been derived under the assumption that t> O.With SD,
i.e. t = O, the first divisor is zero dl = O, which gives quotients with zero in the

denominator for parties competing for their first seat. It turns out that formulas
(7.3) - (7.5) are incorrect for t = O, while (7.2) works well when l > 1. By
trying out t = O in (7.3) and (7.5) we get 0% as both the threshold of represent-
ation and threshold of exclusion. A threshold of representation equal to zero
would have been possible given the artifical and unreasonable assumption that all

quotients are equal, i.e. 16 = % = .If = .If etc. A consequence of such an assump-
tion would have been that a party with zero support would have the same chance
of getting the seat in a single member constituency as a party with 100% support.

It is correct to say that the threshold of exclusion is 0% for t = O when n ~ h
because a party with positive support, however small, shall get a seat when SD is
applied and there are enough seats available. It is unreasonable that all parties

with positive support are guaranteed representation when n ~ h, so SD should not
be used for apportionment of seats among parties.

(7.4) and (7.5) are only valid when n + l - 2 ~ h. To complete the picture we

study the exclusion payoff for situations where n ~ h - l + 2. There is a special
worst case scenario for these situations. We start our investigation by studying the
threshold of exclusion situation:

s competes for its first seat l = 1, so the restriction becomes n ~ h + 1. Since there
are h seats to compete for, the situation for s cannot be worse than when h + 1
parties with identical positive support compete for these seats and s is the only
party which loses out in the tie-break. The remaining n - h - 1 parties have zero
support. If there had been more than h + 1 parties with positive support, the

maximal vote share needed to win a seat would have decreased. The size of s, as
well as every other party with positive support, is Ps = hP:I.Hence, ~ = h II is
the threshold of exclusion when n ~ h + 1. Since the value of (7.5) is smaller than

h!I when n < h + 1 and t > O, h! I is the upper bound for the threshold of
exclusion. An alternative way of finding this threshold is by inserting n = h + 1 in

(7.5).

107



Chapter 7: Thresholds and payoffs

Thus, every constant parametric divisor method with t > O has a threshold of
exclusion equal to h II when n ~ h + 1. This threshold is also valid for t = O
(SD) according to Defmition 2.1, because there are not enough seats to give every
party one each. We notice that the derived threshold is equal to the general thres-
hold of exclusion for HA and independent of the number of parties competing for
seats. The independence of n is natural since parties with zero support cannot
influence the threshold. h II as the threshold of exclusion when n ~ h + 1 is by
no means unique for the constant parametric divisor methods; all proportional
apportionment methods have the same threshold. The reason is that all such
methods have the same set of possible apportionments for this special worst case
scenano.

By combining the threshold of representation from (7.3) with the formulas for
the threshold of exclusion, we find the formula for the threshold interval for a
constant parametric divisor method with t> O:

(7.6) t t
[h - 1+ not ' h + 1 - no(1 - t) ]

t 1
[h - 1+ not ' h + d

for n ~ h + 1

for n ~ h + 1

We mentioned earlier on that substitution of h + 1 for n in (7.5) is a way of
fmding the upper bound for the threshold of exclusion. Similarly, we substitute
h - l + 2 for n in (7.4) to determine the upper bound for the exclusion payoff:

(7.7) ..E!.- I-l+t _ I-l+t
PN - h + 1 - (h-I+2)-(1-t) - 1- 1 + to(h -I + 2)

We observe that l = 1, i.e. the threshold of exclusion situation, is the only case
where the upper bound for the exclusion payoff is independent of t. The
representation payoff function is unchanged from (7.2), so the threshold interval
for the lth seat given a constant parametric divisor method with t > Ois:

(7.8) I-l+t I-l+t
[h - 1 + not ' h + 1 - no(1 - t)]

/-I+t /-I+t
[h - 1+ not ' 1 - 1 + to(h - 1+ 2)]

for n ~ h -l + 2

for n ~ h -l + 2
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The payoff functions and thresholds for other divisor methods than the constant

parametric ones have to be deduced separately for each method (family of

methods). For an example see the penultimate section. Section 7.4 presents the

payoff functions for LF.

7.3 Preservation of the majority

The ultimate goal in parliamentary elections is to win the majority of the seats.
To keep it simple, let us suppose that the whole country is one constituency. Then
it is reasonable to require that a party which gets the majority of the votes should
get at least half the seats. This condition is called preseruation of the
majority, [H-A] (page 85):

Definition 7.4
An apportionment method A preserues the majority if

.PL 1 ha E A(p,h) and PN > "2 imply aj;::::"2

Our aim with this section is to determine which constant parametric divisor
method(s) that preserve the majority under the most unfavourable circumstances

for a party s. We therefore assume that s has got just a little bit more than half
the votes. Moreover, the worst case scenario for s is that it has to pay the highest

possible price for its seats. The maximum payoff for 1 seats is the exclusion
payoff for 1 + 1 seats. Let L E {O, 1, ..., h}. We convert the exclusion payoff

function in the right part of (7.8) to a maximum payoff for L seats function by

substituting L + 1 for I:

(7.9) L+t for L ~ h - n + 1

for L;::::h - n + 1

h + 1 - no(1 - t)
L+t

L + to(h - L + 1)
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By letting the functions in (7.9) be equal to i, we deduce the formulas for L in
situations where a party has got half the votes:

(7.10)

(7.11 )

L = h - ~ + 1 + t-ei - 1)

L - t·(h - 1)
- 1 + t

for L :S h - n + 1

for L;;::::h - n + 1

L is the lowest number of seats a party with half the votes may get. The

expressions on the right hand sides of (7.10) and (7.11) result in rational, integer,
or real numbers. However, L is an integer, so the actual right hand side value

must be rounded up to the nearest integer. Thus, if the actual right hand side

value is a E 9i, the party will get at least r a l seats. As stated above, we assume

that party s has got just a little bit more than half the votes. To get formulas

suitable for s, we increase the right hand sides of (7.10) and (7.11) by an
infinitely small number E > O:

(7.12)

(7.13)

h-n+l nL, = 2 + t·("2 - l) + E· for L, :S h - n + 1

L - t·(h - 1) +
s r: l+t E for L, ;;::::h - n + 1

In our analysis of (7.12) and (7.13) we distinguish between even and odd num-
bered house sizes. Moreover, we utilize that L, is an integer. When h is an even
number, ~ is integer and the premise for preservation of the majority as;;::::~

translates into L, > ~ - 1. On the other hand, when h is an odd number, ~ is
some integer plus a half. Then the premise can be transformed to Ls > ~ - ~. The
two inequalities regarding L, are equivalent to L > ~ - 1 - E and L > ~ - ~ - E

respectively. To get inequalities which are easier to work with than these, we

remove E from the right hand sides. We make up for this removal by substituting
;;::::for > in both inequalities. This leaves us with the following conditions for

preservation of the majority:

(7.14)

(7.15)

hL;;::::"2 - 1
h 1

L;;::::2-2

for h an even number

for h an odd number

110



Chapter 7: Thresholds and payoffs

As seen from (7.10) - (7.11), there are different formulas for L dependent on the
size of L. Instead of expressing the dividing line between these formulas in terms
of L, Le. as L = h - n + 1, we utilize the expressions for L in (7.14) and (7.15) to

eliminate L from the dividing line formula. In the even number case we substitute
equality for inequality in (7.14) and equate this expression for L with the existing

formula for the dividing line:

(7.16)

(7.16) is the dividing line between the formulas when h is an even number.

Similarly, we find n = ~ + i to be the dividing line in the odd number case.
These dividing lines are of interest below.

Then we are ready to investigate the different cases regarding preservation of the

majority. We utilize formulas (7.10) - (7.11) and conditions (7.14) - (7.15) in
this investigation. In tum we put the expression for L from one of the formulas

into one of the conditions. Each resulting inequality is thereafter solved with
respect to O < t S; 1. We start with formula (7.10). In the even number case we
get:

h - ~ + 1 + t.( ~ _ 1) ~ ~ _ 1 <=>

(7.17) t> n - 3
- n - 2

hfor 2 < n S; "2 + 2 and h even

When h is an odd number, the condition becomes:

(7.18) t = 1 h+3for 2 < n S; -2- and h odd

Ul



Chapter 7: Thresholds and payoffs

We now tum our attention to formula (7.11). For even numbered house sizes the
condition is:

t'(h - 1) >! 1 .........
l+t -2- ...........

(7.19) t> h - 2
- h

hfor n ~ "2 + 2 > 2 and h even

The odd number case results in:

t'(h - 1) h - 1 .........
l+t ~-2-""""'"

(7.20) t = 1 h+3for n ~ -2- > 2 and h odd

It is time to summarize our findings. We start with some trivial election situations
which are not covered by (7.17) - (7.20). Every constant parametric divisor
method, in fact every proportional apportionment method, preserves the majority
when n = 2 and/or h ~ 2. We continue with the case that h is an even number
larger than 2. Constant parametric divisor methods with : :~ s t s 1 preserve the
majority for election situations where 2 < n ~ ~ + 2. Moreover, the majority is
also preserved when h h 2 ~ t s 1 for election situations where n ~ ~ + 2 > 2.
Finally, we consider the case that h is an odd number larger than 1. Only the
constant parametric divisor method with t = 1, Le. HA, preserves the majority in
these situations. Thus, CPl (HA) is the only constant parametric divisor method
which preserves the majority independently of the house size and number of
parties. Example 7.1 illustrates how other constant parametric divisor methods
fail to satisfy the condition:

Example 7.1
. 751 749 749

Consider the quota vector q = (1500' 3000' 3000)' The first party has got more
than half the votes, so it must get at least 2 seats for the majority to be preserved.
Let us apply the constant parametric divisor method with t = i~o,Le. almost 1,
for this election situation. The resultant apportionment is a = (1, 1, 1), so this
method does not preserve the majority.
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We round off this section by presenting results for the apportionment method
dealt with in the next section: LF does preserve the majority for even numbered
house sizes. However, it does not for odd numbered house sizes where h ;:::3; just

id th l . . . . h (8 7 7)consi er e e ection situation Wit q = "5, TO,TO .

7.4 Payoff functions for LF

We now switch our attention to LF. For this method the assumption that all
parties are tied means that they have equal fractions. In the deduction of payoff
functions for LF we only have to consider party s explicitly.

The lowest payoff which may result in 1 seats is determined from the best case
scenario: There is only one seat for distribution to the fractions, so the fractional
part of the quota is ! for every party. s wins this seat in the tie-break. In
addition, s wins 1- 1 seats for the integer part of its quota.

_ ps·h _ 1qs- -1-1+- <=>PN n

(7.21)

This is the representation payoff function. The first term on the right hand side
of (7.21) is the proportional vote share for 1 - 1 seats, while the second term is
the extra vote share needed to be able to take the only seat distributed to the
fractional parts. n~h is therefore the threshold of representation for LF.

The highest payoff which may fail to win 1 seats is deduced from the worst case
scenario: There are as many seats as possible left after step 1 of Algorithm 1.1. s
loses out in the tie-break such that these n - 1 seats go to the other parties. All
parties are tied, so their fractions are n ~ 1. Thus, the provisional exclusion
payoff for LF is:
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(7.22) n. 1- 1 n - 1L:!..-_+_
PN - h n·h

The second term on the right hand side of (7.22) is the provisional treshold of
exclusion for LF. To be able to distribute n - I seats to the fractions in addition to
l - I seats to s, the house size must be at least (l - l) + (n - l). Thus, (7.22) is only
valid when h ~ l + n - 2. The upper bound for the exclusion payoff is found by
substituting h - 1+2 for n in (7.22):

(7.23) k _!...:J.. h - (/ - 1)
PN - h + h'(h-I + 2)

By inserting l = I in (7.23) we again encounter the upper bound h! 1 for the
threshold of exclusion for proportional apportionment methods. We end this
examination of payoff functions for LF by stating the formula for the threshold
interval for the lth seat:

(7.24) l - 1 1 . l - 1 n - 1 l - 1 h - (l - 1)
[-h- + n·h ,min (-h- + n·h '-h- + h·(h-l + 2»)]

7.5 Threshold methods

At the beginning of the chapter we mentioned that many countries have law
determined thresholds in the range 1% - 5%. In this section we try to construct
divisor series with similar thresholds. The starting point for all constructions is a
strict divisor series which satisfies Definition 2.2. We denote the divisors in the
original series d, while the divisors in the constructed divisor series are denoted
D.f is a positive integer which denotes the number of divisors with special status.
Be aware that the constructed divisor series only satisfy Definition 2.1, not
Defmition 2.2.
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Let us take a strict divisor series and eliminate its first f divisors. We call the
apportionment method defined by the resulting divisor series a cutten diuisor
method.

Definition 7.5
We defme an apportionment method as a cutten diuisor method if its lth
divisor is defined as the if + l)-th divisor of a divisor method which satisfies

Definition 2.2:

(7.25)

With HA as the original method and f = 5, the divisors in the corresponding

cutted divisor series are Dl = d6 = 6, D2 = 7 etc. A cutted divisor method with
Dl> 1 is not exact. Moreover, it overrepresents large parties. There is only one
instance where a cutted divisor method is exact. It occurs for the cutted divisor

method based on SD and with f = 1, because then the resultant apportionment
method is HA.

A better idea than the cutted divisor method is to let all parties which surpass the
threshold get their proportional share of the seats. This is achieved by letting the
first f divisors be equal to the if + 1)-th divisor of the original method, while the

divisors from number f + 1 and upwards are set equal to the corresponding
divisor in the original strict divisor series. We call this kind of apportionment

method a threshold diuisor method.

Definition 7.6
An apportionment method is a threshold diuisor method if its divisor series is
equal to the divisor series of a method which satisfies Definition 2.2, except for

the first f divisors which all are equal to the if + 1)-th divisor of the original

divisor series:

(7.26) Dl = ...= DJ= dif+l)

Dl= dl for l> f
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With f = 6 and dl = l - i, i.e. MF, the first seven divisors in the corresponding
threshold divisor series are all equal to 6-}, while D 8 = 7-} etc. A threshold
divisor method is proportional for the parties which surpass the threshold. The
main difference between a cutted divisor method and a threshold divisor method
is that a party which just surpasses the threshold, i.e. Db wins up to f + 1 seats
with a threshold divisor method, but only one seat with a cutted divisor method.

Below we deduce formulas for the threshold of representation and threshold of
exclusion for the two types of apportionment methods defined above. The
underlying assumption in these deductions is that the original strict divisor series
stems from a constant parametric divisor method.

The best case scenario for s with a cutted divisor method is the same as with a
pure constant parametric divisor method. We therefore fmd the threshold of
representation by inserting l = 1 into the formula leading up to equation (7.2)
and converting the divisors:

.& _ Dl _ d(fl-l) _ [+ 1
PN - (n-l)·DI + Dh - (n-l)·d(f+l) + d«+h) - (n-lHf+/) + (f+h-l+t) <=>

(7.27) .& _ [+1
PN - h - 1+ n·(f + t)

We must verify that j does not have negative support. Since Dh is the divisor used
inj's quotient, (7.27) is valid when h ~ 1, i.e. always.

With a cutted divisor method based on a constant parametric divisor method, the
cost of a party's first seat is never lower than the cost of any other seat. The
worst case scenario for s is therefore a large party j and zero support for the
remaining parties. From this scenario we deduce the threshold of exclusion for a
cutted divisor method:

.P!. _ J?L _ pN - ps .& _ Dl _ f + t
Dl - Dh - Dh <=> PN - Dl + Dh - (f+t) + (f+h-l+t) <=>

(7.28) .& _ [+t
PN - h - 1 + 2·(f+ t)
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We observe that (7.28) is independent of the number of parties. This is natural
since only two parties were needed to create the worst case scenario.

We move on to the threshold of representation for a threshold divisor method.
This threshold is determined from the same best case scenario as for a cutted
divisor method. However, we must take into consideration that D h is defined
differently with a threshold divisor method:

.l2. _ Dl _ d{fl-l) _ [+ t
PN - (n-l)·Dl + Dh - (n-l)-d(f+l) + dh - (n-l)·(f+t) + (h-l+t) ee-

(7.29) .l2.- [+t
PN - h - (f+ 1) + n·(f + t)

The divisors in the quotients ~ = d~:l) and ifh = f tell us that only the largest
party surpasses the threshold and wins seats when! + 1> h, Le. whenj z h.

Next we deduce the threshold of exclusion for a threshold divisor method. The
use of divisors from a constant parametric divisor series means that the average
cost of a party's first j" + 1 seats never is higher than the cost of each of the other
seats the party might win. The worst case scenario for s is therefore the same as
when a pure constant parametric divisor method is used. What is different is that
the other small parties now get! + 1 seats each.

k _ pN - (n-l)·ps .l2. _ + t
Dl - D[h -(1I-2)·{fI-l)] ¢:::> PN - (n-l)·(frt) + (h - (n-2)·(frl) -l+t) ¢:::>

(7.30) .l2.- [+t
PN - h +[+ 1 - n·(1 - t)

For party j to win at least! + 1 seats it cannot be smaller than s. We check
whether this condition is satisfied via the divisor numbers forj and s:

h - (n - 2)·([+ 1)~!+ 1 ¢:::> h ~ (n - 1)·([+ 1)
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This inequality must be satisfied for (7.30) to be valid. When h < (n - I)-if + 1)

there are not enough seats to let j and the other small parties get f + 1 each. The
worst case scenario in such situations is that an appropriate number of small
parties have zero support. This scenario determines the upper bound for the
threshold of exclusion for a threshold divisor method based on a constant
parametric divisor method. We find this upper bound by inserting n = h;£~1 m
(7.30) which yields:

(7.31) [+ 1
h+[+ 1

In the deduction of (7.30) and (7.31) we implicitly made the assumption that a

small party which wins a tie-break gets f + 1 seats. A more realistic assumption
regarding small parties tied "at the threshold" of a threshold divisor method is

that seats are split as evenlyas possible between these parties. So if there are 6

identical parties, h = 20, and f = 3, one should give each party 3 or 4 seats rather

than give five of the parties 4 seats each and leave the last party without
representation.

7.6 Possible threshold methods for Norway

In Norway a party must have at least 4% support to be eligible for the
apportionment of supplementary seats. Moreover, there are 165 seats in the
Storting and the supplementary seats are apportioned with modified MF. We want
to fmd both a cutted divisor method and a threshold divisor method with

thresholds of approximately 4%. The divisor series for MF (CPo,s) is used as the
basis for these methods. Our view is that a party should always be guaranteed

representation if it reaches the threshold fixed by law. We therefore use the

formulas for the threshold of exclusion in the determination process.
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The f value for the cutted divisor method based on MF is determined by putting

the relevant data into (7.28) and solving for f:
lf+- 4 305

165 - 1 + ;.(f+ ·h s 100 <=> f~ 46 ~ 6,63

Since fhas to be integer,f= 6.

To determine the appropriate f value for the threshold divisor method based on

MF we have to make an assumption regarding the number of parties. n = 7 is
chosen because this was the number of parties with a realistic chance of
surpassing the threshold in 1993. Utilization of (7.30) yields:

__ ....:..f_+-=~:....__----,:--< _1 f< 25 - 6 25
165+f+1-7.(1-~) - 25 <=> - 4 - ,

f = 6 is the highest integer which satisfies this inequality. To see how the number

of parties influences the inequality we let n = 10, which is nearer to the truth.
The result is a lowering of the right hand side to about 6,19, so the number of

parties does not influence f very much. We do not violate the condition for
validity of (7.30) with the calculations above, because 165 ~ (n - 1)'(f + 1) for the
n and f values considered.

There were 6 parties which surpassed the threshold of 4% in the general election
in 1993 and one party, V (Liberals), which got 3,6% of the votes. We now do the

necessary calculations to check whether V would have won seats with the
suggested methods. The total number of votes each party got in the election are

given in Table 7.1:

Table 7.1
Parties A FrP H KrF SP SV V Others
Votes 908724 154497 419373 193885 412187 194633 88985 89665
% 36,91% 6,28% 17,03% 7,88% 16,74% 7,91% 3,61% 3,64%

/=6 66,38 11,29 30,63 14,16 30,11 14,22 6,5
/=5 56,17 9,55 25,92 11,98 25,48 12,03 5,5

Vote totals in the Norwegian election in 1993 and party quotients with the common divisors
lz= 13690(f=6)andz= 16179T1 (f= 5).
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The first quotient for V is R = 88~85 = 13690 with both threshold methods

based oe f= 6. For V to win seat(s), t@s quotient has to be among the 165 highest

quotients. We divide all vote totals by 13690 and find the values in the row
marked! = 6. These values are nothing else than what we called constituency
quotients in section 2.7. It is natural to use the name party quotients here.

Moreover, we recognize 13690 as a common divisor z.

We start with the threshold divisor method based on MF. To determine the

number of quotients higher than 13690, we round the party quotients to the

nearest integer. The other parties have 66 + Il + 31 + 14 + 30 + 14 = 166 quotients
which are better than V's first quotient, so V would not have been represented.

Recall that the determination of f = 6 earlier in the section was based on the

assumption that a party with 4% support should always be represented. This and
the fact that f has to be integer are the reasons why V almost gets represented
although its support is below 4%.

With the cutted divisor method the story is different. Since! = 6 here means that
the first 6 divisors in MF have been eliminated, there are only 166 - (6 . 6) = 130
quotients which are higher than 13690. Thus, V would have won seats if this
cutted divisor method had been used. Moreover, this means that the actual
threshold is lower than 3,6% in this case.

Let us decrease f for the threshold divisor method to 5 and see what happens. The
highest quotient for V then becomes 88~85 = 16179-fr. From the party quotients

in the row marked f = 5 we fmd that 1here are 141 quotients which are better.

Thus, V would have won seats if the threshold divisor method based on MF and

with f = 5 had been used.
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It is time to raise the question: Which apportionment method should be used? The

answer depends on what kind of apportionment problem we are facing and our

goal(s) with the apportionment. In this chapter we will see that there are other

considerations connected to the apportionment of seats among constituencies than
to the apportionment of seats among parties. We call the first kind of apportion-
ment constituency apportionment and the second party apportionment.
They are treated in sections 8.1 and 8.3 respectively. In section 8.2 we describe
the current situation in Norway regarding constituency apportionment and
propose some improvements. Section 8.4 illustrates how it is possible to take

advantage of the current Norwegian election law. In section 8.5 we look at house
sizes in the Nordic countries before we in the last section explain the motivation
for the matrix apportionment problem, which is part II of this dissertation.

8.1 Constituency apportionment

It is highly unreasonable if a constituency does not get any representative in a
general election. The voters in such a constituency would have been deprived of

their voting rights. Thus, the house size should not under any circumstances be
lower than the number of constituencies, Le. h ~ m. To make sure that every

constituency is represented, one can introduce a minimum representation. An
example is the US where every state is guaranteed one seat in the House of

Representatives. A slightly different way of ensuring every constituency
representation is to use a divisor method with the first divisor equal to zero, like
SD, HM, or EP. Application of a divisor method with dl = O and dz > O is an
indirect way of introducing a minimum representation of one seat. Notice that a
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minimum representation of one seat will favour the very small constituencies.

It is quite common to favour small constituencies in the constituency apportion-
ment. An example is the Icelandic constituency apportionment, which is fixed by
law. This apportionment greatly disfavours the two most populous constituencies,

Reykjavik and Reykjanes. They have only 49% of the seats in the Althing,
although they accounted for 65% of the votes cast in the general election in 1995.

Many countries want to favour rural constituencies. A rural constituency is often

synonymous with a constituency with a small population. If this is the case for

every rural constituency, some apportionment method which favours small

constituencies will create the desired favouring. SD is a method which comes to
mind. Sometimes SD does not favour the small constituencies as much as one

wishes. A possibility then is the family of apportionment methods we call
eHtended diuisor methods. The divisor series for an extended divisor method

consists of one or more divisors equal to O plus the divisors from a strict divisor

series which satisfies Definition 2.2. Regarding notation, we let D, d, and f stand
for the same as in section 7.5. Moreover, we permit division by zero the same
way as in Defmition 2.1

Definition 8.1
We defme an apportionment method as an eHtended diuisor method if its first
f divisors all are equal to zero, while its if + l)-th divisor is defined as the lth
divisor of a divisor method which satisfies Definition 2.2:

(8.1) Dl = ... = DJ= O
D(f+l) = dl

Since the first f divisors of an extended divisor method are equal to zero, there

should be at least m f seats for distribution when such a method is used. The

apportionment with an extended divisor method can be determined as follows:
Start by giving each constituency f seats. There are h - m1seats left after this

distribution. Apportion these with the original divisor method with divisors dl.
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An extended divisor method is not exact. The only exception to this rule is the

extended divisor method based on the divisor series for HA and with f = l, which

is nothing else than SD.

A way of favouring special types of constituencies is to base the apportionment on

a constructed measure like they do in Denmark. The Danish measure is made up
of three parts; population, number of voters, and land area. Other descriptive

data which might be used to form a constructed measure are distance to the
parliament and inhabitants per square kilometer. We propose a constructed
measure for Norway in the next section. The weighting of the different parts of a
constructed measure may have a considerable effect on the apportionment. This

opens for manipulation of the apportionment through the weight values. It may
therefore be difficult to reach an agreement about these values. Since the use of a
constructed measure brings the most important reasons for favouring special
types of constituencies into the basis for the apportionment, it is natural to carry

out the apportionment with an unbiased apportionment method. Of the two

candidates MF and LF, MF is preferable because of the paradoxes connected to
LF. The fact that MF does not always stay within the quota is only a minor
disadvantage with this method.

Some countries fix the representation of each constituency by law. This is an

undesirable solution. The experience with such a scheme in Norway and Iceland
is that changes in the population distribution influence the constituency

apportionment very slowly or not at all. A much better solution is to fix by law
which apportionment method to use and which basis (constructed measure) to

apply it on. The advantage of such a scheme is that fluctuations in the relevant
basis (bases) are reflected in the constituency apportionment immediately.
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8.2 Constituency apportionment in Norway

With the exception of 8 seats, the Norwegian constituency apportionment is fixed

by law. Today's fixed representation scheme of the constituencies relates back to
the early 1950s. There were 150 seats in the Storting in 1953, all fixed. Since

then the fixed representation of the two most central constituencies, Oslo and

Akershus, has been increased in two steps until a house size of 157 was reached.
The last change in the house size occured prior to the general election in 1989,

when 8 supplementary seats were introduced. Thus, at the moment the Storting

has 165 seats. The supplementary seats are special because they are not
preassigned to any constituency. Their placement among the constituencies
depends on several aspects of the election result.

In the rest of this section we give examples of how the apportionment methods

described in section 8.1 would have distributed the 165 seats in the Norwegian
Storting. The main basis for these constituency apportionments is the number of
eligible voters in 1993. In Table 8.1 below we present apportionments made by
some extended divisor methods. Later on we turn our attention to apportionments
based on a constructed measure.

Comments on Table 8.1: The column with the heading "Actual Seats" contains the

number of seats each constituency ended up with after the general election in
1993. In the four rightmost columns we present the apportionments one would

have got with extended divisor methods based on HA. We have included the HA

apportionment if = O) in the table although HA is not an extended divisor method.

As f increases, the small constituencies are favoured more and more. It is also
interesting to notice that the largest discrepancy between the apportionments with

the extended divisor methods and the actual apportionment occurs for Nordland.
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Table 8.1
Constituency Eligible Voters Actual Seats (HA)/= O (SD)/= 1 /=2 /=3
Oslo 359085 17 19 18 16 15
Akershus 319318 14 17 16 15 14
Hordaland 312033 15 16 15 14 14
Rogaland 249445 11 13 12 12 11
Sør-Trøndelag 194755 10 10 10 10 10
Østfold 185495 8 9 9 9 9
Nordland 184446 12 9 9 9 9
Møre og Romsdal 180856 10 9 9 9 9
Buskerud 173890 8 9 9 9 9
Vestfold 154644 7 8 8 8 8
Hedmark 147211 8 7 8 8 8
Oppland 143342 7 7 7 7 8
Telemark 125923 8 6 7 7 7
Troms 114007 6 6 6 6 7
Vest-Agder 107681 5 5 6 6 6
Nord-Trøndelag 96728 6 5 5 6 6
Sogn og Fjordane 80357 5 4 4 5 5
Aust-Agder 73439 4 3 4 5 5
Finnmark 57302 4 3 ·3 4 5
SUM 3259957 165
Constituency apportionments with HA and extended divisor methods based on HA.

The time has come to show how constructed measures can be used as bases for
apportionments. As mentioned in chapter 1, Denmark employs the constructed
measure: Population + Eligible voters + 20·Area. The constructed measure we
tind most interesting for Norway consists of three parts; the number of eligible
voters, the (road) distance to the capitalOslo, and the percentage of people living
in sparsely populated areas, later referred to as rural percentage. Let us briefly
describe our reasons for recommending this constructed measure: The basic part
of every constructed measure intended for constituency apportionment is some
measure of population. Our view is that only the people entitled to vote should be
taken into account, which explains our use of the number of eligible voters.
However, the use of population instead does not normallyalter the apportionment
much because constituency populations and number of eligible voters tend to be
approximately proportional. Next we comment on the other parts of a const-
ructed measure. These parts serve as correctives to the basic part by favouring
special types of constituencies based on objective measures. We see it as important
that the number of such parts is kept down. The idea behind the inclusion of
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distance to Oslo as a part is to compensate the constituencies in the northern part
of Norway for their geographical "backwardness" in relation to the capital. We
have included the rural percentage to favour rural constituencies. Ideally, we
should have used the percentage of voters living in sparsely populated areas. An
alternative measure of rurality is land area, but we see the rural percentage as

more suitable for Norway. One reason for this is that the northern constituencies
which already are most favoured by the distance part also have among the largest
areas. It is undesirable with a high degree of correlation between different parts.
We end this paragraph with an interpretation of the two "favouring" parts: The

distance part takes care of the "rurality" of a constituency compared to the

capital, while the rural percentage expresses the rurality within the constituency.

To illustrate the proposed constructed measure, we need data. Here follows a

description of the utilized data: We use the number of eligible voters in 1993, but
round these numbers to the nearest thousand. The road distance from the

administrative town of a constituency to Oslo is the basis for the distance part. Be

aware that we subjectively round this distance to one of the nearest multiples of

hundred kilometers. The subjective rounding takes into consideration whether the
administrative town is situated farther from or nearer to Oslo than the
geographical centre of the constituency. Regarding the rural percentage, it is
worth mentioning that the Norwegian definition of a densely populated area is an
area with a population of at least 200 and with no more than 50 metres between
the houses. Sparsely populated areas are the complement of densely populated
areas. We base the rural percentage on the 1990 census and give it with one
decimal accuracy. The utilized data for the three parts of the proposed
constructed measure are presented in the left part of Table 8.2 below. From these
data we calculate the value of the constructed measure for each constituency as

follows:

(8.2) w«: Voters + wa : Distance + wr· Rural percentage

where wv, wa, and Wr are positive weights. We use MF to apportion seats based
on different weight combinations. Because MF is homogeneous (scale indepen-
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dent), we have one degree offreedom in the choice ofweights. We set Wv = 1 and
vary the values of the two other weights. NB. The column with wd = wr = O in
Table 8.2 shows the MF apportionment based on the unrounded numbers of
eligible voters, Le. the numbers found in Table 8.1. All other MF apportion-
ments in Table 8.2 are based on constructed measures found by multiplying the
weights given in the uppermost part of the table with the rounded values in the
"Votes", "Distance", and "Rurality" columns.

Table 8.2
Constituency Actual Voters Distance Rurality Wd 10 0,5 0,5 1 1

apportionment (in 1000) (in 100) (in %) Wr O 0,1 0,2 0,1 0,2
Oslo 17 359 O 0,6 18 18 17 17 17
Akershus 14 319 O 15,1 16 16 15 16 15
Hordaland 15 312 5 28.5 16 16 15 16 15
Rogaland 11 249 5 27,6 13 12 12 12 12
Sør-Trøndelag 10 195 5 27,5 10 10 10 10 10
Østfold 8 185 1 20,9 9 9 9 9 9
Nordland 12 184 13 37,3 9 10 10 10 10
Møre og Romsdal 10 181 5 41,7 9 9 9 9 9
Buskerud 8 174 1 25.5 9 9 9 9 9
Vestfold 7 155 1 21,0 8 8 8 8 8
Hedmark 8 147 1 49,4 7 7 8 7 7
Oppland 7 143 2 51,1 7 7 7 7 7
Telemark 8 126 2 28,0 6 6 6 6 6
Troms 6 114 17 40,1 6 6 6 7 7
Vest-Agder 5 108 3 24,2 6 6 6 5 6
Nord-Trøndelag 6 97 7 49,0 5 5 5 5 5
Sogn og Fjordane 5 80 5 55,2 4 4 5 4 5
Aust-Agder 4 73 3 39,0 4 4 4 4 4
Finnmark 4 57 22 27.8 3 3 4 4 4

MF apportionments based on (8.2), where Wv always is set equal to l.

Let us first comment on the MF apportionment based only on eligible voters, Le.
the apportionment in the column with Wd = Wr = O.This is presumably the most
unbiased apportionment achievable for Norwy in 1993, so it is interesting to
notice that the actual apportionment deviates quite much. In the following we
compare the constructed measure apportionments with the "pure" MF approtion-
ment. We observe that the constituencies in the northern part of Norway, i.e.
Finnmark, Troms, and Nordland, are the main beneficiaries of the constructed
measures, while the most populous constituencies are the losers. As intended,
constituencies far from the capital or with a large percentage of people living in
sparsely populated areas have gained. However, none of our constructed measures
based on (8.2) are fully able to explain the actual apportionment in 1993. This is
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not surprising; [Sl (page 33~) shows that the apportionment prescribed by law in
1953 cannot be explained by a MF apportionment based on a constructed measure
consisting of voters, distance, and land area.

The last two parts in (8.2) are only related to the constituency, not to the
individual voters in the constituency. An alternative approach is to scale these
parts by the number of voters in the constituency. With this approach (8.2) would
look like this:

(8.3) [wv + Wd·Distance + wr· Rural percentage] . Voters

where Wvcan be set equal to 1 and Wdand Wrare new weights different from Wd
and Wr.An example: Let Wv= 1, Wd= 0,02, and Wr= 0,15. With these weights a

. l l d f H dal d i 1+ 0,02·5 + 0,15·1 1 250/voter In a sparse y popu ate area o or an IS 1 + 0,02.0 + 0,15.0 - = zo

more important than a voter in central Oslo. (8.3) entails a kind of classification
of individual voters and may therefore be seen as unsuitable. The approach in
(8.2) is presumably least controversial politically.

8.3 Party apportionment

A guaranteed minimum representation for parties is not reasonable. It could
rather be a question of favouring large parties to facilitate the formation of stable
governments. Constant parametric divisor methods with t > 0,5, including HA
(CP 1), are apportionment methods which favour large parties. Another way of
favouring large parties is to disfavour small parties. Introduction of thresholds at
the national and/or constituency level is one way of doing this. Most countries
with a proportional representation system have a threshold fixed by law, but the
magnitude of this threshold varies. The threshold at the national level is 4% in
Norway, but only 2% in Denmark, usually resulting in more small parties .in the
Danish Folketing than in the Norwegian Storting. From chapter 7 we recall that
each apportionment method has a built-in threshold. The use of modified MF in
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Norway results in a higher threshold at the constituency level than the use of MF
would have done.

In countries with many small sized constituencies even an approximately unbiased
apportionment method like LF or MF will normally favour the large parties on a
nationwide scale. The extreme regarding small sized constituencies is one seat
constituencies, Le. plurality vote, as in the United Kingdom. In the UK it is not
unusual that the largest party wins a considerable majority in the House of
Commons with less than 50% of the votes. Election results in different
constituencies are normally strongly correlated. Therefore, a slight favouring of
large parties in many constituencies accumulates to a greater favouring at the
national level.

Let us illustrate why the constituency sizes in Norway favour large parties. In this
illustration we assume that MF is used for the apportionment to the parties. 15 of
the 19 Norwegian constituencies have between 4 and 10 seats for distribution.
With the help of formula (7.6) from the previous chapter we fmd that the
threshold interval for a constituency size of 4 seats is [/0 ' i] with 4 parties and
[116 ' i] with 10 parties. The corresponding threshold intervals when there are 10
seats for distribution are [2

1
2 , IlS] and [2

1
S ' /2] respectively. From the

thresholds of representation we see that parties with less than 3,5% support have
not even a theoretical chance of winning a seat. The fact that modified MF is the
apportionment method used in Norway makes it even harder for a small party to
get represented. Moreover, the actual threshold can be quite much higher than the
threshold of representation, which does not help small parties either. This
analysis demonstrates the disfavouring of small parties within each of the 15
constituencies with a size of 10seats or less. Added together this amounts to a
large disfavouring of small parties. Let us exemplify the disfavouring: Consider a
party with a vote share of 4% in each of the 15 constituencies. There are a total
of 103 seats for distribution in these constituencies, so the party should get about
4 seats for the apportionment to be proportional. However, most likely it will not
be apportioned any seat.
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8.4 Exploiting the Norwegian election system

The introduction of 8 supplementary seats has made the Norwegian election
system fairer than it was, but there is still a long way to go. This section deals
with the possibility of exploiting the rules for the apportionment of supple-
mentary seats. The competition for these seats takes place at the national level,
where they are apportioned to the parties with the highest national quotients.
When these national quotients are calculated, the seats won by the parties within
the constituencies are taken into consideration. We call seats which are
preassigned to a constituency fixed seats. As the illustrations in the previous
section gave an indication of, the distribution of fixed seats among the
constituencies is disproportional. A consequence of this disproportionality is that
the average number of voters (people) behind each seat differs a great deal from
one constituency to another. Furthermore, this means that a party may gain in the
apportionment of supplementary seats by operating as two separate "parties", see
[G] (page 244). The second ''party'' runs in constituencies which have much more
voters behind each seat than the national average, while the first "party" runs in
the remaining constituencies. Below we utilize data from the general election in
1993 to show how the current system can be used to the advantage of large
parties. There is very little risk involved in running as two separate ''parties'' for
a large party. However, it is not a good strategy for small parties because each
''party'' must attain at least 4% support at the national level to qualify for the
apportionment of supplementary seats.

We use data from the general election in 1989 to devise the tactical plan for the
general election in 1993 and pick out the parties to follow this plan. For a party
to run as two "parties" without risking too much its support should be well above
10%. Only the two largest parties in 1989, A (Labour) with 34,3% and H
(Conservatives) with 22,2%, meet this requirement. To determine which constit-
uencies their second "parties" shall run in we identify constituencies which
representation was more than 10 % below the national average in 1989. The 5
constituencies which satisfy this requirement are Akershus, Buskerud, Rogaland,
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Oslo, and Østfold. This means that the first "parties" for A and H will run in the
other 14 constituencies. We use election data from 1993 to evaluate the plan, i.e.
we implicitly assume that the voters would have maintained their voting
behaviour if the plan had been implemented. Given the described assumptions we
get the apportionment of supplementary seats presented in Table 8.3. Al and HI
denote the first "parties" for A and H respectively, while A2 and H2 denote the
second "parties".

Table 8.3
Party lists Al A2 FrP Hl H2 KrF SP SV
1st quotient 5940 8183 11884 6953 7508 7755 6341 9268
2nd quotient 7835 10300 8462
3rd quotient 7515 9088 7785
4th quotient 8131
5th quotient 7357
Seats O 2 4 O O O O 2
National quotients given the devised plan. Quotients inbold qualify for supplementary seats.

Before we comment on the apportionment in Table 8.3, let us reveal the real
outcome of the general election in 1993: Neither A nor H got any supplementary
seats. The supplementary seats were won by FrP (progressives) with 4, SV
(Socialists) with 3, and KrF (Christian democrats) with 1 seat. Now to the results
of the tactical plan: From Table 8.3 we see that H2 does not win any supple-
mentary seat, so H does not gain by running as two "parties". The situation for A
is brighter. Its tactical split results in a gain of two supplementary seats compared
with the realoutcome. The losers are KrF and SV which lose one seat each. Here
follows an explanation of why A2 wins supplementary seats: A2 only participates
in constituencies which are underrepresented in preassigned (fixed) seats. Even if
A2 has got its proportional share of seats in these constituencies, it is under-
represented compared with the national standard. That is why it ends up with
supplementary seats. The purpose of supplementary seats is to even out
disproportionality in the distribution of seats among parties, but the reality in
A2's case is that the seats make up for the disproportional distribution of fixed
seats among the constituencies. Finally, the changes in support from 1989 to
1993 might have contributed to A2's success and H2's lack of success. While H's
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vote percentage decreased from 22,2% to 17,0%, A's increased from 32,3% to
36,9%.

8.5 House sizes in the Nordic countries

In this section we study the relationship between house size, population, and
number of constituencies in the Nordic countries. By studying Table 2.3 in
section 2.10 one gets the impression that the number of seats in a national
parliament is influenced by the size of the population and the number of
constituencies. Population size is presumably the most important influence. A
rough rule seems to be that the house size increases with population, but less than
proportionally. To study the suggested relationships more closely, we have
gathered relevant data for the Nordic countries in Table 8.4 below. These data
are taken from [Yearbook of Nordic Statistics 1994]. Our reason for focusing on
the Nordic countries is that they have quite similar elections systems, which all
are based on proportional representation. The nations in the lower part of
Table 8.4 are territories with home rule.

Table 8.4
Country Name Seats Population Population/Seats Constituencies Seats/Constitiuencies

Sweden Riksdag 349 8692013 24905 28 12,5
Finland • Riksdag 199 5029989 25276 14 14,2
Denmark •• Folketing 175 5180614 29604 17 10,3
Norway Storting 165 4299167 26056 19 8,7
Iceland Althing 63 262386 4165 8 7,9
Faroe Islands •• Lagting 32 46804 1463 7 4,6
Åland • Landsting 30 24993 833
Greenland •• Landstin_g_ 27 55117 2041 18 l_,5.
• Aland bas one seat in the Riksdag.
• • Faroe Islands and Greenland bave two seats in the Folketing each.

These seats and constituencies are not included in the data for Finland and Denmark.

The Nordic parliaments at the end of 1992.

From time to time it is suggested that the number of seats in the Norwegian
Storting should be reduced to get a more efficiently working parliament. A house
size of about 100 has been mentioned. To evaluate this suggestion we look at the
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ratios in Table 8.4. The national average population per seat in Norway is about
the same as in the three other Nordic countries of comparable size, so an
acceptance of the suggestion would lead Norway away from the Nordic norm.
Moreover, the Norwegian seats per constituency ratio is already low compared
with other Nordic countries. Let us analyse the consequences at the constituency
level of reducing the house size to 100 seats. In this analysis we assume that the
number of constituencies is left unchanged. The described reduction will reduce
the seats per constituency ratio to about 5, which would make it even harder for
small parties to win seats within the constituencies. The situation for V (Liberals)
and RV (Red Electoral Alliance) in the general election in 1993 can serve as an
example. In that election V and RV won one seat each, in Hordaland and Oslo
respectively. Hordaland and Oslo with their 15 seats each are the two
constituencies with most preassigned seats. The suggested reduction in the house
size would have reduced their number of preassigned seats to about 9, in which
case neither V nor RV would have been represented. Our conclusion is that the
suggestion should be rejected. There is room for considerable improvement of
the Norwegian election system, but the number of seats in the Storting is not the
problem. If any of the Nordic countries should think about a reduction of the
house size, it is Sweden. A house size of 349 seats is relatively high compared
with other European countries of comparable size.

8.6 Motivation for the matrix problem

Chapters 1 through 8 have dealt with the vector apportionment problem, which
represents a one-dimensional apportionment. However, in many cases we face a
matrix of votes, where the votes represent both constituency and party. The
question we now adress is how to carry out the apportionment in these situations.

A solution is to stay in the one-dimensional world and carry out several vector
apportionments. Be aware that the succession of the apportionments has an
impact on the fmal apportionment. It is normal to determine the constituency
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apportionment first and thereafter apportion seats to the parties within each
constituency. This succession of apportionments gives a proportional constituency
representation plus proportional apportionments within the constituencies. The
drawback is that the party representation at the national level often becomes
disproportional. Contrary, if we start with the apportionment of seats among the
parties, we get a proportional party representation. If we follow up this party
apportionment by apportioning seats to the constituencies within each party, we
will probably get a disproportional constituency representation. Thus, it is
difficult to fmd a fmal apportionment which is proportional for both
constituencies and parties.

Some countries have introduced supplementary seats to make the party
representation at the national level less disproportional. A brief description of
how the apportionment process is carried out in this case: First the number of
fixed seats for each constituency is determined, either by law or apportionment.
Within each constituency these seats are apportioned to the parties. The fmal part
of the process is the apportionment of supplementary seats to the parties. This
apportionment is based on the parties' national vote totals and takes the number of
seats won in the constituencies into account. This way the supplementary seats
repair for at least some of the disproportionality caused by the apportionments
within the constituencies. The success of the repair process depends on how
disproportional the initial party representation is and the number of
supplementary seats. A large number of supplementary seats enhances the
probability of a proportional party representation. Denmark, Sweden, Iceland,
and Norway have 40, 39, 13, and 8 supplementary seats respectively,
corresponding to 23%, 11%, 21%, and 5% of the house size. How proportional
the constituency representation becomes after such an apportionment scheme
depends on the way the supplementary seats are assigned to the constituencies.
The constituency representation will be proportional if the supplementary seats
are proportionally preassigned to the constituencies and the parties have to pick
among these preassigned seats. However, the constituency representation may
become disproportional if each supplementary seat is assigned freely to the
constituency where the eligible party is most underrepresented. In Norway and
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Sweden the supplementary seats are not preassigned to the constituencies,
Denmark has a kind of partial preassignment, see [H-S] (page III.5), while Iceland
after a law amendment in 1995 has all seats preassigned.

Apportionment schemes with supplementary seats represent an improvement
compared with schemes without such seats. In part II of the dissertation we
present an even better apportionment scheme, namely matrix apportionment.
With this scheme the seats are apportioned simultaneously to constituency and
party given predetermined constituency and party bounds. One of the advantages
of matrix apportionment is that the bounds can be used to make both constituency
and party representation proportional. Since a matrix apportionment takes both
constituency and party into consideration at the same time, it is a two-dimensional
apportionment. [B&D-l], [B&D-2], and [H&J] have shown how it can be carried
out.
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Chapter 9: Introduction

The description of the matrix apportionment problem in this chapter builds on
[B&D-l] and [B&D-2]. We begin the chapter by introducing basic terminology in
section 9.1. In the second section we demonstrate that the free matrix
apportionment problem is equivalent to the (free) vector apportionment problem.
This is one of the reasons for introducing additional constraints in section 9.3. In
section 9.4 we use the shaping of these constraints to distinguish between three
types of matrix apportionment problems. Section 9.5 presents Balinski and
Demange's axioms (conditions) for the matrix apportionment problem and tells
which methods that satisfy them. The last two sections investigate the existence of
solutions to the matrix allocation and matrix apportionment problem.

9.1 Basic terminology

The task in the general (two-dimensional) matriH apportionment problem is
to distribute h seats among m constituencies and n parties based on the votes the
parties have received in the constituencies. A (two-dimensional) matrix appor-
tionment is an apportionment where each seat represents both constituency and
party. h, m, and n are positive integers. Notice that election situations with m = 1
or n = 1 are nothing but the vector apportionment problem. We use the indexes i
andj for constituencies and parties respectively, where i E M = {l, 2, ..., m} and
j E N = {l, 2, ..., n}. p = (Pij) is the unte matriH (population matrix), where Pij
denotes the votes for party j in constituency i.We call each entry in a matrix, i.e.
each combination of constituency and party, cell and refer to it by its positioning
in the matrix. Every cell in a vote matrix is assumed to be a non-negative real
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number, Le. O ~ Pv E 9l for all i, j. The reason for allowing some cells to be
zero is that there are parties which only participate in one or a few constituencies.
However, we do not allow parties with zero national vote totals or constituencies
with no voters. Should such a party or constituency appear, we simplyeliminate

it from the election situation. A matrix problem is called positiue if all cells in

the vote matrix are positive, Le. if p > o. The apportionment matriH is

denoted a = (aij), where all cells aij are non-negative integers, Le. a ~ O. Both p

and a are m x n matrices. We use a to exemplify the notation of sums of cells: aiN

and aMj denote the number of seats apportioned to constituency i and party j

respectively:

(9.1) aiN= L aij
jeN

aMj= L av
ieM

aMNis the total number of seats apportioned Moreover, the house size h can be
expressed in several ways:

(9.2) LL w= L aiN= L aMj=aMN=h
ieM jeN ieM jeN

9.2 The free matrix apportionment problem

A matrix apportionment problem is free if the house size constraint (9.2) is the
only constraint. The vector apportionment problem, as presented in chapters l
and 6, is free. On the other hand, a problem where minimum representations
fixed by law are present is not free. Even if p is a m x n matrix in the matrix
problem compared to a vector of length m or n in the vector problem, the two

free problems are essentially the same. We now explain how the free matrix
problem can been converted to an equivalent free vector problem: There are no

other restrictions on aiN and aMj than the one imposed indirectly through the
house size constraint (9.2). The vote matrix can therefore be rearranged. We

choose to split it up in m vectors of length n and place these vectors one after
another. The result of this rearrangement is a vector of length m· n, where
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element number (s - I)·m + a, where SEM and aEN, is the votes of the ath
party in the sth constituency.

Each cell is on its own in the free matrix apportionment problem. A cell
representing the same party or constituency is just as fierce an opponent as any

other cell. Thus, the vote totals for constituencies and parties are irrelevant for

the apportionment. As a result, the free matrix apportionment problem will often
lead to a disproportional representation for both constituencies and parties. One

of the reasons for having parties must be that their lists in different constituencies

are seen as a part of a whole apportionmentwise. By this we mean that if a party
just has missed out in the competion for seats in some constituencies, this should
count in its favour if there is a close race in another constituency. Regarding the
constituencies, we stated in chapter 8 that their representation should be
proportional to some chosen basis. Our conclusion after this brief discussion is
that it is a bad solution to let the matrix apportionment problem be free. In fact,
most, ifnot all, of the apportionment schemes described in section 8.6 are better.

9.3 Additional constraints for the matrix problem

To accomplish a higher degree of proportionality between vote totals and

apportionment than the free matrix problem could guarantee, we introduce
constituency and party constraints. We call a problem equality constrained if
all constituency and party constraints are given as equalities. Later on we operate

with equality constraints, but to be general we here present the inequality

versions of the constituency (9.3) and party constraints (9.4):

(9.3)
(9.4)

ri ~ aiN s Ri
C· < all: < C·') - ~l'lJ- '}

'Vi
'Vj

ri and Cj are lower, while Ri and Cj are upper bounds. r = (ri) and R = (Ri),
which both are vectors of length m, summarize the bounds for the constituency
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representation. Similarly, the party bound vectors are c = (Cj) and C = (Cj) of
length n. We assume that all lower bounds are non-negative integers and that all
upper bounds are positive integers:

(9.5)

(9.6)
r z O and c z O
R>O and C>O

We do not exclude any interesting situations by assuming that the upper bounds
are larger than zero. If an upper bound of zero had been allowed, the
constituency or party associated with this constraint would not have got any seat
and could therefore be eliminated from the problem. For the lower and upper
bounds to be consistent with the total number of seats, the following relationships
must hold for constituencies and parties respectively:

(9.7) ru =L ri s h sL Ri =RM
ieM ieM

(9.8) CN =L Cj s h sL Cj = CN
jeN jeN

How shall the bounds be determined? In section 8.6 we argued that both
constituency and party representation should be proportional. When the problem
is equality constrained this is easily achieved by carrying out two vector (one-
dimensional) apportionments: To determine proportional constituency bounds we
apportion seats to the constituencies based on the number of people entitled to
vote or some appropriate constructed measure. The party bounds are determined
by apportioning seats to the parties based on their national vote totals. In the
determination of constituency and party bounds the arguments from chapter 8
regarding choice of apportionment method should be taken into account. Even
for problems which are not equality constrained it seems reasonable to determine
the bounds by means of apportionment methods. These apportionments should be
based on house sizes of tu. CN, etc, where su and CN are not necessarily equal. In
countries with "free" supplementary seats the upper constituency bounds are often
set to infinity, However, the house size constraint (9.2) restricts the real upper
bounds to Ri = ri + (h - rM).
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All parameters for the matrix apportionment problem have now been introduced,
and we gather them in the bound uector: o = (c, C, r, R, h). Even if we had
allowed c, C, r, R, and h to be real, all elements in cr would effectively be
integer because the apportionment matrix is integer. This is the motivation for
the earlier integer assumption regarding the bounds. We call a pair (p,cr) an
election situation for the matrix apportionment problem.

The kind of problem we get when allowing both the apportionment matrix and
the bound vector to be real valued is called allocation problem. We call the
real valued version of the apportionment matrix allocation matriH and denote
it f = (fij), where fij E 9l for all i, j. The allocation problem has the same
constraints as the apportionment problem. Constraints (9.2) - (9.4) with fij
substituted for aij determine the set of allocations. We denote this set R(cr):

(9.9)

The set of apportionments consists of the integer valued members of R( ø).

From now on we assume, unless otherwise stated, that we deal with problems
where the set of apportionments is non-empty. As in the vector case we need an
apportionment method A to determine the apportionment(s). A method used
to determine allocations is called allocation method and is denoted F. The
allocation problem is also known as the continuous problem, while the
integer problem is another name for the apportionment problem.

9.4 Types of matrix apportionment problems

We distinguish between three types of matrix apportionment problems: The
equality constrained problem, the partial inequality constrained problem, and the
inequality constrained problem. An inequality constrained problem is a
problem where both constituency and party constraints are given as inequalities
and where ru < h, CN< h, RM> h, and CN> h. The free matrix apportionment
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problem is a special case of the inequality constrained problem, namely a
problem where all lower bounds are set equal to zero and all upper bounds are
set equal to inftnity. With a partial inequality constrained problem we mean
a problem with equality constraints for one index and inequality constraints for
the other. Election systems with free supplementary seats, like the Swedish and
Norwegian ones, can be viewed as this type of problem. Interpreted in a matrix
context such systems have equality party constraints because cN = eN = h, but
inequality constituency constraints because rM < h and RM> h.

In the choice between the different ways of formulating the matrix apportionment
problem we prefer the equality constrained version. There is no need for
inequality party constraints because the party representation should be
proportional to the parties' national vote totals. In section 8.2 we argued that the
constituency representation should be proportional to a constructed measure
which includes the number of eligible voters. The drawback of the proposed
constructed measure is that it does not take the number of votes cast into
consideration. However, if the number of votes cast is included as an important
part of such a constructed measure, there should not be a need for inequality
constituency constraints. NB. In the tests in sections 11.5 and 12.4we use equality
constituency constraints determined from the vote totals.

9.5 Balinski and Demange's axioms

[B&D-l] (page 711) propose six axioms for the matrix apportionment problem.
The first five of these are directly inspired by their five allocation axioms, see
[B&D-I] (page 702), while the sixth axiom is special for the apportionment
problem. Because of the similarity we only present the six apportionment axioms
here. Five of them are generalizations of conditions from the vector apportion-
ment problem, and we use the same names.

Regarding exactness, the only distinction compared with the vector apportion-
ment problem is that instead of using quotas we here use fair shares ty. The fair
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share matrix f* deviates from the proportional quota matriH q = (qij) = (:!;)
via row and column multipliers which take the constituency and party bounds into
consideration.

Definition 9.1
A is exact if tij E No for all i,j implies that A(p,a) = ... = (tij).

For positive problems N can be substituted for No. The probability of all cells in
a fair share matrix being integer is extremely small.

Releuance is the new axiom (condition) compared with the vector
apportionment problem. [B&D] see it as a kind of "independence of irrelevant
alternatives" property. It says that if some of the apportionments of A(p,a)
belong to the more restricted region R(a), then one cannot obtain a better set of
apportionments A(p,a) than those inside this region. Thus, the possibilities in
R(a) - R(a), Le. outside the restricted region R(a), should be irrelevant.

Definition 9.2
A is releuant if the following holds for all (p,ø) and (p,a):
If [A(p,a) fl R(a)] :#- ø and R(a) c R(a), then A(p,a) = [A(p,a) fl R(a)].

Before the next axiom is presented, we need to introduce notation for submat-
rices. As an example, the submatrix of p defined over the constituencies I c M
and parties J c N is denoted P/Jo

The idea behind consistency is that the apportionment for any subproblem shall
be consistent with the apportionment for the whole problem. [B&D-l] (page 711)
call this axiom uniformity.

Definition 9.3
A is consistent if a E A(p,a) implies that eu E A(p/J,a/J);
and ifå/J E A(p/J,a/J) is another apportionment for the subproblem,
then ildefmed to be equal to åIJ on I x J and a elsewhere
is also an apportionment: ilE A(p,cr).
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The counterpart to the condition weak population monotonicity from the vector
apportionment problem is called monotonicity. If the number of votes increases
for only one cell, monotonicity demands that this cell shall not lose any seat.

Definition 9.4
A is monotone if a e A(p,a), å e A(p,a), and fl is equal to p
except for Psa< Psa,where seM and aeN, imply asa~ asa.

Let us define the following sets: 1- = {ieM: aiN= ri}, 10 = {ieM: ri < aiN< Ri},

1+ = {ieM: aiN=Ri} and analogously for J-, JO,and J+.

Due to the constituency and party bounds, the axiom (condition) called
homogeneity is more complex here than it was for the vector apportionment
problem because of the constituency and party bounds. Homogeneity now
requires the following: If two rows or columns are proportional and bounded to
the same sum, then there should be an apportionment that is equal for these rows
or columns.

Definition 9.5
A is homogeneous if a e A(p,a) and o > 0, a. > 0, and J3> ° are such that

a.i < 1 implies i e 1- and cu> 1 implies i e 1+,
J3j< 1 impliesj e J- and J3j> 1 impliesj e J+,

imply that a e A(o·a.·p·J3,a).

Completeness is the axiom which is special for the apportionment problem,
because ties do not occur in the allocation problem. It is defmed the same way as
for the vector apportionment problem:

Definition 9.6
A is complete if Jf ~ p when a tends to infmity and a e A(pa,a) for every a,
then a e A(p,a).
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[B&D-l] (page 711) let Ad denote a divisor method which satisfies Definition 2.2.
A divisor rounding [ ]d in Definition 9.7 below is defined the same way as for

the vector apportionment problem, see equation (2.10) in section 2.7. What is
different here is that we have three multipliers to adjust the votes (5 . 'Ai . Pij . J.y

Icompared to one z . Pi = (5 . Pi for the free vector problem. 'A and J.1 are needed to
obey the constituency and party bounds respectively:

Definition 9.7
a is an apportionment for the election situation (p,ø) with the divisor method Ad
if:

a = (aij) = ([ (5 • 'Ai . Pij' J.1j ]d)' a E R(cr),

for some choice of (5 > O, 'A > O, J.1> Owhich also satisfy

Ai> 1 implies aiN = ri and

J.1j > 1 implies aMj= Cj and
Ai < 1 implies aiN =Ri,

J.1j< 1 implies aMj= Cj.

The possibility of ties means that the chosen divisor method Ad may admit several

apportionments for a given election situation. A multiplier set «(5,A,J.1) which
satisfies the premises in Defmition 9.7 is called proper for a in A d(p,cr). There

is usually some freedom in the choice of multiplier values since many different
adjusted votes (5 • Ai • Pij . J.1j result in the same divisor rounding aij. The value of a
multiplier not involved in a tie can be chosen within an interval given fixed
values of the other multipliers. Thus, there are usually infinitely many sets of
proper multipliers for (p,ø) given Ad.

[B&D-l] state the following two characterization theorems, which they prove on

(page 713~) and (page 70S) respectively:

Theorem 9.1
An apportionment method satisfies the six apportionment axioms over the class of

positive problems if and only if it is a divisor method Ad with dl > O.
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Theorem 9.2
The fair snare method F* is the uruque matrix allocation method which
satisfies the five allocation axioms over the class of positive problems.

The fair share method produces what is called a fair share matriH. This matrix
is denoted f* and can be expressed as f* = (tij) = (8 . "A.i • Pij . f.1j), where the
multipliers satisfy the premises in Definition 9.7 with tij substituted for aij. For a
given 8 value there is usually less leeway regarding the choice of multiplier
values for the allocation problem than for the corresponding apportionment
problem. This is not the case in the following situation:

Example 9.1
Consider the election situation with p = 2 2 , R = (1, 1), C = (1, 1), and h = 2,

1 1
Le. an equality constrained problem. We choose MF (CP1) as the apportionment

h 1 3 3 2 •
method and let 8 = PMN = "'3' Then "A.l = 4' "A.2 = 2", f.11 = f.12 = 1 IS the only
proper multiplier set. It can be shown that the fair share method also produces
these multiplier values given 8 = ~. In both instances the final adjusted vote
matrix 8 . "A. • p . f.1 is as shown in Table 9.1. This is also the optimal allocation,

1 o o 1 .while MF allows both and as apportionments.o 1 1 o

Table 9.1
1 1
2" 2"
1 1
2" 2"

Final adjusted vote matrix.

9.6 Existence of matrix allocations

We start the review of existence results for the matrix allocation problem with
positive problems, Le. problems with p > O. An immediate consequence of
Theorem 9.3 below is that there exists a unique solution to all positive allocation
problems.
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Difficulties regarding existence arise when we face vote matrices with zeros.
R( 0") is too general for our purpose in these situations. Since it is unreasonable
for a cell with zero votes to get a positive allocation, we can restrict our attention
to the following subset of R(O"):

(9.10) RO(p,O") = {f E R( 0"): fij = Oif Pij = O}

Due to limitations of the software used to write this dissertation, we denote the
complements of 1cM and JcN by l and J respectively. In the following we ass-

ume that the 1 x J subset of the vote matrix consists entirely of zeros, Le. PlJ = o.
Then necessary and sufficient conditions for RO(p,O") to be non-empty are the
following adaption of the supply-demand conditions of network flow theory, see
[B&D-l] (page 707):

(9.11) CJ'2:. it; RI'2:. cJ, and cJ+ rl~ h s CJ+ RI
for any 1cM andJ cN with PlJ= O(rø = Oetc).

It is tempting to demand even more for allocation problems; namely that the
allocation matrix only contains zeros if there are corresponding zeros in the vote
matrix. The subset of RO(p,O") thereby defined is:

(9.12) R+(p,O") = {f E R( 0"): fij = Oif and only if Pij = O}

R+(p,q c RO(p,o) c R(o). The conditions in (9.11) regarding the non-
emptiness of RO(p,O") are not enough to guarantee that R+(p,O") is non-empty.
[B&D-l] (page 708) and [B&D-2] (page 198) present further definitions which

are ofhelp in characterizing when R+(p,O") '* 0:

An election situation (p.ø) which satisfies the conditions in (9.11) is said to be

reducible into independent subproblems on (1,J) and (l,.[)respectively if 1 and J
are proper subsets of M and N for which an inequality in (9.11) is binding. If
also PIJ = 0, (p,ø) is said to be decomposable into independent subproblems on
(1, .J) and (l, JJ. The conditions the different subproblems must satisfy depend on
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which of the inequalities in (9.11) that is satisfied as an equality. When CJ = fJ,

the subproblem on (l, JJ must sum to h - CJ, while if RI = c,f, the subproblem on
(I, J) must sum to h - RI. Moreover, if CJ + RI = h, the subproblem on (I, J) must
sum to CJ while that on (l,.[) must sum to RI; and similarly if Cl + rI = h. Finally,
(p,ø) is said to be irreducible if all inequalities in (9.11) are satisfied strictly,
i.e. CJ> rI, RI> Cl, and Cl + rI < h < CJ + Rb whenever the subsets are proper.

[B&D-2] (page 198) prove that R+(p,cr) '* ø if and only if (p.o) is decomposable
into a set of independent irreducible subproblems. We are now ready for the
principal result regarding existence of matrix allocations, [B&D-2] (page 197):

Theorem 9.3
A fair share matrix exists if and only if R+(p,cr) is non-empty, in which case it is
the unique solution.

[B&D-l] (page 707) define a matrix f as an eHtended fair share matriH for
the election situation (p,cr) if there exists some sequence of election situations
(pa,crll), pa > Oconverging to (p,ø) such that the sequence F*(pa,crll) converges
to f. When RO(p,~ = ø, the extended fair share matrix does not give a
satisfactory solution to the allocation problem, as exemplified in [B&D-2] (page
199-200). However, the extended fair share matrix is useful in election situations
where R+(p,cr) = ø but RO(p,cr) '* ø because of the following theorem from
[B&D-l] (page 707):

Theorem 9.4
If the set RO(p,cr) is non-empty, then the extended fair share matrix of the
election situation (p,ø) is unique. Moreover, it belongs to RO(p,cr).

The unique fair share matrix is instrumental in the calculation of matrix bias in
chapter 16. In section 16.2 we present the standard algorithm for determining
this matrix.
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9.7 Existence of matrix apportionments

It follows from Theorem 9.1 that there exist solutions to all positive matrix
apportionment problems whenever dl > o. Unlike for the allocation problem, we
see nothing wrong in not apportioning any seat to a cell with a positive number of
votes. However, if one demands that all such cells shall qualify for a positive
apportionment, the following subset of RO(p,cr) is of interest:

(9.13) RI(p,cr) = {f E RO(p,cr): Pij> Oimplies aij ~ l}

RI(p,cr) is the apportionment counterpart to R\p,cr), but the integer requirement
makes it more demanding since all cells with a positive number of votes, however
small, must get at least one seat. [B&D-l] (page 712) present the following
theorem regarding existence of matrix apportionments:

Theorem 9.5
If dl > O,Ad(p,cr) is non-empty if and only if RO(p,cr) is non-empty, while with
dl = O,Ad(p,cr) is non-empty if and only if RI(p,cr) is non-empty.

The number of positive vote cells cannot be larger than h for RI(p,cr) to be non-
empty. For many real world election situations this requirement is not satisfied,
so an Ad with dl = Oshould not be used.

The existence results from this and the preceding section tell us that we will avoid
trouble if RO(p,cr) is non-empty. It is therefore interesting to know whether
RO(p,cr) may be empty with our recommendations regarding determination of
constituency and party bounds. Based on the discussion in sections 8.1 and 8.3 we
recommend that a divisor method used to determine constituency (party) bounds
from vote totals should not be less (more) favourable to small entities than MF.
In our empirical test in chapter 14 we operate with two combinations of bounds
determined from vote totals: The first combination is constituency bounds
determined by SD together with party bounds determined by HA, while the
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second combination is both types of bounds determined by MF. As the two
examples below illustrate, it is possible that RO(p,cr) = 0 with these bound
combinations. Both examples deal with equality constrained problems, so we
denote the constituency and party bounds R and C respectively.

Example 9.2
We face the 2 x 2 vote matrix in Table 9.2 with a house size of 7. Based on the

vote totals we determine the constituency bounds by SD and the party bounds by
HA. The resultant bounds are R = (5, 2) and C = (6, 1) respectively. Since the

apportionment to the cell in the upper left comer a 11 is restricted to a maximum
of 5 seats by the constraint for the fIrst constituency RI = 5, the apportionment to

the cell with zero votes in the lower left comer a2l must be at least 1 seat to
satisfy the constraint for the first party Cl = 6. Hence, RO(p,cr) is empty. This can

also be verified through (9.11). Because P21 = 0, I = {2} and l = {l}. The first

inequality in (9.11) requires that C2 ~ R2, but 1 = C2 < R2 = 2 here. Moreover,
the two other conditions in (9.11) are also violated.

Table 9.2 Table 9.3
37 2 39
O 10 10

37 12

412 10 6 428
O 125 75 200

412 135 81
2 x 2 vote matrix and its row and column vote totals. 2 x 3 vote matrix and its row and column vote totals.

With MF to determine both types of bounds, a 2 x 2 vote matrix is not enough to
construct an election situation where RO(p,cr) = 0. However, with a 2 x 3 vote
matrix it is possible that RO(p,cr) is empty:

Example 9.3
We face an election situation consisting of the vote matrix given in Table 9.3 and

a house size of 11. Both constituency and party bounds are determined by MF

based on the vote totals, which result in the bounds R = (7, 4) and C = (8, 2, 1)
respectively. Like in Example 9.2 these bounds require that the apportionment to
the cell with zero votes a2l shall be at least I seat. Thus, once again RO(p,cr) = 0.
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The examples above are not that unrealistic, so it is not too promising that they
lead to an empty RO(p,cr). Nevertheless, here follows some arguments against
their realism: Both examples are constructed such that both the constituency and
the party the cell with zero votes belongs to are rather fortunate in the
apportionments to determine bounds. Moreover, a cell with zero votes often
belongs to a small party, while it here belongs to the largest party. The arguments
above point to a low probability of RO(p,cr) being empty. During the algorithm
runs in connection with the tests in chapters 14 and 16 we did not encounter any
occurrence of RO(p,cr) = 0.
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In this chapter we look at two constrained optimization formulations of the
matrix apportionment problem. The first two sections follow [H&J]. We start off
by presenting the entropy minimization formulation. This formulation has a dual
which is analysed in section 10.2. In the last section the utility maximization
formulation is presented.

10.1 Entropy formulation

It has been known for a while that the positive equality constrained matrix
allocation problem can be formulated as a non-linear optimization problem where
an entropy function is minimized, see [Ba] (page 83). [B&D-2] (page 196) use
entropy minimization also for the inequality constrained matrix allocation
problem. To handle the difficulties which arise because of cells with zero votes,
they introduce the following notation: S is the set of cells for which Pij > O, while
S is its complement, i.e. the set of cells for which Pij = O. The formulation of the
problem then becomes:

(10.1) min L fij· [ln(~) - 1]
(ij)eS

subject to the constraints

(10.2) ri:::; L fij = fiN s Ri "il i
jeN

Cj sL fij = fM] s ej "ilj
ieM

(10.3)
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(l0.4) LL fij = fMN= h
ieMjeN

(10.5)

(10.6)

.c" > Oll] -

fij = O

'fl (ij) E S

'fl (ij) E S

The feasible set for this program is RO(p,a). By using Lagrangian relaxation on
the formulation above it can be shown that the unique optimal solution when
R+(p,a) '* ø can be expressed as:

(l0.7) ~,- p" . e(ai - Ai + ~j - Bj + B)li] - l]

ty = O
for (ij) E S
for (ij) E S

where ai and Ai are related to the constituency constraint (10.2), J3jand Bj to the
party constraint (10.3), and Ois related to the total seats equality (10.4).

Entropy is a measure of the order of chaos. The larger the value of an entropy
function, the greater the order of chaos. Our goal is to make the apportionment
matrix, a proportional to the vote matrix p subject to the requirement that the
number of seats distributed to each constituency and each party fall within
specified limits. For this sake we define the entropy function »o which measures
the order of chaos between a and p. We assume that Ttij is continuous, monotonic-
ally increasing, and strictly convex. To obtain the proportional apportionment we
minimize the value of the entropy function:

(l0.8) minLL Ttij{aij)
ieMjeN

The constrained optimization problem with (l0.8) as objective function is a non-
linear integer programming problem. Since we only are interested in the value of
Ttij for integer arguments, we linearize Ttij. The linearization is accomplished by
introducing the 011 -variables aijl and the coefficients Ttijl. aijl relates to aij through
~ aijl = aijH = aij l E H is here the seat number in cell (i J) and therefore a
~ember of the possibly more restricted set {l, 2, ..., mineR;, Cj)}. We define the
coefficient Ttijl as the increment from Ttij{l - 1) to Ttij{l):
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(10.9) 1ty! = 1tij(1)

1tijl = 1tij(l) - 1tij{l - 1) for Z ~ 2

The fact that 1tij(aij) is monotonically increasing and strictly convex ensures that
1tyl forms a strictly increasing sequence in l, i.e. 1tijl> 1tij(I-I} for Z ~ 2. After the
linearization, the objective function looks like this:

(10.10) minLLL [1tijl· aijl]
ieMjeNleH

We now relate the coefficients 1tyl to divisor methods by letting 1tyl = ln(:~).
Explanation of why this is a suitable choice: Since the quotients ~ form a strictly
decreasing sequence in Z for all strict divisor methods, their reciprocals :~ form a
strictly increasing sequence in l. The use of the naturallogarithm only represents
a monotonic transformation of this strictly increasing sequence. For integer
arguments the entropy function can now be expressed as:

(l0.11)
I

1tij(l) = ~ 1tijs = ln(pd~.)+ ln(pd~.)+ ... + ln(p~.) = ln(dl!) - Z·ln(pii)£..J IJ IJ IJ :Js==l

For more comments on the entropy formulation we refer to [H&J] (page 7-13).
The substitution ofln(:~) for 1tyl converts {lO.lO) to:

(l0.12) minLLL [ln(:~) . aijl]
ieMjeNleH

which further is equivalent to the following objective function:

(l0.13) maxLLL [ln(~) . avl]
ieMjeNleH

Because division by zero is undefmed and so is the natural logarithm of O, the
instances where dl = O or py = Oneed special attention. We treat Pij = O first.
Since a cell with zero votes should not get any seat, we remove all terms for
which (i J) E S from the objective function and introduce the extra constraint
(lO.21) instead. Regarding d I = O, we define ln(1f) to be a very large but
countable number. Moreover, we define the internal relationship between
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different such quotients the same way as in Defmition 2.1. After this clarification
we are ready for what will be our constrained optimization formulation of the
matrix apportionment problem:

(10.14) max L L [In(IJC) . aijl]
(ij)eSleH

subject to the constraints

(lO. IS) LLL aijl = aMNH= h In(B)
ieMjeNleH

(l0.16) LL aijl = aiNH ~ 11 'Vi ln(ai)
jeNleH

(10.17) LL aijl = aiNH s Ri 'Vi In(Ai)
jeNleH

(10.18) LL aijl = aMjH ~ Cj 'Vj In(J3j)
ieMleH

(10.19) LL aijl = aMjH::S;Cj 'Vj In(Bj)
ieMleH

(10.20) aijl = Oor 1 'V (ij) E S, l

(l0.21) aijl = O 'V (ij) E S, l

(lO.IS) - (10.19) express the same as (9.2) - (9.4), but both the constituency and

party constraints have been splitted in two here. Be aware that einn here is the

same as aiN in (9.3) etc.

We observe that the optimization problem above is linear in the variables aij~
The restriction that aijl has to be integer, actually zero or one, means that the
problem is an integer programming problem. In fact, it is a network flow

problem with integer capacity bounds ø. This means that if the integer restriction
on aijl is loosened, the corresponding linear programming problem will have an

optimal solution which is integer, see [E&G&S] (page 398). Let us therefore
relax constraint (10.20) the following way:

(l0.22)

(10.23)
aijl ~ O
aijl::S;1

'V (ij) E S, l
'V (ij) E S, l In(Yijl)
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The constraint set consisting of (l0.15) - (10.19) and (l0.21) - (10.23) limits the
set of possible apportionments to integer members of RO(p,cr). The variables to
the right of the constraints above are the associated dual variables. These
variables are utilized in the dual formulation in the next section.

10.2 The Dual Problem

A way of gaining insight into a primal problem is by formulating its dual.

[E&G&S] (page 182-183) describe the formulation process. We are interested in
the dual of the LP problem in section 10.1. Given the dual variables introduced

above, the formulation of the dual problem becomes:

(10.24) mm - h . ln(o) + L [Rj : In(Ai) - ri· ln(ai)]
ieM

+L [Cj· In(Bj) - Cj· In«(3j)] + L L In(Y~jl)
jeN (iJ)eS [eH

subject to the constraints

(10.25)

(10.26)

p"[-ln(O) -ln(ai) + ln(Ai) -ln(~j) + ln(Bj) + ln(Yijl)] ~ ln(~) 'V (ij) E S, l

O>O,ai~ 1,Ai~ 1,(3j~ I,Bj~ 1,Yij/~ 1

We isolate m(Yijl) on the left hand side of (10.25) and take the exponent on both

sides, which result in the equivalent constraint:

. ai o Pr pi;
O AiOBj

'[ijl ~
dl

By introducing the variables Ai = ~ and I..lj= t, (10.27) is simplified to:

(10.27) 'ri (iJ) E S, l

(l0.28) > o o A.i o !li" pi;
Yijl- dl ti (iJ) E S, l
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Regarding the new variables, we deduce from (10.26) that:

(10.29) A.i > O and J.y > O

We use the complementary slackness conditions to say something about the
values of the dual variables. These conditions tell us the following: If a constraint
in the primal problem is not binding, then the dual variable associated with this
constraint is equal to zero. Moreover, a binding constraint in the primal problem
has an associated dual variable which is greater than or equal to zero. Below we
investigate the constraints in the primal problem.

When In{ai) > O, Le. ai > 1, constraint (10.16) is binding, which means that the
number of seats given to constituency i is at the lower bound ri. Similarly, when
Ai> 1, (10.17) is a binding constraint and the number of seats given to constit-
uency i is at the upper bound R, Obviously, (10.16) and (10.17) cannot be
binding at the same time. The described relationships have the following
implications for the variable A.i:

(10.30) A.i > 1 implies eorn = ri and A.i< 1 implies emn = Ri

The reasoning for the dual variables associated with constraints (l 0.18) and
(10.19) is similar, with the following implications for J.y:

(10.31) J.y > 1 implies aMjH = Cj and J.y < 1 implies aMjH = Cj

Notice the similarity between (10.29) - (10.31) and Defmition 9.7.

Constraint (10.23) is binding when cell (iJ) has got its lth seat. Then the value of
the associated dual variable is ln(Yijl) ~ O, Le. Yijl ~ l. Moreover, if l ~ 2 in this
situation, it follows from the construction of the variable aijl that Yij(l-l) > Yijl ~ 1.
The following relationship exists between Yijl and aij/:

(10.32) Yijl > 1 implies aijl = 1
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The equality constraint for the total number of seats (10.15) can be written as two
inequality constraints, one with h as the upper bound and the other with h as the
lower bound. Thus, the dual variable C) is of the same type as Ai and J.lj- C) < 1
implies that the upper bound is binding, while C) > 1 implies that the lower bound
is binding.

10.3 Utility approach

Let us generalize the utility approach from section 6.9. In the matrix apportion-
ment context we maximize the utility over all cells:

(10.33) max LL [Pij. uy(l)] = max L L [(~).aijl]
ieMjeN (ij)eS leH

subject to the same constraints as for the entropy minimization problem. Because
Pij . aijl = O when (iJ) E S, it would not have made any difference if we had

summed over all (iJ) in (10.33).

Let us formulate the dual to this utility maximization problem. In this
formulation we let the dual variables associated with the different constraints be:
C) for (10.15), ai for (10.16), Ai for (10.17), ~j for (10.18), Bj for (10.19), and

Yijl for (10.23). The result is the following the dual problem:

(10.34) mm - h·c) + L (Ri -Ai - ri . ai)
ieM

+L (Cj . Bj - Cj. ~j) + L L Yijl
jeN (ij)eS leH

subject to the constraints

(10.35)

(10.36)

'r;J (ij) E S, l

8 unconstrained, ai ~ O,Ai ~ O, ~j ~ O,Bj ~ O, "[ijl ~ O
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We now introduce the variables Ai and ,.y, which here are defmed as Ai = a.i - Ai
and Jlj= øj - Bj respectively. Both Ai and Jlj are unconstrained in sign. The new
variables simplify (l0.35) to:

(10.37) Y··l> £ild;" + 8 + A· + Il·l) - l l rj "il (ij) E S, l

A similar analysis to that in section 10.2 can be carried out for the dual variables.
The results are essentially the same when differences in defmitions of dual
variables are taken into account.

We round off this chapter with a companson of the utility maximization
formulation and the entropy minimization formulation. What is different in these
two formulations are the objective functions. However, given the set of possible
apportionments RO(p,o), which is equal for both formulations, the two objective
functions (10.14) and (10.33) result in identical optimal apportionments. Here
follows a brief explanation: Let (10.33) be the objective function and order the
quotients IJ1 in descending order. This ordering will not be altered by making a
monotonic transformation, such as taking the natural logarithm ln(IJ1) or the
square root {Pi.Even though (10.33) and (10.14) are different, the shaping of
the convex set RO(p,a) ensures that both objective functions attain their highest
value for the same extreme point(s) of RO(p,a).

We choose to work with the logarithmic version of the objective function, i.e.
(10.14), in the remainder ofthis dissertation. This means multiplicative scaling to
find the optimal apportionment. Use of (10.33) would have meant additive
scaling, compare (10.37) with (10.28).
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The matrix apportionment problem as formulated at the end of section 10.1 is a
linear programming problem which can be solved by the simplex method.

Because of the problem's simple structure, our hope was to find a simpler

algorithm. Another way of attacking the problem is to relax one set of constraints
like Helgason and Jornsten do. Their formulation, which forms the basis for later
algorithms, is presented in the first section. In section 11.2 we introduce a
measure for evaluating the error of the current assignment. A good starting point
is important for every algorithm, and in the third section we come up with three
initialization procedures for the multipliers. We carry out a test to determine a

good parameter value for the most advanced of these procedures in section 11.5.
Section 11.4 considers implications of relaxing the utility maximization

formulation. The fmal section is devoted to a discussion about politically
acceptable algorithms for the matrix apportionment problem.

11.1 Helgason and Jornsten's formulation

To solve the matrix apportionment problem, [H&J] (page 21) relax the lower
(10.16) and upper bound (10.17) constituency constraints. This leads to the
following relaxed formulation, where ln(ai) and ln(Ai) are the dual variables for
the lower and upper bound constraint respectively:
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(11.1) mm mm L(a,A)
a~lA~l

where the function L(a,A) is defined as:

(11.2) L(a,A) = L [Ri' ln(A;) - ri . ln(ai)]
ieM

+mix L L [ln(~~··~1)·aijl]
(ij)eS [eH

subject to the constraints

(11.3) LLL aijl=aMNH=h
ieM jeN [eH

(11.4) L L aijl = aMjH~ Cj 'ifj
ieM [eH

(11.5) L L aijl = aMjH~ ej 'ifj
ieM [eH

(11.6) aijl ~ O 'if (ij) E S, l

(11.7) aijl s 1 'if (ij) E S, l

(11.8) aijl = O 'if (ij) E S, l

The problem IS a non-linear minimization problem. It can be solved by a
subgradient method as described in [H&J] (page 22-23).

L(a,A) is an auxiliary tool in the search for the optimal apportionment. We
evaluate L(a,A) by using a greedy algorithm. This algorithm assigns seats to the
best adjusted quotients ln(~i'. ~1).The assignment process works as follows: First
a number of seats corresponding to the lower party bound Cj is given out within
each party. When the problem is equality constrained, this is the end of the
assignment process. For problems with inequality party constraints there are still
h - CN seats left for distribution. These seats are given out globally, always
respecting the parties' upper bounds C, until all h seats have been distributed.
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Rather than relaxing the constituency constraints, we could relax the party
constraints. With this relaxed formulation, the objective would have been to
minimize the function L(~,B):

(11.9) L(~,B) = L [Cj' ln(Bj) - Cj. ln(~j)]
jeN

"" "" .fu.:.EtL+mF ~ ~ [ln(Bj' dl) . aijl]
(ij)eS leR

subject to constraints (11.3) - (11.8), but with (10.16) - (10.17) substituted for
(11.4) - (11.5).

In the following we refer to the formulation with relaxed constituency constraints
as constituency retaaatmn. Similarly, the formulation with relaxed party

constraints is referred to as party relaaatlen. We have included both

relaxations in the tests later in the dissertation. The description below and in
chapter 12 is based on constituency relaxation.

11.2 The measure of goodness

Let å denote the current assignment. To check whether this assignment is feasible,
we compare it with the constituency constraints. If it respects all of them and the
variables Ai = ~ satisfy condition (10.30), an optimal apportionment has been
found. Until this happens the actual assignment will violate one or more of the

relaxed constituency constraints. We need a measure which evaluates the
magnitude of these violations and defme the measure of godness, denoted p,

for this purpose:

(11.10) p =L (ri - aiNH)+ L (aiNH- Ri)
uu ieM+

where M - is the set of constituencies which currently are assigned less seats than
their lower bound, while M + is the set of constituencies with more seats than
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their upper bound. The set M ° consists of the remaining constituencies, i.e. the
constituencies for which the current assignment does not violate any bound. Let
us formulate these sets mathematically:

(11.11) M- = {i E M: åiNH< ri}
MO = {i E M: ri ~ åiNH~ R;}
M+ = {i E M: aiNH> Ri}

The constituencies in M -,M 0, and M + are called underrepresented, rightly
represented, and ouerrepresented respectively. A constituency which is not
rightly represented, i.e. is a member of either M - or M +, is sometimes called
malrepresented.

Let us go back and take a closer look at (11.10). From the integer requirement
regarding aijl, the integer assumption regarding r i and Ri, and the definition of
the setsM - and M+, it is clear that p is integer valued and non-negative. This is
natural since p shows the violation of the constituency constraints measured in
number of seats. p can be viewed as the total error of the current assignment.
The ultimate goal is to find an assignment for which p = o.

L(a ,A) is a continuous function of a > O and A > O. It is differentiable
everywhere with the exception of tie points in the assignment. The subgradients
of L(a,A) with respect to ai and Ai are:

(11.12) aL(a,A) - ..!.. • ("" "" a' l r) = al,. . (a"NR- r,')OOi - ai £..J £..J if - i
jeN leH

(11.13) aL(a,A) 1 "" "" _ 1aA; = A; • (Ri - £..J £..J aijl) - Ai • (Ri - aiNH)
jeN leH

In the derivation of these subgradients we have utilized that aijH = O for (iJ) E S
means that } aijH can be expressed as 2,'} aijH.

(f;;;:s ieM!:R

By studying (11.12) - (11.13), we see that the subgradients are equal to zero
when the assigned number of seats is equal to ri and Ri respectively. aLt:~) is
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positive (negative) when constituency i has been assigned more (less) seats than
the lower bound ri, while aL~~A) is negative (positive) when the assignment gives
constituency i more (less) seats than the upper bound Ri- Obviously, both sub-
gradients cannot be positive or negative at the same time. The subgradients are of
interest because they tell us in which direction ex.and A shall be adjusted to
reduce p and attain a lower value ofL(ex.,A).

We move on to the equality constrained problem, i.e. ri = Ri etc. Then the
measure of goodness can be written as:

(11.14) p =L IåiNH - Ri I
ieM

p is now a non-negative even number. Let us explain why: Because rM = RM = h
in the equality constrained problem, underrepresentation for one constituency
implies that there are one or more other constituencies with offsetting
overrepresentation. Since every seat which violates a constituency constraint
thereby is counted twice, p is an even number.

ri = Ri and Cj= Cj in the equality constrained problem, so we let Ri and Cj denote
the bounds in the following. By making use of A.i = ~, the relaxed formulation
from section 11.1 can be simplified to:

(11.15) mm L(A.)
A>O

(11.16) L(A.)= L [-Ri· ln(A.i)]+ mF L L [ln(A.i~rj)· aijl]
ieM (ij)eS IeH

subject to the constraints

(11.17) aMNH= h

(11.18) aMjH = Cj 'Vj

(11.19) aijl ~ O 'V (ii) E S, l

(11.20) aijl s 1 'V (ii) E S, l

(11.21) aijl = O 'V (ii) E S, l
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The subgradient of L(A) with respect to Ai is:

(11.22) aL(A.) 1 ~ ~ 1
ON = A.i • (~~ aijl - Ri) = A.i • (aiNH - Ri)

jeN JeH

Thus, a~t)is positive for an overrepresented, zero for a rightly represented, and
negative for an underrepresented constituency. From now on we use the name
constituency multiplier for Ai. The optimal apportionment for an equality
constrained problem has been found if p = o. With ~j = 1 for all j and an
appropriate value for 0, the constituency multiplier conditions (l0.30) will be
satisfied in such a situation.

11.3 Initialization of constituency multipliers

As the empirical test in chapter 14 will reveal, the number of iterations to solve a
matrix apportionment problem depends on how good the initial multiplier set is.
In the case of constituency relaxation, it is the initial constituency multipliers

o

which are of interest. We denote the initial multiplier for constituency i by Ai.
Below we present three initialization procedures. These procedures are created
for equality constrained problems, but with some minor modifications they are
also applicable to inequality constrained problems.

Our review starts with the procedure called no initialization. For the constit-
uency multipliers to have no effect on the quotients, Le. In(~i . 1'£) = In(1'£), we

o

let Ai = 1 for all i. The work at the initialization stage is minimized by this
approach.

No initialization does not utilize any of the available data. With quota ratio
initialization we take the constituency bounds Ri and the number of votes in
each constituency PiN into consideration. The average number of people per seat
for a constituency Pi = ~ usually deviates from the corresponding national

PMN oaverage p = h . To make the adjusted average number of people per seat Ai . Pi
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o

equal for all constituencies, we determine Ai from the following ratio:

(11.23) o _E._Ri
Ai - Pi - qi for all i

o o

Ai < 1 if constituency i's quota has been rounded down to Ri, while Ai > 1 if the
o

quota has been rounded up to Ri. Notice that (Ai - 1) shows the extra influence of
the average voter from constituency i compared with the average national voter.

Example 11.1 illustrates quota ratio initialization:

Example 11.1
Our data are taken from the Icelandic election in 1995. In this election there were
6 parties which won seats in the Althing. The total number of votes cast for these

parties was PMN = 161948. With a total of h = 63 seats, this means an average of
p = 16~~48 ~ 2571 votes per seat. Austurland, which is one of the small

constituencies, contributed to pMN with PAul.N = 7818 votes. The Icelandic
election law favours small constituencies. Austurland was secured a represent-

ation of 5 seats although its quota only was qAul = 1~~~!8 . 63 ~ 3,04 seats. The
average number of votes behind each representative from Austurland was
therefore PAul = 78518 ~ 1564. Formula (11.23) then gives an initial constituency

multiplier for Austurland of iAul= i;~!~1,644. Hence, the average voter in
Austurland was 64,4% more influential than the average Icelandic voter in this

election.

Quota ratio initialization only adjusts for the bias inherent in the constituency

bounds. We therefore expect multiplier sets created by this initialization proce-

dure to be a better starting point for unbiased than for biased divisor methods.

The last procedure we consider is called apportionment initialization. In

addition to the constituency bounds, this procedure utilizes the whole vote matrix
plus the divisor method which is going to be used for the matrix apportionment.
For each constituency we combine votes and constituency bound R i into an
election situation. Thereafter, we make the vector apportionment with the actual
divisor method, Le. we rank the quotients ~ within the constituency. The reason
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for carrying out this apportionment is to identify the quotient which qualifies for
the last seat (/R; and the best quotient which does not qualify for a seat q(Ri + 1). We
call the weighted average of these two quotients target quotient and denote it
ti:

(11.24) where O s 't s l and real

The target quotient is a sort of marginal value of representation for the
constituency. It depends on the choice of target weight 't and the divisor
method applied. In the penultimate section we carry out a test to find a good 't

value for our further investigations.

We use the logarithmic version of the target quotient, Le. m(t;), along with the
relaxed formulation from section 11.1. To even out representational differences
between constituencies, we require that all multiplier adjusted target quotients
shall be equal. This is achieved by setting the value of every multiplier adjusted
target quotient equal to the initial marginal ualue of representation,

o

denoted K. Thus:

(11.25) ln(i; . ti) = In(K)
o o

In(A;)= In(K) - ln(ti)

which implies that the initial multiplier for constituency i is given as:

(11.26)
o o 1
A; = K . ti

o

We have not said anything about the value of K yet. Before we do so notice that a
logarithmic quotient can be written as: ln(ii . -w,)= m(i;) + m(-w,).From (11.26)
we see that all initial constituency multipliers are scaled by the same factor by a

o

change in K. Since all quotients within a constituency are adjusted by the same
amount via the constituency multiplier, the initial measure of goodness,

o o

denoted p, is independent of K. The value of K > O can therefore be chosen
arbitrarily. Our choice is:
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(11.27) 0_ pMN
K - h + (1 - t)'m

Notice that (11.27) takes the effect of t into consideration via the denominator.
o

For t = 1, K is the average number of votes per seat. If q(Ri + 1) is given all the
weight in (11.24), Le. t = 0, ~ = h l m : We illustrate apportionment initialization
with the following numerical example:

Example 11.2
We continue to utilize data from the Icelandic election in 1995 and the constit-
uency Austurland in particular. Iceland is divided in 8 constituencies. With the
target weight set to t = 0,3, (11.27) gives the following initial marginal value of

• o 161948 2361 T h'representation: K = 63 + (1 _ 0,3)"8 ::=: • o carry out t e apportionment
initialization we need to know the parties' votes in Austurland and which divisor
method to apply. Let us apply HA, which results in the following quotients:

Table 11.1

Party A B D G

Ist quotient 577 =577 3668 =3668 I 1760 = 1760 III 1257 =1257 IV
1 1 1 1

2nd quotient 3668 = 1834 II 1760 880 1257 629-= -2-~2 2

3rd quotient 3~68 ~ 1223 V

4th quotient 3668 917 VI-4-=

Ranking of quotients inAusturland with HA as apportionment method.

Parties with less support than A have been omitted from Table 11.1. The roman
numerals show the ranking of the six largest quotients. Since Austurland sends
five representatives to the Althing, it is the fifth and sixth quotient which are of
interest. We put their values into (11.24) to determine Austurland's target
quotient: tAu!= 0,3 . 1223 + 0,7 . 917 ::=: 1009. Finally, the initial constituency
multiplier for Austurland is found from (11.26): ~Au!= i~~~::=: 2,340.
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The advantage of apportionment initialization over quota ratio initialization is its
relation to the local characteristics within each constituency. On the other hand,
apportionment initialization requires more work. While quota ratio initialization
is independent of the divisor method being applied, each divisor method results in
its own initial muliplier set with apportionment initialization. We expect

multiplier sets determined by apportionment initialization to be a good starting

point for most divisor methods.

11.4 Consequences for the additive version

In this section we look at the consequences of relaxing the constituency

constraints in the utility maximization formulation from section 10.3. With a and
A as the dual variables associated with the constituency constraints, the relaxed

formulation becomes:

(11.28)
mm mm L(a,A)
a~OA~O

(11.29) ~ ~~ .EilL(a,A) = ~ [Ri' A; - ri . ai] +mix ~ ~ [( dl + aj - Aj) . aijl]
ieM (ij)eS leH

subject to constraints (11.3) - (11.8).

For the equality constrained problem the adjusted quotients are 1d7 + Ai, where ~i

can be interpreted as a constituency handicap. Moreover, the subgradient of L(A)

with respect to Ai is a~~) = aiNH - Ri.

The initialization procedures must be modified to suit the additive version. They
o

are now carried out as follows: With no initialization we set Ai = O for all i. Each
o

constituency's initial handicap is determined as Ai = P - Pi with quota ratio

initialization. Regarding apportionment initialization, the target quotients are
o

calculated by (11.24) as before. However, the formula for Ai has changed:
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(11.30)
o o

Ai = K - ti

Like for the logarithmic version, the initial measure of goodness p is independent
o

of the value choosen for K. We therefore retain our choice from (11.27).
However, for a given election situation, the value of p with the additive version is
not generally the same as with the logarithmic version.

11.5 Determination of a good value for t

The target weight 't used for apportionment initialization influences the initial
multiplier set in such a way that the initial measure of goodness p depends on the
chosen 't value. Since we expect the number of iterations to find the optimal
apportionment to be positively correlated with p, we want to identify a r value
which makes the average p "small". For this purpose we have carry out a test:

In the test we utilize data from general elections in six countries. These data sets
are edited the following way: We omit all parties with less than 1% support.
Finland and Denmark have some constituencies with special status. We omit
Åland from the Finnish set and the Faroe Islands and Greenland from the Danish
set.

For a given vote matrix, there are two main features which distinguish a matrix
problem from another, namely the bound vector O" and the matrix apportionment
method. In this test we formulate all problems as equality constrained matrix
apportionment problems. We operate with 5 different bound vectors for each
country; the real election bounds plus 4 bound vectors determined by vector
apportionments based on the vote totals. We use SD, DM, MF, and HA for these
vector apportionments and determine both constituency R and party bounds C by
the same apportionment method. For each bound vector we operate with 4
different divisor methods; CPo.Ol, DM, MF, and HA. Thus, for every country
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(vote matrix) there are 5 . 4 = 20 combinations of bound vector and divisor
method. Let us call each such combination country set.

o

p is not a monotonic function of t over the interval u s t ::;;1. This means that the
determination of the optimal target weight(s) would require a lot of work. Our
aim is only to find a good target weight, so we limit the test to 11 't values,
ranging from 't = 1 down to 't = O. For each combination of target weight and
country set we calculate target quotients and determine initial constituency
multipliers. There are a total of Il . 20 = 220, possibly different, multiplier sets
for each country. For each multiplier set we make the assignment as described in
section 11.1 and calculate p by (11.14).

Table 11.2 summarizes the results of the test. The first row shows the data sets
utilized, while the bottom part of the table gives information about the number of
constituencies and parties involved. Each entry in the main body of the table is
the average p for the particular combination of t and country set, i.e. the average
over 20 cases. The last column contains the sum of averages for each 't value.

Table 11.2
't 3
l, 4, 4, 7,4 l , 2 ,3
0,9 2,7 5,2 15,9 17,2 22,8
0,8 2,5 5,2 15,8 17,0 22,8
0,7 2,2 5,1 15,6 16,7 22,7
0,6 2,2 5,1 15,3 16,7 22,5
0,5 2,2 5,0 15,2 16,2 22,5
0,4 2,5 4,7 15,2 15,9 22,5
0,3 2,5 4,7 14,7 15,9 22,5
0,2 2,5 4,5 14,7 16,0 2 ,5
0,1 2,7 4,3 14,3 16,9 22,4
0,0 3,3 4,4 14,7 17,8 22,1

m 8 9 19 28 17
n 5 5 8 8 10

Average initial measure of goodness p with constituency relaxation.

As one could expect, the data sets result in different p values. p is lowest for
Iceland and highest for Denmark. Among many causes p seems to depend on the
number of constituencies m and parties n. The lowest average for each country is
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in bold print. We observe that the best target weight differs from one country to
the next. Based on the sum column, target weights in the region 0,1 s 't s 0,4
seem preferable, Le. the best quotient which does not qualify for a seat q(Ri + 1)

should count most in the calculation of the target quotient.

As shown at the end of section 11.1, it is possible to relax the party constraints
instead of the constituency constraints. Since we deal with equality constrained
problems, we introduce 1.1j = t,which simplifies L(~,B) to L(Il). This results in
a formulation analogous to that given by (11.15) - (11.21). We carry out the
target weight test for this formulation too. To utilize our existing program for
constituency relaxation, we transpose the election data such that constituencies
become "parties" and vice versa. Table 11.3 presents the results of the target
weight test baseed on party relaxation:

Table 11.3
't AUT 90 FIN 91 ICE 91 DEN 84 NOR 93 SWE 91 Sum

1,0 3,4 7,2 7,2 7,3 7,7 9,1 41,9
0,9 3,4 5,3 6,7 5,5 7,3 8,6 36,8
0,8 3,0 5,3 6,7 5,3 7,2 8,5 36,0
0,7 3,0 4,9 6,6 5,3 7,2 8,3 35,3
0,6 2,9 4,7 6,6 5,6 7,5 8,3 35,6
0,5 2,6 4,9 6,5 5,4 7,7 8,2 35,3
0,4 2,9 5,1 6,0 5,6 7,9 8,4 35,9
0,3 2,9 5,1 5,7 5,6 8,0 8,9 36,2
0,2 2,8 5,3 5,7 5,5 8,4 8,9 36,6
0,1 3,4 5,5 5,2 6,0 8,6 9,0 37,7
0,0 4,1 6,5 5,4 6,6 8,9 9,0 40,5

Average initial measure of goodness pwith party relaxation.

Comparison of Table 11.2 and Table 11.3 reveals that p is lower for all countries
but Iceland with party relaxation. This has consequences for the sums which are
about 50% lower in the latter table. The target weights 't = 0,5 and t = 0,7 have
the lowest sums in Table 11.3. However, all 't values in the region 0,2 ~ 't ~ 0,9
seem acceptable. Most t values seem acceptable when the two tables are
considered together. We choose to work with 't = 0,3 in the following because
this value gives the lowest sum of sums. However, there is little difference
between target weights in the region 0,2 ~ t ~0,5 based on this criterion.
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It is worth noticing that the end points of the target weight interval [O, 1] often
fare badly in comparison with other target weights. A possible explanation is that
the target quotient only represents one quotient when t = 1 or t = O, while it is a
weighted average of two quotients when O < t < 1. In other words; two quotients

tell more about the competition for the last seat than one quotient alone is able to
do.

11.6 Politically acceptable algorithms

Both the algorithm described in [H&J] (page 23) and our multiplier adjustment
algorithm presented in the next chapter are iterative. Be aware that any exact

solution of the matrix apportionment problem would require an iterative process.

Based on discussions with politicians Helgason & Jornsten have reason to believe

that iterative algorithms never would be politically acceptable. What characterizes

an iterative algorithm is that the assignment changes from one iteration to the
next. It is this kind of behaviour, where a quotient which already has been
assigned a seat might lose it at a later stage of the algorithm, the politicians see as
unacceptable. We let this view be the premise for the further discussion in this
section.

In oral communication Helgason & Jornsten have stated that their main reason for
studying an assignment process of the kind presented in the first section was to

discover a good approximative solution method which might be politically
acceptable in practical legal implementation. They presume that an algorithm has
to be recursive to be acceptable, [H&J] (page 20). This point of view combined

with their assignment process mean that the problem of creating an algorithm
boils down to constructing a good initialization procedure.

In Helgason & Jornsten's formulation from section 11.1 the constituency

constraints are relaxed. This means initialization of constituency multipliers. An

interesting question is whether an approximative algorithm based on party
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relaxation is acceptable. [H&J] (page 21) do not believe so. The reason is as
follows: Party relaxation would mean initialization of party multipliers. These
multipliers represent a sort of valuation of the parties. This is presumably more
controversial politically than a valuation of the constituencies. Many countries
have some intended favouring of special types of constituencies, so one can argue
that there already exists some kind of valuation of the constituencies.

As concluded above, our task is to construct an initialization procedure which is
able to provide good multiplier sets. It is natural to start by taking a closer look
at the performance of the three initialization procedures presented in section
11.3. In chapter 14 we carry out a test which reveals that apportionment
initialization results in the lowest average p in almost all situations. (Data which
show the average p for individual countries can be found in Appendix 3.) Below
we explain how apportionment initialization can be tailor-made for a specific
country.

In the previous section we saw that t = 0,3 was the best target weight for a mix of
many different election situations. The election situations within a single country
are much more stable, which simplifies the determination process for 'to In this
case the determination process should be based on relevant historical data sets. By
relevant we mean that the elections included shall have taken place with about the
same rules and constituency structure as today. In situations where large changes
in the election parameters m, h etc are planned, one should base the determination
process on vote matrices representing plausible scenarios. Because the divisor
method to apply for the matrix apportionment plus the way to determine the
bound vector will be fixed by law, there is need for only one combination of
bound vector and divisor method per data set in this determintion process. We
have not determined an own 't for each country.

In search of better initialization procedures we look at possible modifications of
apportionment initialization in this paragraph. The first suggestion is based on the
observation that apportionment initialization gives poor initializations for parti-
cular groups of constituencies when HA and especially CPO,Olare used as matrix
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apportionment methods. A way of creating better initializations for these constit-
uencies could be to adjust their multipliers found by apportionment initialization

- o 01- - 01
by a fixed amount K, Le. let A.i = (K . ti) + K, where K E (-(m~ (K . li )), 00). All

l

other constituency multipliers should still be determined by (11.26). Another idea
is to base apportionment initialization on a specific divisor method, for example
MF, irrespective of the divisor method which is going to be used for the matrix
apportionment. Yet another idea is to combine aspects of different initialization
procedures, e.g. by combining apportionment initialization with quota ratio
initialization. Neither of the ideas presented above have been tried out.

Let us illustrate what a positive value of p might mean for an individual
constituency when the problem is equality constrained: The most extreme
consequence is that a constituency with Ri = !is not awarded any seat. Based on
the experience from the test in chapter 14 we can say that this outcome is not
very likely. What is more likely is that the largest constituency is awarded !seats
too much. This illustration leads up to the question: How large might p be
without the initialization procedure being unacceptable? We relate the answer to
the current situation regarding supplementary seats, see description in section 8.6.
There is more freedom regarding the apportionment to individual constituencies
with free supplementary seats, Le. with a partial inequality constrained
formulation, than with preassigned supplementary seats, Le. with an equality
constrained formulation. A consequence is that it is easier to achieve a low p with
free supplementary seats. As indirectly stated before, p = Ocannot be guaranteed
with a recursive algorithm. For countries with a relatively large number of free
supplementary seats, like Denmark and Sweden, it is natural to require that p =O
or very close to O. In countries where all supplementary seats are preassigned or
with no supplementary seats at all, like Iceland and Finland respectively, it is
often difficult to achieve p = O.It seems reasonable to allow a somewhat larger p
in these situations. The magnitude of m, n, etc should also be taken into
consideration when deciding on the upper limit for p. A critical question in this
connection is whether an approximative matrix apportionment would be better
than the current approach with supplementary seats. We have not tested this
matter.
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In the beginning of this section we mentioned the point of view that iterative
algorithms are unacceptable because of changing assignments during the
apportionment process. Let us now review the apportionment process when
apportionment initialization is applied and seats are apportioned with the
assignment process described in section 11.1: Apportionment initialization
determines initial constituency multipliers by assigning seats within each
constituency and calculating target quotients. Given these multipliers, the seats are
apportioned within the parties. The resulting apportionment is usually different
from the earlier assignments within the constituencies. This is clearly in conflict
with the standard laid down at the beginning of this section. Thus, apportionment
initialization is ruled out. Quota ratio initialization, however, which usually
results in a higher p, would be in accordance with the standard.

We fmd iterative algorithms acceptable. In our view, the politicians' objection is
based on a technicality since for given p, 0', and matrix apportionment method
there is no uncertainty regarding what is the optimal apportionment(s).
Furthermore, whatever iterative algorithm employed to determine the optimal
apportionment(s), there is no need for making the temporary assignments along
the way public. Finally, it should not be that difficult to formulate a law text
which captures the essence of the matrix apportionment problem. A possibility is
to state the election law in terms of the multiplier conditions given in Definition
9.7.

179



Chapter 11: Relaxed formulations

180



Chapter 12: An apportionment algorithm

The matrix apportionment problem can be solved in several ways: [B&D-2] (page

205~ ) present an algorithm which borrows ideas from the out-of-kilter
algorithm, but conclude that this algorithm "leaves something to be desired as a

method for fmding solutions in practice". The linear network flow formulation

given in section 10.1 opens for use of the simplex method as solution method.

Moreover, this formulation can be converted to an assignment problem

formulation. Then a specialized solution method for the assignment problem, like
the Hungarian method, can be used. As mentioned in section 11.1, [H&J] (page

22-23) present a subgradient method which solves the relaxed formulation of the

matrix apportionment problem. Our apportionment algorithm presented in this

chapter is also based on this relaxed formulation. This algorithm finds the
optimal apportionment for the equality constrained problem. With some modific-
ations it can also handle the partial inequality constrained problem. The algorithm
is illustrated by a numerical example which covers the entire next chapter.
Finally, our Pascal program of the algorithm can be found in Appendix 2.

The structure of this chapter is as follows: We start with a sketch of the
apportionment algorithm. Section 12.2 presents formulas for the multiplier

adjustment of an underrepresented constituency, while the third section describes

the necessary modifications regarding the adjustment of an overrepresented
constituency. In section 12.4 we determine a good value for the parameter called
adjustment weight. The topic in the penultimate section is how to foresee the

change in p a multiplier adjustment will bring about. In the last section we

describe some practical problems we encountered while working with the
algorithm. NB. The description in this chapter is based on that the equality

constrained problem is being solved. Ri and Cj are used as notation for constit-

uency and party bounds respectively.
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12.1 A sketch of the algorithm

We start this section with a presentation of multiplier sets and their connection

with the optimal apportionment. The choice of multipliers has been successful if
all constituency constraints are satisfied, Le. p = O. There are usually infmitely

many combinations of multiplier values which result in p = O, Le. give the

optimal apportionment. We call a set of multipliers which does so a suitable
multiplier set. This defmition does not include any explicit multiplier condition
and is therefore somewhat different from the definition of a proper multiplier set

in connection with Defmition 9.7. However, a suitable set for the equality
constrained problem can easily be converted to a proper set by appropriate

scalings. Unfortunately, the initial multiplier set will seldom be suitable. Let the

target weight test in section 11.5 serve as an illustration: In that test there were a

total of 47 instances where p = O after the apportionment initialization. 39 of

these occurred for Iceland with constituency relaxation, while the other 8

occurred for Austria; 2 with constituency relaxation and 6 with party relaxation.

With a total of 220 multiplier sets for each combination of country set and
relaxation, this implies initial solution percentages of about 18% for Iceland with
L(A), 1% for Austria with L(A), 3% for Austria with L(J.1),and 0% for the other
countries.

When the current set of constituency multipliers results in an assignment which
violates one or more constituency constraints, i.e. p > O, we must fmd a new
multiplier set. The new set is found by adjusting one or more of the constituency
multipliers. A possible adjustment process is the Uzawa-type algorithm described
in [H&J] (page 22-23). We have developed an algorithm which utilizes

characteristics of the matrix apportionment problem. In this algorithm it is of
uppermost importance that the new assignment is not worse than the current one
measured by p. Moreover, we only adjust one constituency multiplier in each

iteration. The reason for this choice is given in section 12.6. Here follows a

description of the main features of our apportionment algorithm:
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Algorithm 12.1
Step 1: Given p > O, we identify all constituencies which violate a constituency
constraint and classify them. They either belong to the group of underrepresented
or the group of overrepresented constituencies, denoted M - and M + respectively.

We denote the number of seats constituency i is away from being rightly

represented by Pi:

(12.1)

Clearly, L Pi = p. Thus, Pi is constituency i's contribution to the measure of
goodness/'"

Step 2: In this step we single out which constituency to adjust. An advanced

selection procedure is described in section 12.5. The procedure described here is
simpler. It selects the most malrepresented constituency:

(12.2) max Pi
i e (M-uM~

When there is a tie for this position between constituencies from both M - and
M +, we look at the previous iteration. If it was an upadjustment, i.e. involved a
constituency from M -, we choose to deal with a constituency in M + now, and
vice versa. By breaking ties between M - and M + this way, we get a sort of
alternation of up and downadjustments. In section 12.6 we explain why it is

preferable to make both up and downadjustments. When there is a tie regarding
criterion (12.2) within the chosen malrepresentation group, we select one of the

eligible constituencies. This selection is directed by a rotation scheme for the

constituencies. For details of this rotation scheme we refer to the Pascal program
of the algorithm in Appendix 2. We call the selection procedure described in this

step representation selection.

Step 3: The main task in this step is to determine how much the selected constit-
uency multiplier Au shall be adjusted to make constituency u rightly represented,
i.e. make pu = O. This topic is treated thoroughly in the following two sections.
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The direction of the adjustment is found from the subgradient given by equation
(11.22): L(A) is reduced if we adjust Au upwards when u is underrepresented and
downwards when u is overrepresented. The adjustment of Au changes the
multiplier set. With the new multiplier set we assign seats as described in section

11.1 and calculate p. If p = O, the optimal apportionment has been found,

otherwise we return to step 1.

We end this section with a brief explanation of why our algorithm will find the

optimal apportionment: L(A) is a continuous convex function which attains its

minimum value when all constituency constraints are satisfied. Like the

subgradient method described in [H&J], our algorithm makes use of L(A) 's

subgradients to lead us in the direction of this minimum. However, unlike that

method, our algorithm let the measure of goodness p govern the multiplier
adjustments. These adjustments are conducted such that p never increases and

usually decreases, as explained in the last part of section 12.2. When p = O we

have found the optimal apportionment and reached the floor/minimum of L(A).

12.2 Upadjustment

Let us first introduce some notation: The lth logarithmic quotient in cell (iJ) is

denoted qijl = ln(Ai . ~). Q is the set of quotients which currently are assigned a

seat, while Q is its complement. Thus, aijl = 1 <=> qijl E Q and aij(/+l} = O <=>
qij(/+l} E Q. We call quotients in Q and Q assigned and unassigned respectively.

In the description of the adjustment processes we focus on constituency u and
party v. We step into the apportionment algorithm after an assignment has been

made with the assignment process described in section 11.1. This assignment

gives w seats to cell (u,~, where w is a non-negative integer. Since the
assignment process distributes seats greedily within each party, party v is always

assigned C v seats. There are three possibilities regarding the assignment to

constituency u: auNH > Ru, auNH = Ru, and auNH < Ru. In this section we assume
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that u is underrepresented by Pu > Oseats:

(12.3) Pu = Ru - auNH where u E M-

The constituency multiplier Au must be adjusted upwards for u to be assigned
more seats. For constituency u to become rightly represented, p u of its
unassigned quotients must each win a seat. The task ahead is to determine which
unassigned quotients that shall be assigned seats. In cell (u,v) the candidates are
the largest unassigned quotients quva E Q. We call these quotients challenging
quotients and denote them qSv(x), where x is a positive integer. The xth
challenging quotient in cell (u,v) is the xth largest quotient which does not get a
seat with the current assignment. Clearly, this is the (w + x)th largest quotient in
cell (u,v):

(12.4) ']uCv(x) = quv(W+x) where x E {l, ..., (Pu + I)}

All challenging quotients are from the same constituency so their internal
ordering within party v is constant. For a challenging quotient in cell (u,v) to win
a seat, one of party v's assigned quotients in other cells must lose its seat. To help
us in the following, we set up a list of the assigned quotients in descending order,
excluding the w assigned quotients in cell (u,v). We call the x smallest quotients
on this list benchmark quotients and denote them q,¥v(x). The smallest
benchmark quotient q,¥v(l) is closest to losing its seat. Quotients belonging to
constituency u are not benchmark quotients for u because a constituency cannot
win a seat from itself. The maximal number of benchmark quotients for
constituency u within party v is equal to the total assignment to v minus the seats
assigned to cell (u, v), i.e. C v - w. When party v is assigned seats in other
constituencies than u i.e. C, - w > O, the determination of benchmark quotients
can be described mathematically as follows: Starting with x = 1, the xth
benchmark quotient, where x E {I, ..., min [(Pu + 1), (Cv - w)]), is determined
recursively as:

(12.5) qJt(x) = min qsva
s e {M\u}

where qsva E Q
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Once a quotient qsva has been used, it is eliminated from the further determin-
ation process. To suit (12.5), consider it unassigned in the remainder of the
process. We may need up to (p u + 1) benchmark quotients for constituency u

within party v. In situations where pu + 1 > C, - w ;;:::Owe defme one artificial
benchmark quotient within party v by letting qJ3v(Cv - w + 1) = 50. We explain
why artificial benchmark quotients are needed in the last section.

The first challenging quotient must surpass the first benchmark quotient to win a
seat. When the second challenging quotient tries to get a seat, the actual
benchmark has changed to the second benchmark quotient etc. We may need to
determine up to (p u + 1) such pairs of benchmark and challenging quotients
within party v. For each pair we calculate the distance duv(x) between the two
quotients. Thus, the xth smallest distance within party v is:

(12.6) duv(x) = qJt(x) - qS-v(x) for x E {l, ..., min [(Cv - w + 1), (p, + l)]}

By defmition qJ3v(x) ;;:::qS-v(x), so duv(x) is non-negative. Since qJ3v(x+ 1) ;;:::qJ3v(x)
and qS-v(x + 1) < qS-v(x), the distances within party v form a strictly increasing
sequence, i.e. duv(x + 1)> duv(x).

In the description above we focused on party v. Distances regarding constituency
u must also be calculated within all other parties. To distinguish distance numbers
belonging to different parties from each other, it is sometimes convenient to
denote distance/quotient no. x within party j as Xj. We use this notation some
places in the following. The time has come to determine the (Pu + 1) smallest
distances over all parties. We call these distances global distances. Starting
with y = 1 and continuing up to y = (p u + 1), the yth global distance for
constituency u, denoted du(y), is determined recursively as:

(12.7)
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As in {12.5), once a distance duj(xj) has been used, it is not eligible in the further
determination process. Algorithm 12.2 in section 12.5 describes an efficient way
of determining the global distances. Contrary to the relationship between
distances within a single party, there might be ties between global distances, Le.
du(y + 1) ~ du(y). Ties occur when distances from different parties are equal.

For constituency u to be assigned exactly p u seats more, the quotients from u
must be adjusted upwards by more than du(Pu), but less than du(Pu + l ). We let
Xu denote the adjustment distance for constituency u and define it as a weighted
average of du(Pu) and du(Pu + l):

{12.8) Xu = u·du(Pu) + (l - u )'du(Pu + 1) where O< u < 1 and real

Xu is non-negative, but only in extreme tie situations is it equal to zero. Situations
with Xu = Owithout there being a tie in the apportionment have occurred during
some computer runs, see section 12.6 for an explanation. We call u in formula
(12.8) adjustment weight. Let us look at the effect of the adjustment when
du(Pu + 1) > du(Pu): When u is in the neighbourhood of 1, the Puth challenging
quotient will be adjusted upwards such that it barely beats the Puth benchmark
quotient. The other extremity, with u close to O,results in an adjusted (Pu + l)th
challenging quotient which is a little bit smaller than the (Pu + l)th benchmark
quotient. Should it happen that the global distances du(Pu) and du(Pu + 1) are
equal, the puth and (p u + 1)th challenging quotients will be adjusted such that
they become equal to their respective benchmark quotients. Dependent on how
the ties are broken, u wins (Pu - 1), Pu, or (p, + 1) seats in this case.

To complete the description of the upadjustment process, we present formulas for
updating the quotient and multiplier values. Let qujl be the value of an arbitrary
quotient from constituency u prior to the adjustment and qujl its value afterwards.
Then qujl can be expressed as:

(12.9) qujl = qujl + Xu
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Let Au denote the multiplier value before the adjustment. By making use of the
relationship qijl = ln(A; .1d7) we derive the formula for the updated constituency
multiplier Au:

(12.10) E.!Q - - E.!QIn(Au• dl) - ln(Au· dl) + Xu ¢:) Au = Au . eXu

As seen from (12.9), this change in the multiplier adjusts all quotients from
constituency u by Xu Since only Au is adjusted, quotients from all other
constituencies are unchanged. Given the updated quotients, we make the
assignment and calculate p. One iteration of the apportionment algorithm is
brought to its end.

Our primary concern above was to make sure that u became rightly represented.
What really matters in the big scheme of things is the development of the measure
of goodness p. Below we analyse the impact of the adjustment on p. Let us first
explain what happens at the seat level: We focus on the yth pair of challenging
and benchmark quotient, where y ~ pu Let c denote the constituency the
benchmark quotient comes from. Constituency u has won a seat from this
constituency. The consequences for p of this seat transfer are: If constituency c
was not overrepresented beforehand, the reduction of Pu by one is cancelled out
by the offsetting increase in p c. On the other hand, if c was overrepresented
beforehand, both pu and Pc have decreased by one and P thereby by two.

We move on to an analysis of the total effect of the adjustment: Constituency u

has won P u seats at the expense of the P u smallest benchmark quotients.
Constituencies which have lost seats can be classified in the following three
groups:

Ml: Constituencies which were not overrepresented beforehand.
M2: Constituencies which were overrepresented before the adjustment and

have not become underrepresented afterwards.
M3: Constituencies which were overrepresented before the adjustment, but

have become underrepresented afterwards.
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Constituencies from Ml have become more underrepresented after the adjust-
ment. The total impact on p of seats transferred from this group to u is zero, due
to the cancelling out effect described earlier. The cancelling out effect does not
occur for constituencies in M2• For each seat this group has lost to u, p has

decreased by two. Each seat a constituency in M3 loses until it reaches the

position of being rightly represented reduces p by two. All seats transferred to u

beyond this point result in the cancelling out effect. Hence, p has decreased by

twice the amount of overrepresentation for M3 beforehand.

The conclusion is that under no circumstances does p increase as a result of the

prescribed adjustment. In fact, the only situation where p does not decrease is

when all losing constituencies belong to Ml. The total change in p is found by
adding the described changes caused by constituencies in M2 and M3. In section
12.5 we describe how the change in p can be calculated before the adjustment is
carried out.

12.3 Downadjustment

The process of downadjusting the multiplier for an overrepresented constituency
is almost similiar to the upadjustment process. In this section we review the

differences between the two processes. We now assume that constituency u is

overrepresented by Pu > Oseats:

(12.11) Pu = åuNH- Ru where u E M+

To make pu = O, Pu quotients from constituency u must each lose a seat. The

candidates in cell (u ,v) are the smallest assigned quotients quva E Q.We call these
quotients outgoing quotients and denote them q'?v(x). With w > O assigned

quotients in cell (u,v), the xth outgoing quotient is:

(12.12) q,?v(x) = quv(w+l-x) where x E {l, ... , min[(w, (Pu + l)]}
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When there are less than (Pu + 1) assigned quotients in cell (u,v), also including
the situation with no assignment, Le. w = O, we define one artificial outgoing
quotient within party v: q,?v(w + 1) = 50. The background for this choice is
described in the last section.

In the downadjustment context we defme benchmark quotients as the largest

unassigned quotients which do not belong to constituency u. The benchmark

quotients for constituency u within party vare determined recursively as:

(12.13) q~v(x) = max qsva
SE {M\u}

where qsva E Q

The distance within the xth pair of outgoing quotient and benchmark quotient is:

(I2.I4) duv{x) = q,&{x) - q~v(x) for x E {l, ..., min[(w + 1), (Pu + l)]}

duv{x) is non-negative and duv{x + l) > duv{x) because q,?v(x + 1) > q,?v(x) and
q~v(x + 1) ~ qz}t{x).

As in the upadjustment process, we determine the (p u + 1) smallest global
distances du(y) by (12.7) and the adjustment distance Xu by (I2.8). However, Xu
is now used to adjust quotients from constituency u downwards:

(I2.IS)

This means that the updated constituency multiplier is found as:

(12.16)

When du{Pu + 1) > du{Pu), different values of the adjustment weight u have the

following consequences: With u close to 1, the adjusted Puth outgoing quotient

becomes just a little bit smaller than the Puth benchmark quotient, while u in the
neighbourhood of O results in an adjusted {pu + 1)th outgoing quotient which

barely stays above the {p u + l)th benchmark quotient. NB. The benchmark
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quotients in the up and downadjustment cases are called challenged and incoming
quotients respectively in the Pascal program in Appendix 2.

To analyse how a downadjustment changes p, one should move along the lines of

the analysis at the end of section 12.2. Since constituency u here gives away seats,
it is the constituencies which win these seats that are of interest in the analysis.
The prescribed downadjustment results in a reduced or unchanged p.

12.4 Determination of a good value for u

It turns out that the number of iterations to reach the optimal apportionment
depends on the u value used in formula (12.8). To identify a good value for the

adjustment weight, i.e. a u value which results in a "low" average number of

iterations, we carry out a test which is conducted as follows:

We utilize the same 6 data sets, 5 bound vectors, and 4 matrix apportionment

methods as in the test in section 11.5. To determine initial assignments for each
combination of these three parameters, we apply the 3 initialization procedures
described in section 11.3, where the target weight t = 0,3 is used for
apportionment initialization. From each such initial assignment we solve the
problem at hand with each of the 11 u values shown in Table 12.1. The same u
value is used in every iteration. During the solution process we let representation
selection decide which constituency multiplier to adjust next. Table 12.1 below

summarizes the test results with constituency relaxation.

Each entry in the main body of Table 12.1 is the average number of iterations
over 5 . 4 . 3 = 60 cases. The lowest average for each country is shown in bold

print. Based on the sum column, adjustment weights in the region 0,2 - 0,5 seem

preferable, with u = 0,3 resulting in the lowest sum of averages.
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Table 12.1

,7
21,47
15,12
12,90

9,
49,25
29,47
22,87

Average number of iterations with constituency relaxation.

0,
0,9
0,8
0,7

18,73
21,15
22,33

,1
53,03
33,65
26,53
24,58
24,00
23,68
24,28
25,62
27,72
36,80

01,93
191,67
128,96
102,47

12,27
12,30
11,95
12,12

20,23
19,43
19,17
18,63

93,71
90,13
89,12
88,52
91,15
99,56
128,98

In the test we operated with an iteration limit of 100. The execution of the
apportionment algorithm was abandoned when this limit was reached. All
countries had cases of abandonment for u = 0,99, the three Scandinavian
countries also had abandoned cases with u = 0,9, and for Norway and Denmark
such cases even occurred with u = 0,8. Moreover, one Swedish case was
abandoned for u = 0,01. We have counted abandoned cases as 100 iterations
although the optimal apportionments were not reached yet. Some of the reported
averages are therefore lower than what the real averages would have been.

0,6
0,5
0,4
0,3
,

0,1
0,01

We also carry out the test with the party relaxed formulation. The results of this
test are presented in Table 12.2 below. We notice that every average in
Table 12.2 is lower than the corresponding average in Table 12.1. Moreover,
most sums are about 40% lower in Table 12.2. As in Table 12.1, the adjustment
weights in the region 0,2 ~ u ~ 0,6 result in lower sums than the other weights.

There were fewer abandoned cases with party relaxation than with constituency
relaxation. In fact, all Austrian cases were solved. The other countries all had
cases of abandonment for u = 0,99, but only the Scandinavian countries had
abandoned cases with u = 0,9.
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Table 12.2

° OR93 SWE 1 DEN84 Sum
, 8,05 l, 61,52 61,48 1,7 2 5,96
0,9 4,65 12,02 29,35 24,88 26,87 102,05
0,8 4,23 9,42 18,30 16,13 18,42 70,47
0,7 4,30 9,12 14,50 13,95 15,88 61,63
0,6 4,15 9,05 13,15 13,32 14,20 57,85
0,5 4,43 8,70 12,25 12,68 14,05 56,31
0,4 4,32 9,03 12,28 12,10 14,52 56,37
0,3 4,82 8,98 11,73 11,92 14,40 56,20
0,2 ,00 9,87 11,65 12,45 14,05 57,62
0,1 5,27 9,98 12,45 12,87 14,47 60,79
0,01 5,28 10,52 13,27 13,97 16,45 67,11

Average number of iterations with party relaxation.

We take the sum columns in both tables plus the information regarding fre-
quency of abandoned cases into consideration when we evaluate the adjustment
weights. u = 0,99 and 0,9 score poorly on both criteria and are clearly
unacceptable. The values u = 0,8 and 0,01 should not be used either. u = 0,1 and
u = 0,7 are better than the already mentioned weights, but inferior to weights in
the region 0,2 - 0,6. In both tables u = 0,3 results in the lowest sum of averages,
though only marginally. This is the reason for our choice of u = 0,3 as
adjustment weight in the remainder of this dissertation.

12.5 Calculation of p-effect

At the end of section 12.2 it was explained how a multiplier adjustment changes
the measure of goodness p. In this section we explain how the impact on p can be
worked out prior to the adjustment. To carry out this task we need to know the
under/overrepresentation of each constituency. In addition, we need information
about which constituencies and parties the different benchmark quotients, and
thereby the global distances, belong to.
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We define the p-effect of a multiplier adjustment as the reduction in the
measure of goodness p this adjustment will cause. cl> i denotes the p-effect of
adjusting constituency i's multiplier Ai. To shorten things, we call cl>i the p-effect
for constituency i.NB. In the Pascal program in Appendix 2 the p-effect is called
improvement and its value is only half the value here.

Algorithm 12.2 below describes an efficient way of determining the (Pu + 1)
smallest global distances plus the p-effect for the malrepresented constituency u.
In this algorithm we use the expression challenging/outgoing quotient, which
should be understood as follows: When u E M -, it refers to a challenging quo-
tient, and when u E M +, it refers to an outgoing quotient. Moreover, we denote
the opposite malrepresentation group of the one u belongs to by M, so M =M +

when u E M - and M =M -when u E M", During the determination process we
keep track of the amount of malrepresentation for each constituency. For this
purpose we defme a variable called remaining malrepresentation. It is denoted Pi
and is unconstrained in sign. We defme Pi to be positive when constituency i is
from the same malrepresentation group as u and negative when i is from the
opposite malrepresentation group.

Algorithm 12.2
Step 1: This step is primarily concerned with initializations: The p-effect for
constituency u is zero initially, Le. we set cl> u = o. The next initialization
concerns the variables for remaining malrepresentation. Based on the current
assignment, they are defined as follows: Ps = -Ps for all SEM and Ps = Ps for all
S E {M \ M}. The last initialization concerns the distance numbers for distances
within parties and global distances. We set: Xj = 1 for all parties j and y = 1. Then
we are ready to begin the determination process. Within each party do the
following: Identify the pair of first benchmark quotient and first challenging/
outgoing quotient and calculate the first distance dui..!). Moreover, notice which
constituency the first benchmark quotient belongs to and associate this
constituency with the first distance by denoting the distance dij{l). After all first
party distances have been calculated, the first global distance du(1) is found as the
smallest of these distances.
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Step 2: Let us denote the constituency and party associated with the current
global distance c and e respectively. We incorporate this information in the
notation of the yth (first) global distance by denoting it d&e(y) (d&e(1)). This
global distance has the following implications for the p-effect and the variables
for remaining malrepresentation: If Pc < 0, increase <l>uby two, otherwise keep
<I> u unchanged. The assignment status of the benchmark quotient from
constituency c and the challenging/outgoing quotient from constituency u is
altered, so increase Pc by one and decrease Pu by one. If now Pc ~ 0, benchmark
quotients from c will no longer contribute to an increase in <I>u. The next task is
the updating of distance numbers: Increase y by one (to 2) and Xe by one (to 2).

Party e is without an eligible distance, so identify the X eth (second) benchmark
quotient and the xeth (second) challenging/outgoing quotient within this party and
calculate the xeth (second) distance. Notice which constituency the benchmark
quotient comes from and associate this constituency with e 's new distance by
denoting the distance die(xe) (die(2)). This newly calculated distance together
with the current distances dij{xj) (di]{I)) within the other parties are candidates
for the next global distance. The yth (second) global distance du(y) (dJ2)) is
found as the smallest of these candidates. Step 2 is repeated until the (p u + 1)
smallest global distances have been determined.

The comments in parentheses in step 2 refer to the first time the step is executed.
Notice that <l>uis unaffected by the (Pu + l)th global distance since the adjustment
of A.uwill not alter the assignment status of the (Pu + l)th benchmark quotient. It
is also worth noticing that we only need to calculate n + Pu distances to determine
the (Pu + 1) smallest global distances for constituency u. The final values of the
variables for remaining malrepresentation are useful by-products of Algorithm
12.2. They tell us what the malrepresentation of each constituency will be after
the adjustment of A.u.
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If one makes an arbitrary multiplier adjustment, the p-effect may well tum out to
be negative. However, the way we conduct the adjustment process ensures that the
p-effect is non-negative as long as the two global distances in (12.8) are unequal.
The p-effect for a constituency cannot be larger than twice this constituency's
malrepresentation. Hence, with our adjustment scheme: Os~ s pu.

We now present p-effect selection. As the name indicates, the constituency
with maximal p-effect is selected for the adjustment:

(12.17) max .h..
i E (M -uM ~ '1'1

When there IS a tie between constituencies from both M - and M + for this
position, we next look at the maximal under/overrepresentation among these
constituencies. Should there still be a tie between M - and M ~ we choose the
opposite malrepresentation group of the one adjusted in the previous iteration.
Finally, a tie between constituencies within the chosen malrepresentation group is
broken by the rotation scheme mentioned in connection with representation
selection.

The advantage of p-effect selection is that it enables us to reduce p as much as
possible in each iteration. This is especially important in situations where only
one or a few of the possible adjustments will reduce p. Nothing comes for free,
the drawback of p-effect selection is that it may require a lot more work than
representation selection. With representation selection there is no need for deter-
mining p-effect. Furthermore, the determination of global distances is restricted
to one constituency. Because there does not exist a direct relationship between
amount of malrepresentation and size of p-effect, one may have to determine
global distances and p-effect for several constituencies to implement p-effect
selection. A way of scheduling these calculations is to start with constituencies
with maximal malrepresentation and continue, if necessary, with constituencies
for which p i is greater than the current maximal p-effect. We compare the
performance of p-effect and representation selection in the test in chapter 14.
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12.6 Practical problems

In this section we describe some practical problems we encountered while

programming the apportionment algorithm and the choices they led to. The three
main topics treated are:

1. How many multipliers to adjust in each iteration.
2. Why both up and downadjustments are made.
3. The reasons for defining artificial quotients.

We have chosen to adjust only one constituency multiplier in each iteration.
Example 12.1 is an illustration of what may happen if one makes a simultaneous
adjustment of two or more multipliers:

Example 12.1
A and B are two constituencies which both are underrepresented by one seat, i.e.

PA = 1 and PB = 1. Moreover, their smallest global distances, dxeCl) and d~eCl)
respectively, occur within the same party. To study the impact of a simultaneous

adjustment of A.A and A.B, we break the adjustment in two by first adjusting A.A.
This adjustment leads to A winning a seat at the expense of its benchmark
quotient, Le. constituency c E {M \ A} loses a seat. Thereafter A.B is adjusted
according to the benchmark quotient for constituency B. This quotient comes

from constituency S E {M \ B}. There are two possibilities regarding the status of
this benchmark quotient: If S E {M \ CAuB)}, A and B had the same benchmark
quotient initially, i.e. S = c. In this case the quotient has become unassigned after

the adjustment of A.A. The other possibility is that the benchmark quotient for B

came from constituency A, Le. S = {A}. Then the adjustment of A.A has increased
the quotient's value. In either case, the adjustment of A.B bases itself on a false

benchmark quotient. This may result in a too small adjustment distance XB for B

to win a seat. Hence, simultaneous adjustment of A.A and A.B does not guarantee
that both constituencies become rightly represented afterwards. Both constit-
uencies have won a seat if the position of A's adjusted challenging quotient within
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party e was better than number C e before the adjustment of A B and B s
challenging quotient was adjusted by enough to be placed as number C, or better.

Simultaneous multiplier adjustments based on the principles in sections 12.2 or

12.3 do not increase p, so why have we elected not to employ such adjustments?
The explanation is as follows: As the number of iterations increases without the

optimal apportionment being found, quotients cluster around the value of the Cjth

quotient within each party. Simultaneous multiplier adjustments speed up this
process because of many futile adjustments. The clustering of quotients makes the

global distances du{ptJ and du{Pu + l) and thereby the adjustment distance Xu
very small. Due to the computer's somewhat inaccurate treatment of numbers, Xu
may eventually be perceived as zero, with the result that the program converges
towards an infeasible apportionment. We have reserved more storage space for
real numbers in the computer to better the accuracy. Nevertheless, our program

of the apportionment algorithm is still better off without simultaneous multiplier

adjustments.

False benchmarks occur when one or more global distances for two or more
malrepresented constituencies come from the same party. If the smallest global
distances d,{ 1) for a group of malrepresented constituencies come from different
parties and we only adjust these constituencies for one seat each, it is possible to

adjust their multipliers simultaneously without relying on false benchmarks. In
practice, the large parties tend to have a large share of the smallest global
distances, thereby restricting the number of constituencies which qualify for such

a group. The fact that we adjust constituencies for more than one seat when Pi > 1

makes it even harder to keep track of real benchmark quotients.

We never adjust for both under and overrepresentation in the same iteration.

Such simultaneous multiplier adjustments run into even more severe compli-
cations than those described above. However, when the apportionment algorithm
was tested on data from the Swedish election in 1991, it became evident that it is

preferable to adjust both under and overrepresented constituencies compared to

only adjusting underrepresented constituencies:
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Example 12.2
The interesting situation occurred when CPO,Ol was used for the matrix appor-
tionment. To illustrate what the CPO,Ol matrix apportionment looks like, we give
a description of the SD apportionment. SD (CP o), which is a little bit more
extreme than CPO,Ol, let as few cells as possible be left with zero representatives.
Now to the other election parameters of interest: There were 28 constituencies.
The smallest of these, Gotland, was awarded 2 seats. Of the parties participating
in the election, four got more than 28 representatives. With CPO,Ol and no
initialization, the initial assignment spread the first 28 representatives within each
of these parties evenly between the 28 constituencies. Thus, Gotland was
overrepresented by 2 seats initially. To make Gotland rightly represented, and
thereby take an important step towards the optimal apportionment, it was much
more efficient to decrease the multiplier for Gotland once than to increase the
multipliers for other constituencies several times.

Example 12.2 is the reason why we started making both up and downadjustments
of multipliers. Section 12.5 has supplied us with another argument: A
constituency with maximal p-effect belongs to either M - or M ~ One must
therefore be free to choose which kind of adjustment to make to decrease p as
much as possible in every iteration.

The next topic we deal with is how to schedule up and downadjustments. One
possibility is to alternate on a regular basis, e.g. by adjusting for underrepresent-
ation in odd numbered iterations and for overrepresentation in even numbered
iterations. As explained in sections 12.1 and 12.5, our priority list regarding
which constituency to adjust is based on maximal p-effect and/or maximal mal-
representation. Only when constituencies from both M - and M + are tied on the
last criterion do we alternate between the constituency groups on a regular basis.

Regarding choice of value for the adjustment weight u, it is possible to define
separate values for up and downadjustments. Furthermore, one could operate
with different values during the solution process. We have opted for a common u
value to keep it simple.
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As described in sections 12.2 and 12.3, we have introduced artificial benchmark
quotients for the upadjustment case and artificial outgoing quotients for the
downadjustment case. In all situations where an artificial quotient comes into
effect, it does so via the (Pu + l)th global distance. Thus, one artificial global
distance for constituency u would have been enough. We have defmed up to one

artifical quotient within each party, because this is a suitable way of making sure
that an artificial (Pu + 1)th global distance is available when needed.

Example 12.3 illustrates why artificial benchmark quotients are needed in

situations where a constituency shall have a positive number of seats, but

currently are assigned zero seats:

Example 12.3
We face an equality constrained problem with two parties, labelled A and B, and
two constituencies, labelled 1 and 2. The election data are as follows: Both

constituency bounds are positive, Le. RI > O and R2 > O. Party A, which shall

have CA> O seats, receives votes only in constituency 1, i.e. PIA> O and P2A= O.
The apportionment to party B is restricted to CB= 1 seat. Party B receives votes
in both constituencies, but more in the first than in the second constituency, Le.

PlB> P2B> O. Finally, the initial constituency multipliers are equal A.l= A.2' From
this information it is clear that constituency 2 is not assigned any seat initially. We
utilize the two smallest global distances for constituency 2, i.e. d2(1) and d2(2), in
the calculation of the adjustment distance X,2. d2(1) is easily found within party B.

However, to be able to calculate di.2), an artificial benchmark quotient for
constituency 2 within party B must be defmed. The optimal apportionment, which

is reached after one iteration, is: alA = CA, a2B= 1, and alB = a2A= O.

Here follows the explanation of why artificial outgoing quotients were

introduced: Contrary to earlier assumptions, we have allowed upper bounds

equal to zero in the Pascal program. The reason for this decision is as follows: In

the test in chapter 14 we operate with three bound vectors; the real bound vector

plus two bound vectors which include all parties with a vote percentage of at least

1%. Because election laws normally exclude parties with about 1% support from
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getting represented, the real bound vector often includes some parties with
bounds equal to zero. To solve the party relaxed version of the matrix
apportionment problems, we transpose the election data such that our existing
program based on constituency relaxation can be utilized. Then party bounds are
converted to constituency bounds. Now, consider the following situation:
Constituency u is currently assigned a positive number of seats. However, its
constituency bound is equal to zero, i.e. Ru = O. Then an artificial outgoing
quotient is needed to calculate the (Pu + 1)th global distance.

It is important that artificial quotients are high, but they should not be too high.
The explanation is based on the assumption that an artificial quotient comes into
effect, i.e. is needed for the calculation of the (p u + 1)th global distance. A too
high quotient value will result in the adjustment distance 'X,u becoming very large.
From (12.10) and (12.16) we see that this leads to an enormous constituency
multiplier in the upadjustment case and an extremely small constituency
multiplier in the downadjustment case. The problem with an extremely small
multiplier is that the computer fails to distinguish it from O. Since the natural
logarithm of Ois undefined, the program crashes. On the other hand, the value of
an artificial quotient cannot be set too low either. The value must be so high that
it results in artificial global distances which are larger than the p,J:h global
distance in all imaginable situations.

As stated in sections 12.2 and 12.3, we have chosen the value 50 for the artificial
quotients. This value has stood its test in numerous computer runs. From the
formula for a quotient, In(A.; . ~), we see that the chosen value of 50 corresponds
to a cell vote of Pij= ~!.eSo.
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This chapter contains a numerical example which illustrates how the iterative
apportionment algorithm described in chapter 12 works. The chosen matrix
apportionment problem is presented in the first section. Section 13.2 shows how
the assignment process described in section 11.1 is carried out at the initial stage.
The next two sections, section 13.3 and section 13.4, show the necessary
calculations of distances and p-effect for a downadjustment and an upadjustment
respectively. In the fmal section we reach the optimal apportionment.

13.1 The problem

We utilize vote data from the Icelandic general election in 1995. The whole
election situation consists of 8 constituencies x 6 parties with 63 seats for
distribution. To keep it simple, the 3 x 3 subproblem in Table 13.1 has been
picked out.

Table 13.1

Vote matrix, house size, and constituency (row) and party (column) constraints for a 3 x 3
subproblem of the Icelandic general election in 1995.
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This subproblem consists of the three largest parties m the 1995 election,
Progressive Party (B), Independence Party (O), and People's Alliance (G) and
their votes in Reykjavik (Rev), Nordurland eystra (NoE), and Austurland (Aul).
Reykjavik is the largest, Nordurland eystra is the third largest, while Austurland
is one of the small constituencies in Iceland. The house size plus the row and col-
umn constraints given in Table 13.1 show the apportionment to the 3 x 3 sub-
problem when HA is used as matrix apportionment method for the whole 8 x 6
election situation. We are going to solve the matrix apportionment problem in
Table 13.1 with HA (CPl) as matrix apportionment method. The chosen starting

o o

position for the apportionment algorithm is no initialization, Le. ÅRev= ÅNoE=
o

ÅAul= 1. A piece of information, it takes 3 iterations to solve the problem from
this starting position, while both quota ratio and apportionment initialization
would have solved it directly. Now to the solution of the problem:

13.2 Initial stage

At the initial stage we check whether the initial multipliers have produced the
optimal apportionment, i.e. whether p = O.The first task is the determination of
the initial assignment: With the initial constituency multipliers and the divisor
series for HA, we calculate the quotients ln(Åi . ~) we fmd necessary. An
example of such a calculation: The third quotient for party B in constituency Rev,
which we denote Rev.B.3 in tables and qRev.B.3elsewhere, is ln(1 . 97343)~ 8,086.
Within each party we sort the calculated quotients in descending order.
Table 13.2, Table 13.3, and Table 13.4 below present the sorted party lists for B,
D, and G respectively.
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Table 13.2
Place Quotient Value Classification DIStance Global no.

l Rev.B. l 9,184
2 NoE.B. l 8,702
3 Rev.B. 2 8,491 .....""..~~~...Q!!~.g,~~.lt.............~.!..~.??.................................................'4""... ·····A:iiCfr···T········8·:·107
5 Rev.B. 3 8,086 .........~~~...Q!!!g,~~~..............Q!.??.7...................~~ .................··...·6·········No·E]~·:······2········8:·009
7 Rev.B. 4 7,798 1st Outgoing 0,195 2nd
8 NoE.B. 3 7,603 1st Benchmark
9 Rev.B. 5 7,575
10 Aul.B. 2 7,514 2nd Benchmark·······II"·······lrev:'S·:······6 ········7:"3"93................................................................................................................
12 NoE.B. 4 7,316 3rd Benchmark·······I3-·······Rev:!f·····7 ··...···7:·2·38................................................................................................................
14 Aul.B. 3 7,109

Sorting of quotients within party B + classification of quotients, distances between the xth
outgoing and xth benchmark quotient, and global ranking of these distances when a down-
adjustment of ÅRev is considered.

As the tables reveal, the sorted party lists are dominated by quotients from Rev.
The use of HA, which favours large entities, contributes to this domination.

Table 13.3
_flace Quotient Value Classification Distance Global no.

7 NoE.D. I 8,435
8 Rev.D. 7 8,285 4th Outgoing 1,236
9 Rev.D. 8 8,151 ·······"l~···g:~:~~f·············g~~i·~················~~................·····Io··········RevJr· ..··§ ·..·..··8:·033
11 Rev.D. 10 7,928 1st Outgoing 0,186 1st
12 Rev.D. 11 7,833
--- ------ ----
14 NoE.D. 2 ........?!.?.~~1st Benchmark................... ....•••.••.....•.••••.......••• ................................................................................................................--- ------ ----
18 Aul.D. 1 ........?!iZ~ 2nd Benchmark............_ ..... .............................. ................................................................................................................--- ------ ----
22 NoE.D. 3 7,337 3rd Benchmark........•........•. ............................... ...................... ................................................................................................................--- ------ ----
29 NoE.D. 4 ........z!.Q~~4th Benchmark................... ............................... ................................................................................................................--- ------ ----
37 Aul.D. 2 6,780

Sorting of quotients within party O + classification of quotients, distances between the xth
outgoing and xth benchmark quotient, and global ranking of these distances when a down-
adjustment of ÅRev is considered.
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The dotted lines in the left part of Table 13.3 and Table 13.4 symbolize quotients
which are without interest in the demonstration of the apportionment algorithm.

Table 13.4
obal no.Distance

8 NoE.G. 2 7,223 1st Benchmark·········9············Rev·:G:······7 ········7:·2·07 .
10 Aul.G. l 7,136

Sorting of quotients within party G + classification of quotients, distances between the xth
outgoing and xth benchmark quotient, and global ranking of these distances when a down-
adjustment of "'Rev is considered.

Only the three columns in the left part of Table 13.2 - Table 13.4 are of interest
at the present stage. In each table the dividing line between assigned and
unassigned quotients, Cj, is marked in bold. The constituencies are assigned seats
according to their number of quotients above these dividing lines. This results in
the assignment presented in the left part of Table 13.5:

Table 13.5
Parties Representation

B D G Total [Constraint Under Over p I
Rev 4 10 3 17 12 - 5
NoE 2 1 1 4 5 1 -
Aul 1 O O 1 5 4 -

7 11 4 5 5 10 I
Number of seats assigned to the constituencies within the three parties, malrepresentation, and
measure of goodness with the current constituencymultipliers: "'Rev = "'NoE = "'Au) = 1.

The right part of Table 13.5 tells us that Rev is overrepresented by 5 seats while
NoE and Aul are underrepresented by 1 and 4 seats respectively. This adds up to
an initial measure of goodness of p = 10. Since p > O, the current assignment is
not the optimal apportionment. The apportionment algorithm, i.e. Algorithm
12.1, must therefore be employed. In the demonstration of this algorithm we
apply p-effect selection, but the consequences of using representation selection
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instead are also described.

13.3 First iteration

From Table 13.5 we see that Rev is most malrepresented. Hence, representation
selection, see step 2 in Algorithm 12.1, would have chosen to downadjust the

multiplier for Rev. It turns out that ARev also is the constituency multiplier to be

adjusted by p-effect selection. To determine global distances and p-effect for

Rev, we employ Algorithm 12.2. Below we describe the determination process

thoroughly. The distances calculated during this process are also presented in the
right part of Table 13.2 - Table 13.4 above.

We begin with initializations: The p-effect for Rev is zero initially <l>Rev = 0,
while all distance numbers are equal to one, i.e. Xj = 1 for all parties j and y = 1.

All constituencies are malrepresented at the present stage, with u+ = {Rev} and
M- = {NoE, Aul}. Since Rev is overrepresented, the group of constituencies with
opposite malrepresentation is M = M: We use the malrepresentation data in
Table 13.5 to initialize the variables for remaining malrepresentation: PNoE = -1,

PAul = -4, and PRey = 5.

Next on the agenda is identification of outgoing and benchmark quotients for
Rev. In this process we utilize the sorted party lists in Table 13.2 - Table 13.4.

Within each party we find the smallest quotient from Rev which is assigned a
seat. This is the first outgoing quotient. The first outgoing quotient within party

B is the fourth quotient in the cell for constituency Rev and party B. It is denoted

~v.B(1) = (]Rev.B.4 Within parties D and G the first outgoing quotients are
(]Rev.D.IO and (]Rev.G.3 respectively. It is time to identify the first benchmark
quotients. Within each party the first benchmark quotient is the largest unassigned

quotient from another constituency than Rev. The first benchmark quotient

within party B is the third quotient from NoE. It is denoted tiev.B(I) = qNoE.B.3.

The first benchmark quotients within D and G are qNoE.D.2 and tlNoE.G.2

207



Chapter 13: Algorithm example

respectively. In Table 13.2 - Table 13.4 outgoing and benchmark quotients are
labelled in the column to the right of the quotient values. We go on to calculate

the first distances within the three parties. They are as follows: dre~1l3(1) =
~v.B(I) - tJNev.B(l) = qRev.B.4 - qNoE.B.3 ::::::7,798 - 7,603 = 0,195 within B,
dre~1D(1) = qRev.D.I0 - qNoE.D.2:::::: 0,186 within D, and fmally drJlv~G(I) =
qRev.G.3 - qNoE.G.2 ::::::0,831 within G. These and other distances are shown to the
right of the outgoing quotients in Table 13.2 -Table 13.4 above. We observe that
the smallest first distance is within D. This is the first global distance in

connection with the downadjustment of "'ReV. drg,E·~I) ::::::0,186. The notation
also shows within which party, D, and for which other constituency, NoE, the

distance occurs. In Table 13.3 the distance is marked "1st" in the "Global no."
column.

We calculate global distances to determine how large a multiplier adjustment

must be to lead to an exchange of unassigned and assigned quotients. The

beneficiary within party D in connection with the first global distance is the

second quotient from NoE. Since Rev is overrepresented and NoE currently is

underrepresented, a downadjustment of "'Rev such that qRev.D.lO becomes smaller
than qNoE.D.2 will reduce p. Thus, cl>Revis increased by two to 2. At the same time
the variable for remaining malrepresentation for NoE is increased by one and
becomes zero, i.e. PNoE = 0, while the variable for Rev is decreased by one to
PRev = 4. These values tell us that a downadjustment based on the first global
distance would result in NoE becoming rightly represented and Rev becoming
overrepresented by 4 seats. The first global distance belongs to party D, so both y
and xn are increased by one to 2. Before we can determine the second global dist-

ance, the second distance within party D must be calculated. From Table 13.3 we
see that the first outgoing quotient within D is placed as number 11. The second

outgoing quotient within D is the smallest higher placed quotient from Rev, so

q£v.D(2) = qRev.D.9- Furthermore, the first benchmark quotient within D is in
14th place. The largest lower placed quotient from another constituency than Rev

is qAul.D.l. This is the second benchmark quotient within D: 'llev.D(2) = qAul.D.l.

From these second quotients, we calculate the second distance within party D:

diJV.D(2) = qRev.D.9 - qAul.D.l ::::::8,033 - 7,473 = 0,560. This distance together
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with the first distances within B and G, dRev.B(l) :::::0,195 and dRev.G(l) :::::0,831,
are candidates for the second global distance. The smallest of these is the one
within party B, so the second global distance is dre~·B(2) :::::0,195.

We move on to the determination of the third global distance. The actual distance
numbers are increased by one each, y to 3 and XB to 2. Since the second global
distance involves a benchmark quotient from NoE and PNoE = 0, p will not be
reduced by this benchmark quotient becoming assigned. Thus, <!>Rev= 2 still. In
our remaining malrepresentation account we increase PNoE by one to 1 and
decrease PRey by one to 3. PNoE = 1 tells us that a downadjustment of ARevbased
on the second global distance would result in NoE becoming overrepresented by
1 seat. The next task is to find the second pair of quotients within party B and
calculate the distance between them. The process of finding such quotients should
now be familiar, so we present the second distance within B straight away:
dIte~.B(2) = lJRev.B.3 - QAul.B.2 :::::0,572. This distance is larger than the second
distance within party D, which is the smallest of the other distances. Thus, the
third global distance is dt~·D(3) :::::0,560. The process of determining the fourth
and fifth global distance is described briefly below. From the description above it
should be clear how the different parts of the process are carried out.

The benchmark quotient involved in the third global distance comes from Aul.
Since PAul = -4 < 0, the p-effect is increased by 2 to <!>Rev= 4. The variables for
remaining malrepresentation change as follows: PAul is increased to -3, while
PRey is decreased to 2. y and XD are increased to 4 and 3 respectively. The third
distance within party D is d:æ~lb(3) = lJRev.D.8- (]NoE.D.3 :::::0,814. By comparing
the three available distances, we see that the second distance within party B is the
fourth global distance: di~·B(4) :::::0,572.

PAul = -3 < 0, so <!>Revis increased to 6. Furthermore, PAul is increased to -2 and
PRey is decreased to 1. We increase y to 5, and XB to 3, so it is time to calculate
the third distance within party B. It is tt:æ~1J3(3)= lJRev.B.2- (]NoE.B.4:::::1,175. The
fifth global distance is the third distance within party D, calculated in the
preceding paragraph. Thus, dre'tE.D(5) :::::0,814.
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Since PNoE = 1 ~ 0, the p-effect remains at ct>Rev= 6. PNoE is increased to 2,
while PRev is decreased to O. Because Rev was overrepresented by 5 seats at the
start and we now have determined five global distances, the final p-effect for Rev

is ct>Rev= 6. The downadjustment of "'Rev calculated below will therefore reduce
the measure of goodness to p = 10 - 6 = 4. Furthermore, the final values of the

variables for remaining malrepresentation, PRev = 0, PNoE = 2, and PAul = -2, tell
us that Rev will be rightly represented, NoE will be overrepresented by 2 seats,
and Aul will be underrepresented by 2 seats after this adjustment. From

Table 13.8 below, which shows the assignment after the first iteration, we have
the chance to verify that these postulates are correct. To calculate the adjustment

distance for Rev, we also need to know the sixth global distance. y is therefore

increased to 6 and XD to 4. The fourth distance within party D is ~'t~(4) =
qRev.D.7 - lJNoE.D.4 ~ 1,236. This distance together with ~<t~(3) ~ 1,175 and
d~~1b(l) ~ 0,831 are candidates for the sixth global distance.The first distance
within party G is smallest, so d~e~·G(6) ~ 0,831.

Then we are ready to calculate the adjustment distance for Rev from equation

(12.8). Since u = 0,3 has been chosen as the value of the adjustment weight, the
adjustment distance becomes XRev= 0,3 . 0,814 + (l - 0,3) . 0,831 ~ 0,8259. Equ-
ation (12.16) then gives a new multiplier value of "'Rev = 1 . e-O,8259 ~ 0,4378.
NB. It is sometimes necessary to operate with more decimal places than we do in
this example.

XRev is only of interest if we decide to adjust "'Rev. Before this decision is made,
the p-effects for NoE and Aul should also be calculated, i.e. Algorithm 12.2
should also be employed for these constituencies. As told at the start of the

section, p-effect selection picks "'Rev as the multiplier to be adjusted. Here follows
a brief explanation of why Rev is picked: Since NoE is underrepresented by one
in the assignment in Table 13.5, the maximal attainable p-effect for NoE is 2,
which is less than the already calculated ct>Rev= 6. Hence, it is not worthwhile
calculating the p-effect for NoE, although our Pascal program still does. Calcul-
ation of p-effect is only necessary for Aul, where the maximal attainable p-effect

is 2·PAul = 8. As shown in Table 13.6 below, ct>Aul= 4, which is lower than ct>Rev.
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The data needed to determine global distances and p-effects for NoE and Aul are
available in Table 13.2 - Table 13.4. For a thorough demonstration of calcul-
ations regarding upadjustments, we refer to the next section. Global distance data
for all three malrepresented constituencies are presented in Table 13.6 below.
Each row in these sorted lists shows the global distance and the benchmark
quotient involved in it. In the rightmost column it is shown how the inclusion
(exclusion in the upadjustment context) of this benchmark quotient in (from) the
assignment will affect the measure of goodness p.

Table 13.6
Global distances for downadjustmentof Rev

NO. Bene quotient Distance p ettect
1 NoE.D. 2 0,186 2
2 NoE.B. 3 0,195 °3 Aul.D. 1 0,560 2
4 Aul.B. 2 0,572 2
5 NoE.D. 3 0,814 °6 NoE.G. 2 0,831 -

6

Global distances for upadjustment of NoE
No. Benchmark quotient Distance p - effect
1 Rev.D.10 0,186 2
2 Rev.B. 4 0,195 -

2

Global distances for upadjustmentof Aul
No. Benchmark quotient Distance p - effect
1 Rev.B. 4 0,284 2
2 Rev.D.lO 0,455 2
3 NoE.G 1 0,780 °4 NoE.B 2 0,900 °5 Rev.D. 9 1,253 -

4

Global distances, benchmark quotients, and p-effect for each of the three malrepresented
constituencies.

With the new multiplier set "'Rev = 0,4378, "'NoE = "'Au! = 1, we recalculate the
quotients from Rev. The new quotients are equal to the old ones minus 0,8259.
Thereafter we sort the three party lists in descending order. The quotients of
interest in the further calculations are included in Table 13.7 below:
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Table 13.7
Party B

Place Quotient Value Classification Distance Global no.
4 NoE.B. 2 8,009
5 Rev.B. 2 7,665 2nd Benchmark 0,844·········6·········No"i~]r·····J········":·603······TsrBenciiiiUiir············Cr;494·····"·········in(f"...........
7 Au1.B. 2 7,514
8 NoE.B. 4 7,316
9 Rev.B. 3 7,260···..··Tcr..·· ·····:Ai!i:I[···..3· ········"J09 ·····rsr ..ciiålIeiigiiig:·····································..............................
--- ------ ----
14 Au1.B. 4 6,821 2nd Challenging

Party D
Place Quotient Value Classification Distance Global no.
7 NoE.D. 2 7,742
8 Rev.D. 6 7,613
9 Aul.D. l 7,473····..·To........··Rev]~r···.." ········":·459...._ ..........._ ............................ _ ...........................................................
11 NoE.D. 3 7,337 1st Benchmark 0,557 3rd
12 Rev.D. S 7,325
13 Rev.D. 9 ........?~.~.Q?................... ............................... .............._ ....._ ......................... -.._ ......................................................--- ------ ----
20 Au1.D. 2 6,780 1st Challenging

no.

2nd Benchmark
l st Benchmark

1,191
0092 Ist

12 Aul.G. 2 6,443 2nd Challen .

Sorting of quotients within the three parties after the first iteration + classification of quotients,
distances between the xth benchmark and xth challenging quotient, and global ranking of these
distances when an upadjustment OfA-Aulis considered.
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Based on the party lists above, we find the assignment after the first iteration:

Table 13.8
Parties Representation

B D G Total Constramt Under Over p I
Rev 2 7 3 12 12 O O
NoE 3 3 l 7 5 - 2
Au! 2 l O 3 5 2 -

7 11 4 2 2 4 I
Number of seats assigned to the constituencies within the three parties, malrepresentation, and
measure of goodness with the multiplier set: "'Rev = 0,4378, "'NoE = "'Aul = l.

13.4 Second iteration

Since p = 4 at the moment, another iteration is needed. It turns out that both
representation selection and p-effect selection choose to upadjust the multiplier
for Aul. We therefore calculate global distances and p-effect for Aul in this
section. A difference compared with the downadjustment of A.Rev in the first
iteration is that we now deal with challenging quotients instead of outgoing
quotients. Furthermore, a benchmark quotient in the upadjustment context is a
quotient which currently is assigned a seat.

We begin with the initializations: <PAul= 0, y = l, and Xj = 1 for allj at the start.
M- = {Aul}, MO = {Rev}, and M = Ar = {NoE}, so the initial values of the
variables for remaining malrepresentation are PAul = 2, PRev = 0, and PNoE = -2.
Our focus in the following is on challenging quotients from Aul trying to surpass
benchmark quotients from Rev and NoE. The first challenging quotient within
each of the three parties is the largest unassigned quotient from Aul. From
Table 13.7 we see that the first challenging quotient within party B is the third
quotient from Aul: qXul.B(l) = qAul.B.3. Moreover, the first challenging quotients
within D and G are qAul.D.2 and qAul.G.l respectively. Within each party, the first
benchmark quotient is the smallest assigned quotient from another constituency
than Aul. The sorted party list for B in Table 13.7 tells us that the second
quotient from Aul is the smallest assigned quotient within party B. However, this
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quotient is from the upadjustment constituency and is not a benchmark quotient.
The quotient in 6th place is from NoE and is therefore the first benchmark

quotient within B: qRul.B(I) = tJNoE.B.3.Similarly, the first benchmark quotients
within D and G are tJNoE.D.3and (]Rev.G.3respectively. In the upadjustment
context we calculate distances between benchmark quotients and challenging

quotients. The first distances are: d~8t.a(l) = qRul.B{l) - qKul.B(I) = tJNoE.B.3-

qAul.B.3 ~ 7,603 - 7,109 ~ 0,494 within B, d~8t.D(I) = tJNoE.D.3- QAul.D.2 ~ 0,557
within D, and d~.G(I) = lJRev.G.3- QAu1.G.l ~ 0,092 within G. These distances are
shown to the right of the first benchmark quotients in Table 13.7. The smallest

distance is the one within party G, so the first global distance in connection with

the upadjustment of "'Au!is d.l&y·G(I) ~ 0,092.

An adjustment of "'Au! such that QAu1.G.l just surpasses (]Rev.G.3would not reduce
p because Rev is rightly represented at the moment. Thus, cl>Aul remains at zero,

PRev is increased by one to 1, while PAul is decreased by one to 1. We then
increase the distance numbers xG and y by one to 2 and determine the second
distance within G: Since Aul is not assigned any seat within party G, the second

challenging quotient is QKu1.G(2) = qAul.G.~ Moreover, the second benchmark
quotient within G is the smallest assigned quotient from Rev or NoE with a
placing higher than 4th. Hence, QRu1.G(2) = (]Rev.G.l and the second distance

within G is d~.G(2) = (]Rev.G.2- QAul.G.2 ~ 1,191. The first distance within party
B is the smallest of the three candidates for the second global distance, so
d~8r·B(2) ~ 0,494.

An upadjustment of "'Au! such that QAu1.B.3just surpasses tJNoE.B.3will reduce p
since NoE is overrepresented by two seats beforehand. The p-effect for Aul is

therefore increased by two to cl>Au!= 2. Moreover, the variables for remaining

malrepresentation are changed as follows: PNoE is increased to -1, while PAul is

decreased to O. Since PAul = O now, cl>Aul= 2 is the final p-effect for Aul. The

upadjustment of "'Aul calculated below will therefore reduce the measure of

goodness to p = 4 - 2 = 2. PAul= O, PNoE= -l, and PRev= 1 tell us that Aul will
be rightly represented, NoE will be overrepresented by 1 seat, and Rev will be

underrepresented by 1 seat after this adjustment. The reason why a positive
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(negative) p means underrepresentation (overrepresentation) in this case is that
Aul is underrepresented at the start of the determination process. The third global
distance remains to be determined so we increase y to 3 and XB to 2. We then find
the second distance within B: dlm'.B(2) = qRev.B.2 - QAu1.B.4 ::::0,844. Of the three
candidates for the third global distance, the first distance within party D is the
smallest, so d~3IE·It3) ::::0,557. Equation (12.8) then gives the following
adjustment distance: XAul = 0,3 . 0,494 + (I - 0,3) . 0,557 ::::0,5381. Since we deal
with an upadjustment, we employ equation (12.10), which gives a new multiplier
value of AAul = 1 . eO,5381 :::: 1,7127. The lower part of Table 13.9 below
summarizes the most interesting data from the determination process above,
while the upper part of the table shows the same kind of data for a possible
downadjustment of ANoE.

Table 13.9
Global distances for downadjustment of NoE

No. Benchmark quotient Distance p - effect
l Rev.D. S 0,012 °2 Rev.B. 3 0,343 °3 Rev.D. 9 0,535 -

°
Global distances for upadjustment of Aul

2
3

ev ..
NoE.B. 3
NoE.D. 3

2

Global distances, benchmark quotients, and p-effect for each of the two malrepresented
constituencies.

From Table 13.9 we see that <!>NoE = 0, which makes it clear why p-effect
selection chooses to adjust AAul. In fact, Aul would also have been selected by
representation selection; PNoE = PAul after the first iteration, but since there was
a downadjustment in the previous iteration, our tie breaking rule says that there
shall be an upadjustment in this iteration. It is not unusual for a p-effect to be
equal to zero, like <!>NoE here. Sometimes none of the possible adjustments will
reduce the measure of goodness.
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After the adjustment of AAub the multiplier set is ARev = 0,4378, ANoE = 1, and
AAul = 1,7127. The new values of the quotients from Aul can be found by adding
0,5381 to the old values or they can be calculated as (1,7127 . P~~lj). Once more
we sort the quotients within each party in descending order. Table 13.10 presents
the interesting parts of the sorted party lists:

Table 13.10

Rev.D.
Aul.D. 2
Rev.D. 9

1st Bene

Sorting of quotients within the three parties after the second iteration + classification of quotients,
distances between the xth outgoing and xth benchmark quotient, and global ranking of these
distances when a downadjustment of "'NoE is considered.

216



Chapter 13: Algorithm example

From Table 13.10 we fmd the assignment after the second iteration:

Table 13.11
Parties Representation

B D G Total Constramt Under Over p I
Rev 2 7 2 11 12 1 -
NoE 2 3 1 6 5 - 1
Aul 3 1 1 5 5 ° °7 11 4 1 1 2 I
Number of seats assigned to the constituencies within the three parties, malrepresentation, and
measure of goodness with the multiplier set: ARev = 0,4378, ANoE = 1, AAul = 1,7127.

The measure of goodness is now as lowas p = 2. Since p > O we have to carry
out yet another iteration.

13.5 Last iteration

We do not go through the calculations which produced the data in Table 13.12.
From the explanations in earlier sections it should be clear how they are
determined from the sorted party lists in Table 13.10.

Table 13.12
Global distances for downadjustment of NoE

p-e ect
2

Global distances for upadjustment of Rev
No. Benchmark quotient DIstance p - ettect
1 NoE.D. 3 0,012 2
2 Aul.B. 3 0,387 -

2

Global distances, benchmark quotients, and p-effect for each of the two malrepresented
constituencies.
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Both p-effect and representation selection choose to downadjust A.NoE because of
the rule regarding alternation of up and downadjustments. <PRev = 2, so the
upadjustment of A.Rev would also reduce the measure of goodness to zero. The
adjustment distance for NoE is XNoE = 0,3 . 0,012 + (l - 0,3) . 0,424 ~ 0,3004,
which results in a new multiplier value of ANoE = 1 . e-O,3004 ~ 0,7405. After

recalculation of quotients from NoE, we get the following sorted party lists:

Table 13.13
p

8,745
8,402
8,358
8,052
7,708
7,665
7,647

Place
l
2
3
4

,
7,675
7,634
7,616

Party D
Place _Quotient Va.lue

1 Rev.D. 1 9,404
2 Rev.D. 2 8,711
3 Rev.D. 3 8,306
4 NoE.D. 1 8,135
5 Rev.D. 4 8,018
6 Aul.D. 1 8,011
7 Rev.D. 5 7,795
8 Rev.D. 6 7,613
9 Rev.D. 7 7,459
10 NoE.D. 2 7,442
11 Rev.D. 8 7,325

Sorting of assigned quotients within the three parties after the third iteration.

These party lists imply the following assignment:

Table 13.14
Parnes Representation

B O G Total [Constraint Under Over p I
IRev 2 8 2 12 12 ° °NoE 2 2 1 5 5 ° °Au! 3 l 1 5 5 ° °7 11 4 ° ° ° I
Number of seats assigned to the constituencies within the three parties with the suitable multiplier
set: "'Rev = 0,4378, "'NoE = 0,7405, "'Au) = 1,7127.

p is zero, which means that the assignment in the left part of Table 13.14 is the

optimal apportionment. Since the multipliers ARev = 0,4378, ANoE = 0,7405, and
AAul = 1,7127 solve the problem, they form a suitable multiplier set.
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In this chapter we test the behaviour of the apportionment algorithm empirically.

The first three sections describe the framework for the tests. Section 14.1
describes the data sets utilized, section 14.2 follows up with a presentation of the

five test parameters, while the third section presents the test method employed.

To find out how different levels of the parameters influence the speed of the

solution process, we carry out tests of the parameters. We test selection methods
in section 14.4, relaxations in section 14.5, and initialization procedures in section
14.7. The main criterion in these tests is the average number of iterations. Section

14.6 presents an alternative way of measuring the speed of the algorithm, while

we in the fmal section study the impact of bound vectors and matrix

apportionment methods. The complete results of the tests carried out in this
chapter can be found in Appendix 3.

14.1 Data sets

We have utilized data from general elections in 8 countries in the algorithm tests.

The number of data sets from each country spans from 4 to 28 as shown in

Table 14.1:

Table 14.1
Country Sweden Finland Denmark Norway Iceland (W.) Gennany Luxembourg Austria Total
Datasets 28 17 13 12 11 14 5 4 104

Number of data sets from each country.
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Lists of the utilized data sets giving information about country, election year, etc
are presented in Appendix 3. Be aware that the values of h, m, and n given in
these lists are the actual values after the manipulations described below. The
election data of interest to us are the vote matrices in absolute figures and the
actual apportionments to constituencies and parties. Not all parties are of interest,
a party must have won a seat in the election or received at least 1% of the votes at
the national level to be included in our data sets. Every constituency has been
included in the data sets. The exceptions to this rule are the Danish and Finnish
data sets where a few small constituencies with special status have been excluded.
Other deviations from the data set norm described above are presented in the
paragraph below. These deviations concern only a few of the data sets.

We start with matters concerning parties. Some small parties which met our party
criterion, but where only vote totals were available, have been omitted. The
second party related matter concerns small parties in some West German data
sets. Only percentage vote data given with one decimal's accuracy were available
for these parties, so the deduced absolute vote figures are somewhat inaccurate
estimates of the actual vote figures. Another matter regarding inaccuracy, the
absolute vote figures from West Germany and Germany after World War 2 are
given in multiples of a hundred Now to the data set for the Swedish election in
1994. We have only got hold of vote data for 20 constituencies plus 4 quasi-
constituencies for this election, so we operate with 24 constituencies, 4 less than
the actual number. The last data set we comment on is for the Danish election in
1990. We have only got hold of percentage vote data given with one decimal's
accuracy for this election. The vote matrix in absolute figures deduced from these
data is therefore an inaccurate estimate of the actual vote matrix.
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14.2 Test parameters

There are 5 test parameters; selection method, relaxation, initialization
procedure, bound vector, and matrix apportionment method. We operate with 2
selection methods, 2 relaxations, 3 initialization procedures, 3 bound vectors, and
4 matrix apportionment methods. The apportionment algorithm is therefore run
2 . 2 . 3 . 3 . 4 = 144 times for each data set. We record the initial measure of
goodness and the number of iterations for each parameter combination, Le. for
each run of the algorithm. Be aware that all 5 parameters influence the number
of iterations while the initial measure of goodness is unaffected by the selection
method employed. The first three parameters are directly connected to the
effectiveness of the algorithm, while the last two in tandem determine the optimal
apportionment. We call them algorithm parameters and political parameters
respectively. Bound vector and matrix apportionment method are called political
parameters because they should be determined politically. Hence, the number of
iterations should not influence the choice of bound vector and matrix apportion-
ment method. The arguments put forward in sections 8.1 and 8.3 are relevant for
the choice of bound vector, while the measurement of matrix bias in chapter 16
should be taken into consideration when deciding which matrix apportionment
method to apply. Below we present the bound vectors and matrix apportionment
methods employed in the tests.

Since we deal with equality constrained problems, the bound vector can be
written as O" = (R, C, h). For a given house size h, it is the combination of
constituency and party bounds which distinguishes a bound vector from another.
Some places we use the notation X-y for a bound uector, where X and Y
symbolize the apportionment methods used to determine the constituency bounds
R and party bounds C respectively. We use the abbreviation EL for the actual
apportionment, Le. the apportionment determined by election law. One of the
bound vectors we utilize is EL-EL, Le. both constituency and party bounds are as
determined in the election. The bounds are often far from proportional to the
vote totals with EL-EL. This is one of the reasons for bringing in two
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proportional bound vectors. We have chosen MF-MF and SD-HA, where the
bounds are determined by applying the specified apportionment method on the
vote totals. Based on the vector bias results from section 5.8 one might say that
MF-MF gives unbiased bounds while SD-HA gives bounds which favour small

constituencies and large parties.

The four matrix apportionment methods we use in the tests are CPO,Ob DM

(CP l), MF (CPO,5), and HA (CP l). CPO,OIhas about the same effect as SD (CPo)
3

and is used instead of SD because it is better suited to our Pascal program of the

apportionment algorithm. MF and HA are natural choices, while DM is included
based on an intuition that a constant parametric divisor method somewhere

between SD and MF could be interesting for matrix apportionment purposes.

Since we operate with 3 bound vectors and 4 matrix apportionment methods, each

data set may lead to 3 . 4 = 12 different apportionments. A data set results in
fewer than 12 different apportionments when two of the bound vectors or all
three are identical, or when different matrix apportionment methods result in the

same matrix apportionment for a given bound vector. There are few instances of
identical apportionments for our 104 data sets.

The algorithm parameters we use in the tests have been described in earlier
chapters; the 2 relaxations in section 11.1, the 3 initialization procedures in
section 11.3, and the 2 selection methods in sections 12.1 and 12.5. Furthermore,

the utilized values for target weight and adjustment weight, t = 0,3 and \) = 0,3

respectively, are results of the tests in sections 11.5 and 12.4 respectively.

Relaxation together with initialization procedure determine the starting position

of the apportionment algorithm, while the selection method determines the path

followed to the optimal apportionment. Thus, each apportionment is usually
found through 2 . 3 . 2 = 12 different paths. We are now ready to choose test

method:
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14.3 Test method

Our aim is to make the apportionment algorithm as efficient as possible given the
political parameters, Le. to solve matrix apportionment problems in as few
iterations as possible. To find the best set-up of the algorithm, we carry out three
separate tests. We test the two selection methods against each other in section
14.4, the two relaxations against each other in section 14.5, and the three
initialization procedures against each other in section 14.7. For each level of a
parameter we calculate the average number of iterations and sometimes also the
average initial measure of goodness. These averages are calculated over all
combinations of the four other parameters, i.e. over 2 . 3 . 3 . 4 = 72 cases in the
selection method and relaxation tests and over 2 . 2 . 3 . 4 = 48 cases in the
initialization procedure test. We calculate such averages for every data set.

To test a level of a parameter against another level of the same parameter, we
compare the averages for the two levels. We let <p denote the ratio and 11the
difference between two such averages. This notation is used for both iteration and
p averages. We assume that ratios from different data sets are independent of
each other. Moreover, we assume that they follow a normal distribution which
mean and variance both are unknown. Similar assumptions are employed for
differences. Our estimates of the means are denoted <p and 11respectively. They
are calculated as follows:

(14.1)
n

- 1 ~
<P = n .£..J <Pa

a=l

n
- 1 ~
11= n .£..J 11a

a=l

where a is the index for data sets and n is the number of data sets (observations).
The variances are estimated the following way:

(14.2)
n

s~= n ~ 1 .L: (<Pa - <p)2
a=l

n

~ = n ~1.L: (11a -11)2
a=l
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The estimation process is carried out for each country. We also calculate
"universal" estimates based on all 104 data sets available. Below we present the
null hypotheses and test statistics we employ in the tests. The null hypothesis for
both ratios and differences is that the averages are equal, which means:

(14.3) Ho: <p = 1 Ho: 11= O

The test statistics employed for ratios and differences are:

(14.4) <p - 1
Tcp= ~

VD

11-0T --Tl- 2!L..
Vn

Given the assumptions above, both Tcpand TTlare t-distributed with n - 1 degrees
of freedom. We use a level of significance of 5% in the tests.

In this paragraph we consider possible violations of the assumptions above. There
is reason to believe that some of the ratios and differences in our tests are
affected by the size of the vote matrices m x n. For most countries the number of
constituencies m and parties n are quite stable over time. Thus, the assumption
that observations are drawn from the same normal distribution should usually be
satisfied for individual countries. Sweden and Germany are notable exceptions
regarding size stability. The Swedish data sets prior to 1921 have twice as many
constituencies as the later sets, while the German data sets have a quite different
size than the West German sets. For these countries we have also carried out the
tests with the anomalous data sets removed. The resultant estimates did not differ
that much from the estimates presented in the following sections. As mentioned
earlier, we calculate universal estimates based on all 104 data sets available. Due
to large differences in vote matrix sizes among countries, the assumption that all
observations are drawn from the same normal distribution is presumably violated
in this case. If the actual probability distribution has thicker tails than Student's t-
distribution, the reported P-values are too low. This should be kept inmind when
studying the universal estimates in the following sections.
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We end this section by suggesting an alternative way of testing the apportionment
algorithm. In hindsight, it would have been an idea to use a five factor model, see
[D&C] (page 145---+),to analyse the performance of the algorithm. This way we
would have got estimates of the impact of each parameter level plus estimates of
interaction effects between different parameters. The best combination of
relaxation, initialization procedure, and selection method found with such a test
would presumably be identical to the combination of the best relaxation, the best
initialization procedure, and the best selection method found with our tests. The
reason for this postulate is the clear winners in each of our three tests.

14.4 Comparison of selection methods

In this section we compare the two selection methods. The basis for this
comparison is the average number of iterations for each data set. Let us denote
the average with p-effect selection (O) and the average with representation
selection (R). A possibility is to look at the difference between these averages, i.e.
(O) - (R). However, use of (O) - (R) would have meant that we expected the same
difference for a data set where the average initial measure of goodness p is high
as for a data set where the average p is low. Since p-effect selection makes use of
more information than representation selection before it decides which multiplier
to adjust, we expect it to perform somewhat better than the latter in every iter-
ation of the algorithm. Then it is natural to calculate the iteration ratio ~~J= <p.

The null hypothesis is that there is no difference in performance between the two
selection methods, i.e. <p = 1, while our alternative hypothesis is that p-effect
selection is better:

(14.5)

Thus, we employ a one-sided test. We carry out the test as explained in section
14.3. The estimated iteration ratios <p and the statistical significance of these
estimates are presented in Table 14.2:
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Table 14.2

We see that all estimates but one are significant at the 1%-level. Moreover, the
estimate for the last country, Austria, is significant at the 5%-level. Of the indivi-
dual data sets, there was only one Swedish set where cp > 1, Le. where the average
number of iterations with representation selection was lower than with p-effect
selection. The conclusion is crystal clear, p-effect selection reduces the number of
iterations compared with representation selection. For the collection of all data
sets p-effect selection used on average 1 - ~.86 = 14% less iterations than
representation selection. Whether this reduction is big enough to make up for the
increased workload. with p-effect selection is another question. The estimates in
Table 14.2 hide the fact that compared with representation selection, p-effect
selection is more efficient working on party relaxed than on constituency relaxed
problems. For the collection of all data sets the estimated iteration ratios with
these two relaxations were 0,79 and 0,90 respectively.

14.5 Comparison of relaxations

As mentioned in [H&J] (page 21), constituency relaxation may be more acceptable
politically than party relaxation. Let us forget the political aspect for the moment
and see how the relaxations fare. Below we present two ways of comparing them.
Since we have not got any basis for saying that one of the relaxations is better
than the other, we employ two-sided tests.

The first comparison is based on the initial measure of goodness p. A low P is
normally better than a higher one. For each data set we calculate the average p
with constituency relaxation, denoted [C], and with party relaxation, denoted [P].
We calculate the difference between these two averages [P] - [C] = Tlto compare
the relaxations. Since this means that we expect the same difference for every
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data set, it might have been better to use the p-ratio ~~l.The null hypothesis is
that the relaxations are equally good, i.e. 11= O, while our alternative hypothesis
is that one of them is better:

(14.6)

The estimated p-differences and the statistical significance of these estimates are

presented in Table 14.3:

Table 14.3

Estimated p-differences Ti = [P] - [C] for relaxations.

The estimate for the collection of all data sets is significant at the 1%-level. On

average, party relaxation results in an average p which is 3,65 higher than with

constituency relaxation. This is the opposite result of what we experienced in the
test in section 11.5. An explanation is that p there was based on apportionment
initialization, while p here is based on all three initialization procedures. Let us
return to the figures in Table 14.3. The estimates for the Nordic countries are
significant at the 1%-level, while the null hypothesis is not rejected for the other
three countries. Notice that the estimate for Iceland has the opposite sign of the
other significant estimates. In fact, party relaxation resulted in the lowest average
p for all 11 Icelandic data sets. If we look at all 104 data sets utilized, 76 had
their lowest average p with constituency relaxation, 27 with party relaxation, and

for 1 set the averages were equal.

The drawback of basing the comparison on the initial measure of goodness p is
that p only tells something about the starting position of the apportionment

algorithm. p does not tell us how accommodating the relaxation is towards the

execution of the algorithm. To cover this aspect we utilize the number of
iterations once again. From the figures in Table 14.3 one should possibly expect
party relaxation to require a higher number of iterations than constituency

relaxation. Whether this is the case is tested below.
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We let (C) and (P) denote the average number of iterations for a data set with
constituency and party relaxation respectively. Above we found that the average
p was lower with constituency than with party relaxation. A possibility is to
assume that this difference combined with the workings of the apportionment
algorithm lead to a difference in the number of iterations (P) - (C). However,

since we expect (P) - (C) to vary with the size of the problems, we use an

iteration ratio. We have chosen the ratio ~g= <p. The null hypothesis is that the
two relaxations are equally good, Le. <p = 1, while our alternative hypothesis is

that one of them is better:

(14.7)

Table 14.4 presents the estimated iteration ratios <p for relaxations and the

statistical significance of these estimates:

Table 14.4

Contrary to what the p-differences suggested, party relaxation is best. On
average, it only uses 58% of the iterations constituency relaxation does. This
estimate is significant at the 1%-level. With two exceptions, the estimates for the
countries are significant at the 1%-level in favour of party relaxation.
Luxembourg is the only country where constituency relaxation seems preferable,
but the estimate is not significant. Of the iteration ratios for individual data sets,

<p > 1 for 1 German, 1 Austrian, and all but one of the Luxembourg data sets. A
majority of these data sets are characterized by having more or as many parties as
there are constituencies, Le. n ~ m. An explanation of why it is usually preferable

to relax the index with fewest constraints follows in the next section.
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14.6 The average decrease in p per iteration

In this section we present a measure which both takes the difficulty of the task, as
measured by the initial measure of goodness p, and the speed of the solution
process, as measured by the number of iterations, into account. The measure,
denoted t, is given by (14.8). We call it the auerage decrease in p per
iteration.

(14.8) _ Initial measure of goodness
t - Number of iterations

t was constructed to compare the performance of the two selection methods. It is
well suited for this task because p is the same for both. For each selection method
we fmd the average t for a data set by calculating t for every case where p > O
and taking the average. Notice that the average t is not generally equal to the

. Total initial measure of goodness . . f
ratio Total number of iterations . The average t for each combination o relax-
ation, selection method, and data set can be found in Appendix 3. Moreover, the
results of the selection method test based on t are also presented there. These
results are similar to the ones in section 14.2.

Our original hypothesis regarding t was that it, in broad terms, would be an
increasing function of p. To check this hypothesis, we drew graphs, one for each
combination of country and relaxation. For each combination of data set and
relaxation we calculated the average p and t and plotted the point (p, t) in the
relevant graph. In most of the graphs t was fairly constant. Thus, t seems to be
independent of p, at least for the averages. However, the average t differed from
one graph to the next, so let us look at the average is for the different
combinations of country and relaxation:
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Table 14.5
Constituency relaxation Party relaxation

Country Initial p Selection Initial p Selection
Representation p - effect Representation p - effect

Austria 7,02 1,08 1,33 8,76 2,08 3,17
Denmark 19,37 1,02 1,13 28,04 1,88 2,28
Finland 10,82 0,93 1,05 15,48 1,75 2,26
CN.) Germany 10,20 1,13 1,36 11,83 2,58 3,28
Iceland 8,44 1,37 1,59 6,61 1,75 2,08
Luxembourg 3,67 1,42 1,76 3,59 1,44 1,66
Norway 17,50 0,95 1,05 21,94 2,27 2,71
Sweden 19,01 0,88 0,96 23,48 3,05 3,81

Average p and is for the different combinations of country and relaxation.

t gives important information about the speed of the solution process. Let us
illustrate how the t data in Table 14.5 can be used to estimate the length of the
solution process for a new problem: Assume that we face a constituency relaxed
Austrian apportionment problem where p = 4. Table 14.5 tells us that the
solution process should take about 1~3 ~ 3 iterations if p-effect selection is
employed.

What we find most interesting with the figures in Table 14.5 is that t is much
higher with party than with constituency relaxation. Here follows an explanation
for this: Because m > n in almost all our data sets, there are often more
malrepresented constituencies than parties for a given value of p. The average
malrepresentation per malrepresented item is higher with party than with
constituency relaxation in such situations. In many cases this leads to a higher
maximal malrepresentation with party relaxation. The end result is often a higher
p-effect and thereby a higher t with party relaxation.

To get a somewhat different view of the relationship between the initial measure
of goodness p and the number of iterations than t gives, we calculate correlation
coefficients between the two. We distinguish between constituency and party
relaxation in these calculations, which are based on the average p and average
number of iterations for each data set. The calculated correlation coefficients are
presented in Table 14.6 below. With one exception, the coefficients are larger
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than 0,55.

Table 14.6
Relaxation

Country # of data sets Constituency Party
Austria 4 0,66 0,92
Denmark 13 0,70 0,56
Finland 17 0,65 0,88
(yl.) Germany 14 0,96 0,94
Iceland 11 0,77 0,74
Luxembourg 55 0,95 0,80
Norway 12 0,67 0,19
Sweden 28 0,82 0,90
All countries 104 0,92 0,81

Correlation coefficients between average p and average number of iterations.

14.7 Comparison of initialization procedures

The initialization process is about fmding a good starting position for the
apportionment algorithm. Since apportionment initialization makes use of more
information about election situations than quota ratio initialization does and no
initialization does not utilize any information at all, we expect apportionment
initialization to be better than quota ratio initialization and quota ratio
initialization to be better than no initialization. Our hypothesis is that a good
initialization gives the algorithm a head start compared with a not so good

initialization. This explains our use of differences in the tests below.

We start the comparison of the three initialization procedures by utilizing the
initial measure of goodness p again. Let [N], [Q], and [A] denote the average p
for a data set with no, quota ratio, and apportionment initialization respectively.

We estimate the head start of an initialization procedure in relation to another
procedure as the difference in average p between the two. Estimates are

calculated for the differences [N] - [Q] and [Q] - [A]. We use the notation" for
both. The null hypothesis for each difference is that the two initialization
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procedures in question are equally good, Le. Tl = O. Our alternative hypothesis is
that the latter initialization procedure in a difference pair is best, i.e. has the

lowest average p:

(14.9)

The results ofthese one-sided tests are presented in Table 14.7:

Table 14.7
Country Sweden Finland Denmarlc. Norway Iceland (W.) Germany Luxembourg Austria All
Estimated 1Nl - rOl 240·· 218·· 158·· 4,_63•• 3~2 •• 481·· 187·· 140·· 286··
Estimated rOl - [Al 1562·· 8 Il •• 1384·· 11.24·· 337·· 656·· l 18• 548·· 1007··

Estimated p-differences 11= [N] - [Q] and 11= [Q] - [A] for initialization procedures.

All estimates are positive and significant at the 1%-level, except [Q] versus [A]

for Luxembourg which is significant at the 5%-level. From the figures in

Table 14.7 we draw the conclusion that apportionment initialization is much

better than quota ratio initialization, which itself is better than no initialization.

Of the p-differences for individual data sets, only [Q] - [A] for the earliest
Luxembourg set was negative. Finally, be aware that estimates for the difference
[N] - [A] can be found by adding the estimates for [N] - [Q] and [Q] - [A] from
Table 14.7.

As in section 14.5, the interesting point is how the starting position is
transformed into number of iterations. Given the same value of (14.8) for every
run of the apportionment algorithm, p and the number of iterations would have
told identical stories. This will not happen in practice. Let (N), (Q), and (A)

denote the average number of iterations for a data set with no, quota ratio, and
apportionment initialization respectively. To compare the initialization
procedures we calculate the iteration differences (N) - (Q) and (Q) - (A). The

null and alternative hypotheses regarding these differences are the same as for the

p-differences above. Table 14.8 presents the estimated iteration differences and

the statistical significance of these estimates given a one-sided test:
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Table 14.8
Country Sweden Finland Denmark Norway Iceland (W.) Germany Luxembourg Austria All
Estimated (N). (Q) 1,43·· 083·· 0,61• 1-,-49•• 1,06·· 0,49·· 074 031 1,00··
Estimated (O)· (A) 365·· 233·· 2.27·· 198·· 144 •• 254·· 084·· 239·· 250··

Estimated iteration differences 11 = (N) - (Q) and 11= (Q) - (A) for initialization procedures.

We see that all estimates are positive. Moreover, all estimates for (Q) - (A) and

most estimates for (N) - (Q) are significant at the 1%-level. The results in
Table 14.8 confirm that apportionment initialization is best and quota ratio
initialization second best. However, there were some data sets with a different

ordering; (N) - (Q) was negative for 3 Swedish, 2 Finnish, 3 Danish, 2 German,
and 1 Austrian set, while (Q) - (A) was negative for 1 Danish set. A point worth
noticing when studying Table 14.7 and Table 14.8 is that overall p-differences of
2,86 and 10,07 lead to overall iteration differences of 1,00 and 2,50 respectively.

Another figure which tells something about an initialization procedure is the
number of cases solved directly. The initialization procedures were able to solve

the following number of cases:

Table 14.9

Initialization procedure No Quotaratio Apportionment Total

Direct solutions 14 20 90 124
Number of direct solutions with the three initialization procedures.

We observe that the ranking of the three initialization procedures is the same as
with the tests above. The countries with most direct solutions were Luxembourg
with 42, West Germany with 40, and Iceland with 26. When evaluating the

figures in Table 14.9, it should be taken into account that a total of 2496 initial
multiplier sets have been created by each initialization procedure; 2 ·3 ·4 sets for
each of the 104 data sets. Hence, the solution percentages are low; 3,6% with

apportionment initialization and below 1,0% with the two other initialization

procedures.
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14.8 Final remarks

Based on the results of the tests in earlier sections, we draw the following
conclusion: The best way to solve a matrix apportionment problem in as few
iterations as possible is to use party relaxation, apportionment initialization, and
p-effect selection.

As pointed out in section 14.2, the choice of bound vector and matrix
apportionment method should not be ruled by iteration figures. Nevertheless, it is
interesting to see how different levels of these two parameters affect p and the
number of iterations:

First, we look at the effect of the three bound vectors. Below we let E, M, and S
stand for the bound vectors EL-EL, MF-MF, and SD-HA respectively. It would
have been possible to test the bound vectors against each other using the same
kind of tests as in earlier sections, but we restrict ourselves to ordinal values
here. We use the average initial measure of goodness p and average number of
iterations for each country to rank the bound vectors. X > Y means that bound
vector X is better than bound vector Y, i.e. that X has a lower average. We get
the following rankings for the different countries:

Table 14.10
Country Sweden Finland Denmark Norway Iceland (W.) Gennany Luxembourg Austria
Average p M>E>S M>S>E E>M>S M>S>E M>S>E M>S>E M>S>E S>M>E

AVef!ge iterations E>S>M M>E>S E>S>M E>S>M M>S>E M>E>S M>E>S S>E>M

Rankings of the three bound vectors based on average p and average number of iterations.

Based on pairwise comparisons, the overall ranking is M > S > E for p, while we
run into the Condorcet paradox for number of iterations because E = M, E > S,
but M = S. Thus, there does not seem to be much difference between the bound
vectors iterationwise, although E results in the lowest sum over all countries.
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Next on the agenda is a study of the effect of the four matrix apportionment
methods. We use the same methodology as for bound vectors to rank these
methods. Table 14.11 below shows the rankings. In the table, C, D, M, and H
stand for CPO,OI, DM, MF, and HA respectively.

Table 14.11
Country Sweden Finland I>enmaIk Norway Iceland (W.) Gennany Luxembourg Austria
Avenuæ o M>D>H>C M>D>H>C D>M>H>C M>D>H>C D>M>C>H M>D>H>C M>D>H>C M>D>H>C
Averalle iterations M>D>H>C M>D>C>H D>M>H>C M>D>H>C M>D>H>C M>D>C>H M>D>H>C M>D>H>C

Rankings of the four matrix apportionment methods based on average p and average number of
iterations.

The picture is much clearer here than it was for the bound vectors. The overall
ranking is MF > DM > HA > CPO,OI for both criteria. Furthermore, notice that
MF and DM never are ranked below second place in Table 14.11.

p and iteration data for each data set are presented in Appendix 3. A look at the
iteration figures strengthens the impression that CPO,OI is most troublesome
iterationwise. Of the four matrix apportionment methods, MF results in the
lowest number of iterations overall, although DM is not far behind. The initial
measure of goodness p is much higher with CPO,OI and HA than with DM and
MF. This indicates that the three initialization procedures have problems handling
constant parametric divisor methods with t in the neighbourhood of O or 1.
Whether any better initialization procedure exists for such divisor methods is an
unanswered question, at least in this dissertation.
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Apportionment of seats in elected assemblies is not the only application of divisor
methods. They can also be used for problems which presently are solved by

controlled rounding. Controlled rounding has several applications, for a review

of these we refer to [C&C&E] (page 904-905). Our focus in this chapter is on

controlled rounding as an apportionment method. We start by formulating the

two-dimensional controlled rounding problem. A divisor method formulation in
the same spirit follows in the second section. In section 15.3 we present a
formulation which restricts the rounding to internal entries. Section 15.4 looks at
the pros and cons of rounding all entries compared to rounding only internal

entries. The final section discusses briefly whether divisor methods are suitable
for traditional controlled rounding problems.

15.1 Two-dimensional formulation

Controlled rounding is the problem of rounding all entries in a one-, two-, or

multi-dimensional matrix b to integer multiples of a positive integer base b
subject to the requirements:

Additivity: The sum of the rounded values along any row or column equals the

rounded total value of the corresponding row or column.
Adjacency: Each entry in b is rounded to an adjacent integer multiple of b.
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Below follows an introduction to the two-dimensional controlled rounding
problem. The extension to higher dimensions is straightforward. However, some
multi-dimensional problems are infeasible. The formulation below includes sum
entries while the formulation in section 15.3 does not.

We start by introducing some new notation. The sets US = {I, 2, ..., m, (m + I)}

and JVS = {I, 2, ..., n, (n + I)} are related to the rows and columns respectively.

In this section we let b be a (m + 1) x (n + 1) matrix with real valued entries bij,
where i E US and j E JVS. We call the entries in the m x n submatrix in the upper

left corner of b internal entries. The bottom row, Le. row (m + 1), contains

the column sums bA(;and the rightmost column, i.e. column (n + 1) contains the
row sums biN. These entries are referred to as total entries. Finally, the entry

in the lower right comer, which is the sum of all internal entries bMN, is called
grand total entry.

We let a denote the controlled rounding of b. All entries in a are non-negative

integers, Le. aij E No for all i E US and j E JVS. All entries in b shall be rounded
to the rounding base b, where b is a positive integer. The set of all non-negative
multiples of b, which we denote b·No, is important in the following. We round an
entry to one of the adjacent integer multiples of b, Le. either down to L ~ J or up
to I ~ l. These roundings satisfy the adjacency condition, which can be written
as:

(15.1) 'V i E US,j E JVS

L~ J and I pt l are equal if and only if bij belongs to the set b·No. A rounding
scheme which guarantees that whenever bij E b·No then aij = ~, Le. that all
whole multiples of b always result in a corresponding number of entities, is called

zero restricted. We observe that adjacency as defmed by (15.1) implies zero

restrictedness.
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The optimal controlled rounding a minimizes the lp-norm, [C&E] (page 425):

(15.2) for 1 s P < 00

(or loo = lim lp for p = 00)
p~oo

subject to the additivity and adjacency requirements.

A controlled rounding problem can be standardized by carrying out two simple
transformations. In the first transformation each entry in b is divided by the base
b, which yields an equivalent controlled rounding problem with base equal to 1.
To relate the description of controlled rounding to the apportionment problem,
we let b be a vote matrix and allow b to be a positive rational number. Then the
transformation above with b = P:N is similar to calculating quotas.

The zero restrictedness condition applied to base 1 problems demands that all
integers shall result in a corresponding number of entities. In the apportionment
problem, the grand total entry is equal to h and therefore integer. However, all
other entries are usually non-integer. With respect to the rounding process we
can ignore the integers and focus on the fractions. We denote the integer part of

b- - b- -an entry aij = LT J and the fractional part bij = 1f - aij. Thus, the matrix b
consists entirely of entries smaller than 1. In the second standardization
transformation integers are subtracted from the internal entries. The resultant
matrix is denoted b. In this matrix each original internal entry bij is replaced by
bij= .!]; - aij= bij. Thus, O~ bij < 1 for all i e M and j e N. The total entries in b
are found as the sums of the transformed internal entries:

(15.3) bi(n+l) = ~ bij
jeN

b(m+l}j=~ bij
ieM

b(m+l)(n+l) =~ ~ bij
ieM jeN

'if i e M

(15.4) 'ifjeN

(15.5)
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These total entries may well be larger than 1. We follow up the second trans-
formation by introducing the 0;1 -variable aij. aij is equal to Owhen hij is rounded
down and equal to 1 when hij is rounded up. Each entry in a can therefore be
expressed as aij = aij + aij. After the two standardization transformations, the
controlled rounding problem is on canonical form. For a problem on canonical
form we may write the adjacency condition as:

(15.6) Iaij - hij I < 1 'V iekF',jeJVS

Notice the resemblance between (15.6) and equation (3.3), which was one way of
formulating staying within the quota. We therefore conclude that the adjacency
condition is the same as staying within the quota transferred to a two-dimensional
setting.

To formulate the two-dimensional controlled rounding problem on canonical
form as a constrained optimization problem, we convert (15.2) to the objective
function zp = (lp(a,b))P:

(15.7) min zp =L L Iaij - hij Ip for 1 s P < 00

ieAljeJP

The corresponding objective function for the one-dimensional controlled round-
ing problem: min L Iai - hi Ip is equivalent to using LF, see [H-A] (page 10).

ieM5
This fact together with the connection between staying within the quota and
adjacency established above are the reasons why we interpret two-dimensional
controlled rounding as LF in two dimensions.

[C&E] (page 428) deduce the following formula for zp:

(15.8)

Zp is the function which shall be minimized. It is linear in the variables aij. zp 's
last term is independent of aij, Le. a constant, and may therefore be omitted from
the objective function. Furthermore, it can be verified that Z2 is equal to Z 1 plus a
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constant, so the optimal controlled roundings of b with respect to 11 and 12
coincide. We are now ready to present a constrained optimization formulation of
the two-dimensional controlled rounding problem on canonical form:

(15.9) minL L ([(1 - bij)P - (bij)P] . aij)
ieAtje~

for 1 s P < 00

subject to the constraints

(15.10)

(15.11)

(15.12)

(15.13)

(15.14)

(15.15)

L aij + (l - ai(n+l))
jeN

L aij + (l - ~m+l}j)
ieM

= L bi(n+l) + 1J 'V t «u

'VjeN

L (1 - ~m+l}j) + ~m+l)(n+l) =L Lb(m+l}j + 1 J - Lb(m+l)(n+l) J
~N ~N

L (l - ai(n+l)) + ~m+l)(n+l) =L L bi(n+l) + 1 J - L b(m+l)(n+l) J
ieM ieM

a"··>OlJ- 'V i e US,j e ~

'V i e US,j e ~a"··<1lJ-

The additivity and adjacency requirements are taken care of by (15.10) - (15.13)
and (15.14) - (15.15) respectively. Since the problem formulated above is a two-
dimensional capacitated transportation problem where all bounds are integer
valued, every basic solution will be integer valued too. Now Theorem 15.1,
proven by [C&E] (page 426-427), comes in handy:

Theorem 15.1
The two-dimensional controlled rounding problem on canonical form always has
a feasible solution.

After the optimal solution il has been determined, the optimal solution to the
original controlled rounding problem is found as a = i + a.
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15.2 Divisor method formulation with total entries

The controlled rounding formulation above gives us an idea for a divisor method
formulation with total entries. We build this formulation along the lines of the

divisor method formulation presented at the end of section 10.1. What is different

here is that p and a are (m + 1) x (n + 1) matrices because they include total

entries. Another difference is the absence of predetermined constituency and
party bounds. The reason for this is the simultaneous apportionment to total and

internal entries. Now to the formulation:

(lS.16) max L L [ln{PJf) . aijl]
(ij)eS leH

subj ect to the constraints

(lS.17) LL aijl= L ai(n+l)l
jeN leH leH

(lS.18) L L aijl =L a(m+l}jl
ieM leH leH

(15.19) L L ~m+l}jl = h
jeN leH

(lS.20) LL ai(n+l)l = h
ieM leH

(lS.2l ) aijl ~ O

(lS.22) aijl s 1

(15.23) aijl = O

"I ieM

"I jeN

"I (ij) e S, I

"I (ij) e S, I

"il (ij) e S, I

We end this section with a different topic. In the previous section two
standardization transformations were introduced. The matter we will look into

here is whether these transformations are applicable to problems which are going
to be solved by a divisor method. The transformation to base 1 creates no

difficulty since every divisor series can be multiplied by a common factor like b.
As told in the previous section, b = P~N will transform a vote matrix to a quota

matrix. However, the second transformation, namely subtraction of integers,
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cannot be used. The reason is that none of the divisor methods satisfies the
adjacency condition (15.1) in all situations. Situations which violate the adjacency
condition can be constructed the same way as Example 3.2 in section 3.4. The
consequence of determining the divisor apportionment from the canonical form

of the problem is that this apportionment may deviate from the correct divisor
apportionment, which is the one found from the original problem or the base 1

problem.

15.3 Rounding of only internal entries

Since controlled rounding can be viewed as an apportionment method, terms
from the matrix apportionment problem are used interchangeably with terms
from the controlled rounding problem in the remainder of this chapter. The

controlled rounding formulation in section 15.1 included total entries. The con-

sequence was that the constituency apportionment aiN = ai(n+l) 'V i E M and party

apportionment aMj= a(m+l)i 'V j E N were determined during the apportionment
process. In this section we operate with predetermined constituency and party
bounds, as we have done in earlier chapters. Thus, only the internal entries in b

are rounded. The constrained optimization formulation of this controlled
rounding problem on canonical form is presented below. In this formulation we

let p = 1.
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(15.24) min Zl =L L [(I - 2·by) . ay]
ieM jeN

subject to the constraints

(15.25) ri -L ay::;;L ay::;; Ri -L ay
jeN jeN jeN

Cj-L ay:s L ay:s Cj -L ay
ieM ieM ieM

'ti i

(15.26) 'tIj

(15.27) LL ay=h- LL ay
ieM jeN ieM jeN

(15.28)

(15.29)

a"··>OlJ- 'ti i,j

a"··< 1lJ- 'ti i,j

After the optimal it for this problem has been determined, the optimal
apportionment is found as: a = i + it. Since we only deal with equality
constrained problems in this dissertation, constraints (15.25) and (15.26) can be
written as follows:

(15.30) L ay·=R;- L ay
jeN jeN

L ay = Cj -L ay
ieM ieM

'ti i

(15.31) 'tIj

[C&E] (page 429) present the following result: "Controlled roundings cannot
always be obtained with prespecified roundings of the total entries". This result is
of interest in chapter 16, where we use the bound vector MF-MF when solving
controlled rounding problems of the type presented above. Example 15.1 presents
two situations where a controlled rounding cannot be obtained with a bound
vector determined by a divisor method:
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Example 15.1
From chapter 3 we know that HA is the only divisor method which stays above
lower quota all the time. Let us look at what may happen when a constituency
bound does not stay above lower quota. We go back to Example 3.2 where a
constituency with a quota of 12,05 only gets 11 seats with MF. Let us now assume
that the parties in this constituency have quotas of 5,05, 4, 2, and 1 respectively.

In this situation ! aij = 5 + 4 + 2 + 1 = 12 and Ri = 11, which is a violation of
~

constraint (15.30) because aij ~ o.

The opposite may also happen. Let us consider a situation where a constituency

with a quota of 11,95 is apportioned 13 seats with MF. Furthermore, suppose that

the party quotas are 4,95, 4, 2, and 1 respectively. Zero restrictedness requires
that the last three parties get exactly 4, 2, and 1 seat respectively. This leaves

13 - 7 = 6 seats for the first party. However, adjacency restricts the allotment to

this party to at most 5 seats. Hence, the problem has no solution, Le. it is
infeasible.

The failures in Example 15.1 are due to the predetermined bounds not staying
within the quota. As we know from chapter 3, no divisor method does always
stay within the quota. This brings us to the following question: Does a bound
vector determined by LF or another apportionment method which stays within
the quota guarantee the existence of a controlled rounding of the internal entries?
The answer is no for LF, as Example 15.2 below illustrates. However, notice that
an apportionment method which uses the controlled rounding formulation in
section 15.1 to determine the bound vector (total entries) guarantees the existence
of a controlled rounding of the internal entries.

Example 15.2
We consider the problem in Table 15.1 below which is a slightly modified

version of the problem in [C&E] (page 430). The difference is that two internal

entries on the diagonal have been increased by 0,01 each to get an integer value

for the grand total entry.
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Table 15.1
0,99 0,99 0,99 0,99 0,53 0,53 5,02
0,99 0,53 0,53 0,53 0,01 0,01 2,60
0,99 0,53 0,53 0,53 0,01 0,01 2,60
0,99 0,53 0,53 0,53 0,01 0,01 2,60
0,53 0,01 0,01 0,01 0,02 0,01 0,59
0,53 0,01 0,01 0,01 0,01 0,02 0,59
5,02 2,60 2,60 2,60 0,59 0,59 14,00

Controlled rounding problem on canonical fonn.

The task ahead is to round the internal entries given the bound vector LF-LF. We

start by determining the bound vector. The LF apportionment to the total entries
is [5, 3, 3, 3, O, O]. Since the matrix is symmetric, the apportionment is the same

for rows and columns. In the following we focus on the rounding of the internal

entries in the first row. The entries in the first four columns can at most get 1

seat each, because of the adjacency condition. Since the row bound is RI = 5, one

of the internal entries in the last two columns must get 1 seat. However, this is

impossible since the respective column bounds both are equal to O.

15.4 Rounding of all or only internal entries?

Above and in earlier chapters we apportioned seats to internal entries (cells)
given a predetermined bound vector. Sections 15.1 and 15.2 presented formul-
ations where internal and total entries were apportioned seats simultaneously. In

this section we compare the two ways of carrying out the apportionment. We
start with an example:

Example 15.3
Consider the election situation in Table 15.2 below where three seats are to be

divided between two constituencies and three parties. We are going to solve this

matrix apportionment problem by both approaches mentioned above.
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Table 15.2
0,81 0,35 0,35 1,51
0,49 0,50 0,50 1,49
1,30 0,85 0,85 3,00

Quota matrix for an election situation with 2 constituencies, 3 parties, and 3 seats for distribution.

We start by determining the bound vector from the total entries: All conventional
apportionment methods result in the constituency bounds R = [2, 1], due to
internal vote monotonicity, and the party bounds C = [1, 1, 1]. The next task is to
fmd the optimal apportionments given this bound vector. We begin with the
controlled rounding (LF apportionment): There are two optimal controlled
roundings of the internal entries. One of these is presented in Table 15.3. The
other is found by exchanging the apportionments to the two smallest parties. As
seen from Table 15.2, these two parties are identical. We are also interested in
the divisor apportionments to the internal entries. It can be verified that the
optimal apportionments for all constant parametric divisor methods are equal and
coincide with the two optimal controlled roundings.

Table 15.3 Table 15.4
1 1 O 2
O O 1 1
1 1 1 3

1 O O 1
O 1 1 2
1 1 1 3

A controlled rounding of internal entries. Controlled rounding of all entries.

The time has come to apportion seats to all entries simultaneously. It can be
verified that Table 15.4 presents the optimal controlled rounding of all entries.
An intuitive explanation of how this optimal controlled rounding comes about:
Both small parties aspire to one seat, and based on a visual inspection of the
internal entries in Table 15.2 it seems reasonable that they both win a seat in the
smallest constituency. Then there is one seat left for the largest party. Clearly,
this seat should be placed in the largest constituency. Notice that this solution is
the same as the one obtained by giving the three largest internal entries one seat
each. Moreover, the solution in Table 15.4 is also the optimal apportionment with
the divisor method formulation in section 15.2 and MF as divisor method.
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A conclusion to be drawn from Example 15.3 and the last part of section 15.3 is
that one does not generally get the same apportionment by apportioning seats to
internal and total entries simultaneously as one gets by first determining the
bound vector and thereafter apportion seats to the internal entries.

Which approach is preferable, simultaneous apportionment to all entries or

predetermination of a bound vector followed by apportionment to the internal

entries? In Example 15.3 the outcome of the first approach, i.e. the apportion-
ment in Table 15.4, seems to harmonize best with the quota matrix. However,

notice that this apportionment gives the smallest constituency the majority of the

seats, which is a violation of internal vote monotonicity for the constituency
sums. The possibility of such violations of internal vote monotonicity is an

argument against the simultaneous apportionment approach. However, the size of
a violation is small for the controlled rounding case because the adjacency
condition prevents a smaller constituency/party from getting more than one seat

more than a larger one. Divisor methods do not adhere the adjacency condition,

so there is another story with the divisor method formulation in section 15.2:

Example 15.4
The election situation is presented in Table 15.5. As seen from the grand total
entry, there are 4 seats for distribution. These seats shall be apportioned simulta-
neously to all entries using the constant parametric divisor method with t = 0,01.

Table 15.5 Table 15.6
2,99 0,01 0,01 3,01
0,33 0,33 0,33 0,99
3,32 0,34 0,34 4,00

1 ° ° 1
1 1 1 3
2 1 1 4

Quota matrix for an election situation with
2 constituencies, 3 parties, and 4 seats.

CPO,OI apportionment of all entries.

By calculating the value of (15.16) for different apportionments, it can be

verified that the apportionment in Table 15.6 is the optimal one. Thus, the second
constituency is apportioned 2 seats more than the first constituency even though
its quota is 2,02 smaller. This apportionment contrasts with the optimal cont-
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rolled rounding of all entries, which gives cell (1,1) 3 seats. The use of CPO,Ol

contributes to the extreme apportionment in this example; MF would have led to
a more normal apportionment.

The reason why apportionments like the one in Table 15.6 may occur with the

divisor method formulation in section 15.2 is that there is no condition akin to the

adjacency condition built into this formulation. We see the possible occurrence of

such apportionments as a serious flaw with the formulation in section 15.2. The

approach with predetermination of the bound vector is therefore preferable when

divisor methods are used as matrix apportionment methods. Another argument in

favour of predetermination is presented below.

We rate the two controlled rounding formulations about equal. The formulation

with simultaneous rounding of all entries may violate internal vote monotonicity
for the total entries, while the formulation with predetermination of the bound

vector may result in an infeasible problem. We recommend the approach with

predetermination of the bound vector also when controlled rounding (LF) is used
as matrix apportionment method. The reason for this point of view is that this
approach opens for favouring of special types of constituencies and parties. As
described in section 8.1 and 8.3, there are good reasons for doing so. However,
be aware that such favouring usually increases the probability of the controlled
rounding problem being infeasible.
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15.5 Divisor methods instead of controlled rounding?

In this section we present two applications of controlled rounding and discuss

briefly whether the use of a divisor method is a satisfactory way of solving these
problems. Let us first recapitulate the difference between a divisor method
apportionment and a controlled rounding (LF apportionment): A matrix

apportionment determined by a divisor method is proportional, but may violate
the adjacency condition. Conversely, a controlled rounding does satisfy the
adjacency condition, but may interfere with the notion of proportionality.

An important application of controlled rounding is to control statistical disclosure
in tabular presentation of frequency count data, [C&E] (page 424). Proportion-

ality seems to be just as important as adjacency for this problem. Furthermore,

the use of a divisor method instead of controlled rounding does not enhance the

possibility of backtracking, Le. determining the original counts from the resultant

table. Our conclusion is that a divisor method like MF should be able to do a

good job for this kind of problem.

A different kind of controlled rounding is so-called unbiased controlled
rounding. In addition to the earlier requirements additivity and adjacency, a
procedure for unbiased controlled rounding must satisfy the following condition:
E[aij] = bij for all i E MS andj E NS. [C] (page 521-522) presents an iterative
procedure for unbiased controlled rounding. This procedure is probabilistic and
does not usually produce the same rounding when used repeatedly for a given
problem. A divisor method is deterministic in the sense that it for a given election
situation always produces the same solution(s). Since the random factor is
important when unbiased controlled rounding is used, divisor methods are not

good tools for this kind of controlled rounding problems.
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In this chapter we measure the bias of matrix apportionment methods. The
methodology is the same as in the vector case, but with the alteration that cells are
substituted for constituencies and fair shares for quotas. Section 16.1 explains

why the fair shares should be used as the ideal assignment instead of the quotas.
The second section presents the algorithm for determining the fair shares. This

algorithm is illustrated by a numerical example in the third section. In the fourth

section results of the matrix bias tests are reported. The penultimate section
describes what we call the matrix bias paradox. We end the chapter with a brief
discussion regarding choice of matrix apportionment method.

16.1 Ideal for the matrix apportionment

Our objective in this chapter is to measure the bias of matrix apportionment
methods. To measure the vector bias in section 5.8, we compared the appor-
tionment to the constituencies with the quotas. Recall that the house size

constraint, ~ ai = h, was the only c~~~traint in the free vector apportionment
problem. Let us call the ratio qij = p;; cell quota. A way of measuring the
matrix bias is to compare the apportionment to the cells with the cell quotas.
However, this is not a good idea. The matrix apportionment problem has several
constraints and the cell quotas along a row or column rarely sum to the integer

valued bounds. If the cell quotas had been used as the standard the matrix
apportionment should be compared with, the bias of the bound vector ø would

have been included in the measured bias. To eliminate the impact of differences

between quota totals and bounds, the ideal matrix should have the property that
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its cells sum to the binding row and column bounds. Futhermore, it should be
proportional to the vote matrix. The fair share matrix f* has these qualities. We
recapitulate from section 9.5 that when RO(p,o) "* 0, the (extended) fair share
matrix is the unique solution to the allocation problem.

16.2 Determining the fair share matrix

The topic in this section is how to determine the fair share matrix for a given
election situation. [B&D-2] (page 201) present an algorithm for the positive
inequality constrained allocation problem. On (page 203) they conjecture that the
same algorithm works for p ~ O when R+(p,cr) "* 0 and that it converges to the
unique extended fair share matrix when R+(p,cr) = 0 but RO(p,cr)*- 0. In this
dissertation we have restricted our attention to the equality constrained problem.
This simplifies the allocation (fair share) algorithm, which then is known as the
RAS method. The allocation algorithm alternately scales the rows (constituencies)
and columns (parties) of P to sum to their predetermined bounds, [Ba] (page 46).
Each scaling brings us nearer the fair share matrix. The multipliers in this
chapter are allocation multipliers, which are different from apportionment
multipliers. For convenience we use the same notation.

The value of o > O can be chosen arbitrarily for the inequality constrained
problem. For a given value of o, all constituency and party multipliers are
uniquely determined. However, the proof of the convergence of Balinski and
Demange's algorithm places some restrictions on the choice of o, see [B&D-2]
(page 201). We now turn our attention to the equality constrained problem. The
natural choice of value for O is the national average number of seats per
individual P:N' which transforms adjusted cell votes o . Ai . Pij . Jlj into adjusted
cell quotas Ai . qij . Jl} Even one constituency or party multiplier can be chosen
arbitrarily in this case. The reason is that one equality in addition to the house
size constraint is redundant for this transportation type problem. Given fixed
values of o and another multiplier, the remaining m + n - 1 multipliers are
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uniquely determined. The fair shares will be found without fixing the value of

another multiplier, so we only fix 0= P!N'

We now present the logic behind the allocation algorithm. Let s be a positive

integer which denotes the iteration number and let A. i(S) and Jlj(s) denote
multipliers calculated during iteration s. The adjusted quota matrix with

constituency multipliers from iteration s and party multipliers from iteration a is

denoted q(s,a) = (qij-(s,a)) = (A.i(S) . qij' Jlia)) where sEN and a E {Cs - 1), sl. In
the explanation of the scalings we focus on constituency i. The sum of adjusted
cell quotas within constituency i at the start of iteration sis:

(16.1) qi(S) =L [A.,-(s-l) . qij' Jlis-1)] = A.,-(s-l) .L [qij' Jlis-1)]
jeN jeN

To make the sum of adjusted cell quotas within i equal to R j the current

constituency multiplier must be scaled by the ratio q~)' Thus, the formula for
the updated multiplier is:

(16.2) Ri Ri
A.,-(s)= A.i(s-l) . - = ~

qj(S) £..- [qij . ~j(s-l)]
jeN

where the last transition follows from (16.1).

The party multipliers are determined the same way as the constituency

multipliers. Once a new set of constituency or party multipliers has been
determined, the adjusted quota matrix is updated. After updating for new
constituency multipliers, the constituency constraints are satisfied, and after

updating for new party multipliers, the party constraints are satisfied.

We need some measure to determine how close the current adjusted quota matrix
is to the fair share matrix. For this purpose we calculate what we call the total
discrepancy during iteration s, denoted E(S). This is done as follows: For each

constituency we calculate how much the sum of adjusted cell quotas prior to the
scaling qi(S) differs from the constituency bound R j The resulting distance

I qi(S) - Ri I is called the discrepancy for constituency i. We calculate the
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discrepancy for a party similarly. The total discrepancy e(s) is the sum of all
constituency and party discrepancies during iteration s. Once e(s) becomes smaller
than or equal to the predecided tolerance level E, we declare that an adjusted
quota matrix close enough to the fair share matrix has been found. In our Pascal
program of the allocation algorithm, which is a part of the MatrixBias program

presented in Appendix 2, we apply E = 0,0001 = 1·10-4.

All parts of the allocation algorithm for the equality constrained problem have

now been introduced, so it is time to present the algorithm itself:

Algorithm 16.1
Step 1:This is the initialization step. The initial multipliers are ",;(0) = Jlj(0) = 1

for all i and j. Furthermore, we set s = 1.

Step 2: The total discrepancy is equal to zero at the start of each iteration, so we
set e(s) = o. For each constituency we find the sum of adjusted cell quotas within
the constituency:

(16.3) q;(s) = ",;(s-l) .L: [qij. Jlj(s-l)]
jeN

and calculate the new constituency multiplier:

(16.4) Ri
",;(s) = ",;(s-l) . qi(S)

The final part of the step is the calculation of the total discrepancy for the

constituencies: e(sM) =L: Iqi(S) - Ri I.
ieM

Step 3: For each party we find the sum of adjusted cell quotas within the party:

(16.5) q,~s)= JlJ~s-l) .L: [qij. ",;(s)]
ieM
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and calculate the new party multiplier:

(16.6) c-J!j(s) = J!j(s-l) . ~

Then we calculate the total discrepancy for the parties: B(sN) =L Iqj(s) - Cj I.
jeN

Step 4:We use the multipliers calculated in steps 2 and 3 to update the adjusted

quota matrix. The updated matrix is found as q(s,s) = (Ai(S) . qij . J!j(s)). We fmd
the total discrepancy during iteration s by adding the discrepancies from steps 2

and 3: B(S) = B(sM) + B(SN). The calculated B(S) is compared with the predecided

tolerance level E. If B(S) ~ E, we stop because a matrix close enough to the fair

share matrix has been found, otherwise we increase s by one and return to step 2.

The allocation algorithm is illustrated by a numerical example in the next section.

Now to a result regarding the algorithm: It converges to the unique (extended)
fair share matrix for non-negative equality constrained problems if and only if
(16.7) holds, see [Ba] (page 51~).

(16.7) PIl = O implies RI ~ CJ

(16.7) is nothing else than the first two supply-demand conditions from (9.11).
The third condition in (9.11) is redundant here because we face an equality
constrained problem. Recall that the conditions in (9.11) were necessary and
sufficient for RO(p,a) to be non-empty. As Example 9.2 and Example 9.3

demonstrated, the conditions in (16.7) might be violated. However, we have not

encountered any election situation where RO(p,cr) = 0. We base this statement on

the fact that the apportionment algorithm from chapter 12 has been able to solve
all 312 election situations (104 data sets, each with 3 bound vectors) it has been

confronted with.

Except for the stop criterion, Algorithm 16.1 is equal to the algorithm in [B&S]

(page 351). Their stop criterion demands that the change in the party multiplier

I J!j(s) - J!j(s-l) I shall be sufficiently small for all j. While their primary concern
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is to determine the multipliers, our main task is determination of the fair shares,
which explains our stop criterion. [B&S] (page 350-351) deal with the positive
equality constrained problem. They explain that each execution of step 2 and 3
will bring us nearer the fair share matrix. This means that the total discrepancy
will decrease from one iteration to the next, i.e. s(s+ 1) < s(s), for positive
equality constrained problems. We conjecture that the same holds for equality
constrained problems where p ~ Oand RO(p,cr) '* 0.

The discrepancies calculated during steps 2 and 3 of the allocation algorithm
show the discrepancy prior to the adjustments in these steps. Because the
adjustments bring us closer to the fair share matrix, the real total discrepancy is
smaller than the calculated s(s) we compare with t. Notice also that each cell is
counted twice in s(s), but not with the same discrepancy. Let us define cell
discrepancy as the deviation between the content of a cell and the fair share for
this cell. Based on the explanation above, we conclude that the maximal cell
discrepancy in the fmal adjusted quota matrix is well below t.

We end this section with some data regarding the performance of the allocation
algorithm: For the 23 election situations utilzed in the main matrix bias test, the
algorithm used an average of 6,78 iterations to fmd an adjusted quota matrix
which satisfied the tolerance level t = 1 . 10-4. The iteration numbers for these
election situations are presented in Appendix 4. With one exception, the number
of iterations ranged from 4 to 11 with a median of 6. The exception is the
election situation from Norway in 1969, which took 16 iterations to solve. We
have not investigated why this election situation of moderate size was much more
troublesome than the rest.
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16.3 Fair share example

In this section we illustrate how the allocation algorithm, i.e. Algorithm 16.1,
determines the fair shares. The basis for the example is the election situation in
Table 16.1. This is the same election situation we made use of in chapter 13.

Table 16.1

12
5
5

Vote matrix for a 3 x 3 allocation problem.

Before Algorithm 16.1 can be applied, the vote matrix must be converted to a
quota matrix. This conversion is carried out by multiplying each vote figure in

Table 16.1 by P:N = 619
2
66 :::::3,28525 . 10-4. Table 16.2 presents the resulting

quota matrix with three decimals accuracy. NB. In all calculations in this section
we operate with a finer accuracy than the three decimals shown. Some places,
most notably in (16.10), this leads to some seemingly peculiar roundings. The

tolerance level remains to be decided. We choose e = 0,01 = 1 . 10-2, Le. a higher
tolerance level than the one applied in the Pascal program.

Table 16.2
i_V B D G Sum Seats
Rev 3,201 9,112 3,101 15,414 12
NoE 1,976 1,513 0,900 4,390 5
Aul 1,205 0,578 0-,413 2,196 5
Sum 6,382 11,203 4,415 22,000
Seats 7 11 4 22

Quota matrix for the allocation problem inTable 16.1.

A quota matrix can be expressed as q = o . p, where o = P!N' As explained in the

previous section, we fix o at P!N' We start Algorithm 16.1 by initializing the
multipliers, "'i(O) = ,.1j(O) = 1 for all i andj, and setting the iteration number s to 1.
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We move on to step 2 of the algorithm. The total discrepancy during the first
iteration is initialized by 8(1) = O. Our next task is the calculation of sums of
adjusted cell quotas within the three constituencies. Since all constituency and
party multipliers are equal to 1 at this stage, the qi( l)s are simply the numbers in
the sum column in Table 16.2. To illustrate how the sums of adjusted cell quotas

are calculated, we find the sum within constituency Rev:

(16.8) ~v(l) = ARev(O)· ['lRev.B . !lB(O) + 'lRev.D . !lD(O) + 'lRev.G . !lo(0)] ::=

l . (3,201 . l + 9,112 . l + 3,101 . l) = 15,414

The discrepancy for Rev is the absolute deviation between qRev(l) and the constit-

uency bound RRev: 115,414 - 121 = 3,414. Moreover, the total discrepancy for
the constituencies is 8(lM) = 3,414 + 14,390 - 51+ 12,196 - 51 = 6,828. What
remains to be done in step 2 is the determination of new constituency multipliers.

Formula (16.4) gives the following new value for Rev's multiplier:

(16.9)

The new values of ANoEand AAulare found similarly. They are ANoE(1)=:: 1,139
and AAul(l) =:: 2,277 respectively. With these new constituency multipliers, the
adjusted quota matrix becomes as presented in Table 16.3:

Table 16.3
1,000 1,000 1,000

A.
0,779
1,139
2,277

12
5
5

Bound

1,733

New 0,935 1,085 0,913 I
Adjusted quota matrix given 0, A,(l), and !ljO). The new party multipliers !ljl) are shown below
the main body of the table.
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From the sum column in Table 16.3 we observe that the sums of adjusted cell
quotas within the constituencies now are equal to the bounds. However, the sums
within the parties are not, and that is what we are going to deal with in step 3 of
the algorithm. Let us first demonstrate how the sum within party B has been
calculated:

(16.10) cm(l) = JlB(O) • ['lRev.B . ARev(l) + qNoE.B . ANoE(l) + qAu1.B . AAul(l)] ~

l . (3,201 . 0,779 + 1,976 . 1,139 + 1,205 . 2,277) ~

2,492 + 2,251 + 2,743 = 7,486

This sum results in a discrepancy of 17,486 - 71 = 0,486 for B. The total
discrepancy for the parties is e(lN) = 1,733, as shown in Table 16.3. With the help
of formula (16.6), we fmd the value of B's multiplier which eliminates the
discrepancy for B:

(16.11) CB 7
flB(l) = flB(O). qB(l) ~ 1 . 7,486 ~ 0,935

The new multipliers for D and G are found similarly. They are fln(l) ~ 1,085 and
flG(l) ~ 0,913 respectively, as shown at the bottom of Table 16.3. We use these
new party multipliers to update the adjusted quota matrix. The matrix after the
first iteration can be expressed as q(l,l) = (Ai(l) . qij. flj(l)).

Step 4 of the algorithm determines whether the current adjusted quota matrix is
close enough to the fair share matrix. The total discrepancy during the first
iteration is e(l) = e(lM) + e(lN) ~ 6,828 + 1,733 = 8,561. This is far above the
predecided tolerance level of s = 0,01, so another iteration must be carried out.
The iteration number s is therefore increased by one to 2 and steps 2 through 4 of
Algorithm 16.1 are repeated.

We do not show the calculations in the second or any of the following iterations
here. The demonstration above should have made it clear how these calculations
are carried out. Table 16.4 shows the multipliers and discrepancies along the
way:
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Table 16.4
Iteration A. Il e

Rev NoE Aul B D G M N Total
O 1,000 1,000 1,000 1,000 1,000 1,000
1 0,779 1,139 2,277 0,935 1,085 0,913 6,828 1,733 8,561
2 0,764 1,159 2,346 0,926 1,093 0,913 0,470 0,142 0,612
3 0,762 1,162 2,354 0,925 1,093 0,913 0,052 0,016 0,068
4 0,762 1,162 2,355 0,925 1,093 0,913 0,006 0,002 0,008

Constituency multipliers, party multipliers, and discrepancies in the different iterations.

As seen from the table, the predecided tolerance level for maximal error during

an iteration is satisfied after the fourth iteration. The final adjusted quota matrix

q(4,4}, which we might term the fair share matrix, is presented in Table 16.5:

Table 16.5
0,925 1,093 0,913

A.
0,762
1,162
2,355

12
5
5

Bound DlS

0,000

Fair share matrix and multipliers for the allocation problem in Table 16.1.

Let us compare the fair share matrix with the HA apportionment found in chapter
13. The largest deviation between the HA apportionment, shown in Table 16.6
below, and the fair share matrix is 0,489 = 11,489 - 1 I and occurs for the cell
Aul.D.

Table 16.6
i'j B D G
Rev 2 8 2
NoE 2 2 I
Aul 3 1 1

HA apportionment for the problem in Table 16.1.
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The example above gives us an idea: Even if there is no direct connection
between allocation and apportionment multipliers, an interesting possibility is to
use the multipliers from the allocation problem as initial multipliers for the
apportionment algorithm in chapter 12.We have not tested this idea.

16.4 Matrix bias tests

In our test of matrix bias we build on the methodology introduced in chapter 5
with the change regarding the ideal assignment described in section 16.1. Another
difference compared with the vector bias test in section 5.8 is that we now
measure bias between groups of cells instead of between groups of constituencies.
This means an increase in the number of items from m to m·n. However, the
maximal number of items among the utilized data sets does not increase in that
proportion because we have not got matrix data for the countries with the largest
number of constituencies in the vector test. The maximal number of cells among
the matrix data sets is 36 . 13 = 468 for the German set from 1919. However, this
election situation contains many zero cells, so the number of non-zero cells is
lower. For comparison, the Japanese data set with its 130 constituencies had the
maximal number of items in the vector bias test.

We carry out the main matrix bias test with data from the Nordic countries plus
Germany, Austria, and Luxembourg. To reduce the workload, we utilize only 23
out of the 104 data sets available. The principal criterion when picking these 23
sets was that they should be spread out in time. This in an attempt to avoid auto
correlation between utilized data sets. Another consideration in the selection
process was that the number of data sets from a country should stand in
proportion to the number of available sets from this country. Let us explain how
we went about picking data sets: For each country we started by picking the latest
of the available data sets. The only exception to this rule is Luxembourg where
the penultimate set was chosen. Of the countries in the test, Luxembourg and
Austria are the ones with fewest available data sets. We utilize only one set from
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each. For each of the other countries we picked out the data set subsequent to
World War 2 plus a set about midway between the two sets picked so far.
Furthermore, we utilize the German set from 1919. Our collection of Swedish
data sets goes back to 1911. We have picked out the 1911 set and a set about
midway between the 1911 and the after World War 2 set. The 23 data sets thus
chosen should be a good foundation for measuring the ''universal'' matrix bias.
More information about the chosen data sets can be found in Appendix 4. In
addition to the main bias test, we carry out a test based on all Icelandic data sets.
The purpose of this test is to study the matrix bias within a country.

We apply the bound vector MF-MF for every data set in the tests. This means that
we do not test whether the bound vector applied has any impact on the matrix
bias. However, there is no reason for believing that bound vectors have a great
impact on the matrix bias for divisor methods since, by definition, the fair share
matrix is proportional to the vote matrix given any bound vector. We include
five apportionment methods in the matrix bias tests; the four divisor methods
CPO,Ol,DM, MF, and HA plus LF. What we call LF is controlled rounding of the
internal entries. The LF apportionment (controlled rounding) for each election
situation is found by solving a LP problem of the type presented in section 15.3.
As mentioned in that section, there may not exist a LF apportionment given
predetermined bounds. We did not encounter any such instance among the 31
election situations utilized. However, the bound vector MF-MF does not put the
LF apportionment to the test. For further comments on this matter, we refer to
section 16.6.

We divide the cells in 2, 3, and 4 groups using number, size, cluster, and quota
division. The complete results of the matrix bias tests are presented in Appendix
4. Table 16.7 below captures the interesting points of the main matrix bias test. It
shows the estimated bias percentages with division in 3 groups. We have excluded
the bias percentages with number division from the table because this division
method is even worse here than it was in the vector case. The shortcoming of
number division is that it classifies far too few cells as small. A way of making it
work better is to eliminate all zero cells before the division, but we do not believe
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that this is enough to get a satisfactory division.

The matrix bias figures we got while testing the Pascal program were ambiguous
regarding the direction of the bias for the different apportionment methods. We
therefore decided to employ two-sided t-tests for all 5 apportionment methods,
Le. let the alternative hypothesis be EDE *- O.

Table 16.7

Division E LF CP 0,01 DM MF HA
Size (L,M) -0,8% 9,1% ** 0,9% -4,3% * -8,0% **

(L,S) -0,8% 0,5% -3,4% * -5,2% ** -4,6%
(M,S) 0,0% -10,8% ** -4,4% ** -1,0% 2,8%

Cluster (L,M) -0,8% 9,0% ** 0,4% -4,5% ** -8,8% **
(L,S) -1,7% -10,8% * -5,4% ** -4,5% ** 1,9%
(M,S) -0,9% -22,8% ** -6,1% ** -0,1% 9,7% **

Quota (L,M) -0,5% 6,1% ** -1,4% -2,8% * -7,1% **
(L,S) -0,7% -9,2% ** -3,5% ** -2,0% * 2,5%
(M,S) -0,2% -17,2% ** -2,2% 0,6% 8,8% **

Main matrix bias test:
Estimated bias percentages between the groups of large (L),medium (M), and small (S) cells.
** = Significant at the 1%-level * = Significantat the 5%-level (with two-sided t-test)

Compared with the vector bias results, some of the estimates in Table 16.7 are
surprising. One thing which has not changed is that LF seems to be unbiased.
Although all LF percentages are negative, these estimates are far from signi-
ficant. The other unbiased vector method, MF, has difficulties with maintaining
its status here. It seems to treat the groups of medium and small cells about
equally. However, the other bias percentages, ofwhich some are significant at the
1%-level, tell us that MF disfavours the group of large cells. The greatest
surprise in Table 16.7 is the bias percentages between the groups of large and
medium sized cells for CPO,Oland HA. CPO,Olfavours large cells while HA
disfavours them, with all estimates significant at the 1%-level. This result is just
the opposite ofwhat we experienced in the vector bias test. We call it the matriH
bias paradoH. An explanation of why the paradox occurs follows in the next
section. Regarding E(L,S) and E(M,S), things are more normal for CPO,Ol.With one
exception, CPO,Olfavours the group of small cells. The only thing which is
normal regarding HA is the estimates for E(M,S) Two of these estimates are
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significant at the 1%-level, and they tell us that HA favours the group of medium
sized cells in the comparison with the group of small cells. The last appor-
tionment method in the test, DM, produces results which are a kind of mirror
image of MF's. While MF seems to be approximately unbiased in the comparison
of medium and small sized cells, DM seems to have this property in the
comparison between large and medium sized cells. A majority of DM's bias
percentages involving the group of small cells are significant. DM disfavours this
group of cells.

Four of the apportionment methods in Table 16.7 are constant parametric divisor
methods. They can be written as CPo.Ol, CPl, CPo.s, and CP! respectively. To

3
study the relationship between the parameter t and the bias percentages, we
illustrate the bias percentages with quota divison graphically:

Figure 16.1
Bias percentage
10,0%

-10,0%

•

5,0%

0,8

•

-15,0%
D E(L,S)

-I-E{L,M)

-20,0%

Bias percentages as a function of twith quota division in three groups.

As can be read out of Table 16.7, the graphs with cluster and size division would
not have been that different from Figure 16.1. Below we describe the functional
relationship between t and the bias percentages in Table 16.7. We start with
6(L.M} With all three division methods 6(L.M) is a decreasing function of t. It is
positive for t = 0,01 and changes from positive to negative around t = j some-
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where. With the exception of E(L,S) with size division, E(M,S) and E(L,S) are
increasing functions of t. The slope of E(M,S) is steeper than the slope of E(L,S}

Both E(M,S) and E(L,S) are negative for t = 0,01. E(M,S) becomes positive when t is
about 0,5, while E(L,S) does the same some place between t = 0,5 and t = 1.

Table 16.8
Division 8 LF CP 0,01 DM MF HA
Size (L,M) 0,1% 12,9% * 4,7% -5,3% -4,5%

(L,S) -1,3% 5,5% * -1,7% -8,1% * -7,2% *
(M,S) -1,6% -12,3% -7,4% * -3,3% -3,0%

Cluster (L,M) -1,6% 13,1% ** 2,3% -6,6% -5,8% *
(L,S) -1,9% -3,8% -2,6% -7,5% * -4,3% *
(M,S) -0,4% -20,8% ** -5,3% ** -1,4% 1,1%

Quota (L,M) -1,3% 9,3% * -1,5% -4,8% -6,8% *
(L,S) -0,9% -5,5% * -3,6% * -3,3% * -3,0%
(M,S) 0,2% -17,7% ** -2,4% 0,9% 3,1%

Icelandic matrix bias test
Estimated bias percentages between the groups oflarge (L), medium (M), and small (S) cells.
** = Significantat the 1%-level * = Significantat the 5%-level (with two-sided t-test)

Table 16.8 presents the results of the Icelandic matrix bias test. This test is based
on 11 data sets. Compared with the main matrix bias test, fewer estimates are
significant. This may be due to the lower number of observations here. LF still
seems to be unbiased. As in the main test, most of the bias percentages for LF are
negative. Every bias percentage for CPO,OIand DM has the same sign as in the
main test. However, many estimates are less significant here. MF still seems to
disfavour the group of large cells, but only some estimates are significant. We do
not present graphs of the bias percentages here. However, notice that E(L,M) and
E(L,S) with both size and cluster division have their bottom point for t = 0,5.
Finally, even though the estimates for E(L,M) with HA and CPO,OIare less
significant than in the main test, the matrix bias paradox is still present. Below we
reveal why the paradox is not so strange after all:
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16.5 Explanation of the matrix bias paradox

What we call the matrix bias paradox is that CPO,Olfavours large cells while HA
disfavours them in the comparison with medium sized cells. This is in complete

contrast to the vector bias results in section 5.8. The constituency and party

bounds are factors which are not present in the free vector apportionment
problem. They play an important role in the explanation of the matrix bias

paradox.

Let mj denote the number of constituencies party j participates in. We split the
parties in two categories based on the magnitude of the party bounds. Parties for

which Cj ~ mj are called small while the other parties are called large. We also
find it useful to distinguish between constituencies of different sizes. Based on an
imaginary cluster/quota division, we place the constituencies in three groups. We

use the classifications of parties and constituencies to present a rough

classification of the members of the three cell groups in Table 16.7: The group of

large cells (L) consists of cells from large parties in large constituencies.
Members of the group of medium sized cells (M) are cells from small parties in

large constituencies and from large parties in medium sized constituencies. The
remaining combinations of party and constituency sizes make up the group of
small cells (S). Hence, S consists of cells from large parties in small constituencies
and from small parties in medium and small constituencies. In the following we
utilize this classification of the cells plus our vector bias knowledge.

We start by analysing what happens with CP 0,01. The first quotient in a cell

ln(076l) is much larger than the second one ln( 1781)with this divisor method.
This size difference has a strong influence on the apportionments for the small
parties. A small party shall at most have m seats. Its second quotients, even in

large constituencies, seldom win a seat. Thus, a small party usually gets one seat

in every constituency it becomes represented. Large parties get more than one
seat in at least one constituency. The impact of the size difference between first

and second quotients becomes less important the more seats Cj such a party shall
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have. Despite facing a matrix problem, which means simultaneous apportionment,
we base our explanation on the simplifying notion that seats are apportioned
within each party and that small parties are apportioned first. This should be a
reasonable simplification according to the arguments presented above. In the

following we assume that a small party has about the same percentage support in
every constituency it participates. Usually, this is not far away from reality.

Exceptions are parties with regional strongholds. The CPO,Ol apportionment
within a small party can be characterized as "one seat to as many constituencies as

possible". Compared with the fair shares, this apportionment often distributes too

many seats to cells representing medium sized constituencies. This leaves too few

seats to cells from large constituencies. Recall that cells from large constituencies
within small parties were classified as members of the group of medium sized

cells (M). In many Nordic data sets about 50% of the parties are small, so the
accumulated disfavouring of cells from M within these parties is important for
the total matrix bias. Be aware that the description above does not suit very small
parties because such parties usually win all their seats in large constituencies.

However, this is not a problem because all cells from very small parties normally
belong to the group of small cells (S).

The constituency bounds fix how many seats each constituency gets. When the
small parties get too few seats in the large constituencies compared with their fair
shares there, the large parties must fill the fair share gap left behind.
Conversely, when the small parties are apportioned too many seats in the medium

sized constituencies, there are too few seats left for the large parties. The result

within the large parties is that CPO,Olusually apportions more seats than the fair

shares suggest to cells from large constituencies. This favouring is at the expense

of cells from medium sized constituencies. Together with the disfavouring of
cells belonging to group M within the small parties, this explains why CPO,Ol

favours L compared with M.

Next we analyse what happens with HA. In this case it is not obvious that we can
assume that seats are apportioned within each party and that small parties are
apportioned first, Since large size differences between marginal quotients still
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appear most frequently within small parties, we find it reasonable to continue to
do so. Because HA favours large entities in the vector case, the small parties often
get more than their fair share of seats in the large constituencies. This leaves too
few seats to the large parties in these constituencies. Conversely, the small parties
are usually apportioned too few seats among the medium sized constituencies,
which results in the large parties getting too many seats in these constituencies.
Thus, the main beneficiaries within both small and large parties are cells
belonging to M, with the end result that HA favours medium sized cells (M)
compared with large cells (L).

We end this section with a brief reflection regarding matrix bias. In addition to
the matrix apportionment method applied, there are two factors which influence
the matrix bias, namely the election situations utilized and the division method
applied. To see that the types of election situations utilized have an effect, just
compare the bias percentages in the Icelandic test with those in the main bias test.
Division methods have not been discussed much in this chapter, but their
influence is important. For instance, the bias percentages with number division
were quite different from the ones presented in section 16.4.

16.6 Choice of matrix apportionment method

Which matrix apportionment method is preferable? Matrix bias is an important
factor in this evaluation. We regard unbiasedness in all pairwise group
comparisions as the ideal. Based solelyon the results of the matrix bias tests, LF
(controlled rounding) is the best matrix apportionment method. However, the use
of the bound vector MF-MF in these tests is to the advantage of LF. The
explanation is as follows: LF (controlled rounding) in the matrix bias tests was
based on the quota matrix. Because MF-MF is a bound vector which is close to
the quota totals, the cell quotas were close to the fair shares in the utilized
election situations. This resulted in feasible controlled rounding problems for all
31 election situations encountered and low bias percentages for LF. We next
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explain the consequences of bound vectors which deviate largely from the quota
totals: Many cell quotas will deviatesignificantly from the fair shares with such
bound vectors. Since the adjacency condition is connected to the cell quotas when
LF (controlled rounding) is based on the quota matrix, the result will often be
infeasible controlled rounding problems. Moreover, when the problems are
feasible, the bias percentages will usually be higher than with MF-MF.

The drawback of basing controlled rounding on the quota matrix is that this
approach may result in infeasible problems for the internal entries, see section
15.3. An alternative way of carrying out controlled rounding (LF) for matrix

apportionment problems is to base the rounding (apportionment) on the fair share
matrix instead. In hindsight, this would have been a better approach because of

the following result:

Corollary 16.1
For a fair share matrix which bounds (total entries) all are integer valued, there
always exists a controlled rounding of the internal entries.

This corollary follows from Theorem 15.l. When all bounds (total entries) for a
fair share matrix are integer valued, adjacency fixes the values of these entries.
The actual bound vector is therefore the only possible "rounding" of the total
entries. Theorem 15.1 states that there always exists a controlled rounding of all
entries. Such a controlled rounding must "round" the total entries the way
described above, which further means that there must exist a controlled rounding
of the internal entries given this bound vector.

Controlled rounding (LF) based on the fair share matrix seems like a reasonable
apportionment method for the matrix apportionment problem. However, like LF

in the vector case, controlled rounding violates the important proportionality

condition/axiom of consistency. If the principle of proportionality is seen as too

important to ignore, we are left with divisor methods satisfying the six matrix
apportionment axioms in chapter 9. The extremities in our tests, CPO,Oland HA,
are not good choices. HA is not attractive because too many of the small parties'
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seats are placed in large constituencies, while the drawback of CPO,Ol is that it
spreads their seats too much. In other words, HA gives a too narrow and CPO,Ol a
too broad constituency basis for a small party in relation to its support. A divisor
method somewhere between these two is therefore desirable. The two candidates
we have investigated are DM and MF. As mentioned in section 16.4, DM seems to
favour the group of small cells at the expense of the two other cell groups, while
MF seems to disfavour the group of large cells to the gain of the two other cell
groups. Since unbiasedness seems to be unachievable, we introduce a second
criterion for ranking the divisor methods: We find it desirable that each
constituency is represented by many different political opinions. In other words,
to be acceptable a divisor method should not disfavour small cells. Both DM and
MF satisfy this criterion. The choice of a divisor method is not restricted to DM,
MF, or a constant parametric divisor method for that matter. In fact, the
illustration of bias percentages as functions of t in Figure 16.1 indicates that it is
difficult, if not impossible, to find a method within the constant parametric
family which is approximately unbiased in all pairwise group comparisons. A
more thorough investigation of matrix bias with different constant parametric
divisor methods should give more insight into the behaviour of the bias
percentages as functions of t. This matter is of special interest within a single
country. Maybe it is possible to construct a divisor method which is
approximately unbiased over a collection of relevant data sets?
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In this chapter we decompose a set of suitable constituency multipliers into 3
components. The idea behind the decomposition is to throw light on different
aspects of the actual matrix apportionment. We assume throughout the chapter
that we face a matrix apportionment problem with equality party constraints and
where all party multipliers ,.y are set equal to 1. The structure of the chapter is as
follows: Section 17.1 presents the 4 multiplier sets utilized, while the second
section explains how the 3 components are derived from these sets. In section
17.3 we describe the consequences of normalizing the multiplier sets. The
decomposition process is illustrated by an example in the final section.

17.1 Utilized multiplier sets

We utilize 4 multiplier sets in the decomposition process; the three sets of initial
constituency multipliers from section 11.3 together with a suitable multiplier set.
There are several suitable sets to choose from. We have chosen the suitable set
found when the apportionment initialization multiplier set is the starting point and
p-effect selection is used during the solution process. The background for this
choice is as follows: Measured by both initial measure of goodness and number of
iterations, the apportionment initialization set is the initial multiplier set which on
average is closest to a suitable multiplier set. Based on the same criteria, the quota
ratio initialization set is closer to a suitable set than the no initialization set. Thus,
the no initialization set is usually farthest from a suitable set. This explains why
we let the ordering of the multiplier sets be as presented in (17.1). However,
since this ordering is based on the normal relationship between the sets, there are
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election situations where another ordering would have been more appropriate.

(17.1) No - Quota ratio - Apportionment - Suitable

17.2 The components

We define a component as the ratio between two successive multiplier sets in
(17.1), with the set to the right in the numerator. Thus, there are three
components. Theyare described below. Each component is a vector of length m,
even if we below focus on components for a single constituency. We give the
components names based on our interpretation of what kind of adjustment they
represent.

The first component is derived from the first two sets in (17.1 ). A brief
recapitulation of the characteristics of these multiplier sets: All constituency
multipliers are equal to 1 with no initialization, while quota ratio initialization
makes sure that every constituency has the same adjusted average number of
people per seat.

(17.2) A.,. (Quota ratio) A. . (Quota ratio)Bound component = A.; (No) = '1 = Ai (Quota ratio)

We use the name bound component because the quota ratio multiplier set levels
out differences between constituencies caused by the determination of constit-
uency bounds. Thus, the bound component tells something about the bias inherent
in the constituency bounds.

The target quotients, which are a sort of marginal quotients for the constit-
uencies, play an important role in apportionment initialization. Apportionment
initialization adjusts the constituency multipliers such that all target quotients
become equal. Since this is an attempt to even out differences between election
situations within different constituencies, we call the component derived from the
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second multiplier ratio constituency component:

(17.3) • _ Ai (Apportionment)
Constituency component - Ai (Quota ratio)

In connection with this and the next component it is important to be aware of the
following fact: The magnitude of a constituency multiplier determined by
apportionment initialization depends on the divisor method via the target quotient
ti. Moreover, it also depends on the value chosen for the initial marginal value of

o

representation K. Let us review how different constant parametric divisor
methods influence the target quotients: A low parameter value t results in larger
quotients ln( l-)~t) and thereby larger target quotients than a high t value. We see

o

from equation (11.26) that a target quotient larger than K results in a multiplier
value smaller than 1. Let us take a closer look at what happens when a very low
parameter value like t = 0,01 is used: The result is a wide gap between quotients
because the first quotients In(OPgI)are very much larger than the other quotients.,
Moreover, when quotients within a constituency are ranked, the usual situation is
that every first quotient is larger than the largest party's second quotient. These
relationships have the following consequences for the apportionment initial-
ization: The target quotient is a weighted average of two quotients. For
constituencies where the number of parties is larger than the number of seats, i.e.
n > R;, both these quotients are very large. Furthermore, for constituencies
where n = Ri, one quotient is very large and the other is of normal size. Finally,
when n < Ri, both quotients are of normal size. In these three cases the target
quotient becomes very big, big, and normal respectively. This leads to very small
multipliers when Ri < n, small multipliers when Ri = n, and normal multipliers
when Ri > n. The end result is often an apportionment initialization set with large
differences in the relative sizes of the multipliers.

The third component stems from the integration of all constituency election
situations into the matrix apportionment. This is the reason for the name matriH
component:

(17.4) . _ Ai (Suitable)
Matrix component - Ai (Apportionment)
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The matrix component for a constituency which multiplier has not been adjusted
during the solution process is equal to 1. The matrix component is unique because
we in section 17.1 prescribed how the suitable multiplier set shall be determined
from the set of apportionment initialization multipliers. To shorten the
component names, we omit the word "component" some places in the following.
Then we are ready to present the decomposition of the suitable multiplier set:

(17.5) Ai (Suitable) =Bound' Constituency' Matrix

On the right hand side of (17.5) we have utilized that a no initialization multiplier

Ai (No) always is equal to 1.

17.3 Normalization of multiplier sets

A set of constituency multipliers can be scaled by the positive factor ~ to attain
any wanted magnitude. The new multiplier values are ~'Ai for all i. Since all
multipliers are scaled by the same factor, the new multiplier set ~'A implies the
same assignment as before the scaling. A multiplier set is normalized by scaling it

such that the geometric or arithmetic mean of all multipliers become equal to 1.
The multiplicative normalization factor is found as the inverse of the geometric
mean of the multipliers:

(17.6) 1 II ..le = ( Ai)m
ieM

while what we call the additive normalization factor is found as the inverse of the

arithmetic mean:

(17.7)
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As seen from (17.6) and (17.7), we use the notation e for a normalization factor.
There is little need for normalizing a multiplier set if e is in the neighbourhood
of 1. However, to be coherent in our approach we normalize all multiplier sets.
The multiplicative variant (17.6) is used for these normalizations.

All multipliers in the no initialization set are equal to 1, so this set is normalized.
The formula for a quota ratio initialization multiplier is ~i = ~. Because this
ratio is close to 1 for most constituencies, the normalization factor for a quota
ratio initialization set, denoted eQ, is usually in the neighbourhood of 1.

As described in the previous section, the magnitude of the multipliers in an
apportionment initialization set depends on the divisor method. When CPO,OIis
used, all multipliers are usually below 1, while HA results in a large portion of
multipliers above 1. This influences the normalization factor, denoted eA. The
following relationship exists between the constant parametric divisor methods and

o

eA: For a given election situation and with given t and K, eA is a strictly
decreasing function of the parameter t. To verify this statement we focus on the
situation within an arbitrary constituency: Compared with the current situation a
higher t will lead to a lower target quotient, which from equation (11.26) results
in a higher constituency multiplier. A higher multiplier increases the right hand
side of (17.6), which finally leads to a lower eA. From calculations of eA for the
23 data sets in the main matrix bias test we can say the following about the
relationship between the divisor method used and the size of eA: eA is much
larger than 1 for CPO,OI,while it is smaller than 1 for HA (CP 1). When MF
(CPo,S)is used, eA is usually in the neighbourhood of 1.

Now to the normalization of a suitable multiplier set. We let es denote the
normalization factor for such a set. Due to the starting position of the iterative
apportionment algorithm, an apportionment initialization multiplier set, and the
possibility of sharp changes for some of the multipliers during the solution
process, es may deviate substantially from l.
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Normalization of the multiplier sets opens for a standardization of the compo-
nents. We write the standardized components in italics. The bound, constituency,
and matrix components are calculated as prescribed by (17.2), (17.3), and (17.4)
respectively, but based on normalized multiplier sets. To illustrate the relation-
ship between the components defined in section 17.2 and their standardized
counterparts, we deduce the formula for the constituency component:

(17.8) . eA' A.i (Apportionment) eA .
Constituency = eQ . A.j (Quota ratio) = eQ . Constituency

Similarly, we deduce the relationships:

(17.9) Bound = 9Q . Bound and Il • es M .Matrix = eA· atnx

In the previous section we could discover a multiplier which had not been
adjusted during the solution process through a matrix component equal to 1.
Discovering non-adjusted multipliers is a little bit more difficult here because one
has to look out for matrix components equal to :! instead.
The decomposition of a normalized suitable multiplier set, denoted Suitable, IS

similar to the decomposition in (17.5):

(17.10) Åi (Suitable) =Bound· Constituency· Matrix

17.4 Numerical example

In this section we present a small numerical example which illustrates the
decomposition process. Table 17.1 below presents the election situation which is
the basis for the example. We recognize the vote matrix from the examples in
chapter 13 and section 16.3. The bound vector here is SD-HA, Le. SD and HA
have been used to determine constituency and party bounds respectively. We have
decided to use MF as matrix apportionment method in the present situation.
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Table 17.1
Seats
15
4
3

22

3 x 3 matrix apportionment problem.

The first task is to determine the 4 multiplier sets. How the no initialization set,

the quota ratio initialization set, and the apportionment initialization set are
determined should be clear from the description in section 11.3. These sets are

presented under the heading "Original" in Table 17.2 below. The suitable set is

found as follows: From the assignment determined by the apportionment initial-
ization multipliers the matrix apportionment problem is solved using p-effect sel-

ection. The adjustments during the solution process are as follows: 1st iteration:

Downadjustment to ÅRev = 0,785, 2nd iteration: Upadjustment to ÅAul = 1,229,
3rd iteration: Downadjustment to ÅNoE = 0,747, 4th iteration: Upadjustment to

ÅRev = 0,808, and finally 5th iteration: Downadjustment to ÅAul = 1,217.

Table 17.2
No Quotaratio Apportionment Suitable

Original Original Nonnalized Original Nonnalized Original Normalized
Å Rev 1,000 0,973 0,913 0,919 0,967 0,808 0,895
Å NoE 1,000 0,911 0,855 0,829 0,872 0,747 0,828
Å Au! 1,000 1,366 1,281 1,127 1,186 1,217 1,348

Normalization factor 0,938 1,052 1,108

Original and normalized versions of the 4 multiplier sets.

In addition to the original multiplier sets, Table 17.2 includes normalization
factors and normalized multipliers sets. Let us illustrate the normalization process
by going through the calculations for the quota ratio initialization set: First we

determine the normalization factor 9Q by putting the original multipliers into
l

formula (17.6) and solving: 9Q = (0,973 . 0,911 . 1,366f3 ~ 0,938. Thereafter

we fmd the normalized multipliers by multipling the original multipliers by the

normalization factor, e.g. ÅAul = 1,366 . 0,938 ~ 1,281.
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From the multiplier sets in Table 17.2 we calculate the components. The result of
these calculations is presented in Table 17.3 below. We demonstrate the
calculations by showing how the constituency components for NoE are found:

. 0829Constituency (NoE) = 0:911 ~ 0,910 . 0872Constituency (NoE) = O'855 ~ 1,020,

The last component can also be found with the help of (17.8):

Constituency (NoE) =Constituency (NoE) . :~ = 0,910 .~:~~i~1,020

Table 17.3
between original multiplier sets between uormalized multi plier sets

Bound Constituency Matrix Bound Constituency Matrix
Rev 0,973 0,945 0,879 0,913 1,059 0,926
NoE 0,911 0,910 0,901 0,855 1,020 0,950
Aul 1,366 0,825 1,080 1,281 0,926 1,137

Components calculated from the multiplier sets inTable 17.2.

The following information about the number of iterations with the different
initialization methods is of interest below: With the election situation in
Table 17.1, MF as matrix apportionment method, and p-effect selection, it took 6
iterations to solve the problem from the no initialization multiplier set, only 1
iteration from the quota ratio initialization set, and 5 iterations from the
apportionment initialization set.

We round off this section with a brief analysis of the standardized components:
The bound component tells us that the constituency bounds favour Austurland.
This is not surprising since SD, which favours small constituencies, was used to
determine these bounds. The constituency component pulls all constituency
multipliers closer to unity. This action tells us that based on the election situations
within the constituencies the quota ratio initialization multipliers are too far away
from unity. The matrix component, which shows the necessary adjustment to
reach a suitable multiplier set, more than reverses the effect of the constituency
component. Since the constituency and matrix components pull in opposite
directions and it only took 1 iteration to solve the matrix apportionment problem
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after quota ratio initialization, our conclusion is that quota ratio initialization
reads the problem at hand better than apportionment initialization.
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Chapter 18: Three' dtmensions
";~;i{fl

In this chapter we extend the matrix apportionment problem to three dimensions.
The first section presents the three-dimensional apportionment problem. In
section 18.2 we show that the LP-formulation of the three-dimensional appor-
tionment problem does not always yield an integer solution. The fmal section
discusses whether there is a need for a third dimension in the apportionment
problem.

18.1 The three-dimensional apportionment problem

Regarding the sets of constituencies M and parties f, we maintain our
assumptions from section 9.1 We introduce the set O for the third dimension. O
has a total of o members, which we call levels. We use the index k for the levels,
so k E O = {l, 2, ..., o} where o is a positive integer. The situation where o = 1
is nothing but the (two-dimensional) matrix apportionment problem, so o must be
larger than 1, Le. o ~ 2, to move into new territory.

The vote (population) matrix p = (pijiJ is now three-dimensional, where Pijk

represents the votes cast for a candidate from level k of party j in constituency i.

Both p and the apportionment matrix a = (aijk) are m x n x o matrices with non-
negative elements, but while p 's elements are real numbers, a 's elements are
integer. Vote and apportionment sums plus constituency and party bounds are
denoted the same way as before. Below we introduce the new bounds. As before,
we let lower case letters denote lower bounds and capital letters denote upper
bounds. Furthermore, we assume that all bounds are integer.
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We start with the bounds for the level sums. The level bounds are gathered in the
vectors g = (gk) and G = (Gi), where

(18.1) g z O and G>O

The apportionment to level k must be within the following bounds:

(18.2)

By summing over all levels we find the following relationship:

(18.3) gO =L ~s h sL Gk =Go
keD keD

The apportionment sums we get when summing over two indices in the three-
dimensional problem, Le. aiNO, aMjo, and aMNk, are called aHial sums.

We may also introduce bounds for the sums aija aiNIe and aMjk These sums,
which are found by summing over one index, are called planar sums. We
denote the planar sum bounds uij, Vij, Vik, Vile, Wjle, and Wjk respectively. Thus,
like we have done in the notation of gk and Gk above and ri, Ri, Cj, and Cj earlier,
we omit the subscript(s) for the set(s) we have summed over. Later in this section
we also omit subscripts for vote sums, i.e. PMjO is written as Pj, PiNk as Pik etc. It
is possible to omit subscripts for apportionment sums too, but we do not do this.

We gather the parameters for the three-dimensional problem in the bound
uector: a = (u, U, v, V, w, W, c, C, r, R, g, G, h) where u and U, v and V,
and w and W are matrices of size m x n, m x 0, and n x D respectively. a is
integer in all its components. The problem is equality constrained if all lower
bounds coincide with the corresponding upper bounds.

To formulate the problem as a constrained optimization problem we once again
introduce a olt apportionment (seat) variable, here denoted aijld. Furthermore, we
here let S denote the set of cells for which Pijk> O,while Sdenotes the set of cells
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for which pijk = O. Then we are ready for the general formulation of the three-
dimensional apportionment problem:

{18.4) max L L [ln(Pft) . aijkZ]
(i,j,k)eS /eH

subject to the constraints

{18.S) LLLL aijld = aMNOH = h
ieMjeNkeO/eH

{18.6) LLL aijld = aiNOH ~ 11 ';;li
jeNkeO/eH

(18.7) LLL aijld = aiNOH s Ri ';;li
jeNkeO/eH

(18.8) LLL aijld = aMjOH ~ Cj ';;Ij
ieMkeO/eH

{18.9) LLL aijkZ= aMjOH s Cj ';;Ij
ieMkeO/eH

{18.10) LLL aijld = aMNkH~ gk ';;Ik
ieMjeN/eH

{18.11) .LLL aijld = aMNkHs Gk ';;Ik
ieMjeN/eH

(18.12) LL aijk! = aijOH ~ uij ';;I i,j
keO/eH

(18.13) LL aijld = aijOH s Dij ';;I i,j
keO/eH

{18.14) LL aijld = aiNkl! ~ Vik ';;I i, k
jeN/eH

(18.15) LL aijk! = aiNkHs Vik ';;I i, k
jeN/eH

(18.16) LL aijld = aMjkH ~ Wjk ';;Ij, k
ieM/eH

(18.17) LL aijk! = aMjkH sWjk ';;Ij, k
ieM/eH

(18.18) aijk! = Oor 1 ';;I (ij,k) E S, l

(18.19) aijk! =O ';;I (ij,k) E S, l
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(18.6) - (18.11) are axial sum constraints, while (18.12) - (18.17) are planar sum
constraints. It is a matter for consideration whether all these constraints shall be
included or not. A lower bound constraint is made inactive by setting the bound
equal to zero, e.g. Wjk = 0, while an upper bound constraint is made inactive by
setting the bound equal to the house size, e.g. Wjk = h.

The question which now arises is: How should the bounds in the three-
dimensional apportionment problem be determined? For the (two-dimensional)
matrix apportionment problem we recommended the use of apportionment
methods for this task. We recommend the same approach here. However, the
larger number of bounds makes the determination process more cumbersome.
Below we review the determination process for the three-dimensional equality
constrained problem. Since the upper and lower bounds are identical, we use the
notation for upper bounds, i.e. capital letters, in this description. Furthermore,
we take the house size h as given.

We start by determining the axial bounds R, C, and G. These bounds are
determined by vector apportionments based on the respective vote totals, i.e.
based on the PiS, the pjS, and the PkS respectively. We will always be able to
determine R, C, and G this way. The next task is the determination of planar
bounds. A natural way of determining the bound matrices U, V, and W is to
carry out three (two-dimensional) matrix apportionments. The matrix apportion-
ment to determine U is based on the Pijs with R and C as bounds. V and W are
determined similarly, based on the Pik s and the Pjk s respectively. As explained in
section 9.7 and illustrated by Example 9.2 and Example 9.3, a matrix apportion-
ment problem may not have a feasible solution. Thus, it may be impossible to
determine U, V, and/or W by matrix apportionments. When the prescribed
matrix apportionments are feasible, we have the following relationships between
the planar bounds U, V, and Wand the axial bounds R, C, and G:
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(18.20) LDlj =LVik = Ri
jeN keD

LDlj =LWjk= Cj
ieM keD

tli

(18.21) tlj

(18.22) LVik= LWjk= Gk
ieM jeN

tik

(18.20) - (18.22) are necessary conditions for the existence of a feasible solution
to the equality constrained three-dimensional apportionment problem. However,
these conditions are far from sufficient, see [V] for a survey.

18.2 Example of a non-integer LP-solution

Due to constraint (18.18), the problem defined by (18.4) - (18.19) is a oil integer
programming problem. Ifwe reformulate (18.18) as:

(18.23)
(18.24)

aljld ~ O
aijld ~ 1

ti (i,j, k) E S, l
ti (i,j, k) E S, l

the problem is formulated as a LP-problem. With the LP-formulation of the
(two-dimesional) matrix apportionment problem we were guaranteed an optimal
solution which was integer provided that all components of the bound vector o
were integer. We have no such guarantee with the LP-formulation of the three-
dimensional apportionment problem, as the following example shows:

Example 18.1
We face a 3 x 3 x 3 election situation, where the three constituencies are named
1, 2, and 3, the three parties A, B, and C, and the three levels I, II, and III. The
vote matrix p = (Pijk), where 'I' > 1, is presented in the three tables below. Each
table shows the votes for one of the levels:
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Table 18.1 Table 18.3

I A B C

1 '" 1 1

2 1 '" 1

3 1 1 1

Vote submatrlx (Pyl)

Table 18.2

II A B C

1 1 1 1

2 '" 1 1

3 1 1 '"

III A B C

1 1 1 '"
2 1 1 1

3 1 '" 1

Vote submatrlx (PijII) Vote submatrlx (PylII)

We assume that a strict divisor series dl is being used. Our task is to find the
optimal solution to the following LP-formulation of the three-dimensional axial
apportionment problem:

(18.25)
3 C III

maxLLLL (ln{"f)· aijld]
;=1 j=A k=I leH

3 C III

LLLL aijld = aMNOH = 3
;=1 j=A k=I leH
C III

LLL aijkl = aiNOH = 1 'V i
j=A k=I leH
3 III

LLL aijld = aMjOH = 1 'Vj
;=1 k=IleH
3 C

LLL aijkl = aMNkH = 1 'V k
;=1 j=A leH

subject to the constraints

(18.26)

(18.27)

(18.28)

(18.29)

(18.30)

(18.31)

aijld"2:. O 'V i,j, k, l

aijld ~ 1 'V i,j, k, l

We observe that the right hand sides of (18.27) - (18.29) are proportional to the
constituency, party, and level vote totals respectively. The axial bounds of 1
together with the strict divisor series dl guarantee that no second quotient qijk2

will be apportioned any (part of a) seat. In fact, with a 011 requirement instead of
(18.30) - (18.31), the problem would have been an axial assignment problem in
three dimensions.
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We concluded above that only first quotients will be apportioned seats, so we
omit the l subscript in the description below. Our search for the optimal solution
to the LP-problem starts by constructing feasible integer solutions. We begin with

Table 18.1 and assign seats greedily: Because '" > 1, one of the two cells for

which Pyl = '" should be assigned a seat. Let us set alAI = 1. Then the capacities
for constituency 1, party A, and level I are saturated. We move on to the vote

table for the next level. Like the first table, Table 18.2 contains two '" elements.
Since the capacity for party A already is saturated, we set a3CII = 1, which
saturates the capacities for constituency 3, party C and level II. This leaves us

with a2BIII = 1 as the only available assignment in Table 18.3. Unfortunately

P2BIII = 1, so the value of the objective function with the chosen assignment is
2·1n(",) - 3·1n(dl). If we instead had started out by setting a2BI = 1 and followed

up by setting escn = 1, we would have been forced to let aixrn = 1 resulting in
the same objective function value. The last possibility in Table 18.1 is to start by

assigning a seat to a cell for which Pyl = 1. However, the best objective function

value one can hope for then is 2·1n(",) - 3·ln(dl). Thus, 2·1n(",) - 3·ln(dl) is the

highest attainable objective function value for an integer solution. It is possible to
improve on this value by allowing non-integer values for the variables. The

solution found by letting all variables representing cells with a population of '" be
l l. I Its iequa to 2' i.e. alAI = a2BI = a2AII = a3CII = alCIII = a3BIII = "2, resu ts 10 an

objective function value of 3·1n(",) - 3·1n(dl). Clearly, this is the optimal solution
to the LP-problem.

18.3 Motivation for introducing a third dimension

Is there a need for a third dimension in the matrix apportionment problem? In
this section we evaluate sex as a possible third dimension. We also review some

other possibilities regarding the third dimension.

The first characteristic which came to mind as possibly justifying an own

dimension was sex. Norway has a law (Law of equal status) with the intention of
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securing women's representation in public committees. This law states that public
committees, with the exception of elected ones, shall have members from both
sexes and that the representation of the least represented sex shall be at least 40%
if a committee has 4 members or more. It is possible to deviate from this
requirement if it is highly unreasonable for the actual committee [Likestillings-
loven 9 juni. Nr. 45. 1978 § 21]. What about extending this law to include
representation in elected assemblies too? We will deal with this question later on,

but let us start by studying the development of the Storting's women
percentage during the last four terms: In the general election in 1985, 54 out of
the 157 elected representatives to the Storting were women, Le. a percentage of

155~ ~ 34%, in 1989 the percentage increased to tis ~ 36%, in 1993 it reached

1
6
i5 ~ 39%, while it dropped to 1

6
6°5 ~ 36% in the most recent election in 1997.

Thus, the Storting's women percentage has never been above 40%. In the light of

the fact that over 50% of the eligible voters are women, the referred women
percentages are not impressive.

Let us now look at how lower bounds for the representation of the sexes can be
included in the apportionment problem. A possibility is to let the apportionment
problem become three-dimensional and operate with separate party lists for men
and women in every constituency. Then the lower bound constraint for the
representation of each sex can be written as:

(18.32) LLL aijld = aMNkH ~ v·h 'if k
ieMjeN/eH

1where v E [O,2]

v can be interpreted as a lower bound percentage. Notice that (18.32) is (18.10)
with gk = v·h. Since o = 2 with sex as the third dimension, the lower bound for

one sex determines an upper bound for the opposite sex: aMNkH~ {l -v)·h.

An alternative to the approach described above is to handle the two lower bound

sex constraints within the two-dimensional framework. This is accomplished by

operating with the same party lists as in the (two-dimensional) matrix appor-

tionment problem. In addition, one must keep track of which quotients belong to

female (male) candidates. The two lower bound sex constraints have the same
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right hand side as (18.32), and they are constructed by summing over the seat
variables aijl belonging to female and male candidates respectively. Notice that
these two constraints will break with the transportation type structure of the
(two-dimensional) matrix apportionment problem. Moreover, if one of them
becomes active, the solution process will be more complicated than described in
chapter 12. The advantage of the approach described in this paragraph is that
party lists can be nominated the same way they are today.

In this and the next paragraph we present examples from Norway of connections
between sex and party. The first example shows how two of the parties deal with
the representation of the sexes: Both A (Labour Party) and SV (Socialist Left
Party) nominate their party lists such that among every second person on the list
there are one female and one male candidate. By this description we mean that if
there is a man on top of the list, a woman is in 2nd place, and if there is a woman
in 3rd place, a man is in 4th place etc. This sounds promising for these parties'
women percentages, but the additional piece of information that both parties had
a woman in 1st place in only 7 out of 19 constituencies, i.e. 37%, in the general
election in 1993 reduces the expectations. What is interesting from an appor-
tionment perspective is that while the women percentage for A became as high as
~~ ~ 49%, SV ended up with 1~ ~ 31%. The reason for SV's low percentage is
its small size, which makes it very important to be on top of the party list. For a
small party the battle in nearly every constituency is for its first seat, while a
large party like A battles for its seat no. three, four etc. Party nominations are
carried out separately for each constituency. In order to obtain a certain women
percentage at the national level, a party must coordinate the nominations in the
different constituencies.

We continue with some other data regarding sex and party preference. Table 18.4
below presents the following data for each party which won seat(s) in the Storting
in the general election in 1993: The women percentage among the party's voters,
the women percentage in the parliamentary party group, plus the ratio between
these two percentages. To estimate the women percentages among the different
parties' voters, we utilize data from a sample survey of the 1993 general election
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[Statistisk Sentralbyrå - Stortingsvalget 1993]. This survey is based on less than
two thousand answers, but the election result among the respondents did not
deviate much from the national election result. The data of interest to us are the
percentage support for the parties among male and female voters respectively.
These percentages are given with no decimals, which result in rough estimates of
the women percentages, as illustrated below. Although over 50% of the eligible
voters were women and the participation rate was slightly higher among women
than among men, we assume that 50% of the votes were cast by men when
estimating the women percentage among a party's voters. The following example
illustrates the estimation of ''% among voters": According to the survey, FrP
(Progress Party) had 6% support among male and 3% support among female
voters. These figures result in an estimated women percentage of 3o/:~6% ~ 33%.
This is a rough estimate; given the precision of the survey figures, the support
among female and male voters might have been 2,6% and 6,4% respectively.
With these figures the correct estimate of FrP's women percentage would have
been ~:g~:::::29%. ''% in party group" is calculated from statistics about the
elected representatives to the Storting, while "Ratio" is calculated as
% among voters A· 1O 11 h th . . f th% in PartY group· ratio near , te s us t at e sex composition o e party
group harmonizes well with the sex composition of the people who voted for the
party. Moreover, a ratio higher than 1,0 shows that there are too few women in
the party group compared with the composition of the party's voters.

Table 18.4

Parties A FrP H KrF RV SP SV V

% among voters 50% 33% 44% 60% 67% 50% 60% 57%

% in party group 49% 10% 29% 38% 0% 44% 31% 0%

Ratio 1,0 3,3 1,5 1,6 00 1,1 1,9 00

Women percentages for the Norwegian parties in the 1993 general election.

With the exception of RV (Red Electoral Alliance) and V (Liberal party), which
party groups consisted of only one person each, the parties had from 10 (FrP) to
63 representatives CA) in the Storting. Considering the political views of the
parties, the two opposites regarding the achieved ratios must be the two parties
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from the preceding example: A was presumably well satisfied with its ratio, while
SV must have viewed its ratio as unsatisfactory.

Now back to the law of equal status. Why does not this law include elections? We
believe that the reason is a predominant view that political parties through their

nomination of candidates should deal with such matters as the candidates' sex etc.
A lower bound in the spirit of (18.32) would interfere with the priorities of the
parties if it becomes an active constraint.

It is possible to include other characteristics than sex, like race, religion, age etc,

in the apportionment problem. However, a direct vote on race and/or religion is

presumably neither desirable nor politically acceptable. It should not be necessary
either because in countries where race or religion are issues which divide the

nation, the formation of parties usually follows these dividing lines. From the
Nordic countries we have examples of formation of parties based on age and sex
respectively: The "Pensioners' Party" in Norway is represented in several county

and municipality councils. In Iceland the ''Women's Alliance" was represented in

the Althing from 1983 to 1999. Its support in the last election it participated in
was 5%, but the support had earlier been as high as 10%. We end this paragraph
by rejecting another possibility regarding the third dimension: Time is sometimes
introduced as an own dimension in transportation type problems, but we do not

find it applicable in the apportionment context.

It is time to conclude the discussion regarding introduction of own dimensions
for characteristics like sex etc. The basic assumption in the (two-dimensional)
matrix apportionment problem is that every voter wants his/her own constituency
and the party he/she prefers to be represented by as many representatives as
possible. We find it less reasonable to assume that the sex or any other character-

istic of a representative, and which is not covered by the party choice, is of the

same importance to the voter. Furthermore, the point of introducing a new

dimension must be that one wants the apportionment to be proportional for axial

and/or planar sums involving this dimension. Since we do not see the need for
proportional representation in parliament for any of the above-mentioned
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characteristics, our view is that none of them justify an own dimension in the
apportionment problem.

We end this review of the three-dimensional apportionment problem by
presenting two applications we fmd interesting: As explained in section 15.5,
divisor methods may be employed for some controlled rounding problems. Some
of these problems are of dimension three or higher, see [K&al] (page 761), so
this is a field where divisor method formulations akin to that in section 18.1
should be of interest.

During the work with the material above, we came up with the following idea for
a three-dimensional apportionment problem with both axial and planar sum
constraints: The members of the Storting are divided in different committees;
Defence Committee, Judiciary Committee etc. Today the composition of these
committees is determined by the representatives themselves after the election.
Why do not we let the voters have a direct influence on the composition of the
committees? The possibility of voting for both party and committee would be an
opportunity for the voters to express why they prefer their party. Moreover, the
committee ballot would show which topics are important for voters in the
different regions of Norway. Although the political power of the committees is
limited, the committee ballot would serve as an opinion poll, and everybody
knows how politicians react to opinion polls. An argument against the proposed
voting scheme is that it will place a heavier burden on the voters. Another
drawback is that the party composition in the different committes may be quite
skew compared with the composition of the Storting. Today the composition of
each committee approximately reflects the composition of the Storting. To secure
a suitable number of representatives in the different committees with the
proposed voting scheme, one should operate with predetermined bounds for the
committee sizes.
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Appendix 1:

Divisions
and

Results ofvector bias test



Description of Division tables

These tables show the following for the given number of groups c:

- How many constituencies there are in each of the 13 countries utilized
- Number, Cluster, Quota, and Size divisions

We always order the constituencies within a country in descending order
based on population. The intervals X - Y given in the tables show the first
member X and the last member Y of the group, where X and Y are the
Xth and Yth largest constituency in the country respectively.

Description ofVector bias tables

These tables show the vector bias data for the comparison of group V
and W when there are c groups. V <W < c, where c = 2, 3, or 4.

Vector bias data are shown for all combinations of the 6 vector
apportionment methods; SD, HM, EP, MF, HA, and LF, and the 4 division
methods; Cluster, Quota, Number, and Size. The formulas for e(V,W) and
T are presented in section 5.8.

A4



Division in 2 groups

Country # of constituencies Division Group 1 Group2
Japan 130 Number 1-65 66-130

Cluster 1-39 40-130
Quota 1-43 44-130
Size 1-38 39-130

Thailand 71 Number 1-35 36-71
Cluster 1-14 15-71
Quota 1-17 18-71
Size 1-5 6-71

Greece 56 Number 1-28 29-56
Cluster 1-2 3-56
Quota 1-13 14-56
Size 1-2 3-56

USA 50 Number 1-25 26-50
Cluster 1-7 8-50
Quota 1-8 9-50
Size 1-3 4-50

Sweden 28 Number 1-14 15-28
Cluster 1-2 3-28
Quota 1-10 11-28
Size 1-3 4-28

Switzerland 26 Number 1-13 14-26
Cluster 1-3 4-26
Quota 1-4 5-26
Size 1-3 4-26

Norway 19 Number 1-9 10-19
Cluster 1-4 5-19
Quota 1-6 7-19
Size 1-8 9-19

Denmark 17 Number 1-8 9-17
Cluster 1-4 5-17
Quota 1-5 6-17
Size 1-6 7-17

Germany 16 Number 1-8 9-16
Cluster 1-4 5-16
Quota 1-3 4-16
Size 1-3 4-16

Finland 15 Number 1-7 8-15
Cluster 1-6 7-15
Quota 1-5 6-15
Size 1-6 7-15

Canada 12 Number 1-6 7-12
Cluster 1-2 3-12
Quota 1-2 3-12
Size 1-2 3-12

Austria 9 Number 1-4 5-9
Cluster 1-4 5-9
Quota 1-3 4-9
Size 1-4 5-9

Iceland 8 Number 1-4 5-8
Cluster 1-2 3-8
Quota 1-1 2-8
Size 1-2 3-8
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Vector bias 2 groups

8(1,2) Bias between group 1 and 2 for c = 2 based on 13 countries

SD HM EP MF HA : LF
Cluster division

8 -6,29% -1,55% -1,22% -0,05% 5,79% 0,04%
S 1,38% 0,79% 0,76% 0,35% 0,94% 0,21%
T -4,56 ** -1,98 * -1,61 -0,16 6,15 .* 0,21
P 0,0% I 3,6% 6,6% 87,9% 0,0% 83,9%

Quota division !

8 -6,41% -1,12% -0,79% 0,47% 5,65% 0,44%
S 1,27% 0,63% 0,56% 0,34% 0,93% 0,24%
T -5,06 ** -1,78 -1,41 1,38 6,06 ** 1,83
P 0,0% 5,0% 9,2% 19,4% 0,0% 9,2%

Number division
I8 -8,66% -2,82% -2,03% 0,72% 8,95% 1,03%

S 1,68% 1,07% 0,96% 0,45% 1,79% 0,32%
T -5,17 ** -2,64 * -2,11 * 1,59 5,01 ** 3,24 **
P 0,0% 1,1% 2,8% 13,9% 0,0% 0,7%

Size division
8 -6,31% -1,77% -1,36% -0,27% 5,70% -0,17%
S 1,33% 0,76% 0,70% 0,28% 1,06% 0,22%
T -4,73 ** -2,33 * -1,94 * -0,95 5,39 ** -0,77
P 0,0% 1,9% 3,8% 36,3% 0,0% 45,5%

8 Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
P P-value (probability); two-sided for MF and LF, one-sided for the other methods

** Significant at the 1%-level
* Significant at the 5%-level
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Division in 3 groups

Country # of constituencies Division Group 1 Group2 Group 3
Japan 130 Number 1-43 44-86 87-130

Cluster 1-21 22-73 74-130
Quota 1-25 26-65 66-130
Size 1-17 18-88 89-130

Thailand 71 Number 1-23 24-47 48-71
Cluster 1-3 4-23 24-71
Quota 1-9 10-28 29-71
Size 1-3 4-14 15-71

Greece 56 Number 1-18 19-37 38-56
Cluster 1-2 3-20 21-56
Quota 1-7 8-22 23-56
Size 1-1 2-3 4-56

USA SO Number 1-16 17-33 34-50
Cluster 1-1 2-8 9-50
Quota 1-4 5-15 16-50
Size 1-1 2-7 8-50

Sweden 28 Number 1-9 10-18 19-28
Cluster 1-2 3-23 24-28
Quota 1-5 6-15 16-28
Size 1-2 3-8 9-28

Switzerland 26 Number 1-8 9-17 18-26
Cluster 1-2 3-8 9-26
Quota 1-2 3-7 8-26
Size 1-2 3-5 6-26

Norway 19 Number 1-6 7-12 13-19
Cluster 1-3 4-12 13-19
Quota 1-3 4-9 10-19
Size 1-4 5-13 14-19

Denmark 17 Number 1-5 6-11 12-17
Cluster 1-4 5-15 16-17
Quota 1-3 4-8 9-17
Size 1-4 5-14 15-17

Germany 16 Number 1-5 6-10 11-16
Cluster 1-1 2-4 5-16
Quota 1-2 3-6 7-16
Size 1-1 2-4 5-16

Finland 15 Number 1-5 6-10 11-15
Cluster 1-1 2-9 10-15
Quota 1-3 4-7 8-15
Size 1-2 3-11 12-15

Canada 12 Number 1-4 5-8 9-12
Cluster 1-2 3-4 5-12
Quota 1-1 2-3 4-12
Size 1-2 ø 3-12

Austria 9 Number 1-3 4-6 7-9
Cluster 1-4 5-7 8-9
Quota 1-2 3-4 5-9
Size 1-4 5-6 7-9

Iceland 8 Number 1-2 3-5 6-8
Cluster 1-1 2-2 3-8
Quota 1-1 2-3 4-8
Size 1-1 2-2 3-8
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Vector bias 3 groups

8(1,2) Bias between group 1 and 2 for c = 3 based on 13 countries (12 for Size division)

SD HM EP MF HA LF
Cluster division

8 -2,92% -0,22% -0,09% 0,06% 2,48% 0,01%
S 0,78% 0,55% 0,39% 0,49% 0,50% 0,39%
T -3,75 •• -0,41 -0,24 0,12 5,01 ··1 0,02
P 0,1% 34,5% 40,8% 90,8% 0,0% 98,3%

Quota division
8 -3,47% -0,63% -0,52% -0,42% 2,11% -0,57%
S 1,11% 0,50% 0,40% 0,35% 0,52% 0,28%
T -3,12 •• -1,26 -1,30 -1,20 4,09 •• -2,03
P 0,4% 11,5% 10,9% 25,3% 0,1% 6,5%

Number division
8 -4,08% -0,75% -0,60% 0,17% 4,07% 0,12%
S 0,89% 0,68% 0,66% 0,53% 0,78% 0,55%
T -4,60 •• -1,10 -0,90 0,32 5,22 •• 0,22
P 0,0% 14,7% 19,3% 75,6% 0,0% 82,6%

Size division
8 -2,36% -0,35% 0,03% 0,32% 2,27% 0,29"10
S 0,73% 0,53% 0,32% 0,44% 0,68% ··1 0,41%
T -3,22 •• -0,65 0,11 0,73 3,35 0,71
P 0,4% 26,3% 45,8% 48,3% 0,3% I 49,5%

8(1,3) Bias between group 1 and 3 for c = 3 based on 13 countries (12 for Size division)

SD HM EP MF HA LF
Cluster division

8 -9,80% -2,58% -1,73% 0,15% 9,32% 0,32%
S 1,68% 1,05% 0,90% 0,60% 1,37% 0,59%
T -5,82 •• -2,47 • -1,93 • 0,25 6,80 •• 0,54
P 0,0% 1,5% 3,9"10 80,6% 0,0% 59,7%

Quota division
8 -9,11% -2,12% -1,44% 0,59% 8,53% 0,58%
S 1,95% 0,99% 0,87% 0,42% 1,58% 0,26%
T -4,67 •• -2,14 • -1,66 1,41 5,41 •• 2,19 •
P 0,0% 2,7% 6,2% 18,5% 0,0% 4,9%

Number division
8 -14,36% -5,67% -3,91% 1,07% 13,73% 1,95%
S 2,96% 2,34% 1,81% 0,68% 2,46% 0,84%
T -4,85 •• -2,42 • -2,16 • 1,56 5,57 •• 2,32 •
P 0,0% 1,6% 2,6% 14,4% 0,0% 3,9%

Size division
8 -9,57% -2,36% -1,59% -0,06% 8,38% -0,10%
S 1,92% 1,04% 0,83% 0,51% 1,27% 0,32%
T -4,98 •• -2,27 • -1,92 • -0,13 6,62 •• -0,32
P 0,0% 2,2% 4,0% 90,1% 0,0% 75,6%
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Vector Bias 3 groups

8(2,3) Bias between group 2 and 3 for c = 3 based on 13 countries (12 for Size division)

SD HM EP MF HA ! LF
Cluster division I

8 -6,62% -2,36% -1,66% 0,06% 7,06% 0,29%
S 0,99% 0,93% 0,95% 0,87% 1,02% 0,77%
T -6,66 ** -2,52 * -1,74 0,07 6,94 ** 0,38
P 0,0% 1,3% 5,3% 94,8% 0,0% 71,4%

Quota division
8 -5,39% -1,47% -0,90% 1,00% 6,60% 1,14%
S 1,00% 0,68% 0,64% 0,44% 1,33% 0,33%
T -5,40 ** -2,16 * -1,41 2,28 * 4,95 ** 3,42 **
P 0,0% 2,6% 9,2% 4,2% 0,0% 0,5%

Number division
8 -9,81% -4,87% -3,29% 0,86% 10,14% 1,78%
S 2,45% 2,15% 1,66% 0,95% 2,26% 1,11%
T -4,00 ** -2,26 * -1,98 * 0,90 4,49 ** 1,61
P 0,1% 2,2% 3,6% 38,4% 0,0% 13,4%

Size division
8 -6,99% -1,99% -1,63% -0,40% 6,28% -0,41%
S 1,35% 0,79% 0,77% 0,61% 0,95% 0,51%
T -5,19 ** -2,51 * -2,11 * -0,66 6,58 **1 -0,79
P 0,0% 1,4% 2,9% 52,4% 0,0% I 44,6%I

•

8 Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
P P-value (probability); two-sided for MF and LF, one-sided for the other methods

** Significant at the 1%-level
* Significant at the 5%-level
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Division in 4 groups

Country # of constituenciesDivision Group1 Group2 Group3 Group4
Japan 130 Number 1-32 33-64 65-97 98-130

Cluster 1-17 18-47 48-92 93-130
Quota 1-18 19-44 45-78 79-130
Size 1-11 12-38 39-111 112-130

Thailand 71 Number 1-17 18-35 36-53 54-71
Cluster 1-3 4-14 15-34 35-71
Quota 1-6 7-17 18-35 36-71
Size l-l 2-5 6-23 24-71

Greece 56 Number 1-14 15-28 29-42 43-56
Cluster 1-1 2-2 3-20 21-56
Quota 1-4 5-14 15-28 29-56
Size l-l 2-2 3-6 7-56

USA 50 Number 1-12 13-24 25-37 38-50
Cluster l-l 2-8 9-27 28-50
Quota 1-3 4-9 10-20 21-50
Size l-l 2-3 4-9 10-50

Sweden 28 Number 1-7 8-14 15-21 22-28
Cluster 1-2 3-5 6-23 24-28
Quota 1-3 4-9 10-17 18-28
Size 1-2 3-3 4-23 24-28

Switzerland 26 Number 1-6 7-12 13-19 20-26
Cluster 1-2 3-6 7-16 17-26
Quota 1-2 3-5 6-11 12-26
Size 1-2 3-3 4-7 8-26

Norway 19 Number 1-4 5-9 10-14 15-19
Cluster 1-3 4-9 10-14 15-19
Quota 1-2 3-6 7-11 12-19
Size 1-3 4-8 9-16 17-19

Denmark 17 Number 1-4 5-8 9-12 13-17
Cluster 1-4 5-7 8-15 16-17
Quota 1-2 3-5 6-10 11-17
Size 1-4 5-6 7-16 17-17

Germany 16 Number 1-4 5-8 9-12 13-16
Cluster l-l 2-3 4-6 7-16
Quota l-l 2-3 4-7 8-16
Size l-l 2-3 4-6 7-16

Finland 15 Number 1-3 4-7 8-11 12-15
Cluster l-l 2-7 8-14 15-15
Quota 1-2 3-5 6-9 10-15
Size l-l 2-6 7-13 14-15

Canada 12 Number 1-3 4-6 7-9 10-12
Cluster l-l 2-2 3-4 5-12
Quota l-l 2-2 3-4 5-12
Size l-l 2-2 3-4 5-12

Austria 9 Number 1-2 3-4 5-6 7-9
Cluster 1-2 3-4 5-7 8-9
Quota l-l 2-2 3-4 5-9
Size 1-4 ø 5-7 8-9

Iceland 8 Number 1-2 3-4 5-6 7-8
Cluster l-l 2-2 3-4 5-8
Quota l-l 2-2 3-4 5-8
Size l-l 2-2 3-3 4-8
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Vector bias 4 groups

8(1,2) Bias between group 1 and 2 for c = 4 based on 13 countries (12 for Size division)

SD HM EP MF HA LF
Cluster division

8 -1,73% -0,41% -0,09% 0,24% 1,65% 0,20%
S 0,61% 0,46% 0,28% 0,40% 0,53% 0,39%
T -2,84 ** -0,90 -0,31 0,59 3,13 ** 0,51
P 0,7% 19,4% 38,0% 56,7% 0,4% 61,8%

Quota division I

8 -1,55% -0,78% -0,56% -0,12% 1,80% -0,43%
S 0,82% 0,46% 0,34% 0,45% 0,69% *1 0,47%
T -1,90 * -1,71 -1,64 -0,26 2,62 I -0,91
P 4,1% 5,6% 6,4% 79,8% 1,1% 38,0%

Number division
8 -3,66% -0,82% -0,64% -0,75% 2,43% -0,64%
S 1,04% 0,75% 0,63% 0,45% 0,38% 0,43%
T -3,51 ** -1,10 -1,02 -1,66 6,46 ** -1,51
P 0,2% 14,7% 16,5% 12,4% 0,0% 15,8%

Size division
8 -1,31% 0,41% 0,14% 0,63% 1,02% 0,67%
S 0,48% 0,46% 0,57% 0,70% 0,66% 0,65%
T -2,71 * 0,88 0,24 0,90 1,54 1,03
P 1,0% 19,8% 40,8% 38,7% 7,6% I 32,5%

8(1,3) Bias between group 1 and 3 for c = 4 based on 13 countries (12 for Size division)

SD HM EP MF HA I LFI

Cluster division
8 -5,74% -1,41% -1,14% -0,72% 3,51% -0,82%
S 1,34% 0,90% 0,70% 0,51% 0,70%

**1
0,40%

T -4,29 ** -1,57 -1,63 -1,42 4,99 -2,07
P 0,1% 7,1% 6,5% 18,0% 0,0% 6,0%

Quota division
8 -4,84% -1,28% -1,18% -0,89% 3,44% -1,21%
S 1,32% 0,76% 0,56% 0,27% 0,71% 0,34%
T -3,68 ** -1,70 -2,10 * -3,36 ** 4,83 ** -3,60 **
P 0,2% 5,8% 2,9% 0,6% 0,0% 0,4%

Number division
8 -6,43% -1,12% -0,89% -0,01% 6,64% -0,11%
S 1,55% 0,58% 0,53% 0,390/0 1,42% 0,38%
T -4,14 ** -1,95 * -1,67 -0,02 4,67 ** -0,28
P 0,1% 3,8% 6,0% 98,8% 0,0% 78,1%

Size division
8 -4,30% -1,16% -1,13% -0,43% 3,05% -0,51%
S 1,38% 0,92% 0,91% 0,54% 0,84% 0,50%
T -3,11 ** -1,26 -1,24 -0,80 3,63 ** -1,02
P 0,5% 11,7% 12,0% , 44,0% 0,2% 33,0%
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Vector bias 4 groups

8(1,4) Bias between group 1 and 4 for c = 4 based on 13 countries (12 for Size division)

SD HM EP MF HA LF
Cluster division

8 -12,69% -3,32% -2,29% 0,97% 20,29% 1,24%
S 2,43% 1,43% 1,40% 0,990/0 6,93% 1,07%
T -5,22 •• -2,33 • -1,63 0,98 2,93 •• 1,15
P 0,0% 1,90/0 6,4% 34,8% 0,6% 27,1%

Quota division
8 -10,19% -2,65% -1,84% 0,86% 10,30% 0,97%
S 2,30% 1,10% 1,02% 0,47% 1,95% 0,32%
T -4,43 •• -2,41 • -1,80 • 1,82 5,28 •• 3,04 •
P 0,0% 1,7% 4,8% 9,4% 0,0% 1,0%

Number division
8 -21,56% -11,36% -6,55% 1,85% 18,82% 5,40%
S 6,17% 6,26% 3,21% 1,25% 4,05% 4,23%
T -3,50 •• -1,81 • -2,04 • 1,49 4,65 •• 1,28
P 0,2% 4,7% 3,2% 16,3% 0,0% 22,6%

Size division
8 -11,48% -5,23% -4,61% -2,13% 12,57% -1,73%
S 2,53% 2,23% 2,21% 2,32% 2,68% 2,50%
T -4,54 •• -2,34 • -2,08 ·1 -0,92 4,70 •• -0,69
P 0,0% 2,0% 3,1% 37,9% 0,0% 50,3%

8(2,3) Bias between group 2 and 3 for c = 4 based on 13 countries (12 for Size division)

SD HM EP MF HA LF
Cluster division

8 -3,91% -0,98% -1,05% -0,98% 1,89% -1,05%
S 0,87% 0,64% 0,62% 0,64% 0,47% 0,64%
T -4,50 •• -1,52 -1,69 -1,53 3,99 •• -1,64
P 0,0% 7,7% 5,8% 15,3% 0,1% 12,7%

Quota division
8 -3,21% -0,50% -0,62% -0,80% 1,64% -0,81%
S 0,63% 0,65% 0,60% 0,61% 0,63% 0,58%
T -5,09 •• -0,78 -1,04 -1,32 2,62 • -1,38
P 0,0% 22,5% 16,0% 21,1% 1,1% 19,2%

Number division
I8 -2,65% -0,33% -0,28% 0,72% 4,30% 0,52%

S 0,92% 0,57% 0,54% 0,45% 1,47% 0,50%
T -2,88 •• -0,58 -0,51 1,61 2,92 •• 1,02
P 0,7% 28,5% 30,8% 13,3% 0,6% 32,6%

Size division
8 -2,93% -1,57% -1,28% -1,13% 2,02% -1,24%
S 1,14% 0,81% 0,82% 0,90% 0,94% 0,89%
T -2,56 • -1,94 • -1,56

I
-1,24 2,14 • -1,39

P 1,3% 3,9% 7,4% 23,9% 2,8% 19,3%
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Vector bias 4 groups

8(2,4)' Biasbetweengroup2 and 4 for c = 4 basedon 13 countries(12 for Sizedivision)

SD HM EP MF I HA LF
Cluster division

8 -10,70% -2,90% -2,21% 0,72% 18,97% 1,02%
S 1,97% 1,39% 1,45% 1,08% 7,00% 1,11%
T -5,44 ** -2,09 * -1,53 0,66 2,71 ** 0,92
P 0,0% 2,9% 7,6% 52,1% 0,9% 37,6%

Quota division
8 -8,40% -1,86% -1,29% 0,96% 8,73% 1,38%
S 1,58% 1,06% 1,05% 0,59%

I
1,59% 0,46%

T -5,31 ** -1,76 -1,22 1,61 5,49 ** 2,99 *
P 0,0% 5,2% 12,2% 13,4% 0,0% 1,1%

Number division
8 -17,19% -10,42% -5,84% 2,56% I 16,77% 6,03%
S 5,83% 6,10% 3,02% 1,30% 4,13% 4,19%
T -2,95 ** -1,71 -1,93 * 1,97 4,06 ** 1,44
P 0,6% 5,7% 3,9% 7,2% 0,1% 17,6%

Size division
8 -10,05% -5,73% -4,84% -2,89% 11,72% -2,49%
S 2,53% 2,56% 2,58% 2,71% 2,54% 2,74%
T -3,97 ** -2,24 * -1,87 * -1,07 4,62 ** -0,91
P 0,1% 2,3% 4,4% 30,9% 0,0% 38,3%

8(3,4) Bias betweengroup 3 and 4 for c = 4 basedon 13 countries(12 for Size division)

SD HM EP MF I HA I LF
I Cluster division

8 -6,53% -1,92% -1,17% 1,62% 17,43% 2,00%
S 1,69% 1,31% 1,40% 1,28% 7,13% 1,31%
T -3,86 ** -1,46 -0,83 1,27 2,44 * 1,52
P 0,1% 8,5% 21,1% 22,8% 1,5% 15,5%

Quota division I8 -4,99% -1,35% -0,65% I 1,73% 7,15% 2,15%
S 1,05% 0,77% 0,69% 0,51% 1,70% 0,45%
T -4,73 ** -1,74 -0,94 3,39 ** 4,22 ** 4,78 **
P 0,0% 5,4% 18,3% 0,5% 0,1% 0,0%

Number division I

I8 -14,27% -9,95% -5,51% 1,82% 13,07% 5,40%
S 5,79% 5,79'l1o 2,82% 1,44% 3,94% 4,34%
T -2,47 * -1,72 -1,95 * 1,26 3,32 ** 1,24
P 1,5% 5,6% 3,7% 23,0% 0,3% 23,7%

Size division
8 -6,92% -4,12% -3,54% I -1,79% 9,82% -1,25%
S 2,18% 2,49% 2,49% 2,68% 2,65% 2,57%
T -3,18 **) -1,65

I
-1,42 -0,67 3,71 ** -0,49

P 0,4% 6,3% 9,1% 51,8% 0,2% 63,6%
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Appendix 2:

Flow charts
and

Pascal programs



Explanation of flow chart symbols

= Start of program, section or procedure

= End of program, section or procedure

= Section with the name 'X'
(A section consists of several procedures)

II y II = Procedure with the name 'Y'
which utilizes several other procedures

z = Procedure with the name 'Z'

=Comparison made to determine
further action

( ... ) = Answer to comparison question

abcde ... = Some places text is used to
explain what is being done
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Example of an inputfile

The shown file is ICE63.DAT:

Rev 15
Ren 8
Vel 5
Vef 7
NoV 7
NoE 7
Aul 5
Sul 6
Alf 8
Fra 19
Sja 24
Alb 9
5730 6178 19122 6678
2804 2465 5040 1969
912 2363 2019 739
692 1743 1713 744
537 2135 1765 663

1012 4530 2856 1621
250 2804 1104 905
760 2999 3402 955

The programs ElectionAlgorithm and MatrixBias are set up
with ICE63.DAT as inputfile.
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The ELECTION ALGORITHM prograrr

OutputToTwoDimLFGamsFile'---~ __ ...,....-- ---J---------- uses
l'--O-utp-utO-fI1-abl-""e I

Multiplier initialization section

Solution section

AlgorithmStatistics
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Vector apportionment section

ReadingOfElectionData (Inputfile)

CheckOtHouseSize

OutputOflntegerMatrlces (Votes)

ParametrlcDivisorMethod

'---t~ VectorApportionment 1----1

---------- usesIr-C-al-cul-a-ti-on-O-fS-u-ms-'1

.....__---------'----- - - --- ------ - uses
'I Q-u-otaM-e-th-od-Q-uo-ti-en-'tI

and

OutputOfVectorApportionment IDivisorMethodQuotient I
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Multiplier initialization section

The main program

initializes bounds for constraint sets

•Work with the next constraint set Start with the first constraint set

CalculationOfQuotas

Work with the next matrix method Start with the first matrix metod

ParametricDivisorMethod

Do the next multiplier initialization Start with No initialization

INoInitialization I
fQuotaRatioInitialization I uses. .... I Ir-M.....u.....lti.....·p~li-ca~ti-ve.....N.....o-nn-ali.....·~za-ti~o--nI

ApportionmentlnitializationL...-~----------T"""'- ----uses
I;;;';'C;";'al;;"c-ul-ati-'o-n-O-rr:-ar-g-et-Q-uo-ti-'e-nt

and
, r , r ,r IMultiplicativeNonnalization

Apply improvement selection Start with representation selection

InitializationOfUnsortedParties



Solution section

START

"
I Iteration I

r

lMultiplicativeN ormalization J
,

ICountry AssignmentAndSorting I
,

OutputOfIntegerMatrices (Matrix apportionment)

,r
OutputOtMultipliers (Multipliers)

•OutputOtMultipliers (Components)

END

---- uses
I""-C-al-c-ul-atJ.-·o-n-o-fS-ums--'1

Comments regarding the flow charts on the next three pages:

The Iteration procedure utilizes several procedures which themselves utilize several other procedures. Flow
charts of the Iteration procedure and two of its most important subprocedures are presented on the following
pages.

There is no flow chart of RepresentationAdjustmentSelecti since a flow chart for the more comprehensive
procedure ImprovementAdjustmentSelection is presented. Furthermore we do not present a flow chart of
CalculationOtDownDistances since this procedure is almost similar to CalculationOfUpDistances.

A21



The Iteration procedure

Sorting WithinTheParties

MeasureOfGoodnessCalculation

IRepresentationAdjustmentSelecti I IImprovementAdjustmentSelection I

UpdatingOfUnsortedParties
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The ImprovementAdjustmentSelection procedure

ICalculationOtDownDistances I

MaxSortingWithRestriction (Upimprovement)

MaxSorting WithRestriction (Downimprovement)

The procedure
ranks the malrepresented constituencies

AdjustmentOtMultiplier ~---------'
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The CalculationOfUpDistances procedure

DeterminationOfAssignedRepresen

The procedure
calculates each party's first distance

CalculationOfAdjustmentDistance

DeterminationOtMinimalDistances

DeterminationOfImprovement

The procedure
calculates the next distance for the party

with the newly determined minimal distance
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PROGRAM ElectiOnAlgorithm (Ice63, Result, BiasApport, TwoDimLFGams);
{The name of the inputfile (Ice63) has to be altered three places when the
program is used for new data: l. In the program declaration. 2. In the
variable declaration. 3. In the call of the procedure ReadingOfData. The
seek-replace procedure in EMACS is a simple way of doing this.}

{The letters i, j, '" are used as counting variables for loops.}
{The type double is used instead of real for real values to get better
accuracy.}

{Constants, types and variables are declared sectionwise below.}
{Some of the procedures in the program are only used once.}
CONST NumberOfConstituencies

NumberOfParties =
NumberOfDivisors =
NumberOfSeats =
WordLength =
NumberOfVectorMethods
NumberOfConstraintSets =
NumberOfMatrixMethods
NumberOfObjects =

TYPE ConstituencyVector
PartyVector =
RealConstituencyVector
RealPartyVector =
RealDivisorVector
String =
Constituencies
Parties =
Methods =
IntegerMatrix
MethodMatrix =
MultiplierMatrix

VAR i:
j:
k:
l:
p:
c:
SumVotes:
HighestValue:
Parameter:
Result:
ConstituencyVotes:
ConstituencyRepresentatives:
PartyVotes:
PartyRepresentatives:
ConstituencyMultiplier:
Divisor:
ConstituencyName:
PartyName:
MethodName:
Votes:
VectorRepresentatives:
Multiplier:
Components:

8;
4;

30;
60;
3;
6;
3;
4;

(NumberOfConstituencies + NumberOfParties);
ARRAY [l..NumberOfConstituencies) OF integer;
ARRAY [l..NumberOfParties) OF integer;
ARRAY [l•.NumberOfConstituencies) OF double;
ARRAY [l..NumberOfParties) OF double;
ARRAY [l..NumberOfDivisors) OF double;
PACKED ARRAY [l•.WordLength) OF char;
ARRAY [l..NumberOfConstituencies) OF String;
ARRAY [l•.NumberOfParties) OF String;
ARRAY [l..NumberOfVectorMethods) OF String;
ARRAY [l..NumberOfConstituencies,

1 ..NumberOfParties) OF integer;
ARRAY [l..NumberOfObjects,

1 ..NumberOfVectorMethods) OF integer;
ARRAY [l.•NumberOfConstituencies, 1 ..3,

1 ..NumberOfConstraintSets,
1 ..NumberOfMatrixMethods) OF double;

integer; {ConstituencyNumber}
integer; {PartyNumber}
integer; {RepresentativeNumber}
integer; {RecordNumber}
integer; {MatrixMethodNumber}
integer; {ConstraintSetNumber}
integer;
double; {Used in sorting procedures.}
double;
text;
ConstituencyVector;
ConstituencyVector;
PartyVector;
PartyVector;
RealConstituencyVector;
RealDivisorVector;
Constituencies;
Parties;
Methods;
IntegerMatrix;
MethodMatrix;
MultiplierMatrix;
MultiplierMatrix;

{-----------------------------------------------------------------------------}
{Section for vector apportionment of constituencies and parties}
TYPE ObjectVector = ARRAY [l..NumberOfObjects) OF integer;

RealObjectVector = ARRAY [l..NumberOfObjects) OF double;
Objects ARRAY [l..NumberOfObjects) OF String;

VAR m:
o:
Quota:
QuotaMethod:
DivisorMethod:
Ice63:
ObjectVotes:
ObjectName:

integer; {VectorMethodNumber}
integer; {ObjectNumber}
double;
boolean;
boolean;
text;
ObjectVector;
Objects;

{-----------------------------------------------------------------------------}
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{Section for two dimensional LF}
VAR SumWholeSeats:

QuotaViolation:
TwoDimLFGams:
WholeConstituencySeats:
FractionalConstituencySeats:
WholePartySeats:
FractionalPartySeats:
IntegerParts:
Remainders:
RelevantCosts:
WholeSeats:

integer;
boolean;
text;
ConstituencyVector;
ConstituencyVector;
PartyVector;
PartyVector;
IntegerMatrix;
IntegerMatrix;
IntegerMatrix;
IntegerMatrix;

{-------------------------~---------------------------------------------------}
{Section for initialization of multipliers}
CONST TargetWeight = 0.3;
TYPE ApportionmentlnitializeMatrix = ARRAY [l..NumberOfConstraintSets,

1..NumberOfMatrixMethods]
OF double;

NormalizationFactorMatrix = ARRAY [1..3, 1..NumberOfConstraintSets,
1..NumberOfMatrixMethods]
OF double;

VAR n:
f:
CountryQuota:
InitialValueO;Representation:
ConstituencyQuota:
TargetQuotient:
InitialMultiplier:
PartyQuota:
MarginalValueOfRepresentation:
NormalizationFactor:

integer; {InitializationNUmber}
integer; {NormalizationNUmber}
double;
double;
RealConstituencyvector;
RealConstituencyVector;
RealConstituencyVector;
RealPartyVector;
ApportionmentlnitializeMatrix;
NormalizationFactorMatrix;

{-----------------------------------------------------------------------------}
{Section for solving the matrix problem}
CONST AdjustmentWeight = 0.3;

MaxIterations = 999;
TYPE ThreeDimensions =

partyRepresentativeData =

PartyRecordVector =

SortedPartyRecordVector =
PartyData =

AdjustmentData =

PartyAndBenchmarkRecordVector
AdjustmentRecordVector =

ARRAY [l..NumberOfConstituencies,
1..NumberOfParties,
1..NumberOfDivisors] OF double;

RECORD ConstituencyNumber: integer;
Representative: integer;
Quotient: double;
END; {PartyRepresentativeData}

ARRAY [l..NumberOfConstituencies,
1..NumberOfParties,
O ..NumberOfDivisors]
OF PartyRepresentativeData;

ARRAY [O .. (NumberOfSeats + 1),
1 ..NumberOfParties]
OF PartyRepresentativeData;

RECORD ConstituencyNumber: integer;
Magnitude: double;
END; {PartyData}

RECORD Distance: double;
PartyNumber: integer;
ConstituenCyNumber: integer;
END; {AdjustmentData}= ARRAY [l..NumberOfDivisors] OF PartyData;

ARRAY [l..NumberOfDivisors]
OF AdjustmentData;
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IterationMatrix =

GoodnessMatrix =

ApportionmentMatrix =

RepresentativeData =

CountryRecordVector =

VAR s:
NumberOfIterations:
MeasureOfGoodness:
InitialMeasureOfGoodness:
ActualConstituencyNumber:
DistanceConstituencyNumber:
DistancePartyNumber:
UpRotationConstituencyNumber:
DownRotationConstituenCyNumber:
GlobalDistanCeNumber:
SelectedConstituencyNumber:
MaxUnderRepresentation:
MaxOVerRepresentation:
UnderReprConstituencyNumber:
OVerReprConstituencyNumber:
MultiplierNumber:
NotFinished:
NotAbandoned:
SeveralWithMaxUnderRepr:
SeveralWithMaxOVerRepr:
UpAdjustmentLastIteration:
BiasApport:
AssignedRepresentatives:
OVerRepresentation:
UnderRepresentation:
RemainderMalRepresentation:
UpImprovement:
DownImprovement:
PositionWithinparty:
AssignedConstituencyRepr:
DistanceNumber:
Increase:
Decrease:
DivisorQuotients:
UnsortedParties:
SortedParties:
Distance:
Adjustment:
Representatives:
Iterations:
Failures:
Goodness:
Apportionment:
SortedCountry:

ARRAY [1..2, 1..3,
1..NumberOfConstraintSets,
1..NumberOfMatrixMethods]
OF integer;

ARRAY [1..3, 1..NumberOfConstraintSets,
1..NumberOfMatrixMethods]
OF integer;

ARRAY [l..NumberOfConstituencies,
1..NumberOfParties,
1..NumberOfConstraintSets,
1..NumberOfMatrixMethods]
OF integer;

RECORD ConstituencyNumber: integer;
PartyNumber: integer;
Representative: integer;
Quotient: double;
END; {RepresentativeData}

ARRAY [l..NumberOfSeats]
OF RepresentativeData;

integer; {SelectionNumber}
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
boolean;
boolean;
boolean;
boolean;
boolean;
text;
ConstituencyVector;
ConstituencyVector;
ConstituencyVector;
constituencyVector;
ConstituencyVector;
constituencyVector;
PartyVector;
PartyVector;
PartyVector;
RealConstituencyvector;
RealConstituencyVector;
ThreeDimensions;
PartyRecordVector;
SortedPartyRecordVector;
PartyAndBenchmarkRecordVector;
AdjustmentRecordVector;
IntegerMatrix;
IterationMatrix;
IterationMatrix;
GoodnessMatrix;
ApportionmentMatrix;
CountryRecordVector;

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE ReadingOfElectionData (VAR ElectionData: text);
{The way of reading below requires that the data in the inputfile are ordered
in a specific way. The data for each party and for each constituency have
their own line. The election apportionment data must not appear before in
position WordLength + 1 of the inputfile. To make the inputfile more readable
it has one blank line between the last party data and the first constituency
data and between the last constituency data and the vote matrix.}

BEGIN {ReadingOfElectionData}
reset (ElectionData);
FOR i:= 1 TO NumberOfConstituencies DO

readln (ElectionData, ConstituencyName [i], VectorRepresentatives [i,1]);
readln (ElectionData);
FOR j:= 1 TO NumberOfParties DO

readln (ElectionData, PartyName [j],
VectorRepresentatives [(NumberOfConstituencies + j), 1]);

readln (ElectionData);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

FOR j:= 1 TO NumberOfParties DO
read (ElectionData, Votes [i,j]);

readln (ElectionData);
END; {For i}
END; {ReadingOfElectionData}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE CheckOfHouseSize (VAR OutputFile: text);
{Checks that the given NumberOfSeats is consistent with the supplied election
day apportionment. A bug is entered into the program to stop its execution if
the value of NumberOfSeats is incorrect.}

VAR CheckSum: integer;
BEGIN {CheckOfHouseSize}
CheckSum:= O;
FOR i:= 1 TO NumberOfConstituencies DO

CheckSum:= CheckSum + VectorRepresentatives [i,1];
IF CheckSum <> NumberOfSeats THEN BEGIN

writeln (OutputFile, 'NumberOfSeats has got a wrong value 'l;
writeln (OutputFile);
MethodName [NumberOfVectorMethods + 1] := 'Bug' ;

END; {Then}
CheckSum:= O;
FOR j:= 1 TO NumberOfParties DO

CheckSum:= CheckSum +
VectorRepresentatives [(j + NumberOfConstituencies), 1];

IF CheckSum <> NumberOfSeats THEN BEGIN
writeln (OutputFile, 'NumberOfSeats has got a wrong value 'l;
writeln (OutputFile);
MethodName [NumberOfVectorMethods + 1] := 'Bug' ;

END; {Then}
END; {CheckOfHouseSize}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE WritingOfLine (VAR OutputFile: text);
BEGIN {WritingOfLine}

writeln (OutputFile, ,-------------------------------------------------------',
1 ------------ 1);

END; {WritingOfLine}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE CalculationOfSums (Matrix:
VAR Constituencysum:
VAR PartySum:
VAR Sum:

IntegerMatrix;
constituencyVector;
PartyVeetor;
integer) ;

BEGIN {CalculationOfSums}
FOR i:= 1 TO NumberOfConstituencies DO

ConstituencySum [i] := O;
FOR j:= 1 To NumberOfParties DO

PartySum [j] := O;
Sum:= O;

FOR i:= 1 TO NumberOfConstituencies DO
FOR j:= 1 TO NumberOfParties DO

ConstituencySum [i] := ConstituencySum [i] + Matrix [i,j];
FOR j:= 1 TO NumberOfParties DO

FOR i:= 1 TO NumberOfConstituencies DO
PartySum [j] := Partysum [j] + Matrix [i,j];

FOR i:= 1 TO NumberOfConstituencies DO
FOR j:= 1 TO NumberOfParties DO

Sum:= Sum + Matrix [i,j];
END; {CalculationOfSums}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE OUtputOfIntegerMatrices (VAR OUtputFile :

FieldWidth:
SumFieldWidth:
Matrix:

text;
integer;
integer;
IntegerMatrix) ;

VAR s:
t:
RemainingParties:
ColumnsPerLine:
NumberOfTables:
Sum:
ConstituencySum:
PartySum:

integer;
integer;
integer;
integer;
integer;
integer;
ConstituencyVector;
PartyVeetor;

BEGIN {OUtputOfIntegerMatrices}
CalculationOfSums (Matrix, ConstituencySum, PartySum, Sum);
RemainingParties:= NumberOfParties;
ColumnsPerLine:= ((77 - SumFieldWidth) DIV FieldWidth) + 1;
IF (NumberOfParties + 1) MOD ColumnsPerLine = O THEN

NumberOfTables:= ((NumberOfParties + 1) DIV ColumnsPerLine)
ELSE NumberOfTables:= ((NumberOfParties + 1) DIV ColumnsPerLine) + 1;
writeln (OUtputFile);
FOR t:= 1 TO NumberOfTables DO BEGIN

write (OUtputFile, ' ');
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColumnsPerLine» DO
write (OUtputFile, PartyName [j] :FieldWidth);

IF t = NumberOfTables THEN BEGIN
FOR s:= 1 TO (SumFieldWidth - 3) DO

write (OUtputFile, ' ');
writeln (OUtputFile, 'sum');

END {Then}
ELSE writeln (OUtputFile);
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FOR i:= 1 TO NumberOfConstituencies DO BEGIN
write (OutputFile, ConstituencyName [il);
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColumnsPerLine» DO
write (OutputFile, Matrix [i,j] :FieldWidth);

IF t = NumberOfTables THEN
writeln (OutputFile, ConstituencySum [i] :SumFieldWidth)

ELSE writeln (OutputFile);
END; {For i}
writeln (OutputFile);
write (OutputFile, 'Sum');
FOR j:= (NumberOfParties - RemainingParties + l) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColumnsPerLine» DO
write (OutputFile, PartySum [j] :FieldWidth);

IF t = NumberOfTables THEN
writeln (OutputFile, Sum:SumFieldWidth)

ELSE BEGIN
writeln (OutputFile);
writeln (OutputFile);

END; {Else}
RemainingParties:= RemainingParties - ColumnsPerLine;
writeln (OutputFile);

END; {For t}
END; {OutputOfIntegerMatrices}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ParametricDivisorMethod;
{The procedure initiates the divisors for the parametric divisor method. The
parameter is a real number between O and I.}

BEGIN {ParametricDivisorMethod}
FOR k:= 1 TO NumberOfDivisors DO

Divisor [k]:= k - l + Parameter;
END; {ParametricDivisorMethod}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE QuotaMethodQuotient (CellVotes: integer;

QuotientNumber: integer;
VAR Quotient: double);

{Another possibility is to include the variable Quota in the procedure call}
BEGIN {QuotaMethodQuotient}
Quotient:= CellVotes - (QuotientNumber - 1) * Quota;
END; {QuotaMethodQuotient}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE DivisorMethodQuotient (CellVotes: integer;

QuotientNumber: integer;
VAR Quotient: double);

BEGIN {DivisorMethodQuotient}
IF CellVotes > O THEN

IF Divisor [QuotientNumber] > O THEN
Quotient:= LN(CellVotes / Divisor [QuotientNumber])

ELSE Quotient:= 50 / QuotientNumber
ELSE Quotient:= -50;
END; {DivisorMethodQuotient}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE VectorApportionment (FirstObject: integer;
LastObject: integer);

VAR BestObjectNumber: integer;
ObjectQuotient: Rea10bjectVector;

BEGIN {VectorApportionment}
FOR 0:= FirstObject TO LastObject DO BEGIN

VectorRepresentatives [o,m] := O;
IF QuotaMethod THEN

QuotaMethodQuotient (ObjectVotes [o], 1, ObjectQuotient [o])
ELSE IF DivisorMethod THEN

DivisorMethodQuotient (ObjectVotes [o], 1, ObjectQuotient [o]);
END; {For o}
1:= 1;
WHILE 1 <= NumberOfSeats DO BEGIN

HighestVa1ue:= -1.0E+20;
FOR 0:= FirstObject TO LastObject DO

IF ObjectQuotient [o] > HighestVa1ue THEN BEGIN
HighestVa1ue:= ObjectQuotient [o];
BestObjectNumber:= o;

END; {Then}
VectorRepresentatives [BestObjectNumber, m] :=

VectorRepresentatives [BestObjectNumber, m] + 1;
IF DivisorMethod THEN

DivisorMethodQuotient (ObjectVotes [BestObjectNumber],
(VectorRepresentatives [BestObjectNumber, m] + 1),
ObjectQuotient [BestObjectNumber])

ELSE IF QuotaMethod THEN
QuotaMethodQuotient (ObjectVotes [BestObjectNumber],

(vectorRepresentatives [BestObjectNumber, m] + 1),
ObjectQuotient [BestObjectNumber]);

1:= 1 + 1;
END; {While}
END; {VectorApportionment}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE OUtputOfVectorApportionment (VAR OUtputFile: text;

FirstObject: integer;
LastObject: integer);

BEGIN {OUtputOfVectorApportionment}
write1n (OUtputFile);
write (OUtputFile, , 'li
FOR m:= 1 TO NumberOfVectorMethods DO

write (OUtputFile, , " MethodName [m]);
write1n (OUtputFile);
FOR 0:= FirstObject TO LastObject DO BEGIN

write (OutputFile, ObjectName [o], , 'li
FOR m:= 1 TO NumberOfVectorMethods DO

write (OUtputFile, VectorRepresentatives [o,m]:4, , 'l;
write1n (OUtputFile);

END; {For o}
write1n (OUtputFile);
END; {OUtputOfVectorApportionment}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE OutputOfTable (VAR GamsFile: text;
FirstParty: integer;
LastParty: integer);

BEGIN {OutputOfTable}
FOR j:= FirstParty TO LastParty DO

write (GamsFile, PartyName [j] :10);
writeln (GamsFile);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

write (GamsFile, ConstituencyName [i]);
FOR j:= FirstParty TO LastParty DO

write (GamsFile, RelevantCosts [i,j] :10);
IF (i = NumberOfConstituencies) AND (j = NumberOfParties) THEN

writeln (GamsFile, ' ;')
ELSE writeln (GamsFile);

END; {For i}
END; {OutputOfTable}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE OutputToTwoDimLFGamsFile (VAR GamsFile: text);
{Creates a gams file for solving the controlled rounding of the internal
entries in the initial fair share matrix, i.e. two dimensional LF}

BEGIN {OutputToTwoDimLFGamsFile}
writeln (GamsFile, 'SETS');
writeln (GamsFile);
writeln (GamsFile, ' I constituencies I');
writeln (GamsFile);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

write (GamsFile, ConstituencyName [i]);
IF (i < NumberOfConstituencies) THEN

writeln (GamsFile)
ELSE writeln (GamsFile, ' I');

END; {For i}
writeln (GamsFile);
writeln (GamsFile, ' J parties I');
writeln (GamsFile);
FOR j:= 1 TO NumberOfParties DO BEGIN

write (GamsFile, PartyName [j]);
IF (j < NumberOfParties) THEN

writeln (GamsFile)
ELSE writeln (GamsFile, ' / ;');

END; {For j}
writeln (GamsFile);
writeln (GamsFile);
writeln (GamsFile, 'PARAMETERS');
writeln (GamsFile);
writeln (GamsFile, ' CCI) number of seats for constituency i I');
writeln (GamsFile);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

write (GamsFile, ConstituencyName [i],
FractionalConstituencySeats [i] :3);

IF (i < NumberOfConstituencies) THEN
writeln (GamsFile)

ELSE writeln (GamsFile, ' I');
END; {For i}
writeln (GamsFile);
writeln (GamsFile, ' P(J) number of seats for party j I');
writeln (GamsFile);



FOR j:= 1 TO NumberOfParties DO BEGIN
write (GamsFile, PartyName [j], FractionalPartySeats [j] :3)i
IF j < NumberOfParties THEN

writeln (GamsFile)
ELSE writeln (GamsFile, ' / i');

END; {For j}
writeln (GamsFile);
writeln (GamsFile)i
writeln (GamsFile, 'TABLE R(I,J) relevant costs for the cells 'li
writeln (GamsFile)i
write (GamsFile, ' ')i
OutputOfTable (GamsFile, 1, MIN(6, NumberOfParties»i
writeln (GamsFile)i
writeln (GamsFile)i
IF NumberOfParties > 6 THEN BEGIN

write (GamsFile, ' + ')i
OUtputOfTable (GamsFile, 7, NumberOfParties)i
writeln (GamsFile)i
writeln (GamsFile);

END; {Then}
{The sequence above must be repeated if there are more than 12 parties}
writeln
writeln
writeln
writeln
writeln
writeln

(GamsFile, 'VARIABLES')i
(GamsFile) ;
(GamsFile, '
(GamsFile, '
(GamsFile) ;
(GamsFile) i

A(I,J)
Z

seat for party j in constituency i')i
object value i');

writeln (GamsFile, 'POSITIVE VARIABLE A i');
writeln (GamsFile)i
writeln (GamsFile)i
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln
writeln

(GamsFile, 'EQUATIONS');
(GamsFile) i
(GamsFile, 'VALUE
(GamsFile, 'CONSTIT
(GamsFile, 'PARTY
(GamsFile, 'SEAT
(GamsFile) ;
(GamsFile, 'VALUE..
(GamsFile, 'CONSTIT(I) ..
(GamsFile , 'PARTY (J)..
(GamsFile, 'SEAT(I,J) ..
(GamsFile) i
(GamsFile) i

defines the objective function');
seats for the constituencies');
seats for the parties')i
a maximum of one seat per cell i')i

Z =E= SUM( (I,J), R(I,J) * A(I,J)
C(I) =E= SUM( J, A(I,J) )i') i
P(J) =E= SUM( I, A(I,J) ) i') i
A(I,J) =L= 1 i')i

) i') i

writeln (GamsFile, 'MODEL TWODIMLF / ALL / i ')i
writeln (GamsFile)i
writeln (GamsFile, 'OPTION LIMROW = O i')i
writeln (GamsFile, 'OPTION LIMCOL = O i ')i
writeln (GamsFile)i
writeln (GamsFile, 'OPTION ITERLIM = 2000 i')i
writeln (GamsFile);
writeln (GamsFile)i
writeln (GamsFile, 'SOLVE TWODIMLF USING LP MINIMIZING Z i')i

END; {outputToTwoDimLFGamsFile}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE CalculationOfQuotas;
BEGIN {CalculationOfQuotas}
CountryQuota:= SumVotes / NumberOfSeats;
FOR i:= 1 TO NumberOfConstituencies DO

IF ConstituencyRepresentatives [i] > O THEN
ConstituencyQuota [i] :=

ConstituencyVotes [i] / constituencyRepresentatives [i]
ELSE ConstituencyQuota [i] := 1.0E+5;

FOR j:= 1 TO NumberOfParties DO
IF PartyRepresentatives [j] > O THEN

PartyQuota [j] := PartyVotes [j] / PartyRepresentatives [j]
ELSE PartyQuota [j] := 1.0E+5;

END; {CalculationOfQuotas}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE MultiplicativeNormalization (VAR NormalizationFactor: double);
VAR MultiplierProduct: double;
BEGIN {MultiplicativeNormalization}
MultiplierProduct:= 1;
FOR i:= 1 TO NumberOfConstituencies DO

MultiplierProduct:= MultiplierProduct * ConstituencyMultiplier [i];
NormalizationFactor:=

EXP( (1 / NumberOfConstituencies) * LN(l / MultiplierProduct»;
END; {MultiplicativeNormalization}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE NoInitialization;
BEGIN {NoInitialization}
{This initialization lets all ConstituencyMultipliers be equal.}
FOR i:= 1 TO NumberOfConstituencies DO

ConstituencyMultiplier [i] := 1;
END; {NoInitialization}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE QuotaRatioInitialization;
BEGIN {QuotaRatioInitialization}
{The initialization makes the persons per seat ratio equal for all
constituencies.}

FOR i:= 1 TO NumberOfConstituencies DO
ConstituencyMultiplier [i]:= CountryQuota / ConstituencyQuota [i];

MultiplicativeNormalization (NormalizationFactor [l,c,p]);
FOR i:= 1 TO NumberOfConstituencies DO

Multiplier [i,l,c,p]:=
ConstituencyMultiplier [i] * NormalizationFactor [l,c,p];

END; {QuotaRatioInitialization}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE CalculationOfTargetQuotients;
{Sorts the (ConstituencyRepresentatives [i) + l) largest quotients within each
constituency and calculates the TargetQuotients.}

VAR NumberBestParty:
LastConstituencyQuotientWith:
BestConstituencyQuotientWithout:
ActiveRepresentative:
PartyQuotient:

BEGIN {CalculationOfTargetQuotients}
FOR i:= l TO NumberOfConstituencies 00 BEGIN

integer;
double;
double;
PartyVector;
RealPartyVector;

1:= l;
FOR j:= l TO NumberOfParties 00 BEGIN

ActiveRepresentative [j) := 1;
DivisorMethodQuotient (Votes [i,j), ActiveRepresentative [j),

PartyQuotient [j);
END; {For j}
WHILE l <= (ConstituencyRepresentatives [i) + 1) 00 BEGIN

HighestValue:= -1.0E+20;
FOR j:= 1 TO NumberOfParties 00

IF PartyQuotient [j) > HighestValue THEN BEGIN
HighestValue:= PartyQuotient [j);
NumberBestParty:= j;

END; {Then}
ActiveRepresentative [NumberBestParty) :=

ActiveRepresentative [NumberBestParty) + 1;
DivisorMethodQuotient (Votes [i, NumberBestParty),

ActiveRepresentative [NumberBestParty),
PartyQuotient [NumberBestParty);

IF l = ConstituencyRepresentatives [i) THEN
LastConstituencyQuotientWith:= HighestValue;

IF l = (ConstituencyRepresentatives [i) + 1) THEN
BestConstituencyQuotientWithout:= HighestValue;

1:= l + 1;
END; {While}
TargetQuotient [i) := TargetWeight * EXP(LastConstituencyQuotientWith) +

(1 - TargetWeight) * EXP(BestConstituencyQuotientWithout);
END; {For i}
END; {CalculationOfTargetQuotients}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ApportionmentInitialization;
BEGIN {ApportionmentInitialization}
{The initialization is based on the vector apportionment within each
constituency. The value of InitialValueOfRepresentation may be chosen
arbitrarily.}

InitialValueOfRepresentation:= SumVotes /
(NumberOfSeats + (1 - TargetWeight) * NumberOfConstituencies);

CalculationOfTargetQuotients;
FOR i:= 1 TO NumberOfConstituencies 00

ConstituencyMultiplier [i):=
InitialValueOfRepresentation / TargetQuotient [i);

MultiplicativeNormalization (NormalizationFactor [2,c,p);
{The other alternative is AdditiveNormalization}
FOR i:= 1 TO NumberOfConstituencies 00 BEGIN

ConstituencyMultiplier [i) :=
ConstituencyMultiplier [i) * NormalizationFactor [2,c,p);

MUltiplier [i,2,c,p):= ConstituenCyMultiplier [i);
END; {For i}
MarginalValueOfRepresentation [c,p) :=

LN(InitialValueOfRepresentation) + LN(NormalizationFactor [2,c,p);
END; {ApportionmentInitialization}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE Initia1izeOivisorQuotients;
BEGIN {Initia1izeOivisorQuotients}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
FOR k:= 1 TO NumberOfOivisors DO

OivisorMethodQuotient (Votes [i,jl, k, OivisorQuotients [i,j,kl);
END; {Initia1izeoivisorQuotients}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE Initia1izationOfUnsortedParties;
BEGIN {Initia1izationOfUnsortedParties}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO BEGIN
UnsortedParties [i,j,OI.Quotient:= -100;
FOR k:= 1 TO NumberOfOivisors DO BEGIN

UnsortedParties [i,j,kl.Quotient:=
LN(ConstituencyMu1tip1ier [il) + OivisorQuotients [i,j,kl;

UnsortedParties [i,j,kl.ConstituencyNumber:= i;
UnsortedParties [i,j,kl.Representative:= k;

END; {For k}
END; {For j}

END; {Initia1izationOfUnsortedParties}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE SortingWithinTheParties;
{Record number O of UnsortedParties is a he1precord with value -100. There are
a total of NumberOfOivisors * NumberOfConstituencies quotients to sort for
each party. However, we only sort the (NumberOfSeats + 1) largest. This ·stop
value· is usually high enough. However, if a constituency is big compared to
the other constituencies (e.g. shall have more than 50% of the seats), it will
dominate this sorted party list. This may cause problems in the procedure
Ca1cu1ationOfDownDistances because some actual IncomingpartyRepresentatives
may not be among the (NumberOfSeats + 1) largest quotients, with the result
that the program crashes.}

VAR BestConstituencyNumber: integer;
ActiveRepresentative: ConstituencyVector;
BestRecord: PartyRepresentativeoata;

BEGIN {SortingWithinTheParties}
FOR i:= 1 TO NumberOfConstituencies DO

AssignedRepresentatives [il := O;
FOR j:= 1 TO NumberOfParties DO BEGIN

1:= 1;
FOR i:= 1 TO NumberOfConstituencies DO

ActiveRepresentative [il := 1 ;
WHILE 1 <= NumberOfSeats DO BEGIN

HighestVa1ue:= -100;
FOR i:= 1 TO NumberOfConstituencies DO

IF UnsortedParties [i, j, ActiveRepresentative [ill.Quotient >
HighestVa1ue THEN BEGIN
HighestVa1ue:=

UnsortedParties [i, j, ActiveRepresentative [ill.Quotient;
BestRecord:= UnsortedParties [i, j, ActiveRepresentative [ill;
BestConstituencyNumber:= i;

END; {Then}
IF ActiveRepresentative [BestConstituencyNumberl < NumberOfOivisors THEN

ActiveRepresentative [BestConstituencyNumberl :=
ActiveRepresentative [BestConstituencyNumberl + 1

ELSE ActiveRepresentative [BestConstituenCyNumberl := O;
IF 1 = partyRepresentatives [jl THEN

FOR i:= 1 TO NumberOfConstituencies DO
AssignedRepresentatives [il :=

AssignedRepresentatives [il + (ActiveRepresentative [il - 1);
SortedParties [l,jl := BestRecord;
1:= 1 + 1;

END; {While l}
END; {For j}
END; {SortingWithinTheparties}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE MeasureOfGoodnessCalculation;
BEGIN {MeasureOfGoodnessCalculation}
MeasureOfGoodness:= O;
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

UnderRepresentation [i] := O;
overRepresentation [i] := O;

END; {For i}
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

IF AssignedRepresentatives [i] < ConstituencyRepresentatives [i] THEN
UnderRepresentation [i] :=

ConstituencyRepresentatives [i] - AssignedRepresentatives [i]
ELSE IF AssignedRepresentatives [i] > ConstituencyRepresentatives [i] THEN

OVerRepresentation [i] :=
AssignedRepresentatives [i] - ConstituencyRepresentatives [i];

MeasureOfGoodness:=
MeasureOfGoodness + UnderRepresentation [i] + OverRepresentation [i];

END; {For i}
END; {MeasureOfGoodnessCalculation}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE DeterminationOfAssignedRepresen (ConstituencyNumber: integer);
BEGIN {DeterminationOfAssignedRepresentatives}
1:= partyRepresentatives [j];
WHILE (SortedParties [l,j].ConstituencyNumber <> ConstituenCyNumber)

AND (l > O) DO
1:= l - 1;

IF l = O THEN
AssignedConstituencyRepr [j] := O

ELSE AssignedconstituencyRepr [j] := SortedParties [l,j].Representative;
END; {DeterminationOfAssignedRepresentatives}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE DeterminationOfMinimalDistances;
VAR MinimalDistance: double;
BEGIN {DeterminationOfMinimalDistances}
MinimalDistance:= 100;
FOR j:= 1 TO NumberOfParties DO

IF Distance [j].Magnitude < MinimalDistance THEN BEGIN
MinimalDistance:= Distance [j].Magnitude;
DistancepartyNumber:= j;
DistanceConstituencyNumber:= 1;
WHILE DistanceConstituencYNumber <> Distance [j].ConstituencyNumber DO

DistanceConstituencyNumber:= DistanceConstituencyNumber + 1;
END; {Then}

Adjustment [GlobalDistanceNumber].Distance := MinimalDistance;
Adjustment [GlobalDistanceNumber].PartyNumber := DistancePartyNumber;
Adjustment [GlobalDistanceNumber].ConstituencyNumber:=

DistanceConstituencyNumber;
DistanceNumber [DistancePartyNumber] :=

DistanceNumber [DistancePartyNumber] + 1;
END; {DeterminationOfMinimalDistances}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE DeterminationOfImprovement (VAR Improvement: ConstituencyVector;
Representation: ConstituencyVector);

BEGIN {DeterminationOfImprovement}
IF (RemainderMalRepresentation [DistanceConstituencyNumber] > O) AND

(GlobalDistanceNumber <= Representation [ActualConstituencyNumber])
THEN BEGIN
RemainderMalRepresentation [DistanceConstituencyNumber] :=

RemainderMalRepresentation [DistanceConstituencyNumber] - 1;
Improvement [Actua1ConstituencyNumber] :=

Improvement [ActualConstituencyNumber] + 1;
END: {Then}

END: {DeterminationOfImprovement}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE CalculationOfAdjustmentDistance

(VAR AdjustmentDistance: RealConstituencyVector:
Representation: ConstituencyVector):

BEGIN {CalculationOfAdjustmentDistance}
AdjustmentDistance [ActualConstituencyNumber] :=

AdjustmentWeight *
Adjustment [Representation [ActualConstituenCyNumber]] .Distance +
(1 - AdjustmentWeight) *
Adjustment [Representation [ActualConstituencyNumber] + 1] .Distance:

END; {CalculationOfAdjustmentDistance}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE CalculationOfUpDistances;
VAR QuotientChallengingPartyRepr: RealpartyVector;

ChallengedPartyRepresentative: PartyAndBenchmarkRecordVector;
{Finds the (UnderRepresentation [i] + 1) best distances.}
BEGIN {CalculationOfUpDistances}
FOR j:= 1 TO NumberOfParties DO BEGIN

DistanceNumber [j] := 1;
DeterminationOfAssignedRepresen (ActuaIConstituencyNumber);
QuotientChallengingPartyRepr [j] :=

LN(ConstituencyMultiplier [ActuaIConstituencyNumber]) +
DivisorQuotients [ActuaIConstituencyNumber, j,

(AssignedConstituencyRepr [j] + l)];
PositionWithinParty [j] := PartyRepresentatives [j];
WHILE (SortedParties [PositionWithinParty [j], j].ConstituencyNumber

ActualConstituencyNumber) AND (PositionWithinParty [j] > O) DO
PositionWithinParty [j] := PositionWithinParty [j] - 1;

ChallengedPartyRepresentative [j].Magnitude:=
SortedParties [PositionWithinParty [j], j].Quotient;

ChallengedPartyRepresentative [j].ConstituencyNumber:=
SortedParties [PositionWithinParty [j], j].ConstituencyNumber;

Distance [j].Magnitude :=
ChallengedPartyRepresentative [j].Magnitude-
QuotientChallengingPartyRepr [j];

Distance [j].ConstituencyNumber :=
ChallengedPartyRepresentative [j].ConstituencyNumber;

END; {For j}
GlobaIDistanceNumber:= l;
WHILE GlobalDistanceNumber <=

(UnderRepresentation [ActuaIConstituencyNumber] + 1) DO BEGIN
DeterminationOfMinimalDistances;
IF s = 2 THEN

DeterminationOfImprovement (UpImprovement, UnderRepresentation);
QuotientChallengingPartyRepr [DistancePartyNumber] :=

LN(ConstituencyMultiplier [ActuaIConstituencyNumber]) +
DivisorQuotients [ActuaIConstituencyNumber, DistancePartyNumber,
(AssignedConstituencyRepr [DistancePartyNumber] +
DistanceNumber [DistancePartyNumber]) ];

IF PositionWithinParty [DistancePartyNumber] > O THEN
PositionWithinParty [DistancePartyNumber] :=

(PositionWithinParty [DistancePartyNumber] - l);
WHILE (SortedParties [PositionWithinParty [DistancePartyNumber],

DistancePartyNumber].ConstituencyNumber = ActualConstituencyNumber)
AND (PositionWithinParty [DistancePartyNumber] > O) DO
PositionWithinParty [DistancePartyNumber] :=

(PositionWithinParty [DistancePartyNumber] - 1);
ChallengedPartyRepresentative [DistancePartyNumber].Magnitude:=

SortedParties [PositionWithinparty [DistancePartyNumber],
DistancePartyNumber].Quotient;

ChallengedPartyRepresentative [DistancePartyNumber].ConstituencyNumber:=
SortedParties [PositionWithinParty [DistancePartyNumber],

DistancePartyNumber] .ConstituencyNumber;
Distance [DistancepartyNumber].Magnitude :=

ChallengedPartyRepresentative [DistancePartyNumber].Magnitude -
QuotientChallengingPartyRepr [DistancePartyNumber];

Distance [DistancePartyNumber].ConstituencyNumber:=
ChallengedPartyRepresentative [DistancePartyNumber].ConstituencyNumber;

GlobaIDistanceNumber:= GlobalDistanceNumber + l;
END; {While}
CalculationOfAdjustmentDistance (Increase, UnderRepresentation);
END; {CalculationOfUpDistances}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE CalculationOfDownDistances;
VAR QuotientOUtgoingPartyRepr: RealPartyvector;

IncomingPartyRepresentative: PartyAndBenchmarkRecordVector;
BEGIN {CalculationOfDownDistances}
FOR j:= 1 TO NumberOfParties DO BEGIN

DistanceNumber [j] := 1;
DeterminationOfAssignedRepresen (ActualConstituencyNumber);
IF AssignedConstituencyRepr [j] > O THEN

QuotientOUtgoingPartyRepr [j] :=
LN(ConstituencyMultiplier [ActualConstituencyNumber]) +
DivisorQuotients [ActualConstituencyNumber. j.

AssignedConstituencyRepr [j]]
ELSE QuotientOUtgoingPartyRepr [j] := 50;
PositionWithinParty [j] := PartyRepresentatives [j] + 1;
WHILE (SortedParties [PositionWithinParty [j]. j].ConstituencyNumber

ActualConstituencyNumber) AND
(PositionWithinParty [j] < (NumberOfSeats + 1» DO
PositionWithinParty [j] := PositionWithinParty [j] + 1;

IncomingPartyRepresentative [j].Magnitude:=
SortedParties [PositionWithinParty [j]. j].Quotient;

IncomingPartyRepresentative [j].ConstituencyNumber :=
SortedParties [PositionWithinParty [j]. j].ConstituencyNumber;

Distance [j].Magnitude:= QuotientOUtgoingPartyRepr [j] -
IncomingPartyRepresentative [j].Magnitude;

Distance [j].ConstituencyNumber:=
IncomingPartyRepresentative [j].ConstituencyNumber;

END; {For j}
GlobalDistanceNumber:= 1;
WHILE GlobalDistanceNumber <=

(OVerRepresentation [ActualConstituencyNumber] + 1) DO BEGIN
DeterminationOfMinimalDistances;
IF s = 2 THEN

DeterminationOfImprovement (DownImprovement. OVerRepresentation);
IF (AssignedConstituencyRepr [DistancePartyNumber]

+ 1 - DistanceNumber [DistancePartyNumber]) > O THEN
QuotientOUtgoingPartyRepr [DistancePartyNumber] :=

LN(ConstituencyMultiplier [ActualConstituencyNumber]) +
DivisorQuotients [ActualConstituencyNumber. DistancePartyNumber.
(AssignedConstituencyRepr [DistancePartyNumber]
+ 1 - DistanceNumber [DistancepartyNumber]) ]

ELSE QuotientOUtgoingPartyRepr [DistancePartyNumber] := 50;
IF PositionWithinParty [DistancePartyNumber] < (NumberOfSeats + 1) THEN

PositionWithinParty [DistancePartyNumber] :=
(PositionWithinParty [DistancePartyNumber] + 1);

WHILE (SortedParties [PositionWithinParty [DistancePartyNumber].
DistancePartyNumber].ConstituencyNumber = ActualConstituencyNumber) AND
(PositionWithinParty [DistancePartyNumber] < (NumberOfSeats + 1» DO
PositionWithinParty [DistancePartyNumber] :=

(PositionWithinParty [DistancePartyNumber] + 1);
IncomingPartyRepresentative [DistancePartyNumber].Magnitude:=

SortedParties [PositionWithinParty [DistancePartyNumber].
DistancepartyNumber].Quotient;

IncomingPartyRepresentative [DistancePartyNumber].ConstituencyNumber:=
SortedParties [PositionWithinParty [DistancePartyNumber].

DistancePartyNumber].ConstituencyNumber;
Distance [DistancePartyNumber].Magnitude:=

QuotientOUtgoingPartyRepr [DistancePartyNumber] -
IncomingPartyRepresentative [DistancePartyNumber].Magnitude;

Distance [DistancePartyNumber].ConstituencyNumber:=
IncomingPartyRepresentative [DistancePartyNumber].ConstituencyNumber;

G1obalDistanceNumber:= GlobalDistanceNumber + 1;
END; {While}
CalculationOfAdjustmentDistance (Decrease. OVerRepresentation);
END; {CalculationOfDownDistances}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE AdjustmentOfMultiplier (Power: double);
BEGIN {AdjustmentOfMultiplier}
ConstituencyMultiplier [SelectedConstituencyNumber] :=

ConstituenCyMultiplier [SelectedConstituencyNumber] * EXP(Power);
END; {AdjustmentOfMultiplier}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE MaxSortingWithRestriction

(VAR MaxItem:
VAR ConstituencyNumber:
VAR SeveralWithMaxItem:
Item:
MaxRestriction:
RestrictionItem:

integer;
integer;
boolean;
ConstituencyVector;
integer;
ConstituencyVector);

BEGIN {MaxSortingWithRestriction}
MaxItem: = O;
SeveralWithMaxItem:= False;
FOR i:= 1 TO NumberOfConstituencies DO

IF RestrictionItem [i] >= MaxRestriction THEN
IF Item [i] > MaxItem THEN BEGIN

MaxItem:= Item [i];
ConstituencyNumber:= i;
SeveralWithMaxItem:= False;

END {Then}
ELSE IF Item [i] = MaxItem THEN

SeveralWithMaxItem:= True;
END; {MaxSortingWithRestriction}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE RotationOfConstituencies

(VAR RotationConstituencyNumber:
MaxFirstCriterion:
MaxSecondCriterion:
FirstCriterion:
SecondCriterion:

integer;
integer;
integer:
ConstituencyVector:
ConstituencyVector);

{Rotates the chosen malrepresented constituency, because it is important to
vary. The corresponding procedure in ADJUSTMENT.PAS uses a WHILE loop.}
{In this program there are also some other differences regarding formulaes for
Up and DownRotationConstituencyNumbers compared to ADJUSTMENT.PAS, including
the initialization of the variable UpAdjustmentLastIteration.}

BEGIN {RotationOfConstituencies}
REPEAT

IF RotationConstituencyNumber = NumberOfConstituencies THEN
RotationConstituencyNumber:= 1

ELSE RotationConstituencyNumber:= RotationConstituencyNumber + 1;
UNTIL (FirstCriterion [RotationConstituencyNumber] >= MaxFirstCriterion) AND

(SecondCriterion [RotationConstituencyNumber] >= MaxSecondCriterion);
SelectedConstituencyNumber:= RotationConstituencyNumber;
END; {RotationOfConstituencies}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE RepresentationAdjustmentSelecti;
BEGIN {RepresentationAdjustmentSelection}
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

Increase [i) := O;
Decrease [i) := O;

END; {For i}
MaxSortingWithRestriction

(MaxUnderRepresentation, UnderReprConstituencyNumber,
SeveralWithMaxUnderRepr, UnderRepresentation,
1, UnderRepresentation);

MaxSortingWithRestriction
(MaxOverRepresentation, OverReprConstituencyNumber,
SeveralWithMaxOverRepr, OverRepresentation, l, OverRepresentation);

{A non-binding restriction is included here, so we can utilize an already
existing procedure, thereby reducing the number of procedures. The same
comments apply to the utilization of the procedure RotationOfConstituencies
below. }

IF MaxUnderRepresentation > MaxOverRepresentation THEN BEGIN
IF NOT(SeveralWithMaxUnderRepr) THEN

SelectedConstituencyNumber:= UnderReprConstituencyNumber
ELSE RotationOfConstituencies (UpRotationConstituencyNumber,

MaxUnderRepresentation, MaxUnderRepresentation,
UnderRepresentation, UnderRepresentation);

UpAdjustmentLastIteration:= True;
ActualConstituencyNumber:= SelectedConstituencyNumber;
CalculationOfUpDistances;
AdjustmentOfMultiplier (Increase [SelectedConstituencyNumber);

END; {Then}
IF MaxOverRepresentation > MaxUnderRepresentation THEN BEGIN

IF NOT(SeveralWithMaxOverRepr) THEN
SelectedConstituencyNumber:= OverReprConstituencyNumber

ELSE RotationOfConstituencies (DownRotationConstituencyNumber,
MaxOVerRepresentation, MaxOverRepresentation,
OverRepresentation, OverRepresentation);

UpAdjustmentLastIteration:= False;
ActualConstituencyNumber:= SelectedConstituencyNumber;
CalculationOfDownDistances;
AdjustmentOfMultiplier (-Decrease [SelectedConstituencyNumber);

END; {Then}
IF MaxUnderRepresentation = MaxOverRepresentation THEN BEGIN

IF UpAdjustmentLastIteration THEN BEGIN
IF SeveralWithMaxOVerRepr THEN

RotationOfConstituencies (DownRotationConstituencyNumber,
MaxOVerRepresentation, MaxOVerRepresentation,
OverRepresentation, OVerRepresentation)

ELSE SelectedConstituencyNumber:= OVerReprConstituencyNumber;
UpAdjustmentLastIteration:= False;
ActualConstituencyNumber:= SelectedConstituencyNumber;
CalculationOfDownDistances;
AdjustmentOfMultiplier (-Decrease [SelectedConstituencyNumber);

END {Then}
ELSE BEGIN IF SeveralWithMaxUnderRepr THEN

RotationOfConstituencies (UpRotationConstituencyNumber,
MaxUnderRepresentation, MaxUnderRepresentation,
UnderRepresentation, UnderRepresentation)

ELSE SelectedConstituencyNumber:= UnderReprConstituencyNumber;
UpAdjustmentLastIteration:= True;
ActualConstituencyNumber:= SelectedConstituencyNumber;
CalculationOfUpDistances;
AdjustmentOfMultiplier (Increase [SelectedConstituencyNumber);

END; {Else}
END; {Then}
END; {RepresentationAdjustmentSelection}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE ImprovementAdjustmentSelection;
VAR MaxUpImprovement:

MaxDownImprovement:
upImprConstituencyNumber:
DownImprConstituenCyNumber:
SeveralWithMaxUpImprOVement:
SeveralWithMaxDownImprOvement:

integer;
integer;
integer;
integer;
boolean;
boolean;

BEGIN {ImprovementAdjustmentSelection}
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

UpImprovement [i] := O;
DownImprovement [i] := O;
Increase [i] := O;
Decrease [i] := O;

END; {For i}
FOR ActualConstituencyNumber:= 1 TO NumberOfConstituencies DO

IF UnderRepresentation [ActualConstituencyNumber] > O THEN BEGIN
FOR i:= 1 TO NumberOfConstituencies DO

RemainderMalRepresentation [i] := OverRepresentation [i];
CalculationOfUpDistances;

END {Then}
ELSE IF OverRepresentation [ActualConstituencyNumber] > O THEN BEGIN

FOR i:= 1 TO NumberOfConstituencies DO
RemainderMalRepresentation [i] := UnderRepresentation [i];

CalculationOfDownDistances;
END; {Then}

MaxSortingWithRestriction (MaxUpImprovement, UpImprConstituencyNumber,
SeveralWithMaxUpImprovement, UpImprovement,
l, UnderRepresentation);

MaxSortingWithRestriction (MaxDownImprovement, DownImprConstituencyNumber,
SeveralWithMaxDownImprovement, DownImprovement,
l, OverRepresentation);

IF MaxUpImprovement > MaxDownImprovement THEN BEGIN
IF SeveralWithMaxUpImprovement THEN BEGIN

MaxSortingWithRestriction
(MaxUnderRepresentation, UnderReprConstituencyNumber,
SeveralWithMaxUnderRepr, UnderRepresentation,
MaxUpImprovement, UpImprovement);

IF SeveralWithMaxUnderRepr THEN
RotationOfConstituencies (UpRotationConstituencyNumber,

MaxUpImprovement, MaxUnderRepresentation,
UpImprovement, UnderRepresentation)

ELSE SelectedConstituencyNumber:= UnderReprConstituencyNumber;
END {Then}
ELSE SelectedConstituencyNumber:= UpImprConstituencyNumber;
UpAdjustmentLastIteration:= True;
AdjustmentOfMultiplier (Increase [SelectedConstituencyNumber]);

END; {Then}
IF MaxDownImprovement > MaxUpImprovement THEN BEGIN

IF SeveralWithMaxDownImprovement THEN BEGIN
MaxSortingWithRestriction

(MaxOverRepresentation, OverReprConstituencyNumber,
SeveralWithMaxOverRepr, OverRepresentation,
MaxDownImprovement, DownImprovement);

IF SeveralWithMaxOverRepr THEN
RotationOfConstituencies (DownRotationConstituencyNumber,

MaxDownImprovement, MaxOverRepresentation,
DownImprovement, OverRepresentation)

ELSE SelectedConstituencyNumber:= OVerReprConstituencyNumber;
END {Then}
ELSE SelectedConstituencyNumber:= DownImprConstituencyNumber;
UpAdjustmentLastIteration:= False;
AdjustmentOfMultiplier (-Decrease [SelectedConstituencyNumber]);

END; {Then}
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IF MaxUpImprovement = MaxDownImprovement THEN BEGIN
MaxSortingWithRestriction

(MaxUnderRepresentation, UnderReprConstituencyNumber,
SeveralWithMaxUnderRepr, UnderRepresentation,
MaxUpImprovement, UpImprovement);

MaxSortingWithRestriction
(MaxOVerRepresentation, OVerReprConstituencyNumber,
SeveralWithMaxOVerRepr, OVerRepresentation,
MaxDownImprovement, DownImprovement);

IF MaxUnderRepresentation > MaxOVerRepresentation THEN BEGIN
IF SeveralWithMaxUnderRepr THEN

RotationOfConstituencies (UpRotationConstituencyNumber,
MaxUpImprovement, MaxUnderRepresentation,
UpImprovement, UnderRepresentation)

ELSE SelectedConstituencyNumber:= UnderReprConstituencyNumber;
UpAdjustmentLastIteration:= True;
AdjustmentOfMultiplier (Increase [SelectedConstituencyNumber);

END; {Then}
IF MaxOVerRepresentation > MaxUnderRepresentation THEN BEGIN

IF SeveralWithMaxOVerRepr THEN
RotationOfConstituencies (DownRotationConstituencyNumber,

MaxDownImprovement, MaxOVerRepresentation,
DownImprovement, OVerRepresentation)

ELSE SelectedConstituencyNumber:= overReprConstituencyNumber;
UpAdjustmentLastIteration:= False;
AdjustmentOfMultiplier (-Decrease [SelectedConstituencyNumber);

END; {Then}
IF MaxUnderRepresentation = MaxOVerRepresentation THEN

IF UpAdjustmentLastIteration THEN BEGIN
IF SeveralWithMaxDownImprovement THEN

RotationOfConstituencies (DownRotationConstituencyNumber,
MaxDownImprovement, MaxOVerRepresentation,
DownImprovement, OVerRepresentation)

ELSE SelectedConstituencyNumber:= DownImprConstituencyNumber;
UpAdjustmentLastIteration:= False;
AdjustmentOfMultiplier (-Decrease [SelectedConstituencyNumber);

END {Then}
ELSE BEGIN

IF SeveralWithMaxUpImprovement THEN
RotationOfConstituencies (UpRotationConstituencyNumber,

MaxUpImprovement, MaxUnderRepresentation,
UpImprovement, UnderRepresentation)

ELSE SelectedConstituencyNumber:= UpImprConstituencyNumber;
UpAdjustmentLastIteration:= True;
AdjustmentOfMultiplier (Increase [SelectedConstituencyNumber);

END; {Else}
END; {Then}
END; {ImprovementAdjustmentSelection}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE UpdatingOfUnsortedParties;
{Updates quotients for the constituency whose multiplier has been adjusted.}
BEGIN {UpdatingOfUnsortedParties}
FOR j:= l TO NumberOfParties DO

FOR k:= l TO NumberOfDivisors DO
UnsortedParties [SelectedConstituencyNumber, j, k) .Quotient:=

LN(ConstituencyMultiplier [SelectedConstituencyNumber) +
DivisorQuotients [SelectedConstituencyNumber, j, kl;

END; {UpdatingOfUnsortedParties}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE Iteration;
{This procedure puts together the procedures in the solution section}
BEGIN {Iteration}
SortingWithinTheParties;
MeasureOfGoodnessCalculation;
IF NumberOfIterations = O THEN

InitialMeasureOfGoodness:= MeasureOfGoodness;
IF (MeasureOfGoodness > O} AND NotAbandoned THEN BEGIN

CASE s OF
l: RepresentatiOnAdjustmentSelecti;
2: ImprovementAdjustmentSelection;

END; {Case s}
UpdatingOfUnsortedParties;
NumberOfIterations:= NumberOfIterations + l;
IF NumberOfIterations = MaxIterations THEN BEGIN

writeln (Result, 'Maximum iterations, abandonment'};
writeln (Result);
NotAbandoned:= False;
Failures [s,n,c,p) := l;

END; {Then}
END {Then}
ELSE IF MeasureOfGoodness = O THEN

NotFinished:= False;
END; {Iteration}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE CountryAssignmentAndSorting;
VAR PlacedSeats: integer;

positionWithinParty: integer;
ActualRecordNumber: integer;

BEGIN {CountryAssignmentAndSorting}
FOR 1:= l TO NumberOfSeats DO

SortedCountry [l).Quotient:= -50;
FOR i:= l TO NumberOfConstituencies DO

FOR j:= l TO NumberOfParties DO
Representatives [i,j] := O;

PlacedSeats:= O;
positionWithinParty:= l;
FOR j:= l TO NumberOfParties DO BEGIN

ActualRecordNumber:= l;
WHILE positionWithinParty <= partyRepresentatives [j] DO BEGIN

WHILE SortedParties [positionWithinParty, j].Quotient <
SortedCountry [ActualRecordNumber].Quotient DO
ActualRecordNumber:= ActualRecordNumber + l;

FOR 1:= PlacedSeats DOWNTO ActualRecordNumber DO
SortedCountry [l + l] := SortedCountry [l);

PlacedSeats:= PlacedSeats + l;
SortedCountry [ActualRecordNumber].ConstituencyNumber:=

SortedParties [PositionWithinParty, j].ConstituencyNumber;
SortedCountry [ActualRecordNumber].PartyNumber:= j;
SortedCountry [ActualRecordNumber).Representative:=

SortedParties [positionWithinParty, j).Representative;
SortedCountry [ActualRecordNumber].Quotient :=

SortedParties [PositionWithinParty, j].Quotient;
i:= l;
WHILE i <> SortedCountry [ActualRecordNumber].ConstituencyNumber DO

i:= i + l;
Representatives [i,j] :=

SortedCountry [ActualRecordNumber].Representative;
PositionWithinparty:= PositionWithinparty + l;
ActualRecordNumber:= ActualRecordNumber + l;

END; {While}

PositionWithinparty:= l;
END; {For j}
END; {CountryAssignmentAndSorting}

(-----------------------------------------------------------------------------){-----------------------------------------------------------------------------}
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PROCEDURE OUtputOfMultipliers (ActualMultiplier: MultiplierMatrix);
BEGIN {OUtputOfMultipliers}
writeln (Result);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

write (Result, ConstituencyName [i], , ');
FOR f:= 1 TO 3 DO

write (Result, ActualMultiplier [i,f,c,p] :8:5, ,
writeln (Result);

END; {For i}
writeln (Result);
END; {OUtputOfMultipliers}

, ) ;

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE AlgorithmStatistics;
{Calculates and outputs algorithm statistics about iterations and measure of
goodness.}

TYPE IterationVector = ARRAY [l..NumberOfMatrixMethods] OF integer;
RealIterationVector = ARRAY [l..NumberOfMatrixMethods] OF double;

VAR NumberOfInitialSolutions:
SumIterations:
SumFailures:
SumGoodness:
InitialSolutions:
AverageIterations:
AverageFailures:
AverageGoodness:
SumGoodnessToIteratiOnRatio:
AverageGoodnessToIterationRatio:

integer;
IterationVector;
IterationVector;
IterationVector;
IterationVector;
RealIterationVector;
RealIterationVector;
RealIterationVector;
RealIterationVector;
RealIterationVector;

BEGIN {AlgorithmStatistics}
writeln (Result, 'Statistics about initial measures of goodness ');
writeln (Result);
write (Result, 'Whole data set');
SumGoodness [1] := O;
FOR n:= 1 TO 3 DO

FOR c:= 1 TO NumberOfConstraintSets DO
FOR p:= 1 TO NumberOfMatrixMethods DO

SumGoodness [1] := SumGoodness [1] + Goodness [n,c,p];
AverageGoodness [1] := SumGoodness [1] /

(3 * NumberOfConstraintSets * NumberOfMatrixMethods);
writeln (Result,' Sum', SumGoodness [1] :5, , Average',

AverageGoodness [1] :6:2);
writeln (Result);
writeln (Result, 'Initialization ');
FOR n:= 1 TO 3 DO BEGIN

SumGoodness [n] := O;
FOR c:= 1 TO NumberOfConstraintSets DO

FOR p:= 1 TO NumberOfMatrixMethods DO
SumGoodness [n] := SumGoodness [n] + Goodness [n,c,p];

AverageGoodness [n] := SumGoodness [n] /
(NumberOfConstraintSets * NumberOfMatrixMethods);

CASE n OF
1: write (Result, 'No ');
2: write (Result, 'Quota ratio ');
3: write (Result, 'Apportionment ');

END; {Case n}
writeln (Result,' Sum', SumGoodness [n] :5, , Average',

AverageGoodness [n] :6:2);
END; {For n}
writeln (Result);
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writeln (Result, 'Constraint set ');
FOR c:= l TO NumberOfConstraintSets DO BEGIN

SumGoodness [C] := O;
FOR n:= l TO 3 DO

FOR p:= l TO NumberOfMatrixMethods DO
SumGoodness [C] := SumGoodness [c] + Goodness [n,c,p];

AverageGoodness [C] := SumGoodness [c] / (3 * NumberOfMatrixMethods);
writeln (Result, c:l, ' Sum', SumGoodness [c] :5,

, Average', AverageGoodness [c] :6:2);
END; {For c}
writeln (Result);
writeln (Result, 'Matrix method ');
FOR p:= l TO NumberOfMatrixMethods DO BEGIN

SumGoodness [p] := O;
FOR n:= l TO 3 DO

FOR c:= l TO NumberOfConstraintSets DO
SumGoodness [p] := SumGoodness [p] + Goodness [n,c,p];

AverageGoodness [p] := SumGoodness [p] / (3 * NumberOfConstraintSets);
writeln (Result, MethodName [(p + 2)], ' Sum',

SumGoodness [p] :5, ' Average', AverageGoodness [p] :6:2);
END; {For p}
writeln (Result);
WritingOfLine (Result);
writeln (Result);
writeln (Result, 'Statistics about number of iterations ');
writeln (Result);
writeln (Result, 'Selection ');
FOR s:= l TO 2 DO BEGIN

SumIterations [sl := O;
SumFailures [sl := O;
FOR n:= l TO 3 DO

FOR c:= l TO NumberOfConstraintSets DO
FOR p:= l TO NumberOfMatrixMethods DO BEGIN

SumIterations [s]:= SumIterations [sl + Iterations [s,n,c,p];
SumFailures [sl := SumFailures [sl + Failures [s,n,c,p];

END; {For p}
AverageIterations [sl := SumIterations [sl /

(3 * NumberOfConstraintSets * NumberOfMatrixMethods);
AverageFailures [sl := SumFailures [sl /

(3 * NumberOfConstraintSets * NumberOfMatrixMethods);
IF s = l THEN

write (Result, 'Representation ')
ELSE write (Result, 'Improvement ');
writeln (Result, ' Sum', SumIterations [sl :5, ' Average',

AverageIterations [sl :6:2,' Sum abandonments '
SumFailures [sl :2, ' Average '
AverageFailures [sl :4:2);

END; {For s}
writeln (Result);
writeln (Result, 'Initialization ');
FOR n:= l TO 3 DO BEGIN

SumIterations [n] := O;
SumFailures [n] := O;
FOR s:= l TO 2 DO

FOR c:= 1 TO NumberOfConstraintSets DO
FOR p:= l TO NumberOfMatrixMethods DO BEGIN

SumIterations [n] := SumIterations [n] + Iterations [s,n,c,p];
SumFailures [n] := SumFailures [n] + Failures [s,n,c,p];

END; {For p}
AverageIterations [n] := SumIterations [n] /

(2 * NumberOfConstraintSets * NumberOfMatrixMethods);
AverageFailures [n] := SumFailures [n] /

(2 * NumberOfConstraintSets * NumberOfMatrixMethods);
CASE n OF

l: write (Result, 'No ');
2: write (Result, 'Quota ratio ');
3: write (Result, 'Apportionment ');

END; {Case n}
writeln (Result,' Sum', SumIterations [n] :5, ' Average',

AverageIterations [n] :6:2,' Sum abandonments "
SumFailures [n] :2, ' Average " AverageFailures [n] :4:2);

END; {For n}
writeln (Result);



writeln (Result, 'Constraint set 'l;
FOR c:= 1 TO NumberOfConstraintSets DO BEGIN

Sumlterations [c] := O;
SumFailures [c] := O;
FOR S:= 1 TO 2 DO

FOR n:= 1 TO 3 DO
FOR p:= 1 TO NumberOfMatrixMethods DO BEGIN

Sumlterations [c] := Sumlterations [c] + Iterations [s,n,c,p];
SumFailures [c] := SumFailures [c] + Failures [s,n,c,p];

END; (For p)
Averagelterations [c] := Sumlterations [c] /

(2 * 3 * NumberOfMatrixMethods);
AverageFailures [c] := SumFailures [c] /

(2 * 3 * NumberOfMatrixMethods);
writeln (Result, c:l, ' Sum', Sumlterations [c] :5,

, Average', Averagelterations [c] :6:2,' Sum abandonments '
SumFailures [c] :2, ' Average " AverageFailures [c] :4:2);

END; {For c}
writeln (Result);
writeln (Result, 'Matrix method 'l;
FOR p:= 1 TO NumberOfMatrixMethods DO BEGIN

Sumlterations [p] := O;
SumFailures [p] := O;
FOR s:= 1 TO 2 DO

FOR n:= 1 TO 3 DO
FOR c:= 1 TO NumberOfConstraintSets DO BEGIN

Sumlterations [p] := Sumlterations [p] + Iterations [s,n,c,p];
SumFailures [p] := SumFailures [p] + Failures [s,n,c,p];

END; {For p}
Averagelterations [p] := Sumlterations [p] /

(2 * 3 * NumberOfConstraintSets);
AverageFailures [p] := SumFailures [p] /

(2 * 3 * NumberOfConstraintSets);
writeln (Result, MethodName [(p + 2)], ' Sum',

Sumlterations [p] :5, ' Average', Averagelterations [p] :6:2,
, Sum abandonments " SumFailures [p] :2, ' Average'
AverageFailures [p] :4:2);

END; {For p}
writeln (Result);
WritingOfLine (Result);
writeln (Result);
writeln (Result, 'Initial optimal solutions 'l;
writeln (Result);
NumberOflnitialSolutions:= O;
FOR n:= 1 TO 3 DO BEGIN

InitialSolutions [nI := O;
FOR c:= 1 TO NumberOfConstraintSets DO

FOR p:= 1 TO NumberOfMatrixMethods DO
IF Goodness [n,c,p] = O THEN

InitialSolutions [nI := InitialSolutions [nI + 1;

CASE n OF
1: write (Result, 'No initialization ')
2: write (Result, 'Quota ratio initialization ')
3: write (Result, 'Apportionment initialization ')

END; {Case n}
writeln (Result, InitialSolutions [nI :3);

END; {For n}
writeln (Result);
writeln (Result, 'Average ·goodness to iteration· ratio');
writeln (Result);
FOR s:= 1 TO 2 DO BEGIN

SumGoodnessTolterationRatio [sl := O;
FOR n:= 1 TO 3 DO

FOR c:= 1 TO NumberOfConstraintSets DO
FOR p:= 1 TO NumberOfMatrixMethods DO

IF Goodness [n,c,p] > O THEN
SumGoodnessTolterationRatio [s):=

SumGoodnessTolterationRatio [sl +
(Goodness [n,c,p] / Iterations [s,n,c,p]);

AverageGoodnessTolteratiOnRatio [sl := SumGoodnessTolterationRatio [sl /«3 * NumberOfConstraintSets * NumberOfMatrixMethods)
- NumberOflnitialSolutions);

CASE s OF
1: write (Result, 'Representation selection 'l;
2: write (Result, 'Improvement selection 'l;

END; {Case s}
writeln (Result, AverageGoodnessTolterationRatio [sl :6:2);

END; {For s}
writeln (Result);
WritingOfLine (Result);

A48



writeln (Result);
writeln (Result, 'Measures of goodness ');
writeln (Result);
FOR n:= 1 TO 3 DO BEGIN

CASE n OF
1: writeln (Result, 'No initialization ');
2: writeln (Result, 'Quota ratio initialization ');
3: writeln (Result, 'Apportionment initialization ');

END; {Case n}
writeln (Result);
write (Result,' ');
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Result, MethodName [(p + 2)] :4);
writeln (Result);
FOR c:= 1 TO NumberOfConstraintSets DO BEGIN

write (Result, c:1);
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Result, Goodness [n,c,p] :4);
writeln (Result);

END; {For c}
writeln (Result);

END; {For n}
FOR s:= 1 TO 2 DO BEGIN

WritingOfLine (Result);
writeln (Result);
IF s = 1 THEN

write (Result, 'Representation ')
ELSE write (Result, 'Improvement ');
writeln (Result, 'selection');
writeln (Result);
FOR n:= 1 TO 3 DO BEGIN

CASE n OF
1: writeln (Result, 'No initialization ');
2: writeln (Result, 'Quota ratio initialization ');
3: writeln (Result, 'Apportionment initialization ');

END; {Case n}
writeln (Result);
write (Result,' ,);
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Result, MethodName [(p + 2)] :4);
writeln (Result);
FOR c:= 1 TO NumberOfConstraintSets DO BEGIN

write (Result, c:1,' ');
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Result, Iterations [s,n,c,p] :4);
writeln (Result);

END; {For c}
writeln (Result);

END; {For n}
END; {For s}
WritingOfLine (Result);
WritingOfLine (Result);
END; {AlgorithmStatistics}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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BEGIN {ElectionAlgorithm}
{Section for vector apportionment of constituencies and parties.}
ReadingOfElectionData (Ice63);
rewrite (Result);
CheckOfHouseSize (Result);
writeln (Result, 'Inputfile Ice63');
writeln (Result);
writeln (Result, 'Votes for the parties in the constituencies 'li
OutputOfIntegerMatrices (Result, 8, 10, Votes);
writingOfLine (Result);
WritingOfLine (Result);
writeln (Result);
MethodName [1] := 'EL ' .,
MethodName [2] := 'LF ' .,
MethodName [3] := 'SD ' .,
MethodName [4] := 'DM ' .,
MethodName [5] := 'MF ' .,
MethodName [6] := 'HA ' .,
CalculationOfSums (Votes, ConstituencyVotes, PartyVotes, SumVotes);
0:= 1;
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

ObjectVotes [o] := ConstituencyVotes [i];
ObjectName [o] := ConstituencyName [i];
0:= o + 1;

END; {For i}
FOR j:= 1 TO NumberOfParties DO BEGIN

ObjectName [0]:= PartyName [j];
ObjectVotes [0]:= PartyVotes [j];
0:= o + 1;

END; {For j}
m:= 2;
WHILE m <= NumberOfVectorMethods DO BEGIN

CASE m OF
2: BEGIN

Quota:= SumVotes I NumberOfSeats;
QuotaMethod:= True;
OivisorMethod:= False;

END; {m = 2}
3: Parameter:= O;
4: Parameter:= 1/3;
5: Parameter:= 0.5;
6: Parameter:= 1;

END; {Case}
IF m > 2 THEN BEGIN

ParametricOivisorMethod;
OivisorMethod:= True;
QuotaMethod:= False;

END; {Then}
VectorApportionment (1, NumberOfConstituencies);
VectorApportionment «NumberOfConstituencies + 1), NumberOfObjects);
m:= m + 1;

END; {While}
writeln (Result, 'The vector apportionment for the constituencies');
OutputOfVectorApportionment (Result, 1, NumberOfConstituencies);
writeln (Result, 'The vector apportionment for the parties');
OutputOfVectorApportionment (Result, (NumberOfConstituencies + 1),

NumberOfObjects);
WritingOfLine (Result);
WritingOfLine (Result);

{-----------------------------------------------------------------------------}
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{Section for output to garnsfile for two dimensional LF apportionment}
rewrite (TwoDimLFGarns);
QuotaViolation:= False;
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO BEGIN
IntegerParts [i,j] := (Votes [i,j] * NumberOfSeats) DIV SumVotes;
Remainders [i,j] := (Votes [i,j] * NumberOfSeats) MOD SumVotes;
RelevantCosts [i,j] := SumVotes - (2 * Remainders [i,j]);

END; {For j}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
WholeSeats [i,j] := IntegerParts [i,j];

CalculationOfSums (WholeSeats, WholeConstituencySeats,
WholePartySeats, SumWholeSeats);

FOR i:= 1 TO NumberOfConstituencies DO BEGIN
FractionalConstituencySeats [i] :=

VectorRepresentatives [i,S] - WholeConstituencySeats [i];
IF FractionalConstituencySeats [i] < O THEN

QuotaViolation:= True;
END; {For i}
FOR j:= 1 TO NumberOfParties DO BEGIN

FractionalPartySeats [j] :=
VectorRepresentatives [(j + NumberOfConstituencies), 5]

- WholePartySeats [j];
IF FractionalPartySeats [j] < O THEN

QuotaViolation:= True;
END; {For j}
{It is necessary to check for quota violation because divisor methods do not
·stay within the quota·.}

IF QuotaViolation THEN BEGIN
writeln (Result, 'Quota violation ');
WritingOfLine (Result);
writeln (Result);

END {Then}
ELSE OUtputToTwODimLFGarnsFile (TwoDimLFGams);

{-----------------------------------------------------------------------------}
{Section for multiplier initializations}
rewrite (BiasApport);
writeln (Result);
writeln (Result, 'The constraint sets are 1: EL-EL, 2: MF-MF, 3: SD-HA ');
writeln (Result);
WritingOfLine (Result);
WritingOfLine (Result);
writeln (Result);
FOR C:= 1 TO NumberOfConstraintSets DO BEGIN

FOR i:= 1 TO NumberOfConstituencies DO
CASE c OF

1: ConstituencyRepresentatives [i] := VectorRepresentatives [i,l]
2: ConstituencyRepresentatives [i] := VectorRepresentatives [i,S]
3: ConstituencyRepresentatives [i] := VectorRepresentatives [i,3]

END; {Case c}
FOR j:= 1 TO NumberOfParties DO

CASE c OF
1: PartyRepresentatives [j]

VectorRepresentatives
2: PartyRepresentatives [j]

VectorRepresentatives
3: PartyRepresentatives [j]

VectorRepresentatives
END; {Case c}

:=
[(j + NumberOfConstituencies), 1] ;
:=
[(j + NumberOfConstituencies), 5] ;
:=
[(j + NumberOfConstituencies), 6] ;
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CalculationOfQuotas;
FOR p:= 1 TO NumberOfMatrixMethods DO BEGIN

CASE P OF
1: Parameter:= 0.01;
2: Parameter:= 1/3;
3: Parameter:= 0.5;
4: Parameter:= 1;

END; {Case}
ParametricDivisorMethod;
InitializeDivisorQuotients;
n:= 1;
WHILE n <= 3 DO BEGIN

CASE n OF
1: NoInitialization;
2: QuotaRatioInitialization;
3: ApportionmentInitialization;

END; {Case}
FOR i:= 1 TO NumberOfConstituencies DO

InitialMultiplier [i) := ConstituenCyMultiplier [i);

{-----------------------------------------------------------------------------}
{Section for solving the matrix problem}

UpRotationConstituencyNumber:= NumberOfConstituencies;
DownRotationConstituencyNumber:= NumberOfConstituencies;
FOR j:= 1 TO NumberOfParties DO BEGIN

SortedParties [O,j).Quotient := 50;
SortedParties [O,j).ConstituencyNumber:= NumberOfConstituencies;
SortedParties [(NumberOfSeats + 1) ,j).Quotient := -50;

END; {For j}
s:= 1;
WHILE s <= 2 DO BEGIN

NotFinished:= True;
NotAbandoned:= True;
UpAdjustmentLastIteration:= True;
NumberOfIterations:= O;
InitializationOfUnsortedParties;
WHILE NotFinished AND NotAbandoned DO

Iteration;
Iterations [s,n,c,p) := NumberOfIterations;
IF s = 1 THEN

FOR i:= 1 TO NumberOfConstituencies DO
ConstituencyMultiplier [i) := InitialMultiplier [i);

s:= S + 1;
END; {While s}
Goodness [n,c,p) := InitialMeasureOfGoodness;
n:= n + 1;

END; {While n}
MultiplicativeNormalization (NormalizationFactor [3,c,p);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

ConstituencyMultiplier [i) :=
ConstituencyMultiplier [i) * NormalizationFactor [3,c,p);

Multiplier [i,3,c,p):= ConstituencyMultiplier [i);
END; {For i}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
Apportionment [i,j,c,p) := Representatives [i,j);

FOR i:= 1 TO NumberOfConstituencies DO
Components [i,l,c,p) := Multiplier [i,l,c,p);

FOR MultiplierNumber:= 2 TO 3 DO BEGIN
FOR i:= 1 TO NumberOfConstituencies DO

Components [i, MultiplierNumber, c, p) :=
Multiplier [i, MultiplierNumber, c, p) I
Multiplier [i, (MultiplierNumber - 1), c, p);

END; {For MultiplierNumber}



CountryAssignmentAndSorting;
IF NotAbandoned THEN BEGIN

writeln (Result, 'The matrix apportionment with constraint set' c:1,
, and " MethodName [(p + 2)]);

OutputOfIntegerMatrices (Result,S, 6, Representatives);
WritingOfLine (Result);
writeln (Result);
writeln (Result, 'Normalization factors and normalized constituency ,

'multipliers with constraint');
writeln (Result, 'set " c:1, , and " MethodName [(p + 2)]);
writeln (Result);
write (Result, 'Factors 'l;
FOR f:= 1 TO 3 DO

write (Result, NormalizationFactor [f,c,p] :8:5, , 'l;
writeln (Result);
writeln (Result);
writeln (Result, , Ratio Apportionment Suitable');
OutputOfMultipliers (Multiplier);
write (Result, 'The (logarithmic) marginal value of representation 'l;
writeln (Result, 'is " MarginalValueOfRepresentation [c,p] :6:3,

, while');
write (Result, 'the (logarithmic) initial marginal value of 'l;
write (Result, 'representation is 'l;
writeln (Result, LN(InitialValueOfRepresentation):6:3, '.'l;
writeln (Result);
write (Result, 'The normalization factor for apportionment 'l;
writeln (Result, 'initialization with " MethodName [p + 2],

'represents');
write (Result, 'a " «NormalizationFactor [2,c,p] - 1) * 100) :6:2,

, % change compared to the initial marginal value of 'l;
writeln (Result, 'representation');
writeln (Result, 'with a target weight of " TargetWeight:3:1, '.'l;
writeln (Result);
WritingOfLine (Result);
writeln (Result);
writeln (Result, 'Normalization factors and components with '

'constraint set " c:1, , and " MethodName [(p + 2)]);
writeln (Result);
write (Result, 'Factors 'l;
FOR f:= 1 TO 3 DO

write (Result, NormalizationFactor [f,c,p] :8:5, , 'l;
writeln (Result);
writeln (Result);
writeln (Result, , Bound Constituency Matrix');
OutputOfMultipliers (Components);

END; {Then}
WritingOfLine (Result);
WritingOfLine (Result);
writeln (Result);
IF c = 2 THEN BEGIN

writeln (BiasApport);
writeln (BiasApport, 'Matrix apportionment with "

MethodName [(p + 2)]);
IF NotAbandoned THEN

OutputOfIntegerMatrices (BiasApport, 5, 6, Representatives)
ELSE writeln (BiasApport, 'Abandonement 'l;

END; {Then}
END; {For p}

END; {For c}
AlgorithmStatistics;
END. {ElectionAlgorithm}
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The MATRIX BIAS program

Cell section

Division section

Bias calculation section
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Reading of data section

ReadingOtElectionData (Inputfile)

CalculationOfSums

ReadingOfGamsData (LFGamsOutput)

The main program
calculates integer parts of cell quotas and

finds the two-dimensional LF apportionment

------ uses
r-I C-al-cu-Ia-tio-nO-fS-u-m--'s I

L..--~ ReadingOtRepresentativesData

OutputOfIntegerMatrices (LF apportionment)

The main program

prints out matrix divisor method apportionments
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Fair share allocation section

OutputOfRealMatrices (Initial fair shares)L.....--------r-----------'------- uses
Fl C';;';;"al-cu-lati-'o-nO-fR-e-al-Su-m-'s I

ScalingOfContinuousMultipliers

OutputOfRealMatrices (Final fair shares)
------- uses

~Ic";";'al-cu-la-tio-nO-fR-e-al-Su-ms-'1

Seat difference section

The main program

calculates the seat difference between different
matrix apportionments and prints out the results
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Cell section

The main program
finds out how many "blocks" of cells there are

SortingOfCells

The main program
prints out cell data in descending order
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Division section

NumberDivision

SizeDivision

IClusterDivision I

IQuotaDivision I

Flow charts of the procedures ClusterDivision and QuotaDivision can be found
on pages A 60 and A 61 respectively.
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Bias calculation section

OutputOfOptimalDivision

CalculationOfGroupRatio

The main program
calculates bias percentages and prints them out

A59



The ClusterDivision procedure

The procedure
updates data for optimal cluster division

The procedure
changes the active group

..__..........r------1 ChangeClusterMembers
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The QuotaDivision procedure

DeterminationOtpossibleMembers (First member)

DeterminationOtpossibleMembers (Last member)

SortingOtDeviations

ComparisonOtDeviations
-------------- uses

"'--1 B-et-terG-ro-up-in-'g I

ChangeQuotaMembers
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PROGRAM MatrixBias (Ice63, TwoDimLFGamsOUtput, BiasApport, Bias);
{Constants, types and variables which are used in most sections are declared
right below, while the ones which are used in one or two sections are
declared for the section they first appear.}

{Second program in the command sequence COMPLETERUN.COM}
CONST NumberOfConstituencies 8;

NumberOfParties = 4;
NumberOfSeats = 60;
WordLength = 3,
NumberOfMatrixMethods 5,

VAR i:
j:
p:
l:
Bias:

integer,
integer;
integer;
integer;
text;

{constituencyNumber}
{PartyNumber}
{MatrixMethodNumber}
{CellNumber}

{-----------------------------------------------------------------------------}
{Section for reading of data}

TripleMatrix

PACKED ARRAY [l..WordLengthl OF char;
ARRAY [l..NumberOfConstituenciesl OF String;
ARRAY [l..NumberOfPartiesl OF String;
ARRAY [l..NumberOfMatrixMethodsl OF String;
ARRAY [l..NumberOfConstituenciesl OF integer;
ARRAY [l..NumberOfPartiesl OF integer;
ARRAY [l..NumberOfConstituencies, 1 ..NumberOfPartiesl

OF integer;
ARRAY [l..NumberOfConstituencies, 1 ..NumberOfParties,

1 ..NumberOfMatrixMethodsl OF integer;

TYPE String =
Constituencies
Parties =
Methods =
constituencyVector
partyVector =
IntegerMatrix =

VAR SumVotes:
SumWholeSeats:
SumFractionalSeats:
Character:
Optimal:
Ice63:
TwoDimLFGamsOutput:
BiasApport:
ConstituencyName:
PartyName:
MethodName:
ConstituencyVotes:
WholeConstituencySeats:
FractionalConstituencySeats:
ConstituencyRepresentatives:
PartyVotes:
WholePartySeats:
FractionalPartySeats:
PartyRepresentatives:
Votes:
FractionalSeats:
WholeSeats:
Representatives:
LFApportionment:
MatrixApportionments:

integer;
integer;
integer;
char;
boolean;
text;
text;
text;
Constituencies;
Parties;
Methods;
ConstituencyVector;
ConstituencyVector;
ConstituencyVector;
ConstituencyVector;
PartyVector;
PartyVector;
PartyVector;
PartyVector;
IntegerMatrix;
IntegerMatrix;
IntegerMatrix;
IntegerMatrix;
IntegerMatrix;
TripleMatrix;

(-----------------------------------------------------------------------------}
{Section for finding the fair share allocation.}
CONST AllowedDiscrepancy = 1.OE-4;
TYPE RealConstituencyVector

RealPartyVector
RealMatrix =

ARRAY [l..NumberOfConstituenciesl OF double;
ARRAY [l..NumberOfPartiesl OF double;
ARRAY [l..NumberOfConstituencies,

1 ..NumberOfPartiesl OF double;
VAR Doublelterations:

Discrepancy:
CurrentFairShare:
ContinuousConstituencyMultiplie:
FairShareConstituencySum:
ContinuousPartyMultiplier:
FairSharePartySum:
InitialFairShares:
FinalFairShares:

integer;
double;
double;
RealConstituencyVector;
RealConstituencyVector;
RealPartyVector;
RealPartyVector;
RealMatrix;
RealMatrix;

{-----------------------------------------------------------------------------}
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{Section for calculation of seat differences}
TYPE TriangleMatrix ARRAY [l..NumberOfMatrixMethods.

1..NumberOfMatrixMethods] OF integer;
VAR SecondMethod: integer;

SeatDifference: TriangleMatrix;

{-----------------------------------------------------------------------------}
{Section for cells}
CONST DividingFactor = 1;

CellRecordVector

ARRAY [l..NumberOfParties] OF boolean;
PACKED ARRAY [1..7] OF char;
RECORD Name: SevenString;

FairShare : double;
ConstituencyNumber: integer;
PartyNumber: integer;
END; {CellData}

ARRAY [1..(NumberOfConstituencies * NumberOfParties)]
OF CellData;

TYPE BooleanPartyVector
SevenString
CellData =

VAR f:
NumberOfpartyDivisions:
NumberOfSelectedParties:
NumberOfSelectedSeats:
NumberOfCellObjects:
TemporaryFile:
Selectedparty:
Cell:

integer;
integer;
integer;
integer;
integer;
text;
BooleanpartyVector;
CellRecordVector;

(-----------------------------------------------------------------------------)
{Section for divisions}
CONST MaxNumberOfGroups = 4;

NumberOfDivisions = 4;
TYPE Divisions =

GroupVector
RealGroupVector
RealMethodVector
DivisionMatrix

ARRAY [l.•NumberOfDivisions] OF SevenString;
ARRAY [l..MaxNumberOfGroups] OF integer;
ARRAY [l..MaxNumberOfGroups] OF double;
ARRAY [l..NumberOfMatrixMethods] OF double;
ARRAY [l..MaxNumberOfGroups. 1..NumberOfDivisions]

OF integer;
VAR d:

g:
SecondGroup:
NumberOfGroups:
ActiveGroup:
VisitedCombinations:
ClusterCombinations:
QuotaCombinations:
MinirnalValue:
ClusterValue:
AverageFairShare:
MaxDeviation:
GroupFairShare:
GroupDeviation:
EmptySizeDivision:
DivisionName:
-FirstGroupMember:
LastGroupMember:
FirstPossibleFirstGroupMember:
LastPossibleFirstGrOupMember:
Deviations:
BestDeviations:
GroupRatio:
OptimalFirstGroupMember:
OptimalLastGroupMember:

integer; (DivisionNumber)
integer; {GroupNumber}
integer;
integer;
integer;
integer;
integer;
integer;
double;
double;
double;
double;
double;
double;
boolean;
Divisions;
GroupVector;
GroupVector;
GroupVector;
Groupvector;
RealGroupVector;
RealGroupVector;
RealMethodVector;
DivisionMatrix;
DivisionMatrix;

{-----------------------------------------------------------------------------}
{Section for bias calculation}
TYPE GroupRatiOMatrix

BiasMatrix =
ARRAY [l..MaxNumberOfGroups. 1..NumberOfDivisions.

1..NumberOfMatrixMethods] OF double;
ARRAY [l..MaxNumberOfGroups. 1 ..MaxNumberOfGroups.

1..NumberOfDivisions. l ..NumberOfMatrixMethods]
OF double;

VAR GroupRatios: GroupRatioMatrix;
Biaspercentage: BiasMatrix;

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE ReadingOfElectiOnData (VAR ElectionData: text);

BEGIN {ReadingOfElectionData}

reset (ElectionData);
FOR i:= 1 TO NumberOfConstituencies DO

readln (ElectionData, ConstituencyName [i]);
readln (ElectionData);
FOR j:= 1 TO NumberOfParties DO

readln (ElectionData, PartyName [j]);
readln (ElectionData);
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
read (ElectionData, Votes [i,j]);

END; {ReadingOfElectionData}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE CalculationOfSums (Matrix:

VAR ConstituencySum:
VAR PartySum:
VAR Sum:

IntegerMatrix;
ConstituencyVector;
PartyVeetor;
integer) ;

BEGIN {CalculationOfSums}
FOR i:= 1 TO NumberOfConstituencies DO

ConstituencySum [i] := O;
FOR j:= 1 To NumberOfParties DO

PartySum [j] := O;
Sum:= O;
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
ConstituencySum [i] := ConstituencySurn [i] + Matrix [i,j];

FOR j:= 1 TO NumberOfParties DO
FOR i:= 1 TO NumberOfConstituencies DO

PartySum [j] := PartySum [j] + Matrix [i,j];

FOR i:= 1 TO NumberOfConstituencies DO
FOR j:= 1 TO NumberOfParties DO

Sum:= Sum + Matrix [i,j];
END; {CalculationOfSums}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE WritingOfLine (VAR OutputFile: text);
BEGIN {WritingOfLine}

writeln (OutputFile, ,-------------------------------------------------------',
'------------------ 1);

END; {WritingofLine}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE ReadingOfGamsData (VAR GamsData: text);

{Reads the ouput data from a gams outputfile, i.e. a file with an original
extension of .lis.}

CONST SeekLength = 11;

TYPE LongString = PACKED ARRAY [l..SeekLength] OF char;
StringMatrix = ARRAY [l..NumberOfConstituencies,

1..NumberOfParties] OF String;
VAR DataIndicator:

SeekString:
TestWord:
Redundant:
Status:
MiniRedundant :
Level:

LongString;
LongString;
LongString;
LongString;
LongString;
String;
StringMatrix;

BEGIN {ReadingOfGamsData}

reset (GamsData);
SeekString:= ,**** SOLVER';
REPEAT

readln (GamsData, TestWord)
UNTIL (TestWord = SeekString);
read (GamsData, DataIndicator);
IF (DataIndicator = ,**** MODEL ') THEN
read (GamsData, Redundant);
read (GamsData, MiniRedundant);
read (GamsData, Status);
IF (Status = 'OPTIMAL ') THEN

optimal: = True;
SeekString: = ' VAR A ';
REPEAT

readln (GamsData, TestWord)
UNTIL (TestWord = SeekString);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

j:= 1;
WHILE j <= NumberOfParties DO BEGIN

read (GamsData, Redundant);
read (GamsData, DataIndicator);
IF (DataIndicator = ' ') THEN BEGIN

read (GamsData, Level [i,j]);
j:= j + 1;

END; {Then}
readln (GamsData);

END; {While}
END; {For i}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO BEGIN
IF Level [i,j] = '1.0' THEN

FractionalSeats [i,j] := 1;
IF Level [i,j] = ' . ' THEN

FractionalSeats [i,j] := O;
END; {For j}

END; {ReadingOfGamSData}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE ReadingOfRepresentativesData (VAR RepresentativesData: text);
{Reads ouput data from a file containing a representative matrix}
CONST SeekLength = 26;
TYPE LongString = PACKED ARRAY [l .. SeekLength) OF char;
VAR Redundant:

MethodIndicator:
SeekString:
TestWord:

String;
String;
LongString;
LongString;

BEGIN {ReadingOfRepresentativesData}
reset (RepresentativesData);
SeekString:= 'Matrix apportionment with ';
~P~T

read (RepresentativesData, TestWord);
readln (RepresentativesData, MethodIndicator)

UNTIL (TestWord = SeekString) AND (MethodIndicator = MethodName [p);
readln (RepresentativesData);
readln (RepresentativesData);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

read (RepresentativesData, Redundant);
FOR j:= 1 TO NumberOfParties DO

read (RepresentativesData, MatrixApportionments [i,j,p);
readln (RepresentativesData);

END; {For i}
END; {ReadingOfRepresentativesData}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE OUtputOfIntegerMatrices (VAR OutputFile:
FieldWidth:
SumFieldWidth:
Matrix:

text;
integer;
integer;
IntegerMatrix);

VAR s:
t:
RemainingParties:
ColurnnsPerLine:
NumberOfTables:
S~:
ConstituencyS~:
PartyS~:

integer;
integer;
integer;
integer;
integer;
integer;
ConstituencyVector;
PartyVeetor;

BEGIN {OutputOfIntegerMatrices}
CalculationOfS~s (Matrix, ConstituencyS~, PartyS~, S~);
RemainingParties:= NumberOfParties;
ColurnnsPerLine:= «77 - SumFieldWidth) DIV FieldWidth) + 1;
IF (NumberOfParties + 1) MOD ColurnnsPerLine = O THEN

NumberOfTables:= «NumberOfParties + 1) DIV ColurnnsPerLine)
ELSE NumberOfTables:= «NumberOfParties + 1) DIV ColurnnsPerLine) + 1;
writeln (OutputFile);
FOR t:= 1 TO NumberOfTables DO BEGIN

write (OutputFile, ' ');
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColurnnsPerLine)) DO
write (OutputFile, PartyName [j] :FieldWidth);

IF t = NumberOfTables THEN BEGIN
FOR s:= 1 TO (SumFieldWidth - 3) DO

write (OutputFile, ' ');
writeln (OutputFile, 'S~');

END {Then}
ELSE writeln (OutputFile);
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

write (OutputFile, ConstituencyName [i]);
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColurnnsPerLine)) DO
write (OutputFile, Matrix [i,j] :FieldWidth);

IF t = NumberOfTables THEN
writeln (OutputFile, constituencyS~ [i] :SumFieldWidth)

ELSE writeln (OutputFile);
END; {For i}
writeln (OutputFile);
write (OutputFile, 'S~');
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColurnnsPerLine)) DO
write (OutputFile, PartyS~ [j] :FieldWidth);

IF t = NumberOfTables THEN
writeln (OUtputFile, S~:SumFieldWidth)

ELSE BEGIN
writeln (OutputFile);
writeln (OutputFile);

END; {Else}
RemainingParties:= RemainingParties - ColurnnsPerLine;
writeln (OutputFile);

END; {For t}
END; {OutputOflntegerMatrices}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE CalculationOfRealSums (Matrix:
VAR ConstituencySum:
VAR PartySum :
VAR Sum:

RealMatrix;
RealConstituencyVector;
RealPartyVector;
double) ;

BEGIN {CalculationOfRealSums}
FOR i:= 1 TO NumberOfConstituencies DO

constituencySum [i] := O;
FOR j:= 1 To NumberOfParties DO

PartySum [j] := O;
Sum:= O;
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
ConstituencySum [i] := ConstituencySum [i] + Matrix [i,j];

FOR j:= 1 TO NumberOfParties DO
FOR i:= 1 TO NumberOfConstituencies DO

PartySum [j] := PartySum [j] + Matrix [i,j];
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
Sum:= Sum + Matrix [i,j];

END; {CalculationOfRealSums}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE OutputOfRealMatrices (VAR OutputFile:

FieldWidth:
SumFieldWidth:
DecirnalPlaces:
Matrix:

text;
integer;
integer;
integer;
RealMatrix) ;

VAR s:
t:
RernainingParties:
ColumnsPerLine:
NumberOfTables:
Sum:
ConstituencySum:
PartySum:

integer;
integer;
integer;
integer;
integer;
double;
RealConstituencyVector;
RealPartyVector;

BEGIN {OutputOfRealMatrices}
CalculationOfRealSums (Matrix, Constituencysum, PartySum, Sum);
RernainingParties:= NumberOfParties;
ColumnsPerLine:= «77 - SumFieldWidth) DIV FieldWidth) + 1;
IF (NumberOfParties + 1) MOD ColumnsPerLine = O THEN

NumberOfTables:= «NumberOfParties + 1) DIV ColumnsPerLine)
ELSE NumberOfTables:= «NumberOfParties + 1) DIV ColumnsPerLine) + 1;
writeln (OutputFile);
FOR t:= 1 TO NumberOfTables DO BEGIN

write (OutputFile, ' 'l;
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RernainingParties + ColumnsPerLine» DO
write (OutputFile, PartyName [j] :FieldWidth);

IF t = NumberOfTables THEN BEGIN
FOR s:= 1 TO (SumFieldWidth - 3) DO

write (OutputFile, ' 'l;
writeln (OutputFile, 'Sum');

END {Then}
ELSE writeln (OutputFile);
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FOR i:= 1 TO NumberOfConstituencies DO BEGIN
write (OutputFile, ConstituencyName [i));
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColumnsPerLine)) DO
write (OutputFile, Matrix [i,j] :FieldWidth:DecimalPlaces);

IF t = NumberOfTables THEN
writeln (OutputFile, ConstituencySum [i] :SumFieldWidth:DecimalPlaces)

ELSE writeln (OutputFile);
END; {For i}
writeln (OutputFile);
write (OutputFile, 'Sum');
FOR j:= (NumberOfParties - RemainingParties + 1) TO MIN(NumberOfParties,

(NumberOfParties - RemainingParties + ColumnsPerLine)) DO
write (OutputFile, PartySum [j] :FieldWidth:DecimalPlaces);

IF t = NumberOfTables THEN
writeln (OutputFile, Sum:SumFieldWidth:DecimalPlaces)

ELSE BEGIN
writeln (OutputFile);
writeln (OutputFile);

END; {Else}
RemainingParties:= RemainingParties - ColumnsPerLine;
writeln (OutputFile);

END; {For t}
END; {OutputOfRealMatrices}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ScalingOfContinuousMultipliers;
BEGIN {ScalingOfContinuousMultipliers}
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

FairShareConstituencySum [i] := O;
FOR j:= 1 TO NumberOfParties DO BEGIN

CurrentFairShare:= (InitialFairShares [i,j] *
ContinuousConstituencyMultiplie [i] * ContinuouspartyMultiplier [j]);

FairShareConstituencySum [i] :=
FairShareConstituencySum [i] + CurrentFairShare;

END; {For j}
Discrepancy:= Discrepancy +

ABS(FairShareConstituencySum [i] - ConstituencyRepresentatives [i]);
ContinuousConstituencyMultiplie [i] :=

ContinuousconstituencyMultiplie [i] *
(ConstituencyRepresentatives [i] / FairShareConstituencySum [i]);

END; {For i}
FOR j:= 1 TO NumberOfParties DO BEGIN

FairSharePartySum [j] := O;
FOR i:= 1 TO NumberOfConstituencies DO BEGIN

CurrentFairShare:= (InitialFairShares [i,j] *
ContinuousConstituencyMultiplie [i] * ContinuousPartyMultiplier [j]);

FairSharePartySum [j] := FairSharePartysum [j] + CurrentFairShare;
END; {For i}
Discrepancy:= Discrepancy +

ABS(FairSharePartySum [j] - PartyRepresentatives [j]);
IF FairSharePartySum [j] = O THEN

ContinuousPartyMultiplier [j] := O
ELSE ContinuousPartyMultiplier [j] := ContinuousPartyMultiplier [j] *

(PartyRepresentatives [j] / FairSharePartySum [j]);
END; {For j}
END; {ScalingOfContinuousMultipliers}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE SortingOfCells (Start: integeri
Finish: integer)i

{Sorts the cells by quicksort, see page 533.}
VAR Left:

Right:
StartValue:
Temporary:

integer;
integer;
double i
CellDatai

BEGIN {SortingOfCells}
Left:= Start;
Right:= Finish;
StartValue:= Cell [(Start + Finish) DIV 2].FairSharei
~PUT

WHILE Cell [Left].FairShare > StartValue DO
Left:= Left + 1;

WHILE Cell [Right].FairShare < StartValue DO
Right:= Right - li

IF Left <= Right THEN BEGIN
Temporary:= Cell [Left]i
Cell [Left]:= Cell [Right];
Cell [Right]:= Temporary;
Left:= Left + 1;
Right:= Right - li

END; {Then}
UNTIL Right <= Left;
IF Start < Right THEN

SortingOfCells (Start, Right);
IF Left < Finish THEN

SortingOfCells (Left, Finish);
END; {SortingOfCells}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE NumberDivision;
VAR Number: integer;

Surplus: integer;
BEGIN {NumberDivision}
Number:= NumberOfCellObjects DIV NumberOfGroups;
Surplus:= NumberOfCellObjects MOD NumberOfGroups;
g:= li
WHILE (g <= (NumberOfGroups - Surplus)) AND (g < NumberOfGroups) DO BEGIN

OptimalLastGroupMember [g,d] := OptimalFirstGroupMember [g,d] + Number - 1;
OptimalFirstGroupMember [(g + 1), d] := OptimalLastGroupMember [g,d] + 1;
g:= g + 1;

END; {While g}
WHILE g < NumberOfGroups DO BEGIN

OptimalLastGroupMember [g,d] := OptimalFirstGroupMember [g,d] + Number;
OptimalFirstGroupMember [(g + 1), d] := OptimalLastGroupMember [g,d] + li
g:= g + 1;

END; {While g}
END; {NumberDivision}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE SizeDivision;
VAR MaxSize: double;

IntervalSize: double;
BEGIN {SizeDivision}
MaxSize:= Cell [l].FairShare;
IntervalSize:= MaxSize / NumberOfGroups;
1:= l;
g:= l;
WHILE g < NumberOfGroups DO BEGIN

WHILE (Cell [l].FairShare > MaxSize - (g * IntervalSize)) AND
(1 <= NumberOfCellObjects) DO
1:= 1 + l;

OptimalLastGroupMember [g,d] := l - l;
OptimalFirstGroupMember [(g + l),d] := l;
g:= g + l;
1:= 1 - l;

END; {While g}
FOR g:= l TO NumberOfGroups DO

IF OptimalLastGroupMember [g,d] < OptimalFirstGroupMember [g,d] THEN BEGIN
writeln (Bias, 'No size division with this number of groups 'l;
EmptySizeDivision:= True;

END; {Then}
END; {SizeDivision}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ClusterCalculation (FirstMember: integer;

LastMember: integer);
(Calculates D(C) for the cluster defined by FirstMember and LastMember.}
VAR ClusterAverage: double;

ClusterSum: double;
Variance: double;

BEGIN (ClusterCalculation)
ClusterSum:= O;
ClusterValue:= O;
FOR 1:= FirstMember TO LastMember DO

ClusterSum:= ClusterSum + Cell [1].FairShare;
ClusterAverage:= ClusterSum / (LastMember - FirstMember + l);
FOR 1:= FirstMember TO LastMember DO BEGIN

Variance:= SQR(Cell [l].FairShare - ClusterAverage);
ClusterValue:= ClusterValue + Variance;

END; {For l}
END; {ClusterCalculation}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ChangeClusterMembers;
{This procedure is used for the second to the penultimate cluster.}
BEGIN {ChangeClusterMembers}
FirstGroupMember [ActiveGroup] := FirstGroupMember [ActiveGroup] + l;
LastGroupMember [ActiveGroup - 1]:= FirstGroupMember [ActiveGroup] - l;
FOR g:= (ActiveGroup + l) TO NumberOfGroups DO

FirstGroupMember [gl := FirstGroupMember [g - l] + l;
FOR g:= ActiveGroup TO (NumberOfGroups - l) DO

LastGroupMember [gl := FirstGroupMember [gl;
LastGroupMember [NumberOfGroups] := NumberOfCellObjects;
END; {ChangeClusterMembers}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE ClusterDivision;
VAR Value: double;
BEGIN {ClusterDivision}
FOR g:= l TO NumberOfGroups DO BEGIN

FirstGroupMember [gl := g;
LastGroupMember [gl := FirstGroupMember [gl;

END; {For g}
LastGroupMember [NumberOfGroups] := NumberOfCellObjects;
MinimalValue:= 1.OE+38;
VisitedCombinations:= O;
ActiveGroup:= NumberOfGroups;
WHILE ActiveGroup > 1 DO BEGIN

VisitedCombinations:= VisitedCombinations + 1;
Value:= O;
g:= 1;

WHILE (Value <= MinimaIValue) AND (g <= NumberOfGroups) DO BEGIN
ClusterCalculation (FirstGroupMember [gl, LastGroupMember [gl);
Value:= Value + ClusterValue;
g:= g + 1;

END; {While}
IF Value < MinimaIValue THEN BEGIN

MinimalValue:= Value;
FOR g:= 1 TO NumberOfGroups DO BEGIN

OptimalFirstGroupMember [g,d] := FirstGroupMember [gl;
OptimalLastGroupMember [g,d] := LastGroupMember [gl;

END; {For g}
END; {Then}
WHILE (FirstGroupMember [ActiveGroupl =

NumberOfCellObjects - NumberOfGroups + ActiveGroup) AND
(ActiveGroup > 1) DO
ActiveGroup:= ActiveGroup - 1;

IF ActiveGroup > 1 THEN BEGIN
ChangeClusterMembers;
ActiveGroup:= NumberOfGroups;

END; {Then}
END; {While}
ClusterCombinations:= 1;
FOR g:= 1 TO (NumberOfGroups - 1) DO

ClusterCombinations:= ClusterCombinations * (NumberOfCellObjects - g);
FOR g:= 1 TO (NumberOfGroups - 1) DO

Clustercombinations:= ClusterCombinations DIV (NumberOfGroups - g);

IF ClusterCombinations <> VisitedCombinations THEN BEGIN
write (Bias, 'Something is wrong with the enumeration of 'l;
writeln (Bias, 'cluster combinations 'l;

END; {Then}
END; {ClusterDivision}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE DeterminationOfPossibleMembers

(Deviation: double;
VAR PossibleFirstGroupMember: GroupVector);

BEGIN {DeterminationOfPossibleMembers}
FOR g:= 2 TO NumberOfGroups DO BEGIN

1:= PossibleFirstGroupMember [g - Il;
GroupFairShare:= O;
WHILE (GroupFairShare < (AverageFairShare + Deviation» AND

(l < NumberOfCellObjects) DO BEGIN
GroupFairShare:= GroupFairShare + Cell [ll.FairShare;
1:= l + 1;

END; {While}
PossibleFirstGroupMember [gl :=

MAX(I, MIN«PossibleFirstGroupMember [g - Il + 1), NumberOfCeIIObjects»;
END; {For g}
END; {DeterminationOfPossibleMembers}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE DeviationCa1cu1ation (FirstMember: integer;
LastMember: integer);

(Calculates the absolute deviation from the average quota size for the group
defined by FirstMember and LastMember.)

BEGIN {DeviationCa1cu1ation}
GroupFairShare:= O;
FOR 1:= FirstMember TO LastMember DO

GroupFairShare:= GroupFairShare + Cell [l].FairShare;
GroupDeviation:= ABS(GroupFairShare - AverageFairShare);
END; (DeviationCa1culation)
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE SortingofDeviations (Start: integer;

Finish: integer);
{Sorts the deviations by quicksort.}
VAR Left:

Right:
StartVa1ue:
Temporary:

integer;
integer;
double;
double;

BEGIN {SortingOfDeviations}
Left:= Start;
Right:= Finish;
StartVa1ue:= Deviations [(Start + Finish) DIV 2];
REPEAT

WHILE Deviations [Left] > StartVa1ue DO
Left:= Left + l;

WHILE Deviations [Right] < StartVa1ue DO
Right:= Right - l;

IF Left <= Right THEN BEGIN
Temporary:= Deviations [Left];
Deviations [Left] := Deviations [Right];
Deviations [Right] := Temporary;
Left:= Left + l;
Right:= Right - l;

END; {Then}
UNTIL Right <= Left;
IF Start < Right THEN

SortingOfDeviations (Start, Right);
IF Left < Finish THEN

SortingOfDeviations (Left, Finish);
END; {SortingOfDeviations}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE BetterGrouping;
BEGIN {BetterGrouping}
BestDeviations:= Deviations;
MaxDeviation:= BestDeviations [l];
FOR g:= l TO NumberOfGroups DO BEGIN

Optima1FirstGroupMember [g,d] := FirstGroupMember [gl;
Optima1LastGroupMember [g,d] := LastGroupMember [gl;

END; {For g}

END; {BetterGrouping}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE ComparisonOfDeviations;
BEGIN {ComparisonOfDeviations}
IF g <= NumberOfGroups THEN

IF Deviations [gl < BestDeviations [gl THEN
BetterGrouping

ELSE IF Deviations [gl = BestDeviations [gl THEN BEGIN
g:= g + l;
ComparisonOfDeviations;

END; {Then}
END; {ComparisonOfDeviations}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}



PROCEDURE ChangeQuotaMembers;
BEGIN {ChangeQuotaMembers}
FirstGroupMember [ActiveGroup] := FirstGroupMember [ActiveGroup] + 1;
LastGroupMember [ActiveGroup - 1] := FirstGrOupMember [ActiveGroup] - 1;
FOR g:= (ActiveGroup + II TO NumberOfGroups DO BEGIN

FirstGroupMember [gl := FirstPossib1eFirstGroupMember [gl;
LastGroupMember [g - 1] := FirstGroupMember [gl - 1;

END; {For g}
END; {ChangeQuotaMembers}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE QuotaDivision (SeatTotal: integerl;
BEGIN {QuotaDivision}
AverageFairShare:= SeatTotal / NumberOfGroups;
1:= 1;
GroUpFairShare:= O;
WHILE GroupFairShare < AverageFairShare DO BEGIN

GroupFairShare:= GroupFairShare + Cell [l].FairShare;
1:= l + 1;

END; {While}
MaxDeviation:= Cell [(l - 11].FairShare;
FOR g:= 1 TO NumberOfGroups DO

BestDeviations [gl := MaxDeviation;
FirstPossibleFirstGroupMember [l] := 1;
LastPossibleFirstGroupMember [1] := 1;
DeterminationOfPossibleMembers (-MaxDeviation, FirstPossibleFirstGroupMemberl;
DeterminationOfPossibleMembers «MaxDeviation + 1.0E-161,

LastPossibleFirstGroupMemberl;
FOR g:= 1 TO NumberOfGroups DO

FirstGroupMember [gl := FirstPossibleFirstGroupMember [gl;
FOR g:= 1 TO (NumberOfGroups - II DO

LastGroupMember [gl := FirstGroupMember [g + 1] - 1;
LastGroupMember [NumberOfGroups] := NumberOfCellObjects;
VisitedCombinations:= O;
ActiveGroup:= NumberOfGroups;
WHILE ActiveGroup > 1 DO BEGIN

VisitedCombinations:= VisitedCombinations + 1;
g:= 1;
GroupDeviation:= O;
WHILE (g <= NumberOfGroupsl AND (GroupDeviation <= MaxDeviationl DO BEGIN

DeviationCalculation (FirstGroupMember [gl, LastGroupMember [g]l;
Deviations [gl := GroupDeviation;
g:= g + 1;

END; {While}
IF g = (NumberOfGroups + II THEN BEGIN

SortingOfDeviations (l,NumberOfGroupsl;
g:= 1;
ComparisonOfDeviations;

END; {Then}
WHILE (ActiveGroup > II AND (FirstGroupMember [ActiveGroup]

LastPossibleFirstGroupMember [ActiveGroup]l DO
ActiveGroup:= ActiveGroup - 1;

IF ActiveGroup > 1 THEN BEGIN
ChangeQuotaMembers;
ActiveGroup:= NumberOfGroups;

END; {Then}
END; {While}
QuotaCombinations:= 1;
FOR g:= 1 TO NumberOfGroups DO

QuotaCombinations:= QuotaCombinations * {LastPossibleFirstGroupMember [gl -
FirstPossibleFirstGroupMember [gl + lI;

IF QuotaCombinations <> VisitedCombinations THEN BEGIN
write (Bias, 'Something is wrong with the investigation of possible 'I;
writeln (Bias, 'quota combinations 'l;

END; {Then}
END; {QuotaDivision}

{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
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PROCEDURE OUtputOfOptimalDivision;
BEGIN {OUtPutOfOptimalDivision}
CASE d OF

1, 2: ;
3: BEGIN

writeln (Bias, 'Minimal value
writeln (Bias, 'Number of combinations '
writeln (Bias);

END;
4: BEGIN

writeln (Bias, 'Largest deviation
writeln (Bias, 'Number of combinations '
writeln (Bias);

END;
END; {Case}

MinimalValue:6:2);
ClusterCombinations:3);

MaxDeviation:6:2);
Quotacombinations:3);

writeln (Bias, 'The " DivisionName [dl, ' division is ');
IF (d = 2) AND EmptySizeDivision THEN BEGIN

writeln (Bias);
writeln (Bias, 'Empty size division with' NumberOfGroups:1, ' groups')

END {Then}
ELSE
FOR g:= 1 TO NumberOfGroups DO BEGIN

write (Bias, 'Group " g:l, ' includes cellobject ');
write (Bias, OptimalFirstGroupMember [g,d]:3, ' to cellobject ');
writeln (Bias, OptimalLastGroupMember [g,d]:3);

END; {For g}
writeln (Bias);
END; {OutputOfOptimalDivision}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}
PROCEDURE CalculationOfGroupRatio (FirstMember: integer;

LastMember: integer);
TYPE MethodVector = ARRAY [l..NumberOfMatrixMethods] OF integer;
VAR GroupApportionment: MethodVector;
BEGIN {CalculationOfGroupRatio}
GroupFairShare:= O;
FOR p:= 1 TO NumberOfMatrixMethods DO

GroupApportionment [p] := O;
FOR 1:= FirstMember TO LastMember DO BEGIN

GroupFairShare:= GroupFairShare + Cell [l].FairShare;
FOR p:= 1 TO NumberOfMatrixMethods DO

GroupApportionment [p] := GroupApportionment [p] + MatrixApportionments
[Cell [l].ConstituencyNumber, Cell [l].PartyNumber, p];

END; {For l}
FOR p:= 1 TO NumberOfMatrixMethods DO

IF (GroupFairShare = O) AND (GroupApportionment [p] = O) THEN
GroupRatio [p] := 1

ELSE GroupRatio [p] := GroupAPportionment [p] / GroupFairShare;
END; {CalculationOfGroupRatio}
{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}{-----------------------------------------------------------------------------}

A 75



BEGIN {MatrixBias}
{Section for reading of data}
rewrite (Bias);
MethodName [1] := 'LF ' .,
MethodName [2] := 'SD ' .,
MethodName [3] := 'DM ' ;
MethodName [4] := 'MF ' ;
MethodName [5] := 'HA ' .,
ReadingOfElectionData (Ice63);
CalculationOfSums (Votes, ConstituencyVotes, PartyVotes, SumVotes);
Optimal:= True;
ReadingOfGamsData (TwoDimLFGamsOutput);
writeln (Bias, 'Inputfile Ice63');
writeln (Bias);
writeln (Bias, 'LF matrix apportionment error messages 'l;
writeln (Bias);
IF NOT(Optimal) THEN

writeln (Bias, 'The two dimensional LF solution is not optimal 'l;

FOR i:= 1 TO NumberOfConstituencies DO
FOR j:= l TO NumberOfParties DO

WholeSeats [i,j] := (Votes [i,j] * NumberOfSeats) DIV SumVotes;
FOR i:= l TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO BEGIN
MatrixApportionments [i,j,l] := FractionalSeats [i,j] + WholeSeats [i,j];
LFAPportionment [i,j] := MatrixApportionments [i,j,l];

END; {For j}
CalculationOfSums (WholeSeats, WholeConstituencySeats,

WholePartySeats, SumWholeSeats);
CalculationOfSums (FractionalSeats, FractionalConstituencySeats,

FractionalPartySeats, SumFractionalSeats);
FOR i:= 1 TO NumberOfConstituencies DO

ConstituencyRepresentatives [i] :=
WholeConstituencySeats [i] + FractionalConstituencySeats [i];

FOR j:= 1 TO NumberOfParties DO
PartyRepresentatives [j] :=

WholePartySeats [j] + FractionalPartySeats [j];
IF (SumWholeSeats + SumFractionalSeats) <> NumberOfSeats THEN

writeln (Bias, 'The seat sum is wrong 'l;
WritingOfLine (Bias);
writeln (Bias);
FOR p:= 2 TO NumberOfMatrixMethods DO

ReadingOfRepresentativesData (BiasApport);
writeln (Bias, 'Matrix apportionment with LF 'l;
OutputOfIntegerMatrices (Bias,S, 6, LFApportionment);
reset (BiasApport);
WHILE NOT (EOF(BiasApport» DO BEGIN

WHILE NOT (EOLN(BiasApport» DO BEGIN
read (BiasApport, Character);
write (Bia~, Character);

END; {While eoln}
readln (BiasApport);
writeln (Bias);

END; {While eof}
WritingOfLine (Bias);
writeln (Bias);

{-----------------------------------------------------------------------------}

A 76



{Section for finding the fair share allocation}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
InitialFairShares [i,j) := (Votes [i,j) * NumberOfSeats) / SumVotes;

writeln (Bias, 'Initial fair shares 'l;
OutputOfRealMatrices (Bias, 7, 9, 2, InitialFairShares);
Discrepancy:= 100;
DoubleIterations:= O;
FOR i:= 1 TO NumberOfConstituencies DO

ContinuousConstituencyMultiplie [i) .- 1;
FOR j:= 1 TO NumberOfParties DO

ContinuousPartyMultiplier [j) := 1;
WHILE Discrepancy > AllowedDiscrepancy DO BEGIN

Discrepancy:= O;
DoubleIterations:= DoubleIterations + 1;
ScalingOfContinuousMultipliers;

END; {While}
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
FinalFairShares [i,j) := InitialFairShares [i,j) *

ContinuousConstituencyMultiplie [i) * ContinuouspartyMultiplier [j);
writeln (Bias, 'Number of double iterations to find the final fair shares '

DoubleIterations:3);
writeln (Bias, 'Discrepancy', Discrepancy:9:6);
writeln (Bias);
writeln (Bias, 'Final fair shares 'l;
OutputOfRealMatrices (Bias, 7, 9, 2, FinalFairShares);
WritingOfLine (Bias);
{-----------------------------------------------------------------------------}
{Section for calculation of seat differences}
FOR p:= 1 TO NumberOfMatrixMethods DO

FOR SecondMethod:= 1 TO NumberOfMatrixMethods DO
SeatDifference [p,SecondMethod) .- O;

FOR p:= 1 TO NumberOfMatrixMethods DO
FOR secondMethod:= 1 TO P DO

FOR i:= 1 TO NumberOfConstituencies DO
FOR j:= 1 TO NumberOfParties DO

SeatDifference [p,SecondMethod) := SeatDifference [p,SecondMethod)
+ ABS(MatrixApportionments [i,j,p) -

MatrixApportionments [i,j,SecondMethod));;
writeln (Bias);
writeln (Bias, 'Number of seats placed differently');
writeln (Bias);
write (Bias,' ,);
FOR secondMethod:= 1 TO NumberOfMatrixMethods DO

write (Bias, MethodName [SecondMethod), , 'l;
writeln (Bias);
FOR p:= 1 TO NumberOfMatrixMethods DO BEGIN

write (Bias, MethodName [p));
FOR SecondMethod:= 1 TO P DO

write (Bias, (SeatDifference [p,SecondMethod) DIV 2) :4);
writeln (Bias);

END; {For p}
writeln (Bias);
WritingOfLine (Bias);
WritingOfLine (Bias);
{-----------------------------------------------------------------------------}
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{Section for cellobjects}
{Because of ·strange· apportionments for the largest cells, we divide the
parties in two classes based on a DividingFactor multiplied by the ratio
(PartyRepresentatives I NumberOfConstituencies) and calculate the biases.}

NumberOfSelectedParties:= O;
FOR j:= 1 TO NumberOfParties DO

IF PartyRepresentatives [j] > (DividingFactor * NumberOfConstituencies) THEN
NumberOfSelectedParties:= NumberOfSelectedParties + 1;

IF (NumberOfSelectedParties = O) OR
(NumberOfSelectedParties = NumberOfParties) THEN
NumberOfPartyDivisions:= 1

ELSE NumberOfPartyDivisions:= 3;
f:= 1;
WHILE f <= NumberOfPartyDivisions DO BEGIN

FOR j:= 1 TO NumberOfParties DO
SelectedParty [j] := False;

CASE f OF
1: ;
2, 3: BEGIN

FOR 1:= 1 TO (NumberOfConstituencies * NumberOfParties) DO BEGIN
Cell [l] .Name:= 'Z';
Cell [l] .FairShare:= O;
Cell [l].ConstituencyNumber:= 1;
Cell [l] .PartyNumber:= 1;

END; {For l}
NumberOfSelectedParties:= O;
NumberOfSelectedSeats:= O;
END;

END; {Case f}
CASE f OF

1: FOR j:= 1 TO NumberOfParties DO
SelectedParty [j] := True;

2: FOR j:= 1 TO NumberOfParties DO
IF PartyRepresentatives [j] >

(DividingFactor * NumberOfConstituencies) THEN
SelectedParty [j] := True;

3: FOR j:= 1 TO NumberOfParties DO
IF PartyRepresentatives [j] <=

(DividingFactor * NumberOfConstituencies) THEN
SelectedParty [j] := True;

END; {Case f}
CASE f OF

1: BEGIN
NumberOfSelectedParties:= NumberOfParties;
NumberOfSelectedSeats:= NumberOfSeats;

END;
2, 3: FOR j:= 1 TO NumberOfParties DO

IF SelectedParty [j] THEN BEGIN
NumberOfSelectedParties:= NumberOfSelectedParties + 1;
NumberOfSelectedSeats:=

NumberOfSelectedSeats + PartyRepresentatives [j];
END; {Then}

END; {Case f}
rewrite (TemporaryFile);
1:= 1;
FOR i:= 1 TO NumberOfConstituencies DO

FOR j:= 1 TO NumberOfParties DO
IF SelectedParty [j] THEN BEGIN

write (TemporaryFile, ConstituencyName [i]);
write (TemporaryFile, , 'l;
writeln (TemporaryFile, PartyName [j]);
reset (TemporaryFile);
readln (TemporaryFile, Cell [l] .Name);
rewrite (TemporaryFile);
Cell [l] .FairShare:= FinalFairShares [i,j];
Cell [l] .ConstituencyNumber:= i;
Cell [l].PartyNumber:= j;
1:= l + 1;

END; {Then}
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NumberOfCellObjects:= NumberOfConstituencies * NumberOfSelectedParties;
SortingOfCells (1, NUmberOfCellObjects);
writeln (Bias);
write (Bias, 'Sorting of cellobjects');
CASE f OF

1: writeln (Bias, , from all parties');;
2: writeln (Bias, , from large parties');
3: writeln (Bias, , from small parties');

END; {Case f}
writeln (Bias);
write (Bias, , ');
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Bias, MethodName [p], , 'l;
writeln (Bias);
FOR 1:= 1 TO NumberOfCellObjects DO BEGIN

write (Bias, 1:3, , " Cell [l] .Name,' Cell [l] .FairShare:8:5);
FOR p:= 1 TO NumberOfMatrixMethods DO

write (Bias, MatrixApportionments [Cell [l] .ConstituencyNumber,
Cell [l] .PartyNumber, p] :4);

writeln (Bias);
END; {For l}
writeln (Bias);
WritingOfLine (Bias);

{-----------------------------------------------------------------------------}
{Section for divisions}

DivisionName [1] := 'Number ';
DivisionName [2] := 'Size ';
DivisionName [3] := 'Cluster';
DivisionName [4] := 'Quota ';
FOR NumberOfGroups:= 2 TO MIN(NumberOfCellObjects, MaxNumberOfGroups)

DO BEGIN
writeln (Bias);
writeln (Bias, 'Error messages for division in' NumberOfGroups:1,

, groups 'l;
writeln (Bias);
FOR g:= 1 TO NumberOfGroups DO

FOR d:= 1 TO 4 DO BEGIN
OptimalFirstGroupMember [g,d] := O;
OptimalLastGroupMember [g,d] := O;

END; {For d}
FOR d:= 1 TO 4 DO BEGIN

OptimalFirstGrouPMember [l,d] := 1;
OptimalLastGroupMember [NumberOfGroups,d] .- NumberOfCellObjects;

END; {For d}

d:= 1;
NumberDivision;
d:= 2;
EmptySizeDivision:= False;
SizeDivision;
d:= 3;
ClusterDivision;
d:= 4;
QuotaDivision (NumberOfSelectedSeats);

{-----------------------------------------------------------------------------}
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{Section for bias calculation}

writeln (Bias);
writeln (Bias, 'Bias percentages with' NumberOfGroups:1, , groups 'l;
writeln (Bias);
WritingOfLine (Bias);

FOR d:= 1 TO 4 00 BEGIN
writeln (Bias);
OutputOfOptimalOivision;
IF NOT «d = 2) AND EmptySizeoivision) THEN BEGIN

FOR g:= 1 TO NumberOfGroups 00 BEGIN
CalculationOfGroupRatio (OptimalFirstGroupMember [g,d],

OptimalLastGroupMember [g,d]);
FOR p:= 1 TO NumberOfMatrixMethods 00

GroupRatios [g,d,p] := GroupRatio [p];
END; {For g}
FOR p:= 1 TO NumberOfMatrixMethods 00

FOR g:= 1 TO (NumberOfGroups - 1) 00
FOR SecondGroup:= (g + 1) TO NumberOfGroups DO

IF GroupRatios [g,d,p] = O THEN
IF GroupRatios [SecondGroup,d,p] = O THEN

BiasPercentage [g,SecondGroup,d,p] := -888.88
ELSE BiasPercentage [g,SecondGroup,d,p] .- -999.99

ELSE BiasPercentage [g,SecondGroup,d,p] .-
(100 * (GroupRatios [g,d,p] -
GroupRatios [SecondGroup,d,p]» /
GroupRatios [g,d,p];

write (Bias, , ');
FOR p:= 1 TO NumberOfMatrixMethods 00

write (Bias, MethodName [p], , 'l;
writeln (Bias);

FOR g:= 1 TO (NumberOfGroups - 1) 00
FOR SecondGroup:= (g + 1) TO NumberOfGroups 00 BEGIN

write (Bias, 'E(', g:l, ',', SecondGroup:1, ') ');
FOR p:= 1 TO NumberOfMatrixMethods DO BEGIN

write (Bias, BiasPercentage [g,SecondGroup,d,p] :7:2);
write (Bias, '% ');

END; {For p}
writeln (Bias);

END; {For SecondGroup}
writeln (Bias);

END; {Then}
WritingOfLine (Bias);

END; {For d}
END; {For NumberOfGroups}
WritingOfLine (Bias);
f:= f + 1;

END; {While f}

END. {MatriXSias}
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Appendix 3:

Data regarding
the apportionment algorithm



Description ofData sets tables
These tables show the following basic information about the data sets
utilized in the algorithm tests:

- Country
- Year of election
- Number of constituencies (m)
- Number of parties (n)
- House size (h)

The following more specialized information is also included:

- Number of parties which only participate in one constituency
- How many constituencies (> 1) the "next" party participates in
- How many constituencies the "next" party participates in as a
percentage of the total number of constituencies

The last column in the tables shows the charged CPU time for solving
the 2 x 2 x 3 x 3 x 4 = 144 cases for each data set.

NB! these CPU times have been achieved with a somewhat simpler
version of the program ElectionAlgorithm than the one presented in
Appendix 2.
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Data sets

Austria Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1994 9 5 183 O 9 100% 0:17.36
1990 9 5 183 O 9 100% 0:17.82
1986 9 4 183 O 9 100% 0:15.96
1983 9 5 183 O 9 100% 0:17.83

Denmark Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1994 17 9 174 O 17 100% 1:16.75
1990 17 10 175 O 17 100% 1:24.23
1988 17 10 175 O 17 100% 1:31.16
1987 17 11 175 O 17 100% 1:42.00
1984 17 10 175 O 17 100% 1:15.93
1981 17 10 175 O 17 100% 1:19.43
1979 17 11 175 O 17 100 % 1:39.29
1977 17 11 175 O 17 100 % 1:43.43
1975 17 11 175 O 17 100% 1:38.33
1973 17 11 175 O 17 100% 1:39.73
1971 17 9 175 O 17 100% 1:01.84
1968 23 8 175 O 23 100% 1:12.16
1966 23 7 175 O 23 100% 1:24.74
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Data sets

Finland Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1995 14 10 199 O 4 29% 1:05.50
1991 14 9 199 O 4 29% 0:50.28
1987 14 10 199 O 7 50% 1:19.17
1983 14 8 196 O 3 21 % 0:43.47
1979 14 9 199 O 5 36% 0:47.92
1975 14 10 199 O 5 36% 1:09.78
1972 15 7 196 O 5 33 % 0:39.47
1970 15 7 199 O 5 33 % 0:42.79
1966 15 7 199 O 5 33 % 0:46.27
1962 15 7 199 O 5 33 % 0:41.95
1958 16 7 200 O 4 25 % 0:40.63
1954 16 6 200 O 6 38% 0:41.76
1951 15 6 200 O 5 33 % 0:33.85
1948 15 6 200 O 5 33 % 0:35.55
1945 15 8 200 O 2 13% 0:43.92
1939 15 7 200 O 4 27% 0:47.81
1936 16 8 200 O 2 13 % 0:53.55

(West) Germany Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1994 16 5 672 O 16 100% 1:40.84
1990 16 6 662 O 6 38% 2:13.21
1987 10 4 497 O 10 100% 0:29.96
1983 10 4 498 O 10 100% 0:34.72
1980 10 4 497 O 10 100% 0:28.15
1976 10 3 496 O 10 100% 0:24.10
1972 10 3 496 O 10 100% 0:22.70
1969 10 4 496 O 10 100% 0:33.12
1965 10 4 496 O 10 100% 0:32.47
1961 10 4 499 O 10 100% 0:33.76
1957 10 5 497 O 10 100% 0:45.14
1953 9 10 487 2 6 67% 1:30.11
1949 9 10 399 3 3 33 % 0:55.11
1919 36 13 421 5 2 6% 9:15.75

A84



Data sets

Iceland Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1995 8 6 63 O 8 100% 0:11.20
1991 8 7 63 O 8 100% 0:11.96
1987 8 9 63 1 5 63% 0:14.52
1983 8 6 60 O 3 38% 0:11.10
1979 8 5 60 1 8 100% 0:09.70
1978 8 5 60 O 8 100% 0:09.75
1974 8 5 60 O 8 100% 0:09.99
1971 8 6 60 O 3 38% 0:11.37
1967 8 6 60 1 2 25% 0:10.30
1963 8 4 60 O 8 100% 0:09.18
1959 8 5 60 O 3 38% 0:09.63

Luxembourg Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1959 4 4 52 O 2 50% 0:07.81
1954 4 5 52 O 2 50% 0:08.06

1948/5 4 4 52 O 4 100% 0:07.73
1945 4 6 51 2 4 100% 0:08.12

1934/3 4 10 55 7 2 50% 0:08.93

Norway Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1993 19 8 165 O 19 100% 1:13.46
1989 19 8 165 1 19 100% 1:05.63
1985 19 7 157 O 19 100% 0:52.72
1981 19 10 155 2 4 21 % 1:10.85
1977 19 12 155 3 2 11% 1:07.13
1973 19 11 155 2 8 42% 1:27.08
1969 20 8 150 1 4 20% 1:00.20
1965 20 9 150 2 15 75% 1:15.76
1961 20 9 150 1 5 25% 1:08.06
1957 20 8 150 1 2 10% 0:55.17
1953 20 7 150 1 15 75 % 0:53.05
1949 29 9 150 O 2 7% 1:36.93
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Data sets

Sweden Information about regional parties
# of parties which # of constituencies the

only participate in next party participates in ChargedCPU
Year m n h one constituency and its participation ratio Halfrun.Com

1994 24 8 349 O 24 100% 3:04.15
1991 28 8 349 O 28 100% 3:36.77
1988 28 7 349 O 28 100% 3:20.37
1985 28 6 349 O 28 100% 1:59.72
1982 28 6 349 O 28 100% 2:22.35
1979 28 6 349 O 28 100% 2:21.77
1976 28 6 349 O 28 100% 2:45.92
1973 28 6 350 O 28 100% 2:28.55
1970 28 6 350 O 28 100% 2:15.33
1968 28 8 233 1 2 7% 1:57.00
1964 28 7 233 1 25 89% 1:53.04
1960 28 5 232 O 28 100% 1:07.84
1958 28 5 231 O 18 64% 1:12.41
1956 28 5 231 O 28 100% 1:21.63
1952 28 5 230 O 28 100% 1:21.07
1948 28 5 230 O 27 96% 1:12.50
1944 28 5 230 O 26 93 % 1:19.92
1940 28 5 230 O 26 93 % 1:23.32
1936 28 6 230 O 27 96% 1:36.21
1932 28 6 230 O 11 39% 1:49.86
1928 28 6 230 O 16 57% 1:30.14
1924 28 7 230 O 22 79% 2:02.96
1921 28 6 230 O 17 61 % 1:33.16
1920 56 7 228 O 2 4% 7:01.82
1917 56 5 230 O 38 68% 3:48.00

1914 II 56 3 230 O 56 100% 1:26.77
1914 I 56 3 230 O 55 98% 1:25.38
1911 56 3 230 O 55 98% 1:35.05
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Description ofAlgorithm data tables
We have operated with 2 Relaxations, 2 Selection methods, 3 Initialization
procedures, 3 Bound vectors, and 4 Matrix apportionment methods for each data
set, i.e. the algorithm has been run a total of 144 times. Algorithm data for each
country have been splitted in two based on Relaxation. Each Relaxation table
consists of 4 main parts: Selection, Initialization, Bound vector, and Matrix
method. In addition there is a column called Goodness. Each of the main parts
consists of several columns. Here follows a description of the contents of the
different columns. We look at the column headings in the third row, i.e. to the
right of "Year":

Goodness columns:
Show the average initial measure of goodness for the specified combination. The
Selection used does not influence the initial measure of goodness. The averages in
the column called Goodness and with "Initial" in the third row are therefore averages
over 3 x 3 x 4 = 36 combinations. The averages in the main parts are calculated from
the following number of cases: 3 x 4 = 12 in the Initialization and Bound vector parts
and 3 x 3 = 9 in the Matrix method part.

Iteration columns:
Show the average number of iterations used to solve the matrix apportionment
problem for the specified combination. These averages are calculated from the
following number of cases: 3 x 3 x 4 = 36 in the Selection part, 2 x 3 x 4 = 24 in the
Initialization and Bound vector parts, and 2 x 3 x 3 = 18 in the Matrix method part.

Ratio columns (in the Selection part):
Show the average decrease in the measure of goodness per iteration. The averages
are calculated from 3 x 3 x 4 = 36 cases.

Sol. columns (in the Initialization part):
Show the number of direct solutions for the data set with the specified Initialization
and Relaxation. There are 3 x 4 = 12 combinations of Bound vector and Matrix
method, so 12 is the highest achievable number of direct solutions.

Sumrow:
Shows the total number of direct solutions with the specified Initialization.

Average row:
Shows the average of the average data set figures.

For further comments regarding Algorithm data see chapter 14.
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Description ofAlgorithm tests tables
The data in the Algorithm test tables have been calculated from figures
in the Algorithm data tables. We use the following abbreviations:

N = No initialization
Q = Quota ratio initialization
A =Apportionment initialization

C =Constituency relaxation
p = Party relaxation

R = Representation selection
O = p-effect selection

lnitializations are tested against each other based on iterations and
initial measure of goodness. The difference X - Y, where X stands for
one initialization and Y for another, is calculated as:

[ (Average value for X with C +Average value for X with P) -
(Average value for Y with C +Average value for Y with P) ] /2

Relaxations are tested based on iterations, the average decrease in the
measure of goodness per iteration, termed "Ratio" in the tables, and
the initial measure of goodness. The ratio PIC is calculated as:

(Average value with R and P +Average value with O and P) I
(Average value with R and C +Average value with O and C)

The difference P - C (for p) is calculated as:

Average initial measure of goodness with P - Average initial measure of goodness with C

Selections are tested based on iterations and the average decrease in the
measure of goodness per iteration. The ratio DIR is calculated as:

(Average value with O and C +Average value with O and P) I
(Average value with R and C +Average value with R and P)

NB. P-values for Initializations and Selections are based on one-sided
tests, while P-values for Relaxations are based on two-sided tests.
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Algorithm tests

Austria Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR OIR
1994 -0,27 2,50 1,17 6,50 0,55 1,62 -1,56 0,79 1,29

1990 0,48 2,63 2,08 6,34 0,60 2,06 2,00 0,77 1,35
1986 0,23 2,30 0,67 4,25 0,44 2,70 0,27 0,84 1,25

1983 0,81 2,15 1,67 4,83 1,08 2,47 6,28 0,49 1,82

All Austrian sets
Number of dilla sets: 4
Bstimaled mean 0,31 2,39 1,40 5,48 0,67 2,21 1,75 0,72 1,43
Standard error of the estimale 0,23 0,11 0,31 0,56 0,14 0,24 1,68 0,08 0,13
I-.Wislie 1,36 22,43 4,56 9,86 2,33 -5,12 1,04 3,52 -3,27
P-vaIuc (two-sided for relaxalion) 0,1334 0,0001 0,0099 0,0011 0,1021 0,0144 0,3739 0,0195 0,0234

Denmark Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR OIR

1994 -0,84 2,59 0,34 13,75 0,62 2,12 9,33 0,83 1,26

1990 0,50 3,19 1,09 15,08 0,75 1,80 9,66 0,81 1,27
1988 0,60 2,92 0,59 15,34 0,80 1,50 6,50 0,90 1,16
1987 0,16 3,94 1,25 16,76 0,79 1,67 10,28 0,89 1,13
1984 -0,17 3,38 1,09 14,33 0,75 1,99 10,61 0,91 1,15
1981 0,60 3,01 2,25 12,75 0,75 1,83 7,16 0,84 1,22

1979 -0,36 2,92 1,59 13,76 0,69 1,77 8,89 0,95 1,12

1977 0,15 1,15 0,16 15,67 0,81 1,83 10,11 0,93 1,09

1975 1,23 2,03 1,42 14,75 0,76 1,84 11,06 0,94 1,06

1973 2,50 0,29 1,59 12,00 0,78 1,52 5,56 0,91 1,12
1971 1,02 3,33 3,08 12,92 0,60 2,32 10,05 0,84 1.20
1968 1,92 1,33 4,17 10,25 0,64 2,04 6,44 0,80 1.36
1966 0,61 -0,53 1,92 12,58 0,40 3,13 7,06 0,88 1.17

All Danish sets
Number of dilla sets: 13
Bstimaled mean 0,61 2,27 1,58 13,84 0,70 1,95 8,67 0,88 1,18
Standard error of the estimale 0,25 0,37 0,31 0,48 0,03 0,12 0,52 0,01 0,02
I-.Wistie 2,42 6,13 5,14 28,57 9,42 -8,16 16,76 8,86 -7,66
P-vaIuc (two-sided for rclaxalion 0,0162 0,0000 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

Finland Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR OIR

1995 -0,92 4,28 2,00 12,25 0,74 2,05 10,45 0,84 1,30
1991 -0,19 2,79 1,59 11,50 0,67 2,31 8,55 0,83 1,28
1987 0,02 5,04 2,08 14,59 0,90 1,84 12,45 0,85 1,39
1983 1,36 2,57 2,17 6,67 0,77 1,94 5,12 0,91 1,14
1979 0,28 0,71 1,67 10,00 0,85 2,42 11,33 0,80 1,38
1975 0,48 2,67 1,59 14,75 0,93 1,95 13,66 0,83 1,34
1972 0,88 1,90 1,59 3,92 0,61 1,93 0,84 0,90 1,12
1970 1,26 0,26 1,92 4,76 0,57 1,89 0,44 0,89 1,13
1966 2,42 1,19 3,17 6,59 0,55 2,18 3,44 0,92 1,12
1962 0,38 2,48 2,34 6,92 0,50 2,67 2,23 0,88 1,21
1958 . 1,33 2,29 2,42 3,84 0,56 1,96 0,17 0,85 1,22
1954 1,25 2,92 1,75 5,50 0,46 1,98 -0,67 0,95 1,17
1951 0,63 2,36 0,92 5,67 0,49 1,74 -1,89 0,86 1,25
1948 0,94 2,07 2,92 4,92 0,57 1,58 -1,28 0,90 1,21
1945 0,98 1,57 2,92 5,75 0,64 1,88 2,06 0,91 1,17
1939 1,83 1,03 3,00 8,58 0,67 2,05 6,66 0,86 1,27
1936 1,19 3,48 3,00 11,67 0,64 2,00 5,78 0,85 1,22

All Finnish sets
Number of dilla sets: 17
Bstimaled mean 0,83 2,33 2,18 8,11 0,65 2,02 4,67 0,87 1,23
Standard error of the estimale 0,19 0,30 0,16 0,88 0,03 0,06 1,23 0,01 0,Q2
t-statistic 4,33 7,85 13,88 9,17 10,11 -16,34 3,78 13,29 -10,84
P-vaIuc (two-sided for relaxation) 0,0003 0,0000 0,0000 0,0000 0,0000 0,0000 0,0016 0,0000 0,0000
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Algorithm tests

Germany Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR OIR
1994 1,23 3,57 3,34 1l,25 0,47 2,65 1,22 0,75 1,55
1990 -0,28 2,34 9,50 8,42 0,54 2,65 6,OE 0,78 1,38
1987 0,06 2,36 0,34 6,25 0,45 2,39 0,05 0,81 1,22

1983 0,40 3,15 1,25 6,67 0,49 2,33 0,95 0,79 1,33
1980 0,86 1,27 3,84 3,25 0,50 2,13 0,56 0,79 1,29

1976 0,50 2,25 1,00 3,75 0,25 3,22 -1,95 0,85 1,09
1972 0,15 2,42 0,50 5,34 0,39 2,81 -1,67 0,79 1,08
1969 0,77 1,66 7,00 5,42 0,45 3,31 4,66 0,85 1,19
1965 0,36 2,07 3,76 5,17 0,39 2,48 0,33 0,81 1,15
1961 0,67 1,44 3,83 3,75 0,41 2,52 0,56 0,78 1,26
1957 -0,75 3,69 7,67 5,75 0,59 2,72 3,56 0,68 1,39
1953 1,44 2,52 li ,50 7,58 1,35 1,13 8,1l 0,68 1,37
1949 1,19 2,48 6,50 5,92 0,97 1,05 0,00 0,84 1,21
1919 0,31 4,38 7,33 13,33 0,35 2,71 0,38 0,93 1,13

All German sets
Number of data sets: 14
Estimated mean 0,49 2,54 4,81 6,56 0,54 2,44 1,63 0,80 1,26
Standard error of !be esnmæe 0,16 0,24 0,94 0,76 0,08 0,17 0,78 0,02 0,04
I-statistic 3,08 10,78 5,13 8,63 6,00 -8,25 2,IC li ,58 -7,26
P-value (two-sided for relaxation) 0,0044 0,0000 0,0001 0,0000 0,0000 0,0000 0,0557 0,0000 O,OOOC

(1949 - 1987)
Number of data sets: Il
Estimated mean 0,51 2,30 4,29 5,35 0,57 2,37 1,38 0,79 1,23
Standard error of !be estilll8le 0,18 0,21 1,07 0,40 0,10 0,22 0,89 0,02 0,Q3
I-statistic 2,87 10,77 4,00 13,38 4,53 -6,25 1,55 1l,68 -7,34
P-valne (two-sided for relaxation) 0,0083 0,0000 0,0013 0,0000 0,001l 0,0001 0,1533 0,0000 0,0000

Iceland Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR OIR
1995 0,65 2,27 2,42 5,17 0,79 1,22 -0,95 0,88 i.n
1991 1,21 1,54 3,42 3,58 0,80 1,23 -1,50 0,81 1,21
1987 1,02 0,90 2,58 4,92 0,94 0,85 -3,00 0,87 1,17
1983 0,86 1,50 2,84 3,17 0,87 0,92 -1,72 0,87 1,15
1979 1,39 0,82 3,50 1,67 0,62 1,02 -3,83 0,79 1,16
1978 1,73 1,52 4,59 1,75 0,56 1,51 -3,00 0,84 1,15
1974 1,17 0,63 4,25 2,17 0,79 1,26 -i.n 0,83 1,22
1971 1,09 1,96 3,42 2,67 0,79 1,46 -0,50 0,81 1,22
1967 0,65 1,48 3,25 2,92 0,63 1,52 -1,84 0,77 1,17
1963 1,35 0,76 2,92 4,00 0,53 1,85 -i.n 0,81 1,19
1959 0,56 2,48 2,25 5,09 0,68 1,37 -1,56 0,84 1,18

All Icelandic sets
Number of data sets: Il
Estimated mean 1,06 1,44 3,22 3,37 0,73 1,29 -1,83 0,83 1,18
Standard error of !be estilll8le 0,11 0,19 0,22 0,39 0,04 0,09 0,31 0,01 0,01
I-statistic 9,71 7,66 14,62 8,64 6,96 -3,28 -5,92 16,05 -16,73
P-valne (two-sided for relaxation) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0083 0,0001 0,0000 0,0000
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Algorithm tests

Luxembourg Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C O/R O/R
1959 0,38 0,77 1,50 0,92 0,99 1,00 -I,ll 0,75 1,28

1954 0,57 1,33 1,67 2,17 1,27 0,73 -0,22 0,77 1,21
1948151 0,42 1,17 1,42 1,59 1,01 1,16 -0,44 0,86 1,12

1945 0,23 0,77 1,58 1,50 1,35 1,07 0,06 0,81 1,19
1934/37 2,13 0,17 3,17 -0,25 2,23 0,97 1.34 0,75 1,17

All Luxemburgian sets
Number of data setS: 5
Estimated mean 0,74 0,84 1,87 1,18 1,37 0,99 -0,07 0,79 1,19
Standard error of the estinwe 0,35 0,20 0,33 0,41 0,23 om 0,40 0,Q2 0,03
t-statistic 2,12 4,16 5,70 2,89 -1,64 0,18 -0,18 10,10 -7,58
P-value (two-sided fot reIaxalion) 0,0504 0,0070 0,0023 0,Q223 0,1773 0,8635 0,8632 0.0003 0,0008

Norway Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C DIR DIR
1993 1,64 1,40 2,59 13,25 0,59 2,27 7,66 0,93 1,16
1989 2,41 1,42 2,09 1I,42 0,54 2,10 3,22 0,84 1,26
1985 1,78 0,31 3,67 12,83 0,49 2,92 9,00 0,87 1,15
1981 1,57 3,46 3,76 13,25 0,58 2,62 8,83 0,80 1,31
1977 2,19 1,46 6,51 9,17 0,68 2,06 8,lI 0,81 1,31
1973 1,19 3,75 5,42 10,59 0,60 1,83 2,89 0,91 1,10
1969 1,08 2,77 4,59 10,58 0,51 2,57 1.83 0,90 1,13
1965 1,96 1,71 4,33 10,92 0,45 2,84 4,50 0,93 1,09
1961 0,96 1,84 5,09 10,09 0,50 2,23 1,95 0,90 1,12
1957 0,54 1,27 5,17 1I,33 0,43 2,73 4,17 0,92 1,10
1953 1,13 1,73 5,08 10,67 0,39 2,96 3,00 0,93 1,17
1949 1,44 2,63 7,34 10,84 0,37 2,77 -1.78 0,94 1,13

All Norwegian sets
Number of dala sets: 12
Estimated mean 1,49 1,98 4,63 1I,24 0,51 2,49 4,45 0,89 1,17
Standard error of the estinwe 0,16 0,29 0,43 0,37 0,Q3 O,II 0,96 0,01 0,Q2
t-statistic 9,50 6,94 10,73 30,68 18,29 -13,69 4,63 8,26 -7,40
P-value (two-sided for relaxation) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0007 0,0000 0,0000
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Algorithm tests

Sweden Initializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

Year N-Q Q-A N-Q Q-A PIC PIC P-C OIR DIR
1994 -0,04 5,25 0,66 29,84 0,46 3,02 13,84 0,87 1,29
1991 1,52 3,67 2,25 24,34 0,45 3,42 13,67 0,87 1,21
1988 0,57 2,08 1,67 23,59 0,41 3,10 9,67 0,91 1,09
1985 0,98 2,27 1,34 15,25 0,36 3,62 9,28 0,99 i.u
1982 -0,14 2,29 0,50 20,34 0,35 3,58 8,83 0,83 1,40
1979 1,88 3,09 0,50 18,00 0,40 3,37 8,05 0,91 1,26
1976 0,07 3,67 1,34 19,25 0,38 3,52 7,39 0,94 1,18
1973 0,96 4,21 1,17 19,84 0,36 3,85 9,22 0,84 1,43
1970 2,19 2,00 2,09 18,50 0,41 3,52 9,28 0,87 1,35
1968 1,27 3,19 1,09 18,58 0,42 3,50 12,67 0,88 1,20
1964 0,15 3,82 1,00 15,50 0,43 3,51 9,22 0,85 1,31
1960 0,02 3,46 1,34 13,17 0,35 3,52 5,11 0,92 1,21
1958 1,63 2,54 1,75 9,92 0,30 3,46 2,44 0,93 1,10
1956 1,79 2,98 2,84 12,08 0,30 3,56 2,67 0,92 1,21
1952 1,40 2,55 1,42 14,83 0,27 4,34 3,67 0,96 1,05
1948 1,30 2,10 1,59 14,91 0,26 3,79 2,56 0,93 1,15
1944 -0,26 3,31 2,84 13,17 0,25 3,72 -0,83 0,90 1,27
1940 2,73 2,02 4,34 14,17 0,32 3,71 4,33 0,84 1,17
1936 1,69 1,96 1,92 13,50 0,40 3,27 7,89 0,94 1,12
1932 0,15 2,47 3,50 11,42 0,34 3,80 4,83 0,86 1,52
1928 1,08 3,88 2,92 14,00 0,34 3,66 5,11 0,89 1,35
1924 2,71 4,13 3,92 15,08 0,36 3,53 10,11 0,85 1,23
1921 1,53 2,21 4,01 9,25 0,36 3,44 3,22 0,90 1,31
1920 2,59 2,98 4,92 15,42 0,17 4,29 -7,00 1,02 1,25
1917 2,80 1,11 3,50 13,25 0,15 5,88 -3,45 0,96 1,10

1914ll 2,92 9,96 4,25 10,50 0,12 4,58 -9,44 0,94 1,13
1914 I 2,86 10,82 2,67 10,00 0,14 2,75 -12,00 0,93 1,12
1911 3,90 8,25 5,83 9,75 0,13 6,64 -5,33 0,99 1,07

All Swedish sets
Number of data sets: 28
Estimated mean 1,43 3,65 2,40 15,62 0,32 3,78 4,46 0,91 1,22
Standard error of the estimate 0,21 0,44 0,27 0,92 0,02 0,15 1,28 om 0,D2
I-statistic 6,78 8,30 8,88 16,96 35,57 -18,44 3,49 9,89 -9,97
P-value (two-sided for relaxation) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0017 0,0000 0,0000

(1921 - 1994)
Number of data sets: 23
Estimated mean 1,09 3,00 2,00 16,46 0,36 3,56 7,05 0,90 1,24
Standard error of the estimate 0,19 0,19 0,24 1,02 0,01 0,06 0,81 0,01 0,02
t-sWistic 5,84 16,14 8,41 16,12 53,26 -46,24 8,72 11,82 -9,79
P-value (two-sided for relaxation) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

All countries lnitializations Relaxations Selections
Iterations Initial p Iterations "Ratio" p Iterations "Ratio"
Differences Differences Ratio Ratio Difference Ratio Ratio

N-Q Q-A N-Q Q-A PIC PIC P-C DIR DIR

All sets
Number of data sets: 104
Estimated mean 1,00 2,50 2,86 10,07 0,58 2,48 3,65 0,86 1,22
Standard error of the estimate 0,09 0,16 0,20 0,56 0,03 0,10 0,51 0,01 0,01
t-statistic 11,34 15,34 14,63 18,10 14,46 -14,52 7,12 19,55 -19,14
P-value (two-sided for relaxation) 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
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Appendix 4:

Various data
and

Results of matrix bias tests



Description ofVarious data tables

These tables consist of three parts:

The first part presents the data sets utilized in the matrix bias test and
their size.

The second part presents the following data regarding the execution of
the fair share algorithm:

- Number of iterations of Algorithm 16.1 needed for the total discrepancy to
satisfy the predecided tolerance level.

- The final total discrepancy

The third part presents GAMS data regarding the controlled rounding of
the internal entries (LF apportionment). The most interesting figure here
is the number of iterations GAMS uses to find the optimal rounding.

Description ofMatrix bias tables

These tables are almost similar to the Vector bias tables. They show the
matrix bias data for the comparison of group V and W when there are c
groups. V < W < c, where c = 2, 3, or 4.

Matrix bias data are shown for all combinations of the 5 matrix
apportionment methods; LF (controlled rounding), SD, DM, MF, and HA,
and the 4 division methods; Cluster, Quota, Size, and Number. The
formulas for E(V,W) and T are presented in section 5.8.
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Matrix bias 2 groups

E (1,2)
Bias between group 1 and 2 for c = 2 based on 23 data sets

LF SD DM MF HA

Cluster division
E -0,48 % -5,81 % -2,46 % -1,97 % 1,72%
S 0,66% 2,92% 0,87% 0,81 % 1,90%
T -0,72 -1,99 -2,84 ** -2,43 * 0,90
P 47,7% 5,9% 1,0% 2,4% 37,6%

Quota division
E -0,73 % -4,36 % -2,56 % -1,62 % 0,01 %
S 0,54% 1,62% 0,88 % 0,82% 1,28 %
T -1,34 -2,69 * -2,91 ** -1,97 0,01
P 19,4 % 1,4% 0,8 % 6,1 % 99,2%

Size division
E -0,21 % 3,03% -0,59 % -3,10 % -4,95 %
S 0,48% 1,97 % 0,72% 1,21 % 1,81 %
T -0,44 1,54 -0,83 -2,57 * -2,74 *
P 66,4% 13,8 % 41,6% 1,7 % 1,2 %

Number division
E 8,00% -26,13 % 5,86% 11,69 % 28,23 %
S 5,48 % 9,23% 5,65 % 5,71 % 5,25 %
T 1,46 -2,83 ** 1,04 2,05 5,38 **
P 15,9 % 1,0% 31,1 % 5,3% 0,0%

E Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
p P-value (probability); two-sided for all methods

** Significant at the 1%-level
* Significant at the 5%-level
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Matrix bias 3 groups

e (1,2)
Bias between group 1 and 2 for c = 3 based on 23 data sets

LF SD DM MF HA
Cluster division

e -0,79 % 9,04% 0,43% -4,53 % -8,77 %
S 0,64% 2,22% 0,90% 1,51 % 2,17 %
T -1,24 4,07 ** 0,48 -3,00 ** -4,03 **
P 22,7% 0,1 % 63,4% 0,7% 0,1 %

Quota division
e -0,55 % 6,11 % -1,39 % -2,80 % -7,14 %
S 0,63% 1,70% 0,84% 1,12 % 1,42 %
T -0,87 3,60 ** -1,67 -2,50 * -5,03 **
p 39,5 % 0,2% 11,0% 2,0% 0,0%

Size division
e -0,79 % 9,09% 0,86% -4,33 % -7,97 %
S 0,73% 2,54% 1,01 % 1,61 % 2,13 %
T -1,08 3,58 ** 0,86 -2,68 * -3,74 **
P 29,3% 0,2 % 40,2% 1,4% 0,1 %

Number division
£ -3,50 % -29,46 % -10,17 % -3,64 % 4,31 %
S 4,12 % 11,29 % 4,05% 5,19 % 6,12 %
T -0,85 -2,61 * -2,51 * -0,70 0,70
p 40,4% 1,6 % 2,0% 49,1 % 48,8%

e (1,3)
Bias between group 1 and 3 for c = 3 based on 23 data sets

LF SD DM MF HA
Cluster division

e -1,66 % -10,80 % -5,43 % -4,54 % 1,94 %
S 0,90% 4,36% 1,46 % 1,58 % 2,75 %
T -1,85 -2,48 * -3,71 ** -2,87 ** 0,70
p 7,8% 2,1 % 0,1 % 0,9% 48,9%

Quota division
e -0,68 % -9,23 % -3,51 % -2,02 % 2,50%
S 0,66% 2,24% 1,03 % 0,73% 1,45 %
T -1,03 -4,12 ** -3,39 ** -2,76 * 1,73
p 31,6% 0,0% 0,3% 1,1 % 9,8%

Size division
e -0,80 % 0,52% -3,40 % -5,20 % -4,56 %
S 0,88%· 2,87 % 1,22% 1,62 % 2,25 %
T -0,90 0,18 -2,77 * -3,20 ** -2,03
p 37,6% 85,8 % 1,1 % 0,4% 5,5 %

Number division
e 29,04 % -5,55 % 30,53 % 38,77 % 56,44 %
S 7,85 % 12,52 % 9,62% 8,92% 8,48 %
T 3,70 ** -0,44 3,17 ** 4,35 ** 6,65 **
p 0,1 % 66,2% 0,4% 0,0% 0,0%
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Matrix bias 3 groups

E (2,3)
Bias between group 2 and 3 for c = 3 based on 23 data sets

LF SD DM MF HA

Cluster division
E -0,89 % -22,78 % -6,07 % -0,11 % 9,69%
S 0,82% 4,72% 1,74% 1,07 % 2,24%
T -1,09 -4,83 ** -3,49 ** -0,10 4,33 **
P 28,6% 0,0% 0,2% 92,0% 0,0%

Quota division
E -0,24 % -17,22 % -2,22 % 0,60% 8,81 %
S 1,01 % 3,21 % 1,28 % 0,88% 1,41 %
T -0,23 -5,36 ** -1,73 0,68 6,24 **
P 81,7 % 0,0% 9,8 % 50,5% 0,0%

Size division
E -0,05 % -10,81 % -4,42 % -0,97 % 2,84%
S 0,76% 3,60% 1,28 % 1,17 % 2,00%
T -0,06 -3,00 ** -3,47 ** -0,82 1,42
P 95,3% 0,7% 0,2% 41,9% 16,9 %

Number division
E 23,84 % 6,14% 29,94 % 26,17 % -2,17 %
S 10,54 % 12,95 % 10,59 % 14,63 % 49,27 %
T 2,26 * 0,47 2,83 ** 1,79 -0,04
P 3,4% 64,0% 1,0% 8,7% 96,5 %

E Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
P P-value (probability); two-sided for all methods

** Significant at the 1%-level
* Significant at the 5%-level
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Matrix bias 4 groups

e (1,2)
Bias between group 1 and 2 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA
Cluster division

e -0,97 % 7,73% -0,08 % -5,13 % -6,84 %
S 0,73% 1,98 % 0,75 % 1,53 % 1,81 %
T -1,32 3,90 ** -0,10 -3,35 ** -3,78 **
p 19,9 % 0,1 % 92,0% 0,3% 0,1 %

Quota division
E 0,07% 4,36% -0,69 % -2,51 % -5,26 %
S 0,84% 1,79 % 0,89% 1,30% 1,59 %
T 0,09 2,44 * -0,77 -1,93 -3,32 **
p 93,0% 2,3% 44,7% 6,7% 0,3 %

Size division
e -0,76 % 3,90% -1,20 % -3,29 % -4,35 %
S 0,99% 1,30 % 0,93% 1,57 % 1,37 %
T -0,76 2,99 ** -1,29 -2,10 * -3,16 **
p 45,5% 0,7% 21,1 % 4,9% 0,5 %

Number division
e -2,52 % -9,46 % -5,23 % -4,36 % -1,67 %
S 2,17 % 4,67% 2,50% 2,14 % 2,87 %
T -1,16 -2,03 -2,09 * -2,04 -0,58
p 25,8 % 5,5% 4,8% 5,4% 56,7%

£ (1,3)
Bias between group 1 and 3 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA

Cluster division
e 0,85 % 11,21 % 0,89% -4,30 % -11,35 %
S 0,87% 2,52% 1,21 % 1,61 % 2,38%
T 0,98 4,46 ** 0,73 -2,67 * -4,76 **
P 33,8% 0,0% 47,0% 1,4% 0,0%

Quota division
e 0,99 % 9,98% 0,31 % -2,10 % -9,68 %
S 0,69% 2,34% 1,06% 1,37 % 1,85 %
T 1,43 4,27 ** 0,29 -1,54 -5,22 **
p 16,6 % 0,0% 77,6% 13,9 % 0,0%

Size division
e -0,14 % 8,46 % 1,61 % -3,95 % -10,16 %
S 0,95 %" 2,07% 1,10% 1,73 % 2,25%
T -0,14 4,09 ** 1,47 -2,29 * -4,51 **
P 88,7 % 0,1 % 15,7 % 3,3% 0,0%

Number division
E -0,66 % -31,52 % -5,34 % -0,08 % 15,29 %
S 6,05% 9,15 % 6,45 % 6,40% 5,74%
T -0,11 -3,45 ** -0,83 -0,01 2,66 *
p 91,5 % 0,2% 41,7 % 99,0% 1,4 %

A 109



Matrix bias 4 groups

E (1,4)
Bias between group 1 and 4 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA
Cluster division

E -3,04 % -21,03 % -8,31 % -4,24 % 9,56%
S 1,39% 6,27% 1,85 % 2,31 % 3,90%
T -2,19 * -3,35 ** -4,48 ** -1,83 2,45 *
p 4,0% 0,3% 0,0% 8,1 % 2,3%

Quota division
E -2,25 % -14,72 % -6,07 % -3,43 % 4,77%
S 1,06% 2,90% 1,34 % 1,32 % 1,69%
T -2,12 * -5,08 ** -4,54 ** -2,59 * 2,81 *
P 4,5% 0,0% 0,0% 1,7 % 1,0%

Size division
E -1,42 % -3,19 % -4,46 % -5,63 % -2,98 %
S 1,12% 4,21 % 1,77 % 1,84% 3,07%
T -1,27 -0,76 -2,53 * -3,06 ** -0,97
P 22,0% 45,7% 2,0% 0,6% 34,4%

Number division
E 36,11 % 2,21 % 42,30 % 48,91 % 64,01 %
S 9,22% 14,76 % 11,36 % 10,33 % 8,68 %
T 3,92 ** 0,15 3,72 ** 4,74 ** 7,38 **
p 0,1 % 88,2% 0,1 % 0,0% 0,0%

E (2,3)
Bias between group 2 and 3 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA
Cluster division

E 1,71 % 3,50% 0,90% 0,65% -4,33 %
S 1,02% 2,35 % 1,23 % 1,21 % 1,78 %
T 1,67 1,49 0,73 0,54 -2,44 *
P 10,9% 15,0% 47,5% 59,3 % 2,3%

Quota division
E 0,79% 5,59% 0,80% 0,25% -4,48 %
S 0,96% 2,28% 1,41 % 1,21 % 1,91 %
T 0,82 2,45 * 0,57 0,20 -2,35 *
P 42,1 % 2,3% 57,3 % 84,1 % 2,8%

Size division
E 0,52% 4,50% 2,64% -0,88 % -5,70 %
S 0,94%' 2,31 % 1,31 % 1,78 % 2,05%
T 0,55 1,95 2,01 -0,50 -2,79 *
P 59,0% 6,5% 5,8% 62,4% 1,1 %

Number division
E 0,07% -25,80 % -2,74 % 2,41 % 16,37 %
S 6,76% 9,55 % 6,92% 6,90% 6,44%
T 0,01 -2,70 * -0,40 0,35 2,54 *
P 99,2% 1,3 % 69,6% 73,0% 1,9 %
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Matrix bias 4 groups

e (2,4)
Bias between group 2 and 4 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA
Cluster division

e -2,10 % -33,14 % -8,35 % 0,88% 15,16 %
S 1,35 % 7,95 % 1,98 % 1,60 % 3,69 %
T -1,56 -4,17 ** -4,21 ** 0,55 4,11 **
P 13,4% 0,0% 0,0% 58,9% 0,0%

Quota division
e -2,39 % -20,76 % -5,46 % -0,99 % 9,29%
S 1,02% 3,54% 1,39 % 0,93% 1,65 %
T -2,35 * -5,86 ** -3,93 ** -1,06 5,63 **
P 2,8% 0,0% 0,1 % 30,1 % 0,0%

Size division
e -0,75 % -7,35 % -3,27 % -2,49 % 1,19 %
S 1,06% 4,00% 1,59 % 1,81 % 2,94%
T -0,71 -1,84 -2,06 -1,37 0,40
P 48,5% 8,1 % 5,3% 18,5 % 69,1 %

Number division
e 36,58 % 3,94% 43,47 % 49,67 % 60,16 %
S 9,40% 15,84 % 11,31 % 10,29 % 10,35 %
T 3,89 ** 0,25 3,84 ** 4,83 ** 5,81 **
P 0,1 % 80,6% 0,1 % 0,0% 0,0%

e (3,4)
Bias between group 3 and 4 for c = 4 based on 23 data sets (21 for Size division)

LF SD DM MF HA
Cluster division

e -4,27 % -38,71 % -9,77 % -0,28 % 18,63 %
S 2,13 % 7,86% 2,63 % 2,45 % 3,36%
T -2,01 -4,93 ** -3,71 ** -0,11 5,54 **
P 5,7% 0,0% 0,1 % 91,0 % 0,0%

Quota division
e -3,38 % -30,05 % -6,71 % -1,49 % 12,81 %
S 1,27 % 5,53 % 1,93 % 1,29 % 1,75 %
T -2,67 * -5,43 ** -3,48 ** -1,15 7,34 **
P 1,4% 0,0% 0,2% 26,3 % 0,0%

Size division
e -1,42 % -13,20 % -6,52 % -1,87 % 6,54%
S 1,35 %- 4,32% 2,46% 1,81 % 2,10%
T -1,05 -3,06 ** -2,65 * -1,03 3,11 **
P 30,5% 0,6% 1,6% 31,4% 0,5 %

Number division
e -11,05 % -23,12 % -5,06 % -4,89 % 6,13 %
S 46,52 % 46,32 % 47,30 % 48,34 % 48,81 %
T -0,24 -0,50 -0,11 -0,10 0,13
P 81,4 % 62,3 % 91,6 % 92,0% 90,1 %
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Matrix bias 2 groups (Iceland)

e (1,2)
Bias between group 1 and 2 for c = 2 based on 11 Icelandic data sets

LF SD DM MF HA

Cluster division
E -1,64 % 2,41 % -2,36 % -3,51 % -5,50 %
S 0,96% 1,91 % 1,74% 1,79% 1,48%
T -1,70 1,26 -1,36 -1,96 -3,71 **
P 12,0% 23,5 % 20,4 % 7,9% 0,4%

Quota division
E -0,44 % -2,95 % -4,85 % -4,96 % -2,95 %
S 0,67% 1,97 % 1,28 % 1,85 % 2,02%
T -0,65 -1,50 -3,78 ** -2,69 * -1,46
P 53,1 % 16,5 % 0,4% 2,3% 17,4 %

Size division
E -1,80 % 4,82% -0,25 % -3,69 % -5,14 %
S 1,10 % 1,68 % 1,50% 2,05 % 2,24 %
T -1,64 2,87 * -0,17 -1,80 -2,29 *
P 13,3 % 1,7 % 86,9% 10,3 % 4,5%

Number division
E 4,10% -29,25 % -1,67 % 7,58% 24,97 %
S 6,57 % 10,46% 7,80% 7,84% 5,60%
T 0,62 -2,80 * -0,21 0,97 4,46 **
P 54,6% 1,9 % 83,4% 35,6% 0,1 %

E Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
P P-value (probability); two-sided for all methods

** Significant at the 1%-level
* Significant at the 5%-level
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Matrix bias 3 groups (Iceland)

E (1,2)
Bias between group 1 and 2 for c = 3 based on 11 Icelandic data sets

LF SD DM MF HA

Cluster division
E -1,62 % 13,07 % 2,28 % -6,57 % -5,76 %
S 1,68 % 3,21 % 2,02 % 3,42% 2,37 %
T -0,96 4,07 ** 1,13 -1,92 -2,43 *
P 35,9% 0,2% 28,4 % 8,3 % 3,5%

Quota division
E -1,32 % 9,33 % -1,49 % -4,78 % -6,78 %
S 1,37 % 3,15 % 1,62 % 2,66% 2,99%
T -0,96 2,96 * -0,92 -1,80 -2,27 *
P 35,8 % 1,4 % 38,0% 10,3 % 4,7%

Size division
E 0,08% 12,90% 4,69% -5,32 % -4,47 %
S 1,88 % 4,99 % 2,94% 3,78 % 2,53 %
T 0,04 2,58 * 1,60 -1,41 -1,77
P 96,5% 2,7% 14,2% 18,9 % 10,7%

Number division
E -8,49 % -26,07 % -18,69 % -14,62 % -9,55 %
S 3,76% 6,57% 5,07 % 3,44% 2,93 %
T -2,26 * -3,97 ** -3,69 ** -4,25 ** -3,26 **
p 4,8% 0,3% 0,4 % 0,2% 0,9%

E (1,3)
Bias between group 1 and 3 for c = 3 based on 11 Icelandic data sets

LF SD DM MF HA

Cluster division
E -1,87 % -3,83 % -2,63 % -7,49 % -4,26 %
S 1,55 % 2,91 % 1,48 % 2,60% 1,68 %
T -1,20 -1,32 -1,77 -2,88 * -2,54 *
P 25,6% 21,7 % 10,7 % 1,6 % 3,0%

Quota division
E -0,93 % -5,51 % -3,57 % -3,31 % -3,03 %
S 1,11 % 1,88 % 1,29 % 1,30% 2,01 %
T -0,84 -2,93 * -2,78 * -2,54 * -1,51
P 42,2% 1,5 % 1,9 % 2,9% 16,1 %

Size division
E -1,27 % 5,47% -1,73 % -8,07 % -7,24 %
S 1,37 %. 2,42% 1,73 % 2,90% 2,42%
T -0,93 2,26 * -1,00 -2,78 * -2,99 *
P 37,6% 4,7% 34,0% 1,9 % 1,4%

Number division
E 15,24 % -4,90% 50,20 % 61,93 % 79,00 %
S 17,18 % 21,46 % 17,68 % 13,57 % 9,03%
T 0,89 -0,23 2,84 * 4,56 ** 8,75 **
P 39,6% 82,4% 1,8 % 0,1 % 0,0%
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Matrix bias 3 groups (Iceland)

e (2,3)
Bias between group 2 and 3 for c = 3 based on 11 Icelandic data sets

LF SD DM MF HA
Cluster division

e -0,40 % -20,81 % -5,25 % -1,36 % 1,11 %
S 1,50% 5,10% 1,39 % 2,14 % 1,93 %
T -0,27 -4,08 ** -3,77 ** -0,64 0,58
P 79,5 % 0,2% 0,4% 54,0% 57,7%

Quota division
e 0,17% -17,69 % -2,35 % 0,91 % 3,10%
S 1,89% 4,20% 2,19 % 2,14% 1,87 %
T 0,09 -4,22 ** -1,07 0,42 1,66
P 93,0% 0,2% 30,9% 68,1 % 12,8 %

Size division
e -1,58 % -12,32 % -7,40 % -3,34 % -3,04 %
S 1,55 % 7,14% 2,39% 2,78 % 2,60%
T -1,02 -1,72 -3,09 * -1,20 -1,17
P 33,3 % 11,5 % 1,1 % 25,7 % 26,9%

Number division
e 16,59 % 9,60% 51,26 % 64,24 % 80,59 %
S 20,35 % 20,71 % 17,44 % 12,71 % 8,61 %
T 0,82 0,46 2,94 * 5,06 ** 9,37 **
P 43,4 % 65,3 % 1,5 % 0,0% 0,0%

£ Estimated bias percentage (mean)
S Standard error of the estimate
Tt-statistic
P P-value (probability); two-sided for all methods

** Significant at the 1%-level
* Significant at the 5%-level
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Matrix bias 4 groups (Iceland)

E (1,2)
Bias between group 1 and 2 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA

Cluster division
E 0,81 % 8,91 % 3,32 % -5,62 % -4,12 %
S 2,03% 2,81 % 2,49% 3,79% 1,97 %
T 0,40 3,17 * 1,33 -1,48 -2,09
P 69,7% 1,0 % 21,3 % 16,9% 6,3%

Quota division
E -3,82 % 8,16% 0,45 % -3,82 % -5,38 %
S 1,86 % 2,60% 2,78 % 2,80% 2,82%
T -2,05 3,14 * 0,16 -1,36 -1,91
P 6,7% 1,0% 87,4% 20,3% 8,6%

Size division
E 3,12% 4,79% -0,87 % -12,19 % -5,67 %
S 3,65% 4,43% 3,84% 3,55 % 1,92 %
T 0,85 1,08 -0,23 -3,43 * -2,95 *
P 43,2% 33,0% 82,9% 1,9 % 3,2%

Number division
E -2,62 % -1,65 % -3,04 % -5,01 % -11,44 %
S 3,93% 5,67% 5,19 % 3,27% 2,02%
T -0,67 -0,29 -0,59 -1,53 -5,68 **
P 52,0% 77,7% 57,1 % 15,7 % 0,0%

E (1,3)
Bias between group 1 and 3 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA

Cluster division
E 0,21 % 17,37 % 1,64% -7,67 % -12,95 %
S 1,80% 4,60% 2,54% 3,63 % 3,39%
T 0,12 3,78 ** 0,65 -2,11 -3,82 **
P 91,0% 0,4% 53,3 % 6,1 % 0,3%

Quota division
E 0,54% 17,77 % 2,28% -5,55 % -11,20 %
S 2,33 % 3,98% 2,42% 3,67 % 2,99%
T 0,23 4,47 ** 0,94 -1,51 -3,74 **
P 82,2% 0,1 % 36,8% 16,1 % 0,4%

Size division
E -3,80 % 3,59% 0,08% -15,18 % -8,18 %
S 2,32% 2,44% 2,63% 4,00% 4,03%
T -1,64 1,47 0,03 -3,79 ** -2,03
P 16,3 % 20,2% 97,6% 1,3 % 9,8%

Number division
E -7,12 % -41,15 % -17,13 % -9,77 % 7,94%
S 7,36% 10,41 % 8,17 % 8,87 % 7,29%
T -0,97 -3,95 ** -2,10 -1,10 1,09
P 35,6% 0,3% 6,2% 29,7% 30,1 %
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Matrix bias 4 groups (Iceland)

£ (1,4)
Bias between group 1 and 4 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA
Cluster division

e -5,32 % -18,57 % -10,12 % -10,11 % 4,53 %
S 1,80% 4,20% 1,94% 2,15 % 3,91 %
T -2,96 * -4,42 ** -5,21 ** -4,71 ** 1,16
P 1,4% 0,1 % 0,0% 0,1 % 27,3 %

Quota division
e -5,12 % -14,81 % -8,64 % -6,93 % -0,23 %
S 1,64% 2,93% 1,99 % 1,56 % 2,73 %
T -3,11 * -5,06 ** -4,35 ** -4,45 ** -0,08
p 1,1 % 0,0% 0,1 % 0,1 % 93,5 %

Size division
e -2,40 % 2,52% -6,23 % -13,62 % -9,34 %
S 2,20% 3,88 % 2,11 % 3,65 % 4,10%
T -1,09 0,65 -2,95 * -3,74 * -2,28
P 32,4% 54,6% 3,2% 1,3 % 7,2%

Number division
e 51,18 % 12,98 % 64,83 % 74,97 % 85,54 %
S 15,86 % 22,10 % 13,90 % 11,17 % 10,07 %
T 3,23 ** 0,59 4,67 ** 6,71 ** 8,49 **
p 0,9 % 57,0% 0,1 % 0,0% 0,0%

e (2,3)
Bias between group 2 and 3 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA
Cluster division

e -0,90 % 9,33 % -2,06 % -2,29 % -8,59 %
S 2,22% 4,15 % 2,69% 2,37% 3,05 %
T -0,40 2,25 * -0,77 -0,97 -2,81 *
p 69,4% 4,8% 46,1 % 35,6% 1,8 %

Quota division
e 4,06% 10,22 % 1,36% -1,71 % -6,04 %
S 2,13 % 3,89 % 2,76% 2,42% 3,35 %
T 1,90 2,62 * 0,49 -0,71 -1,80
p 8,6% 2,5% 63,4 % 49,5% 10,2%

Size division
e -7,49 % -2,04 % 0,48% -2,81 % -2,39 %
S 2,04%· 3,98 % 3,25 % 2,71 % 3,40%
T -3,68 * -0,51 0,15 -1,04 -0,70
P 1,4% 63,0% 88,8 % 34,6% 51,5 %

Number division
£ -7,33 % -44,96 % -18,91 % -7,60 % 16,67 %
S 9,35 % 12,71 % 11,10 % 10,91 % 7,33 %
T -0,78 -3,54 ** -1,70 -0,70 2,27 *
P 45,1 % 0,5% 11,9 % 50,2% 4,6%
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Matrix bias 4 groups (Iceland)

e (2,4)
Bias between group 2 and 4 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA

Cluster division
s -6,40 % -31,88 % -14,43 % -5,21 % 8,19 %
S 1,76 % 7,47% 2,80% 3,19 % 3,52%
T -3,63 ** -4,27 ** -5,16 ** -1,63 2,32 *
P 0,5% 0,2% 0,0% 13,3 % 4,3%

Quota division
e -1,48 % -25,70 % -9,62 % -3,52 % 4,76%
S 1,91 % 3,84% 2,23 % 2,26% 1,66%
T -0,78 -6,69 ** -4,31 ** -1,56 2,86 *
P 45,6% 0,0% 0,2% 15,0 % 1,7 %

.-. -- ~., - _; .'Size-division
e -6,09 % -2,63 % -5,71 % -1,53 % -3,49 %
S 2,46% 2,12% 2,24 % 3,24% 3,45 %
T -2,47 -1,24 -2,54 -0,47 -1,01
P 5,6% 27,0% 5,2% 65,6% 35,9%

Number division
e 49,15 % 6,83 % 63,27 % 74,53 % 86,54 %
S 16,57 % 24,17 % 14,32 % 11,39 % 9,26%
T 2,97 * 0,28 4,42 ** 6,54 ** 9,34 **
P 1,4 % 78,3 % 0,1 % 0,0% 0,0%

e (3,4)
Bias between group 3 and 4 for c = 4 based on 11 Icelandic data sets (6 for Size division)

LF SD DM MF HA

Cluster division
e -5,97 % -49,27 % -12,92 % -3,12 % 14,93 %
S 3,01 % 11,44 % 4,13 % 3,21 % 3,81 %
T -1,98 -4,31 ** -3,13 * -0,97 3,91 **
P 7,5% 0,2% 1,1 % 35,4% 0,3%

Quota division
e -6,44 % -43,35 % -11,70 % -2,16 % 9,42%
S 3,50% 8,63% 2,86% 2,63% 2,81 %
T -1,84 -5,02 ** -4,10 ** -0,82 3,35 **
P 9,6% 0,1 % 0,2% 43,1 % 0,7%

Size division
e 1,30% -1,15 % -6,53 % 1,27 % -1,10 %
S 1,34 %- 3,35 % 2,41 % 1,40% 1,06 %
T 0,97 -0,34 -2,71 * 0,91 -1,04
P 37,7% 74,6% 4,2% 40,4% 34,6%

Number division
e 52,98 % 41,85 % 70,50 % 77,93 % 80,14 %
S 15,83 % 14,82 % 12,12 % 10,33 % 14,88 %
T 3,35 ** 2,82 * 5,81 ** 7,55 ** 5,39 **
P 0,7% 1,8 % 0,0% 0,0% 0,0%
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