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Abstract 

 

This paper investigates conditions under which fisheries agreements between states are self-

enforcing. Cooperative solutions can be self-enforcing if parties to the agreement punish those 

who depart from the cooperative solution by doing likewise, thereby causing a loss to the 

deviant that outweighs transient gains from deviation. Two kinds of deviation are examined: 

(i) effort deviation and (ii) time deviation. Both of these are linked to the excess capacity 

available in the fishery. It is investigated how the number of players that can be 

accommodated in a cooperative solution depends on fishing costs, the discount rate, and the 

growth rate of the fish stock, for a given level of excess fishing capacity. Furthermore, it is 

investigated how the possibility of maintaining a cooperative solution depends on the level of 

excess fishing capacity, and whether or not it would be profitable to invest in excess fishing 

capacity. Finally it is discussed how cost differences among players will affect the viability of 

the cooperative solution. 
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1. INTRODUCTION 

 

For a number of reasons, fish stocks are difficult to manage. One reason is fluctuations in 

stock growth, caused by variability of the environment beyond human control. Another is 

migration of fish across national boundaries. Management of fish stocks that migrate between 

the economic zones of two or more countries requires cooperation among the countries 

involved. Such cooperation is likely to become increasingly difficult the more countries that 

are involved. It will be particularly difficult on the high seas where no single country has 

jurisdiction, because the number of parties with a potential interest is not only large but 

indeterminate.
1
 

 

This paper investigates how the viability of cooperative fisheries agreements depends on the 

number of participants involved. Since such agreements are concluded, or implicit, among 

sovereign states they must be self-enforcing, i.e., each party must find it in its interest to 

adhere to such agreements without any coercion from the outside. The approach taken here is 

based on one of the so-called Folk Theorems in game theory.
2
 A deviation by a single player 

from the cooperative solution will only provide short term gains, as the remaining players 

will, in their own interest, retaliate by also departing from the cooperative solution. Provided 

the discount rate is low enough, no single participant has an incentive to deviate from the 

cooperative solution maximizing the aggregate return. But, as will be shown, the losses from 

deviating from the cooperative solution will be smaller the more participants there are. 

 

This paper follows up an earlier paper (Hannesson, 1997) which looked at deviations where 

one player reduces the fish stock from the optimal level (the cooperative equilibrium) to the 

break-even level over one period, followed by the remaining players doing likewise in 

subsequent periods. This stock depletion by the deviant player gives him a once and for all 

gain in the form of a temporarily large catch of fish. The question what this means in terms of 

excess fishing capacity or time available for the extra stock depletion was left open, however. 

This is the subject of the present paper. 

 

Whatever form cooperative management of fish stocks takes, it involves a formal or an 

informal agreement to apply only a limited amount of fishing effort, consistent with the 

amount of fish it is desired to leave behind after fishing.
3
 Fishing effort has two major 

dimensions, a capacity dimension and a time dimension. Fishing capacity is related to the 

number and technical specification of fishing boats, and the fishing effort they produce is the 

product of their capacity and the time they are used. Keeping the effort within agreed limits 

thus involves applying only a limited number of boats for a limited amount of time. 

Deviations from the cooperative solution could thus take either of two forms and possibly 

both; (i) more boats are used than agreed, or (ii) the boats being used fish longer than agreed. 

The latter presupposes that it is technically possible to extend the fishing season, which would 

imply that there is some excess capacity that is reigned in by not using it for as long a period 

                                                 
1
 The obstacles to cooperation have been investigated in a number of papers. See, e.g., Lindroos and Kaitala 

(2000), Brasao, Duarte and Cunha-e-Sa (2000), Arnason, Magnusson and Agnarsson (2000), and Pintassilgo 

(2003). 
2
 See, e.g., Rasmussen (2001). 

3
 In continuous time models without external fluctuations, cooperative fishing would involve continuous fishing 

at an even rate from a steady-state optimal stock. The model used in this paper is a discrete time model where 

fishing occurs over a certain period, leaving the stock to replenish until the beginning of the next fishing period. 

This kind of model is more in tune with reality where there are seasonal fluctuations in nature, generating 

seasonality in the fishery. 
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as possible. In any case, deviation from the cooperative solution is possible only if there is 

some excess capacity to produce effort beyond what is needed in the cooperative solution. 

 

It is convenient to refer to these two kinds of deviations as (i) the effort deviation and (ii) the 

time deviation, although this is imprecise; the time deviation necessarily implies greater effort 

exerted by the deviating party; the only difference is that this comes after the other parties 

have stopped fishing. If a time deviation is to be possible, it must be true that the fishing could 

go on longer than it in fact does, whether the fishing time is limited by natural conditions 

having to do with the accessibility of fish or by the calendar year, in case the fish are equally 

accessible at all times. It is most relevant, therefore, to think of the time deviation occurring in 

a situation of overcapacity where the fishing season has been shortened because there is more 

than enough latent effort to catch the permitted quota of fish. 

 

Reducing the stock from the optimal to the break-even level typically requires very substantial 

excess capacity. In the time deviation case the fishing would have to be concentrated to a very 

short interval in the fishing season (or the calendar year) in order to give a deviant player the 

opportunity to fish the stock down to the break even-level and ensure maximum return from 

deviation. To some extent this is the consequence of the production function assumed (the 

Schaefer function), but would be present in milder form if the catch per unit of effort is less 

dependent on the size of the exploited stock. In any case, once we make a realistic assumption 

about available excess capacity (say, fishing for a quarter to one half of the fishing season 

instead of a small fraction like one tenth or less, or a threefold overcapacity instead of tenfold 

or more), it becomes possible to accommodate many more players in the cooperative 

equilibrium than if there are no constraints on time or capacity. Furthermore, this would not 

require a long punishment period. 

 

Excess capacity may not be available, but it can be built. We next look at the gains from 

deviation per unit of new capacity and compare this to the incentive the other players have to 

respond to the capacity expansion by doing likewise and retaliate by fishing down the stock. 

As the number of participants increases, the gain per unit of new capacity increases relative to 

what the other players gain by retaliating. The critical number of players is the one where 

these two balance. Taking these capacity costs into account raises the number of players 

compatible with a cooperative solution, the more so the higher the costs of fishing. In some 

cases the number could be about twice what it is in the case of freely available excess 

capacity. 

 

The final question considered is cost differentials. What happens if all players do not have the 

same cost of fishing? This is analyzed in a model where one player has lower fishing costs 

than the other players. This obviously increases the advantage the low cost player has from 

deviation. It is found that the critical number of players compatible with a cooperative 

solution falls dramatically with only minor cost differentials. 

 

2. THE MODEL 

 

The growth of the stock is modeled as follows: 

 

(1) ( )1t t tX S G S+ = +  

 

where Xt+1 is the stock at the beginning of the fishing period t+1 (returning stock), St is the 

stock left behind after fishing in the previous period (escapement), and G(.) is surplus growth. 
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According to this formulation, fishing and stock growth are separated in time, with fishing 

occurring first and growth and death taking place afterwards. Needless to say, this is a 

simplification. It could, however, be reasonably realistic when fishing is seasonal and 

concentrated to a relatively short period. 

 

We shall use the Schaefer production function. This implies that the rate of change in the fish 

stock due to fishing is proportional to the product of fishing effort and the size of the fish 

stock. Fishing effort has a capacity and a time dimension; effort is the product of capacity 

utilized (K) and the time spent fishing (T):
 4
 

 

(2) E = KT 

 

Hence, increase in fishing effort is the result of an increase in capacity utilized or the time 

spent fishing, or both. Effort could also increase even if less time is spent fishing, provided 

the increase in capacity utilized outweighs the contraction of the time spent fishing. 

 

The stock left after fishing is 

 

(3) E

t tS X e−=  

 

From this we get 

 

(4) ln lnt tE X S= −  

 

The amount of fish caught in period t is Xt - St when we ignore growth during the fishing 

period. Let c denote the variable cost of effort. With a given price (p) of fish, the profit is
5
 

 

(5) ( ) [ ]ln lnt t t tp X S c X Sπ = − − −  

 

3. DEVIATION WITH NO LIMITS TO CAPACITY 

 

The cooperative solution to the fisheries management problem will be defined here as leaving 

behind after fishing a stock (S) that maximizes the present value of profits. For a given initial 

stock X0 > S
o
 + G(S

o
), where S

o
 is the optimal steady-state stock to be left after fishing, the 

present value of the fishery profits is: 

 

(6) ( ) ( ) ( ){ }0 0

1
ln ln ln ( ) lno o o o o oV p X S c X S pG S c S G S S

r
  = − − − + − + −     

 

                                                 
4
 Capacity is the number of standardized boats in the fishery. Measuring capacity is not trivial, since boats differ, 

and the capacity of each boat depends on fishing gear and other outfit and technical parameters. This definition 

of capacity differs from what is standard in production theory, where capacity is defined in terms of the goods 

produced. Here capacity produces fishing effort which interacts with the stock of fish to produce fish catches. 
5
 This notion of profit is revenue in excess of variable costs and thus includes the contribution to covering fixed 

and quasi-fixed costs. Quasi-fixed costs are costs necessary to engage in fishing in any given period but 

independent of the length of the fishing period. An example is insurance fees that do not depend on the length of 

the fishing period and can only be avoided by laying up the vessel. Even costs of going to the fishing areas and 

back would be quasi-fixed, as they are presumably independent of the size of the stock. The stock-dependent 

costs are therefore likely to be a rather small fraction of total costs. For an empirical investigation, see 

Hannesson (forthcoming). 
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To apply the Folk Theorem, we need to consider what constitutes a deviation from a 

cooperative solution. We shall assume that the deviating party reduces the stock to its break-

even level, either by applying more effort during the fishing period (effort deviation), or 

continuing to fish after the others have stopped (time deviation). In the period of deviation the 

other participants continue apply the cooperative level of effort, but find out after that period 

is over what has taken place, or are unable to respond earlier. In the next and all subsequent 

periods the other players also participate in depleting the stock to the break-even level, as this 

is their best response to the deviant’s behavior. 

 

We also make the assumption that all parties are of equal size. All of these are simplifying 

and somewhat questionable assumptions. What has happened may become obvious to the 

other parties long before the period of deviation is over. The parties would then, presumably, 

take punitive action already during the period of deviation, which would make deviation less 

profitable than otherwise. Investigating how the outcome of the game is impacted by the time 

lag to discovery is a worthwhile subject, but will not be dealt with here. The assumption that 

the offended parties will respond by deviating from the cooperative solution for ever is also 

problematic, in the sense that a shorter punishment phase could be sufficient to deter any 

party from deviating. The parties could agree to resume the cooperative solution at a later 

date, but the punishment phase would have to go on for some time in order to work, a point 

which we will return to below. Finally, the assumption that all parties are of equal size is 

artificial and also worthy of further investigation. 

 

If deviation is not profitable, the following must hold: 

 

(7) 
( ) *1o

dr

r r

π π
π

+
> +  

 

where πo is the annual sustained profit in the optimal solution. The term π* is the annual 
sustained profit in the punishment phase, here assumed infinite, while πd is the profit during 
the period of deviation. 

 

The deviation will initially be assumed to be the most severe possible, each participant having 

sufficient fishing capacity to reduce the fish stock to its break-even level c/p. That this is the 

break-even level can be seen as follows. The flow of cost per unit of effort is cE while the 

flow of catch is Ex, where x is the level of the stock being fished at a given time point during 

the fishing period. The cost flow per unit of fish caught is therefore c/x, and the profit realized 

during the fishing period is 

 

(8) ( ) [ ]ln ln
t

t

X

t t t t

S

c
p dx p X S c X S

x
π  = − = − − − 

 ∫  

 

which is the same as (5) but derived in a different way. As is clear from the integral term, the 

flow of profits will become zero when the stock has reached the level x = c/p. 

 

The deviant’s profit during the period of deviation depends on whether it is a time deviation 

or an effort deviation. In the time deviation case, the deviant player continues fishing after the 

other players have stopped. His profit will then be as follows: 
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(9) ( ) ( ){ } ( ) ( )( )1
ln ( ) ln / ln ln /d o o o o o o

T pG S c G S S S p S c p c S c p
N

π  = − + − + − − −   

In the period of deviation, the deviant player gets his 1/N-th share of the cooperative solution 

while all players are fishing down the stock to the optimal level. After that he continues 

fishing until the stock has been reduced to the break-even point and no further profits can be 

realized. 

 

In the next period the other players have discovered the deviation and retaliate by 

participating in fishing down the stock to the break-even point. From that period on the 

deviant player’s (and the other players’) profit will be 

 

(10) 
( ) ( ) ( ){ }* 1

/ ln ( / ) / ln /pG c p c G c p c p c p
N

π = − + −    

In the effort deviation case, the deviant player’s profit during the period of deviation will be 

determined by his share of total effort. The deviant player will be able to increase his share of 

the total profit during this period by a unilateral increase in effort. The deviant player’s profit 

in the period of deviation is 

 

(11) ( )( ) ( )( ) ( ){ }/ ln ln /
d

d o o o o

E d d

E
p S G S c p c S G S c p

E E
π

−
 = + − − + − +

 

 

where E
d
 is the deviant player’s effort during the period, and E

-d
 is the effort applied by all the 

others and which is equal to the effort they apply in the cooperative solution. Note that it will 

not be profitable to continue fishing beyond the time when the stock has reached the break-

even level, as the flow of profits would be negative. Hence, in order to maximize the payoff 

from deviation, the deviating agent will increase his effort as much as possible. Noting that 

effort is the product of capacity and fishing time, we have 

 

(12)  
( )

d d d

d d d dd d

E K T K

E E K KK K T
− −−
= =

+ ++
 

 

and the deviating agent will increase his share of the profit in the period of deviation by using 

all his capacity available, or build new to the extent profitable, as will be discussed below. 

Note that the greater capacity used by the deviating agent will shorten the fishing time T, but 

T cancels out of the share expression as it affects all agents in the same way. 

 

From the next period on, every player will have an incentive to apply all his effort fully from 

the beginning of the fishery, to ensure he gets the maximum possible share of the profits. If, 

for simplicity, we assume that all players have the same fishing capacity, each will get the 

same share of the profit flow from the second period on, exactly as in the time deviation 

problem. 

 

Parallel to the time deviation above, we will make the assumption that the deviant player has 

sufficient capacity to reduce the stock to the break-even level. Contrary to the time deviation, 

the deviating agent may use more capacity than strictly necessary for this. The reason is that 

the deviating agent will increase his share of the catches by doing so. As the deviating agent 
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increases his effort beyond a certain level the time fishing will shrink, because no one will 

continue fishing beyond the time the flow of rents turns negative. The attractiveness of 

deviation will thus increase the greater excess capacity the deviating agent has. Here we shall 

assume that the deviating agent has just sufficient capacity to reduce the stock to the break-

even level without affecting the time fishing, and that the other agents have the same excess 

capacity to retaliate in the periods thereafter. The fishing time will therefore shrink in these 

later periods. 

 

It is unclear which kind of deviation will be most profitable, for any given number of players. 

The share (s) the deviant player takes of the catch during the period of deviation is 

 

(13) 
1d

d d

E
s

E E N−
= >

+
 

 

The difference in profits during the period of deviation can be written 

 

(14) 
( ) ( )( )( )

( ) ( )( ) ( )

1
ln ln

/ ln ln / 1

d d o o o o

T E

o o

pG S c G S S S s
N

p S c p c S c p s

π π   − = − + − −    

 + − − − − 

 

 

which has an ambiguous sign, because of (13) and s < 1. 

 

We can now use (7) above to find the number of players consistent with a cooperative 

solution. With the assumptions that have been made, the difference lies in the term πd, while 

π* and πo are identical under both deviations. To illustrate, we shall use the discrete-time 

logistic function 

 

(15) ( )( ) 1G S aS S= −  

 

where the carrying capacity has been normalized at 1. The growth parameter a is the 

maximum relative rate of growth (G(S)/S). 

 

The time and effort deviations are compared in Figure 1, for various combinations of 

parameters. It clearly makes a difference what form the deviation takes, i.e., whether it is a 

time deviation or an effort deviation. Also it would make a difference in the effort deviation 

case how much excess effort the deviant agent has available; here it has been set equal to what 

is sufficient to drive the stock down to the break-even point. 

 

Clearly, cooperation can only be sustained among a limited number of agents, but exactly 

how many depends on costs, the discount rate, and the productivity of the stock. Time 

deviation accommodates more players than effort deviation, the more so the higher the cost. 

The higher the discount rate, the fewer are the agents among whom cooperation can be 

sustained, as expected. It is not always the case that more agents can be accommodated in the 

cooperative solution the higher the cost of fishing; there is a tendency in this direction, but 

beyond a certain level of costs the critical number of agents falls in the case of a high growth 

rate of the stock (a = 1). There is a certain tendency that a more productive stock (higher a) 

would accommodate more agents, but this does not occur for effort deviation and high costs. 
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Figure 1: Maximum number of participants consistent with a cooperative solution. 

 

4. LIMITS TO CAPACITY 

 

The deviations considered above implicitly assumed that there is sufficient fishing capacity to 

reduce the stock to the break-even level. As we shall see in this section, this excess capacity 

could be quite large, and perhaps unrealistically large. In this section we consider how limited 

excess capacity affects the possibilities of maintaining a cooperative solution. 

 

Consider first the time deviation. Suppose fishing goes on for a fraction γ of the maximum 

available fishing time. If the deviating player continues fishing as long as possible, he will be 

able to reduce the stock in the period of deviation (t = 0) to 

 

(16) 
( )*

0

1/ 1
exp

o

o
E

S S
N

γ −
= − 

 
 

 

E
o
 is the effort applied in the cooperative solution, of which each player has 1/N-th. The 

deviant player will continue fishing until he either runs up against the time constraint or has 

depleted the stock to the break-even level. 
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In the next period all bars are off, and the other players will fish for as long as possible. If all 

have the same capacity, the total effort will be E
o
/γ, or less if this would deplete the stock 

below the break-even level. In the first period after deviation the stock will be reduced to 

 

(17) ( )*

1 1max / , exp /oS c p X E γ = −   

 

and so on, until the break-even level has been reached. 

 

We shall now take into consideration that it may not be necessary to punish the deviant player 

by keeping the stock at the break-even level indefinitely. Denote the length of the punishment 

period by T, which includes the time (τ) it takes to drive down the stock to the break-even 

level. After this, the players may agree to resume cooperation. Since the stock has been 

depleted, they will have to cease fishing for some time to rebuild the stock. Denote the time it 

takes to rebuild the stock by ∆. The payoff (v*) for the deviating agent, taking all this into 
account, is 

 

(18) 

( ) ( ){ } ( ) ( )

( ) ( )( ) ( )( ){ }

( )
( )( ) ( )( ) ( ){ }

( ) ( )
( )( ) ( )( ) ( ){ }

* * *

0 0

* * * * * *

0 0 1 0 0 1

* * * *

1 1 1 1

1
ln ( ) ln ln ln

1
ln ln

1

1
..... / ln ln /

1

1 1 1
/ ln / / ln /

1

1

o o o o o o

T

v pG S c G S S S p S S c S S
N

p G S S S c G S S S
N r

p G S S c p c G S S c p
N r

r r
p G c p c G c p c p c p

rN

N

τ τ τ ττ

τ τ

− − − −

− − +

 = − + − + − − − 

 + + − − + − +

 + + + − − + − +

 + − +   + − + − 

+
+( )

( )( ) ( )( ){ }

( ) ( )( ) ( )( ){ }

1 1 1 1

( )

ln ln

1
ln ln

o o

T T T TT

T

o o o o

p G S S S c G S S S
r

r
p G S c G S S S

rN

+∆− +∆− +∆− +∆−+∆

− +∆

 + − − + − 

+  + − + − 

 

 

The criterion for maintaining cooperation is v
o
 = V

o
/N > v*. Let c = 0.3, a = 0.05,  p = 1, and r 

= 0.05. This gives S
o
 = 0.6 and a steady state catch of 0.12, and an annual steady state profit 

of 0.0653. The initial stock in the cooperative solution is S
o
 + G(S

o
) = 0.72 while the break-

even level is 0.3. A very substantial excess capacity would be needed to reduce the stock to 

the break-even level, especially with the Schaefer production function, which implies 

diminishing returns to effort as the stock is depleted. For example, with two players of equal 

size, the fishing time would have to be about 12 percent of the maximum available time to 

give one player the opportunity to reduce the stock to the break-even level over just one 

period.
6
 With more players where all have the same capacity, this fraction would have to be 

lower still. 

 

From Figure 1 we see that, in this case, 10 players could be accommodated in a cooperative 

solution, on the assumption that there is enough time available for one player to reduce the 

stock to the break-even level (time deviation). This number is significantly higher if we put 

realistic restrictions on the time and capacity available to reduce the stock. Figure 2 shows 

                                                 
6
 This is given by Equation (16), with E

o
 set high enough to give S0

*
 = c/p. 
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how the necessary punishment time for different numbers of players depends on the fraction 

of available fishing time utilized (γ) in the cooperative solution. For fishing that utilizes as 
little as a quarter of the available time, more than 30 players could be accommodated in a 

cooperative solution with only 4 years of “punishment” where all fish down to a break-even 

stock level (and wait for 4 years for the stock to recover after the punishment phase is over). 

As the fraction of fishing time falls to 1/10 or 1/12 a much longer punishment period will be 

needed, but 30 or more players could still be accommodated in a cooperative solution. 
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Figure 2: Length of punishment necessary to accommodate 10, 20 and 30 players in a cooperative solution, with 

a time (left panel) versus effort (right panel) deviation. 

 

Figure 2 also shows the length of the necessary punishment period. The conclusion emerging 

from this is not very different. With effort deviation, 8 players could be accommodated in a 

cooperative solution when there were no restrictions on the available fishing capacity (cf. 

Figure 1), but with such restrictions many more players can be accommodated. Figure 2 

shows excess capacity of up to 10 times what would be needed in the cooperative solution, 

and even here more than 30 players can be accommodated. The necessary punishment phase 

is less than 10 years with an overcapacity of up to 400 percent, and although it increases 

quickly as overcapacity rises further it is still finite with 30 players. 

 

The dynamics of profit flow under the effort deviation are slightly different from what obtains 

under the time deviation. In the optimal solution, the total effort is 

 

(19) oE NkKT=  

 

where k is the fraction of capacity that the players use, and T is the length of the fishing 

season, assumed to be fully used. If one agent begins to fish with all his capacity, effort will 

be 

 

(20) ( )*

0 1E N kK K T= − +   , T T≤  

 

with T T< if the stock is reduced to its break-even level before the fishing season is over. The 

stock left behind after fishing will be 
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(21) ( )* *

0 0 0max / , expS c p X E = −   

 

From the next period on, the other agents fish with all their capacity, so that 

 

 

(22) *

1E NKT= , T T≤  

 

and  

 

(23) ( )* *

1 1 1max / , expS c p X E = −   

 

It may take several periods to reduce the stock to the break-even level. After the necessary 

punishment phase is over, the players may resume cooperation, after allowing the stock to 

recover. The payoff for the deviant player is a slight modification of (18): 
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− +∆

 + − − + − 

+  + − + − 

 

 

 

5. CAPACITY COST 

 

The previous discussion has assumed implicitly that there is excess capacity available at no 

cost. How would the results be affected if we take into account that additional fishing capacity 

may have to be built at some cost? There are two aspects to be considered. First, the deviant 

player must invest in additional capacity to deplete the stock to the break-even level and to 

realize the short term gain that goes with it. Second, the other players must invest in 

additional capacity to maintain their share of the catch value. There will be situations where it 

would not pay for the other players to invest in additional capacity to maintain their share of 

the catch, in which case the gains for the deviant player would be all the greater and the 

incentives to deviate stronger, and those who deviate first would realize a gain at the expense 

of the laggards. 

 

Although effort deviation is not unambiguously more profitable than time deviation, it turned 

out to be so in the examples above, and hence we will consider capacity buildup for the 
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purpose of effort deviation. Consider again a situation where all players are identical and have 

just enough capacity to take the optimum sustainable yield G(S
o
). The total effort necessary to 

realize this catch is 

 

(24) ( ) ( )ln ( ) lno o o oE S G S S= + −  

 

of which each contributes 1/N. Now suppose that one of the players invests in additional 

capacity to acquire a greater share of the stock. Suppose that this is just sufficient to reduce 

the stock to the break-even level over the same time spent fishing as before effort was 

expanded and the optimum sustainable yield was being taken. This makes the capacity 

increase proportional to the increase in effort and is also the minimum cost capacity 

expansion necessary to accomplish the said reduction in the stock. 

 

The effort necessary to reduce the stock to the break-even level is 

 

(25) ( ) ( )* *ln ( ) lno oE S G S S= + −  

 

so the effort expansion that the deviant player will undertake is 

 

(26) *d oE E E∆ = −  

 

The maximum capacity cost that makes this expansion worth while is equal to the realized 

gain divided by the capacity expansion. The realized gain is 

 

(27) 
( )* *

*

1 /o o o
d dE N E N
v

E N rN

π π π
π

− − −
∆ = − +  

 

where 

 

(28) ( ) ( )( )* *ln lnd o o o op S G S S c S G S Sπ   = + − − + −     

 

on the assumption that the other players retaliate and expand their effort on the same scale as 

the deviant player. The said maximum capacity cost making the deviation worth while is 

 

(29) 
d

d

d

v
C

E

∆
=
∆

 

 

But would retaliation by the other players be worth while? It would, at least to an extent, if the 

derivative of their payoff function is greater than the unit capacity cost. In the new 

equilibrium with the stock at the break-even level, the payoff of a non-deviant player is 

 

(30) 
*j d

j d E
v

E r

π≠
≠ =
∑

 

 

giving 
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Figure 3: Critical number of players with and without capacity costs. 

 

If 
j d

d

j d

v
C

E

≠

≠

∂
>

∂
it would be more profitable for the non-deviant players to expand their effort at 

the margin, in response to the deviation, than it would be to deviate. The relative size of the 

two terms depends on the number of players, and we can find the critical number of players as 

the number which reverses the inequality. Figure 3 shows this number together with the 

number that was obtained ignoring costs and capacity constraints. We see that with the 

exception of low operating cost of effort (c), the number of players compatible with a 

cooperative equilibrium is higher when capacity costs are taken into account, but still 

somewhat limited (the highest number occurring is 23). 

 

6. COST HETEROGENEITY 

 

If operating costs differ among the players, this will make deviation more profitable for low 

cost agents. The viability of the cooperative solution could be quickly eroded as cost 

differentials increase. Here we shall consider a model with a single low cost agent and N - 1 
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high cost agents. We shall consider the case with time deviation, because whichever form the 

deviation takes, the low cost player will be able to fish profitably for a longer period than the 

high cost players, his break-even stock level being lower. This makes the deviation from 

cooperation more profitable than otherwise for the low cost player. Furthermore, because of 

the cost differential, the low cost player could possibly exclude the high cost players from the 

fishery by depleting the stock to a level that is low enough for the returning stock to be below 

the break-even level for the high cost players. If that level is above the break-even level for 

the low cost player, he would not need to deplete the stock that much. This would further raise 

the payoff from deviation, partly because the competing high cost player could be excluded 

altogether and partly because the low cost player would not have to deplete the stock as much 

as otherwise. 

 

The stock level that excludes the high cost players (S
#
) is given by 

 

(32) ( )# # /hS G S c p+ =  

 

where ch is the cost per unit of effort for the high cost agents. With cl being the cost per unit of 

effort for the low cost agent, the level to which he will ultimately fish down the stock is 

 

(33) * #max / ,lS c p S =    

 

How quickly this will happen depends on the fishing capacity of the low cost agent. Note also 

that the fishing in each period can be divided into two phases, one in which all fish 

simultaneously and one that occurs after the stock has been depleted below the break-even 

level of the high cost agents (ch/p) and the low cost agent fishes alone (both phases need not 

always exist simultaneously). The stock left at the end of the first phase of each period 
*

,1tS will be whichever is greatest, the break-even level for the high cost agents, or the level 

determined by the low cost agent’s capacity: 

 

(34) ( )* *

,1 max , /t t hS S c p=  

 

The second phase will occur when the low cost agent is able to deplete the stock below the 

break-even level of the high cost agents. The stock left after fishing at the end of the second 

phase will be given by 

 

(35) ( )* * #

,2 max , , /t t lS S S c p=  

 

An additional question concerns what determines the optimal stock, S
o
. The high cost agents 

and the low cost agent will not agree on that, because their cost levels are different. We shall 

use the low cost agent’s cost as a reference point, because this would make the low cost agent 

less willing to deviate from the optimal solution. We then get the deviating agent’s payoff as a 

modification of (18): 
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Table 1: The number of players with unlimited capacity (N∞) and the maximum number of players with 100% 

overcapacity (max N) compatible with a cooperative solution. Infinite punishment period, season length ½ of 

maximum, time deviation. Cost of the high cost players (ch). Cost of low cost player: cl = 0.3.  

 
ch N∞∞∞∞ 1/γγγγ - 1 max N 

0.3 10 1 ∞ 
0.325 9 1 42 

0.35 6 1 11 

0.375 4 1 6 

0.4 3 1 3 

0.45 2 1 2 

 

 

It turns out that the critical number of players that can be accommodated in a cooperative 

solution is very sensitive to the cost differential between the high cost players and the low 

cost player. Table 5 shows results for cl = 0.3 and successively rising cost (ch) of the high cost 

players. With c = 0.3 for all, 10 players can be accommodated in the cooperative solution 

when there are no limits on capacity, and an unlimited number if the capacity is just twice that 

needed and stays that way for ever. The number that can be accommodated in the case of 

unlimited capacity falls quickly as ch rises and reaches 2 when ch = 0.45. The maximum 

number that can be accommodated with capacity twice what is needed (a fishing season that 

lasts only half the available time) also falls quickly, from infinity to 40 when ch = 0.325, and 

reaches the number for unlimited capacity already at ch = 0.4. 
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CONCLUSION 

 

This paper has shown that a cooperative solution in a game of a shared fish stock can be 

sustained only with a limited number of players. This is particularly the case if there are no 

constraints on the available fishing capacity or the time available for excess fishing. If we 

assume that overcapacity is only moderate, such that the total capacity is only two or three 

times what would be needed, it becomes possible to support many more participants in the 

cooperative solution. But there is limited comfort in this. We also showed that there could be 

incentives to build up a capacity that could come perilously close to limiting the number of 

players compatible with a cooperative solution to something comparable to the number of 

countries sharing some fish stocks, to say nothing of the number of countries (flag states) with 

a potential interest in high seas fisheries. 

 

The most damaging case for the cooperative solution is the possibility that different nations 

have different fishing costs. This, needless to say, is highly likely to be the case. Only rather 

minor cost differentials are sufficient to limit the number of participants consistent with the 

cooperative solution to a number that can be counted with the fingers on one hand. 

 

In the light of this, it is not surprising that cooperative solutions in high seas fisheries are 

difficult to achieve. That conclusion is supported by other approaches, such as looking at 

coalitions in non-cooperative games (see, e.g., Lindroos and Kaitala, 2000, and Pintassilgo, 

2003). 
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