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Abstract

We simulate how an increase in the productivity of the North-East Arctic cod stock

would affect the Russian-Norwegian cooperation on the management of the stock. The

productivity increase is linked to environmental conditions in the sea and to climate change

through a temperature-dependent stock-recruitment relationship, where the numbers of

recruits is positively related to the sea temperature given the spawning stock biomass.

Increased recruitment and productivity of the stock improved the stability of an agreement

on joint management. Expressing the closed-loop solution as a series of open-loop

equilibrium solutions, studying the issue of reevaluating agreements on shared and

straddling fish stocks, highlights the need for better and more flexible management systems

that can cope with shifting environmental conditions.

Keywords: Closed-loop game modeling; Noncooperative and cooperative solutions;

North-East Arctic cod; Climate change

JEL Classification: C61; C73; Q22.
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Introduction

How would the formation, stability and success of an agreement on cooperative

management between neighboring coastal states for a climate-sensitive fishery resource

be affected by changes in the abundance, distribution and accessibility of the resource

within the exclusive economic zones (EEZs) of these states? A shift in the climate

regime could have two types of effects on a climate-sensitive fishery resource: (i) changed

biomass and (ii) changed area of distribution or/and migration pattern. Both are, of

course, possible and closely linked. If the stock decreases in numbers, this may have an

effect on distribution. Abundance changes may also have a density-dependent effect on

catchability.

The inherent difficulty of managing such resources suggests that adaptation to the

effects of climate variability and climate change is likely to be less complete and effective

than might be the case for resources that are controlled by a soleowner. Moreover,

climatic variations may destabilize efforts to cooperatively manage resources that are

shared among several jurisdictions.

With regard to climate change and its effects on fisheries, the research has mainly been

focused on changes in distribution of fish stocks that straddle the boundaries between

different jurisdiction (Ekerhovd 2010; Miller 2007; Hannesson 2007b,c; Miller and Munro

2004). However, Brandt and Kronbak (2010) evaluated the possibilities of achieving a

cooperative agreement for a jointly exploited resource if the resource itself is subject to

an exogenous change. In an application to Baltic cod they show that if climate change

increases the biomass of the stock, then there is an increased possibility of achieving a

cooperative agreement (Brandt and Kronbak 2010).

Here we examine the temporal conditions for sharing of the North-East Arctic

(NEA) cod fishery between Norway and Russia in the Barents Sea when warmer ocean

temperature positively affects the productivity of the stock through increased recruitment

to the fishery. The main focus is on the determination and comparison of two types of
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solutions: noncooperative and cooperative solutions. We will compare the cooperative

(Sole-Owner) alternative outcome with noncooperation over time as the temperature is

assumed to increase and the numbers of recruits entering the fishery increases with it,

given the spawning stock biomass.

In reality, Russia and Norway share the total allowable catch (TAC) of the NEA cod

equally between them. (In addition, the treaty between Norway and Russia also includes

haddock and capelin and allows for some minor share to be fished by third country vessels,

which we will ignore in this context). Moreover, we will assume that Norway and Russia

would both prefer to cooperate rather than compete for the fish if the net present value

(NPV) from the cooperative solution would cover their opportunity costs of cooperating;

that is, if the NPV from cooperation is sufficiently large to pay both countries the NPVs

they would have earned on their own competing against each other. If not, we will

assume that they will go on with the noncooperative behavior until cooperation becomes

sufficiently profitable. Furthermore, the paper looks at a status quo case where there is no

temperature/productivity change, in order to identify whether the decision to cooperate

or not is really affected by changes in the stock productivity.

The change in productivity as the climate changes and the temperature increases is

not necessarily a straightforward process. This, again, might shift the balance of the

bargaining power between the coastal states. It might take years before the new status is

generally accepted by the all coastal states, as the shift in temperature and recruitment

can be a gradual process with considerable short term variation, meaning that there may

be considerable doubt as to whether a shift in the productivity is only a temporary change

or if the fish stock actually has changed its recruitment and productivity permanently.

During the period of transition, the underlying uncertainty might put an established

agreement on the management of the stock among the coastal states at risk, as the shift

in bargaining power of a coastal state might entice it to prove its claim to a higher share

by severely increasing its fishing effort and thus its catches, in order to establish rights

to the fishery and gain acceptance for its new status. The other coastal state might try
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to limit the other’s profit by increasing its fishing effort too. If this transient period

lasts for a long time and the noncooperative behavior is allowed to continue, it might

threaten the fishery, as the stock cannot sustain a too high fishing mortality indefinitely

without either becoming extinct or being driven to the break-even stock level (the level

at which further fishing becomes unprofitable). The initial terms of the agreement might

no longer be incentive compatible to participating countries in the new environment. If

so, renegotiation of the initial agreement is necessary.

As Kaitala and Lindroos (2004) point out, the timing of international agreements

can either facilitate or destabilize cooperation. The costs players face, and how players

in the game perceive the size of the stock biomass, among other variables, can affect

whether or not and when they choose to cooperate (Kaitala and Lindroos 2004). The

issue of resilience to shocks in the system in the cooperative solution was raised by

Kaitala and Pohjola (1988) and reiterated by Munro (1990). However, it has not yet

been tackled either in theory or in practice (Munro 2008). Deterministic models, such

as Kaitala and Pohjola (1988), illustrate how changes in the system can lead to an

unstable equilibrium. Game-theoretic stochastic models, such as those developed in

Sumaila (2002), Laukkanen (2003), and McKelvey et al. (2003), are insightful and can

help policy makers anticipate how shocks in the system may effect the cooperative solution

(Bailey et al. 2010). However, practical evidence suggests that predicting these shocks

is difficult, both in magnitude and direction (Munro 2008). An attempt to better use

dynamic modeling in bio-economic and game-theoretic applications should also help to

address timing and resilience in cooperative solutions, as could better use of stage games

(Bailey et al. 2010).

Conventional dynamic optimization and the time-inconsistency of open-loop game

approaches, used broadly in fishery and environmental economics modeling, are

inadequate to address the above issue. On the other hand, closed-loop games are

appropriate modeling approaches to economic-environmental problems. Nevertheless,

closed-loop solutions are often computationally intractable. They are seldom used in
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empirical modeling and policy analysis.

Yang (2003) “proposes an algorithm to obtain a closed-loop Nash equilibrium to

a [transboundary pollution problem] as a sequence of open-loop Nash equilibria. The

approach is illustrated with the RICE model [Nordhaus and Yang 1996] and the policy and

methodological implications of the closed-loop strategies are discussed. It is worth noting

that this approach is especially useful when the differential game model is intractable

and the negotiation rules have a clause allowing for periodical reevaluation of strategies.”

(Jørgensen et al. 2010, p. 451).

In this paper, following Yang (2003), we compute closed-loop solutions of sharing the

NEA cod fishery between Russia and Norway. We overcome the computational difficulties

of closed-loop solution by expressing the solution as a series of open-loop equilibrium

solutions. This makes the closed-loop solution a feasible approach in empirical modeling.

Given the economic and cultural importance of the fishery to Norway and North-

Western Russia, it is not surprising that there exist numerous studies on fishery

management in the Barents Sea (Diekert et al. 2010b). Topics range from overall

studies of efficiency (Steinshamn 1993; Arnason et al. 2004; Kugarajh et al. 2006) to

the impact of climate change (Hannesson 2007b, 2006). The interaction between the

different participating fleets is analyzed by Hannesson (1978), Steinshamn (1994), and

Sumaila (1997). Closely related, the effects of cannibalism and interspecies competition

on optimal harvesting and fleet selection is studied by Armstrong (1999) and Sandal and

Steinshamn (2002). Finally, the strategic game between Russia and Norway has been

analyzed cooperatively by Armstrong and Flaaten (1991), Armstrong (1994), Hannesson

(1997), and non-cooperatively by Diekert et al. (2010a), and Hannesson (2007a).

The plan of the paper is as follows. The next section describes the cod distribution and

migrations, followed by a section discussing the some important environmental factors.

A fourth section describes the simulations. In the fifth section we present the results, and

finally the sixth section concludes the paper. A more detailed description of the model

is relegated to the Appendix.
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Migrations

The mature part of the Northeast Arctic cod stock migrates to the Norwegian coast

early in the year to spawn, mainly to the waters around the Lofoten Islands. The

spawning process is over by the end of April, after which the stock migrates back into the

Norwegian Sea and the Barents Sea. The eggs and larvae drift with the current towards

Spitzbergen and into the Barents Sea. The immature age groups migrates towards the

coast of Finnmark (the northernmost part of Norway) early in the year in search for food,

migrating back towards Spitzbergen and the Barents Sea as the spawning migration of

capelin is over (Figure 1).

The modeling of these migrations is as follows. First, the year is split into two parts,

the first four months and the rest. The mature part of the stock is assumed only to

be available for Norway in the first period, because of its spawning migration. The

immature part of the stock is assumed to be equally available for Norway and Russia

in this period. In the second period the spawning stock is assumed to have migrated

back into the Norwegian Sea and the Barents Sea and to be equally available for both

countries. The share of the stock available in each country’s economic zone varies from

year to year, according to climatic conditions, and it is possible that more than half of

the stock is available in the Norwegian zone on average, but here we shall assume an even

distribution between the zones as a base case.

The spawning stock biomass is determined as the stock remaining half way through

the first fishing season (the spawning season), because all fish do not spawn at the same

time, and assuming they all do so at the beginning of the period would ensure the survival

of the stock even if the spawning stock would be wiped out almost immediately at the

beginning of the period.

The location of the spawning grounds is influenced by the climatic conditions such

that the center of gravity moves northward with increasing temperature. Furthermore,

evidence suggest that the center of gravity of the distribution of young cod has moved
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Figure 1: The general distribution of the Northeast Arctic cod. Source: Institute of
Marine Research, PO Box 1870 Nordnes N-5817 Bergen, Norway.

eastward since the early 1980s.

One possible effect of a warmer ocean climate is that the cod stock would migrate

further north and east into the Barents Sea without necessarily getting any bigger or

establishing new spawning areas off the coast of Russia. This would mean that more of

the stock would be available in the Russian economic zone.

Environmental conditions

The Barents Sea is one of the world’s richest, purest, and most productive marine areas,

and where the climate, both in the sea and the atmosphere, is expected to change in

response to global warming (ACIA 2004; Stenevik and Sundby 2007; Ellingsen et al.

2008).

However, there is considerable uncertainty about the realization of the above scenario.

Simulations show that there will be no change in the decadal mean flow of water into

the Barents Sea during the next 50 years, but the temperature of the water transported

into the Barents Sea will become significantly higher (increase of about 1◦C during the
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period) (Ellingsen et al. 2008). Even though the simulation results show that the future

climate will be warmer, there are also years when the climate is comparable to periods of

the present climate. The position of the Polar Front in the Barents Sea, separating the

warm Atlantic water from the cold Arctic water, is strongly governed by topography in

the western part of the Barents Sea. In the east, where the topographic control is weak,

changes of the position of the Polar Front towards the north and east are more likely

(ACIA 2004).

Recruitment levels of individual cod stocks have frequently been associated with

variations in temperature during the first year of life. The sign of the relationship between

sea surface temperature and recruitment, in the North Atlantic, was generally positive

for cold-water stocks (adults which inhabit bottom temperatures ≤ 6◦C) and negative

for warm-water stocks (adults which inhabit bottom temperatures ≥ 9◦C). Stocks in

the mid-range of bottom temperatures (7− 8◦C) tended to have little or no relationship

between sea surface temperature and recruitment (Drinkwater 2005)

The copepod Calanus finmarchicus is the dominant meso-zooplankton in the

Subarctic gyre of the northern North Atlantic and the main prey item for the Northeast

Arctic cod larvae and juveniles. It is adapted to the spring bloom of the region, with

feeding and reproduction during spring and summer, and hibernation at depth during

winter. Through advection by the Norwegian Atlantic Current, the C. finmarchicus

production spills over from the core regions onto the adjacent shelves, e.g. the shelf off

Norway and the Barents Sea (Vikebø et al. 2005). Therefore, Sundby (2000) suggested

that the recruitment–temperature relationship for the Northeast Atlantic cod (a cold-

water stock) is a proxy for the food abundance during the early stages, explained by the

advection of warm C. finmarchicus-rich waters from the core production regions to the

habitat of cod.

Figure 2 shows the temperature in the Russian Kola Section since 1900. We observe

large year-to-year fluctuations. The difference between the warmest and the coldest year is

as much as 2◦C, which is a lot in this area. Averaging over several years we find what seems
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Figure 2: Average annual temperature, Kola Section 1900-2007. No. of obs. = 108, mean
temperature = 3.95◦ C, standard deviation = 0.477, minimum temperature 2.84◦ C and
maximum temperature = 5.08◦ C. Source: PINRO, Murmansk.

to be periodically fluctuations in the system. Averaging over 30 years, the temperature

increased from the beginning of the century until about 1940, and then declined again.

The minimum was reached in the late 1970s, and since then the temperature has increased

until present. The latter coincides well with other observations that indicates a relative

warming the last 30 years (Loeng and Ingvaldsen 2002).

Simulations

Our goal with this work is to simulate how an increase in the productivity of the

North-East Arctic cod stock would affect the Russian-Norwegian cooperation on the

management of the stock. A productivity increase is linked to environmental conditions

in the sea and to climate change through a temperature dependent stock-recruitment

relationship of the Ricker-type (see Appendix, Equation A-3), i.e., the number of recruits

is positively related to the sea temperature given the spawning stock biomass.

The temperature is measured in degrees Celsius. Although Figure 2 indicated an
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Figure 3: Temperature projection. τ0 = 4, τmax = 6, and µ = 0.01 (solid) and µ = 0.02
(dashed), respectively.

increase in the sea temperature over the last 30 years there have been considerable

fluctuations and care should be taken when we want project temperature development.

Firstly, a positive relationship between temperature and recruitment can only be relied

upon within the range of the observed temperatures. Beyond these limits we cannot

say what will happen. Secondly, the temperature increase during the next 100 years is

expected to be in the range of 1-2◦C, with considerable annually variation. With this

in mind we need to control and keep our simulations of the future temperatures within

these limits. Therefore, the temperature change is described by a logistic function

τt =
τmax

[(τmax − τ0)/τ0]× exp (−µ(t− t0)) + 1
,

where τt is the temperature at time t, τmax is the upper limit temperature, τ0 is the initial

temperature, and µ is the rate of temperature change.

Figure 3 illustrates two different possible temperature development paths, designed to

keep the temperature between 4 and 6◦C : one with a slower temperature change implied

(µ = 0.01) and the other with a more rapid temperature change path (µ = 0.02).

10

SNF Working Paper No. 52/10



We assume that the two parties, Russia and Norway, maximize the net present values

(NPV) from their cod fisheries. Their strategies involve setting the appropriate levels of

fishing effort for the fisheries. Norway has two strategic variables, fNa and fNb . fNa is

the fishing effort for the mature stock in the first part of the year, which is only available

in the Norwegian economic zone because of the spawning migrations. fNb is the fishing

effort for the rest of the stock that is available in its zone the first part of the year, and for

the whole stock available in the Norwegian zone in the second part of the year. Russia,

however, has only one strategic variable, fR, which is the fishing effort generating the

fishing mortality of the stock available in the Russian zone in both parts of the year,

which excludes the spawning part of the stock in the first part of the year.

The noncooperative NPV evaluated at time t will then be contrasted to the results

from optimal harvesting (soleowner). The soleowner controls both fleets and, thus, has

available the same strategic opportunities as Norway. At the beginning of each stage

(t) the respective noncooperative NPVs and the cooperative NPV are calculated, and

the players harvest the stock cooperatively in the current stage if the soleowner NPV is

as least as great as the sum of their individual noncooperative NPV. If not, they will

each carry out the strategy that maximize their individual noncooperative NPV. This

calculation and decision process is carried out at the beginning of every stage.

The problem of the soleowner will then be:

max
ft

T∑
t=0

δt[ΠR(Xt, f
R
t , f

N
t ) + ΠN(Xt, f

R
t , f

N
t )] (1)

subject to the biological system Xt and control ft.
1

The soleowner controls both fleets. The model is solved for T = 125. The long time

horizon and discounting, where δ is the discount factor, ensures that the reported solutions

will be numerically indistinguishable from the infinite horizon case. The biological system,

summarized by Xt, is specified by the vector of biomass with the recruitment function

1See the Appendix for a more detailed description of the model and its parameters.
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(cf. Appendix, Equation A-3) giving the number of three year old fish (recruits) N3,t,

and the number of fish of age a for a = 4, ..., 13+ according the cohort development

Na,t = Na−1,t−1 × exp [−qa−1

∑I
i=1 f

i
t−1 −M ], where qa

∑I
i=1 f

i
t denotes the age-specific

fishing mortality Fa, and M is the natural mortality.2 qa is the age-specific catchability

coefficients, presented in Table A-2 in the Appendix along with the weight and maturity

parameters. As a short hand notation, the system is written as Xt+1 = ψ(Xt, f
R
t , f

N
t ) for

t = t− 3, t− 2, t− 1, t. The initial state X0 is given by the assessment of ICES (2008).

A discrete time differential game will be applied, which is described by

• The number of players: Russia and Norway i = R,N .

• The number of stages t = {0, 1, ..., T}.

• The control variable f i of player i.

• The state Xt+1 = ψ(Xt, f
R
t , f

N
t ) describing the biological system.

• The pay-off functions of the players which are for Russia and Norway, respectively:

JR =
T∑

t=0

δtΠR(Xt, f
R
t , f

N
t )

JN =
T∑

t=0

δtΠN(Xt, f
R
t , f

N
t )

Each agent will choose a strategy which maximizes his NPV. The choice of player i

will therefore be a best response to the strategy of player j and the prevailing state. The

outcome of this reciprocal optimization will be a situation where no player can improve his

pay-off by unilaterally altering his decision. The equilibrium strategies f i? thus satisfy:

J i(X, f i?, f j?) ≥ J i(X, f i, f j?) for all X, f, i.

2The natural mortality (M ) was set at 0.2, which appears to be a common assumption (ICES 2008).
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Following Yang (2003), we solve a series of distinctive open-loop strategies in each time

period. The closed-loop strategy is the union of segments extracted from these open-loop

strategies. More specifically, the method solves the open-loop strategic profiles of agents

(countries) starting at t = 0 and ending at t = ∞ as the fist step.3 However, only the

decisions that affect the actions in t = 1 are placed in the set of closed-loop strategy.

When time moves to t = 1, the countries will reevaluate their decisions made at t = 0. If

no new information is available, the countries will abide by their strategies set at t = 0. If

there is new information and/or shocks at t = 1, the countries will restart the open-loop

decision process from t = 1 to infinity with the new information. In the strategy profile

of this new open-loop solution, only actions in t = 2 are incorporated into the closed-loop

solution. Similar decision processes are repeated at t = 2, 3, ..., T, ... . The second period

in each sequential open-loop decision make up the closed-loop strategic profiles.

The problem has been solved numerically for the soleowner optimization and the

noncooperative game using the MATLAB optimization toolbox. Similarly to the

adjustment process in the standard Cournot game, the process of iteratively updating the

best responses lets the players’ strategies converge to the open-loop equilibrium paths.

The procedure finds the open-loop solutions in 10 iterations or less. The robustness of this

procedure is tested in the following way. We execute the sequential procedure without

temperature change. Without any update of new information the closed-loop solution

should equal the open-loop solution. As the outcome is identical to the conventional

open-loop solution, the solution is time-consistent in the sense that it constitutes a Nash

equilibrium for every subgame along the equilibrium path. By applying a set of random

starting values and changing the sequences of countries in the iterations, the iterative

procedure converges to the same Nash equilibrium. To approximate the infinite time

horizon problem, we solve each open-loop problem with a long time horizon (125 years

with 5% annual rate of discount). With an extended time horizon and discounting, what

happens in the terminal time periods has a negligible effect on the trajectories in the first

3A sufficiently large number, instead of ∞, is used in numerical simulations.
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few periods.

Comparison between the different NPVs will be carried out in the following way. The

ratio between the noncooperative NPVs and the soleowner NPV is the criteria that decides

if the countries will engage in cooperation or not. If the sum of Norway’s and Russia’s

noncooperative NPVs divided by the soleowner’s NPV is less than 1, the countries choose

to cooperate. If this ratio is equal to 1 (but for deviations in the order of one per mille,

which are attributable to numeric imprecision), there will be no cooperation in this period.

We call this ratio the joint threat point.

Generally, a single player cannot achieve an NPV equal to a soleowner, unless

he himself is a soleowner. In the North-East Arctic fishery, where Norway and the

“soleowner” has two strategic variables, fNa and fNb , and Russia has only one strategic

variable, fR, Norway can obtain an NPV equal to the optimal soleowner NPV without

cooperation from Russia, if it is optimal to only harvest the mature part of the stock

during the spawning season and Russia finds a positive level of fR unprofitable, leaving

the remaining stock unharvested the rest of the year.

The results from optimal harvesting (soleowner) will be contrasted to (i) a game of

two players which control their own annual harvesting, but are unable to make binding

agreements. Additionally, (ii) a game where one of the players can control its own

harvesting by choosing a separate effort level to be applied to the spawning stock during

the spawning season, while the other player only can control its overall annual harvest,

will be simulated.

Results

Figures 4-15 display the temporal development in (a) the threat points, (b) the

materialized fishing effort, either cooperative or noncooperative, and the effective fishing

mortality, (c) the harvest, either cooperative or noncooperative, and (d) total and
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Figure 4: A single annual strategic variable for all. Variable costs and constant
temperature. Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed),
total stock biomass (black), and spawning stock biomass (blue).

spawning stock biomass.4

(i) A single annual strategic variable for all

Figures 4-6 display the temporal development, where both Russia and Norway, and the

soleowner, are assumed only to be able to control their annual effort levels and are

unable to separate the effort applied to the mature part of the stock during the spawning

migrations from the effort applied to the remaining stock during and after the spawning

season.

Figure 4 shows the development over time without temperature change. Figure 4 (a)

shows the joint threat points, as well a the individual countries, noncooperative profits

as shares of the optimal cooperative profit. We see that the joint threat point always is

less than 1, meaning that both Norway and Russia would be better of cooperating than

not over the entire simulation period. The optimal soleowner NPV is sufficiently large

4Norwegian and Russian fishing refers to their noncooperative game solutions. Otherwise, when they
do cooperate, they partake in the soleowner’s fishery, where a distribution of the harvest is unspecified.
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Figure 5: A single annual strategic variable for all. Variable costs, increasing temperature
(µ = 0.01). Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed),
total stock biomass (black), and spawning stock biomass (blue).

to cover both Russia’s and Norway’s noncooperative NPVs, jointly. In addition, because

the joint threat points are substantially less than 1, there are profits in excess of the joint

noncooperative NPVs to be shared. However, we do not assume any sharing rules for the

excess profit, but concentrate on the incentives for cooperation.

The threat points appear to be fluctuating over time. Figure 4 (b) shows that the

implied fishing mortalities (F ) rarely are above 0.1. With low levels of F the spawning

stock biomass will increase, and the recruitment with it, but only up to a certain point. If

the spawning biomass increases beyond this point the recruitment will fall and eventually

the (spawning) biomass will start to decline. When the spawning biomass again enters

the interval where there is a positive relationship between the spawning stock size and

the number of recruits entering the fishery three years after spawning the decline in

biomass will stop, and the entire process will repeat itself. This explains the fluctuations

in the threat points, fishing efforts and mortalities, harvest and biomass. They will vary

depending on the current stage of this process. Under noncooperation, Russia would

from time to time abstain from fishing, displaying a pattern of pulse fishing (Figure 4 a).
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Figure 6: A single annual strategic variable for all. Variable costs, increasing temperature
(µ = 0.02). Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed),
total stock biomass (black), and spawning stock biomass (blue).

Figure 5 and 6 shows the development over time, where we assume (5) a relatively

slow and (6) a more rapid temperature increase, respectively. We see that cooperation

always is preferred over noncooperation, and that there are fluctuations in the harvest and

biomass caused by the stock dynamics, given by the stock-recruitment relationship. The

amplitude of the fluctuations appears to be increasing with the temperature. Although

the maximum harvest and biomass levels increases with higher temperature the minimum

levels do not change. In spite of the increased volatility, Russia’s tendency towards pulse

fishing appears to be reduced as the temperature increases. Notice that the optimal

fishing effort and F falls over time when the temperature increases. This can be explained

by the inverse relationship between the price and the quantity of landed fish (Appendix,

Equation A-7) and the positive relationship between effort and costs (Appendix, Equation

A-6). When the productivity of the stock increases the catch per unit of effort increases,

meaning that, certeris paribus, the price will decline. To compensate for the decline in

price per quantity landed, it is optimal to lower the costs by reducing the fishing effort,

and indirectly reduce the fishing mortality.
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(ii) Norway and soleowner have two annual strategic variables,

Russia one.

Figures 7-9 display the temporal development, where Norway, and the soleowner can

control their own harvesting by choosing an effort level to be applied to the spawning

stock during the spawning season that is different from the effort level applied to the

immature part of the stock during the spawning migrations as well as the remaining stock

during and after the spawning season. For Russia, on the other hand, only the latter is

possible. As it turns out, Norway, and the soleowner, only wish to fish the mature part

of the stock. One reason for this lies in the greater selectivity this affords of mature age

groups; fishing these age groups selectively better utilizes the growth potential of the

stock (Hannesson 2006, p. 642). Another reason, and why it might still be profitable

for Norway to continue harvesting only the mature stock while Russia harvests both the

mature and the immature stock, is that harvesting the mature stock exclusively is only

possible in one third of the year, reducing the effort-dependent costs by one third.

Figure 7 shows the case without temperature change. Now we see that the threat

point occasionally is equal to 1. As in the previous cases, under noncooperation, Russia

sometimes would find it profitable to abstain from harvesting, leaving the fishery to

Norway alone. In that case Norway’s profit is identical to soleowner profit, because both

Norway and the soleowner will only fish when they are able to target the mature part

of the stock exclusively, when Russia chooses not to fish. Norway, in effect, becomes

a soleowner. However, this is a pulse fishing strategy, and when Russia again finds it

profitable to fish, Norway’s soleowner advantage is gone. Russia’s pulse fishing behavior

and the fluctuation in the results comes from the fact that at low levels of fishing

mortalities the spawning stock biomass, and therefore the recruitment, varies over time.

There is no steady state. When Russia finds fishing profitable under noncooperation,

Norway, as well as Russia, prefers cooperation over noncooperation.

In the cases of temperature change (Figures 8 and 9), Russia’s strategy of pulse fishing
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Figure 7: Norway and soleowner have two annual strategic variables, Russia one. Variable
costs, constant temperature. Soleowner (green), Norway (red), Russia (cyan), fishing
mortality (dashed), total stock biomass (black), and spawning stock biomass (blue).
Strategy fa: solid, and strategy f b: dash-dot.

Figure 8: Norway and soleowner have two annual strategic variables, Russia one. Variable
costs, increasing temperature (µ = 0.01). Soleowner (green), Norway (red), Russia
(cyan), fishing mortality (dashed), total stock biomass (black), and spawning stock
biomass (blue). Strategy fa: solid, and strategy f b: dash-dot.
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Figure 9: Norway and soleowner have two annual strategic variables, Russia one. Variable
costs, increasing temperature (µ = 0.02). Soleowner (green), Norway (red), Russia
(cyan), fishing mortality (dashed), total stock biomass (black), and spawning stock
biomass (blue). Strategy fa: solid, and strategy f b: dash-dot.

becomes less important, and in effect only occurs in the early stages of the simulation

period. As with no temperature increase, cooperation is only partially the most profitable

strategy for both countries. However, as temperature and productivity increases, the

duration of the cooperative periods becomes longer; in the case with the slowest change

(Figure 8) cooperation appears to become permanent after 40 years, while with the more

rapid temperature change (Figure 9) cooperation becomes permanent after only 20 years.

The implied fishing effort appears to be quite high, although the fishing mortality is

fairly low. The reason is that when Norway and the soleowner choose a positive value

for strategy fa, while holding the strategy f b equal to zero, the effort is only applied to

catching mature fish for one-third of the year and thus the low fishing mortality. The

practical relevance of this is limited because it would imply harvesting only during the

first third of the year. Concentrating the catches to the first part of the year would be

less attractive because of the pressure it puts on prices, either by a glut in the fresh

fish market or by large and costly processing capacity necessary to cope with seasonal
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Figure 10: A single annual strategic variable for all. Variable costs, increasing
temperature (µ = 0.01), and a constant price = NOK 14 kg−1. Soleowner (green),
Norway (red), Russia (cyan), fishing mortality (dashed), total stock biomass (black), and
spawning stock biomass (blue).

supplies of raw fish (Hannesson 2006).

However, from Figures 8 and 9 we see that the soleowner occasionally finds it profitable

to harvest the whole stock the entire year. The fa is sometimes reduced in favor of f b.

Interestingly, this happens when the spawning stock biomass is at its lowest. Then the

soleowner finds it profitable to reduce the fishing mortality of the mature part of the

stock, and direct some of the effort towards catching immature fish during the spawning

season, as well as both mature and immature the remainder of the year.

Sensitivity analysis

As noted, the optimal fishing effort decreases as the temperature increases. This was

explained by the inverse relationship between the price of fish and the total quantity of

fish landed, whereas the costs are positively related to the fishing effort. The sensitivity of

the outcomes was tested for fixed prices of 14 and 17 NOK kg−1 at a rate of temperature

change µ = 0.01.
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Figure 11: A single annual strategic variable for all. Variable costs, increasing
temperature (µ = 0.01), and a constant price = NOK 17 kg−1. Soleowner (green),
Norway (red), Russia (cyan), fishing mortality (dashed), total stock biomass (black), and
spawning stock biomass (blue).

Figures 10 and 11 shows the development over time for prices 14 and 17 NOK kg−1,

respectively, where both Russia and Norway, and the soleowner are assumed only to be

able to control their annual effort levels and are unable to separate the effort applied to

the mature part of the stock during the spawning migrations from the effort applied to

the remaining stock during and after the spawning season.

Now we see that the fishing effort and fishing mortality increases over time with the

temperature. The increasing F has the effect that fluctuations in yield and biomass are

more dampened than with a price that depends on the quantity landed. In particular,

when the price is equal to 17 (Figure 11), the levels of yield, stock biomass and spawning

biomass approach a steady state as temperature increases. The reason for this is that at

F above 0.2 the fishing mortality is so high that the biomass stops increasing beyond the

level where recruitment is reduced.

Figures 12 and 13 shows the development over time for prices 14 and 17 NOK

kg−1, respectively, where Norway and the soleowner can control their own harvesting
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Figure 12: Norway and soleowner have two annual strategic variables, Russia one.
Variable costs, increasing temperature (µ = 0.01), and a constant price = NOK 14 kg−1.
Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed), total stock
biomass (black), and spawning stock biomass (blue). Strategy fa: solid, and strategy f b:
dash-dot.

by choosing an effort level to be applied to the spawning stock during the spawning

season different from the effort level applied to the immature part of the stock during

the spawning migrations as well as the remaining stock during and after the spawning

season. Russia, on the other hand, only the latter is possible.

Holding the price fixed results in increasing fishing effort as the temperature increases.

The fishing mortality F , however, does not increase, and stays fairly low. The reason for

this is the pattern of harvest. Because it is optimal to only harvest the mature part of

the stock during the spawning season, the implied fishing mortality only applies to the

mature fraction of the stock a third of the year, making the actual yearly F smaller. We

do not observe the same dampening effect on yield and biomass as in Figures 10 and 11.

However, we observe in the low price case (Figure 12) that it starts with

noncooperation, mainly because of Russia’s low activity, followed by alternating

cooperation and noncooperation. In contrast, the high price case, Figure 13, begins

with alternating cooperation and noncooperation that turns into permanent cooperation
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Figure 13: Norway and soleowner have two annual strategic variables, Russia one.
Variable costs, increasing temperature (µ = 0.01), and a constant price = NOK 17 kg−1.
Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed), total stock
biomass (black), and spawning stock biomass (blue). Strategy fa: solid, and strategy f b:
dash-dot.

after about 60 years, not unlike what we observe with quantity dependent price (Figure

8). We do not, however, observe any mixed strategies with regard to harvest of the both

the mature and immature parts of the stock throughout the year.

Recall that Russia and Norway each had access to one half of the stock, except for

the spawning stock during the spawning season, in their respective zones. If we relax

this assumption and allow Russia access to more than on half of the stock, then Norway

in some cases might always prefer the cooperative solution over the noncooperative one.

An example of this is shown in Figure 14, where Russia has access to 2/3 of the stock

in its zone, whereas Norway has sole access to the spawning stock during the spawning

season but has only access to 1/3 of the remaining stock. In the noncooperative game,

Russia would always have positive fishing effort. Regarding the cooperative solution, this

is now always preferred over the noncooperative, for both Norway and Russia. This is

in contrast to Figure 7, where Russia in the noncooperative game from to time to time

found it optimal to refrain from harvesting, enabling Norway to reap the soleowner profit
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Figure 14: Norway and the soleowner can control their own harvesting by choosing an
effort level to be applied to the spawning stock during the spawning season different from
the effort level applied to the immature part of the stock during the spawning migrations
as well as the remaining stock during and after the spawning season. Russia, on the
other hand, only the latter is possible. Russia has access to 2/3 of the stock in its zone,
whereas Norway has sole access to the spawning stock during the spawning season but
has only access to 1/3 of the remaining stock. Variable costs, constant temperature.
Soleowner (green), Norway (red), Russia (cyan), fishing mortality (dashed), total stock
biomass (black), and spawning stock biomass (blue).
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Figure 15: Norway and the soleowner can control their own harvesting by choosing an
effort level to be applied to the spawning stock during the spawning season different from
the effort level applied to the immature part of the stock during the spawning migrations
as well as the remaining stock during and after the spawning season. Russia, on the
other hand, only the latter is possible. Russia has access to 2/3 of the stock in its zone,
whereas Norway has sole access to the spawning stock during the spawning season but
has only access to 1/3 of the remaining stock. Variable costs, constant temperature, and
a constant price = NOK 14 kg−1. Soleowner (green), Norway (red), Russia (cyan), fishing
mortality (dashed), total stock biomass (black), and spawning stock biomass (blue).

for itself.

The variations in recruitment, yield and biomass depends on the level of the fishing

mortality F . If F is low (below 0.2, cf. Appendix, Figure A-2) there is now single level

of sustainable yield, spawning stock biomass or total stock biomass. The reason for this

is the fluctuating recruitment. because at low levels of F there will be surplus growth

and the (spawning) biomass will increase over time. Eventually, the biomass becomes so

large that it starts to have a negative effect on the recruitment. After some time, as a

result of the falling recruitment, the biomass starts to decline. When the biomass again

enters the size interval where there is a positive relationship between the spawning stock

biomass and recruitment the process repeats itself. The variations in yield and biomass

are driven by the intrinsic stock dynamics, governed by the stock-recruitment function.
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Table 1: A single annual strategic variable for all. Present values (2007 millions NOK)
in different scenarios and strategic settings.

µ = 0 µ = 0.01 µ = 0.02
Reevaluation
Soleowner 63363 65847 67725
Noncooperation
Russia 614.5 894.0 1373.9
Norway 44624 45366 45591
Total 45239 46260 46965

As the results shows, F is fairly low and relatively stable. Facing a relatively high

fixed price (NOK 17 kg−1) and a temperature increase we see that F increases, moving

towards a “steady state”. At a relatively low fixed price (NOK 14 kg−1), on the other

hand, F is fairly low and the recruitment, yield and biomass continue to fluctuate. Figure

15 illustrate the latter in the case where Russia has access to 2/3 of the stock in its zone,

whereas Norway has sole access to the spawning stock during the spawning season, but

has only access to 1/3 of the remaining stock. The possibility of temporarily break of

cooperation is present, even if Russia has access to a larger share of the stock.

Summary and comparison of results

Tables 1 and 2 summarize the results in Figures 4-6 and Figures 7-9, respectively,

displayed as the equilibrium path’s present values evaluated today. By reevaluation we

mean, as in Figures 4-9, that the countries are able to reevaluate whether or not to

cooperate at the beginning of every period. On the other hand, by noncooperation we

mean the present value of no cooperation at all. Finally, soleowner tells us the present

value of full cooperation.

We see that the gains from cooperation is considerable. Russia, especially, gains the

most from cooperation, as its net present values when not cooperating is probably not

large enough to cover the fixed costs.
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Table 2: Norway and soleowner have two annual strategic variables, Russia one. Present
values (2007 millions NOK) in different scenarios and strategic settings.

µ = 0 µ = 0.01 µ = 0.02
Reevaluation
Cooperation 26017 38398 45009
Russia 1.3 0.07 0
Norway 25832 15811 11001
Total 51850 54210 56010
Noncooperation
Russia 603.9 941.8 1461.2
Norway 48290 48791 48726
Total 48921 49733 50187
Soleowner 51852 54210 56010

Regarding Table 2, when reevaluation is allowed and the countries cooperate only in

those periods where the cooperative profits are large enough to simultaneously cover

both countries noncooperative profits, we see that Russia has relatively low present

values, probably not large enough to cover the fixed cost. Recall that we do not assume

any sharing rules for the optimal profits in excess of the threat points. Therefore, the

present values of Russia and Norway, under reevaluation (Table 2), are the values of

their own profit in those periods when cooperation breaks down. Russia would gain

more from cooperation than Norway, and would have preferred to cooperate more often

than Norway. Turning to the noncooperative solutions there is considerable loss involved,

even compared to the reevaluation case. Russia’s present values are all fairly low and

the total present values are much reduced compared to the previous case. Moreover, the

soleowner’s present values are significantly higher than the total present values in the

noncooperative cases.

If we compare the soleowner’s present values in Tables 1 with 2, the values are

significantly higher in the former compared to the latter. It is more profitable for a

soleowner to apply a single annual effort level on the entire stock, than sometimes only

harvest the mature stock during the spawning season and other times harvest the entire
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stock the whole year. However, if we compare the noncooperative present values looking

at the countries’ present values the opposite is true. The values in Table 2 are higher

than the ones in Table 1 and significantly so in Norway’s case. Although the case where

both Norway and a soleowner have two annual strategic variables, and Russia only one,

can be criticized for being unrealistic or unpractically, the fact that Norway would prefer

this strategy over the alternative of harvesting the entire stock with an uniform effort

throughout the year, raises Norway’s share in the cooperative profit and enhances its

bargaining position versus Russia.

Discussion and conclusion

We simulate how an increase in the productivity of the North-East Arctic cod stock would

affect the Russian-Norwegian cooperation on the management of the stock. Furthermore,

we performed the simulations under two different assumption about the strategic variable

available for Norway and the soleowner: (i) a single annual effort level, and (ii) one effort

level applied to the mature part of the stock during the spawning season, and another

effort level for the immature part of the stock during the spawning and the remaining

total stock the rest the year. With spawning exclusively taking place in Norwegian waters,

Russia have only option (i) available.

The results showed that in (i) cooperation is always preferred over noncooperation.

This is as expected. A single player cannot achieve as much profit as a soleowner. A

soleowner would maximize profit by harvesting the fish in its entire distribution area,

throughout the year, and even if Norway would continue to fish noncooperatively while

Russia in some time periods finds it better not to fish, Norway would be restricted to fish

only on the fraction of the stock available in its own waters.

However, in (ii) the strategy that maximizes the soleowner profit is to fish the

mature part of the stock during the spawning season only, and for the remaining year

leaving the rest of the stock, and what is left of the spawning stock, unfished. Under
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noncooperation, this means that when Russia, from time to time, is better off not fishing,

Norway, which controls the spawning areas, can earn the maximum soleowner profit

for itself by applying the same strategy as the soleowner, without the cooperation of

Russia. When this happens, there is of course no basis for a cooperative agreement.

This may seem trivial, considering that the economic loss is negligible if we compare

the total NVPs from reevaluation with the soleowner NPVs (Table 2). Moreover, as

pointed out in the introduction, the climate change phenomenon and its effects is not a

straightforward process, and that considerable time might pass before its consequences

is fully acknowledged by all parties. Therefore, any disruption of the initial agreement

leading to a collapse in cooperation and prolonged periods of competitive behavior might

have dire consequences for the stock.

Temperature/productivity increases seem to be favorable for the incentives for

cooperation and the stability of an agreement on the joint management of the NEA cod

fishery. Again, as discussed earlier, there is the question of the relevance of assumption

(ii) regarding the strategic variables. Strategy scenario (i) of fishing the entire stock

throughout the year is for various reasons considered the most realistic alternative.

However, strategy scenario (ii) might be relevant considering Norway’s advantage of being

able to target the mature part of the stock separately. If we compare Norway’s NPVs

under noncooperation in Table 1 with Table 2, we see that Norway’s NPV by applying

strategy scenario (ii) are higher than the corresponding NPVs in strategy scenario (i).

Therefore is it possible that Norway expects a higher share of the cooperative NPV than

Russia is willing to accept. This might lead to tension between the two countries trying

to reach an agreement.

The result that increased recruitment and productivity of the stock improved stability

of an agreement on joint management is what we might expect and is also in line with

what Brandt and Kronbak (2010) found to be the case for the management of the Baltic

Sea cod. However, the novelty of our approach lies mainly in the application of the

method of expressing the closed-loop solution as a series of open-loop equilibrium solutions
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(Yang 2003) to overcome the intractability of the temporal problem of whether or not

cooperation is stable in a differential fishery game model, and to study the issue of

reevaluation international agreements on shared fish stocks. This highlights the need for

better and more flexible management systems that can cope with shifting environmental

conditions.

The procedure is easily extended to include more players than the rather simple two

player game between Norway and Russia. Including more than two players requires the

analysis of coalitions taking into account the positive externalities usually present in the

management of shared and straddling fish stocks. In fact, as the members of a coalition

tend to adopt management strategies conserving the stock, a nonmember is typically

better off the greater the number of countries that join the coalition. This is relevant for

NEA cod fishery, where Russia and Norway make arrangement for third part countries’

fisheries within the TAC. Furthermore, the NEA cod straddles into international waters,

where it can be fished in an illegal, unreported and unregulated manner by fishing

vessels from any country, not just those approved by Russia and Norway. Allowing

for more players and externalities would raise more intricate questions and produce more

interesting results.
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Appendix

Biological model

The catch of fish (Y ) in fishery i in fishing season k in year t is given by

Y i
k,t =

∑
a

qaf
i
k,t

qa
∑I

i=1 f
i
k,t +M

×Na,k,twa

{
1− exp

[(
− qa

I∑
i=1

f i
k,t −M

)
∆k

]}
. (A-1)

where q is a parameter expressing the vulnerability of each age group of fish to fishing,

i.e., the catchability coefficient, f is the fishing effort, M is natural mortality, Na,k,t is

the number of fish of age a at the beginning of season k, wa is the weight of fish at age

a, and ∆k is the length of season k. There are two fishing seasons, the spawning season,

which covers the first third of the yearA-1, and the rest of the year, so that ∆, the length

of the fishing season, is one third and two-thirds, respectively. After each fishing season,

the stock redistributes itself and spreads over a smaller area if the stock size is less than

in the previous season. Thus, if the fishing effort is given, the fishing mortality becomes

Fa,k = qa × fk (A-2)

The number of fish present in each age group at the beginning of each fishing season is

determined by the number of three year old fish and the mortality these fish have suffered

since then. A time series of 3-year-old Northeast Arctic cod recruits in the Barents Sea

is taken from ICES (2008). The number of three year old fish in the model is determined

by the size of the spawning stock through a recruitment function.

Figure A-1 shows a plot of recruits in year t (1949-2007) against the spawning stock

A-1The spawning stock biomass (SSB) is the mature part of the stock that have suffered neither fishing
nor natural mortality half-way through the spawning season.
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Figure A-1: Observed stock-recruitment 1946-2007 (4), Beverton-Holt (�) and Ricker
(�), recruitment functions fitted to data on spawning stock biomass, recruitment at age
3 and temperature (the Kola Section); 1946-2007 for temperatures 4◦C (solid) and 5◦C
(dotted), respectively.

biomass in year t − 3 (1946-2004). As can be seen, there is enormous variability in

recruitment, but it appears that large year classes are less likely to occur if the spawning

stock biomass exceeds a certain size. Furthermore, Figure A-1 shows the Ricker (1954)

(Equation A-3) and Beverton and Holt (1957) (Equation A-4) recruitment relationship

based on both the spawning stock biomass (SSBt−3) and the sea temperature at spawning

(τt−3), at temperatures of 4◦C (the average of the Kola Section) and 5◦C. In contrast

to the Beverton-Holt function, the Ricker recruitment function is able to capture the

fact that the recruitment may decline when the spawning stock biomass grow beyond a

certain limit.

Rt = N3,1,t = SSBt−3 exp (αR + βRSSBt−3)× exp (γRτt−3). (A-3)

Rt = N3,1,t =
exp (αBH)SSBt−3

1 + exp (βBH)SSBt−3

× exp (γBHτt−3). (A-4)
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Table A-1: Stock-recruitment and temperature relationships. Estimation results

Ricker stock-recruitment
αR = −0.786[SE = 0.664]
βR = −0.0017[SE = 0.00032]
γR = 0.472[SE = 0.174]
R2

adjusted = 0.32
Beverton-Holt stock-recruitment
αBH = −0.497[SE = 0.655]
βBH = −4.951[SE = 0.688]
γBH = 0.543[SE = 0.184]
R2

adjusted = 0.31

Table A-2: Maturity, weight (kg), and catchability at age

Age Maturity Weight Catchability
3 0 0.341 0.06
4 0 0.692 0.16
5 0.032 1.253 0.39
6 0.121 2.041 0.63
7 0.272 3.079 0.85
8 0.451 4.418 0.99
9 0.626 6.017 1.04
10 0.790 7.990 1.05
11 1 9.431 1.01
12 1 10.217 1.13
13+ 1 12.563 1.14

Estimating the coefficients of the Beverton-Holt recruitment curve (Table A-1)

essentially produced a horizontal line which falls to zero as it approaches the y-axis.

With the observed recruitment being the way it is this is not surprising. Assuming

a recruitment that is independent of the spawning stock must be deemed unrealistic.

Hence we do not consider the Beverton-Holt recruitment function any further.

For maturity-at-age parameters, ages 5-10, and weight-at-age (wa) in stock and

catches, ages 3-13+, we use the historical mean values presented in Kovalev and Bogstad

(2005) (Table A-2). Furthermore, following Kovalev and Bogstad (2005), for ages 3-4
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we assume that none of the individuals are mature and that for ages 11+ all are fully

mature.

The age-specific catchability coefficients (qa) used comes from regressing the time

series of age-specific fishing mortalities from ICES (2008), that reports the results of

a catch-at-age analysis (VPA, Virtual population Analysis) on all reported catches, on

the age-specific biomass, resulting in estimates on catchability-at-age and fishing effort

(Ekerhovd in preparation) (Table A-2).

Sustainable yield

Using the catch and fishing mortality relationship along with the Ricker recruitment

function gives the yield as a function of fishing mortality (F ), spawning stock biomass

and total biomass, as shown in Figure A-2. Furthermore, the yield is shown (dashed line)

as it is after a 500 year long simulation over a number of different fishing mortalities (F ). In

addition, the solid line shows then yield averaged over the last 250 years of the simulation.

For F larger than 0.2, the lines are both smooth and identical . However, below this

level of F the single year yield path is not smooth with considerable change in yield as F

increases or decreases. With low levels of F the spawning stock biomass will increase, and

the recruitment with it, but only up to a certain point. If the spawning biomass increases

beyond this point the recruitment will fall and eventually the (spawning) biomass will

start to decline. When the spawning biomass again enters the interval where there is a

positive relationship between the spawning stock size and the number of recruits entering

the fishery three years after spawning the decline in biomass will stop, and the entire

process will repeat itself. This explains the fluctuations in the yield at lower levels of F .

On the other hand, the average yield as a function of F is nearly symmetric, implying a

sustainable yield of about 730 thousand tonnes obtained at F = 0.43, while the actual

fishing mortality during the last thirty years has been well in excess of that. Recent

estimates by fishery biologists show fishing mortalities ranging from 0.27 to 1.3, with an
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Figure A-2: Sustainable yield, assuming a Ricker stock-recruitment relationship, as a
function of (a) fishing effort (f ), (b) spawning stock biomass, and (c) total stock biomass.
The dashed line shows the yield at the end of a 500 years simulation period, and the solid
line shows the average yield over the last half of the simulation period .

average of 0.74, for the NEA cod in the period 1977-2007 (ICES 2008). According to

Figure A-2 it would take a fishing mortality of 0.86 to wipe out the stock, which occurs

through not permitting any fish to survive until age of maturity.

The sustainable yield rises quickly as the spawning stock is increased and then falls

slowly as the spawning stock increases further. The relationship between sustainable

yield and the total biomass of the stock is different. Sustainable yield rises almost linearly

with the total stock biomass and then falls sharply before the rate of decline slows down

again. The reason for this is that a large spawning stock is detrimental for recruitment,

according to the Ricker curve. The pristine biomass would thus not correspond to the

carrying capacity of the environment; by reducing the spawning stock somewhat it would

be possible to improve recruitment as to increase the steady state biomass. It is possible

to reconcile this with biological realities by invoking competition for food at the egg and

larval stage; if too many eggs and larvae compete, most might get too little to survive,

whereas less competition would allow more to survive. Cannibalism from older fish would
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Figure A-3: (a) Total Norwegian variable costs and efforts N and (b) the Norwegian cod
prices and total yield J in the Northeast Arctic cod fishery, 1998–2007. The operation
costs includes both fixed and variable costs, excluding wages and remuneration of the
crew. All costs and prices are in real 2007 NOK

cause the same effect, if the total stock is large there might be shortage of suitable prey

or the living areas of juvenile and adult individuals would overlap and the young ones

would be eaten by the older ones.

Economic model

The profits of fleet i in season k in a given year t are determined by:

Πi
k,t = Price(Y I

t )× Y i
k,t(Xk,t, f

i
k,t)− Costsi(f i

k,t), (A-5)

where Xk,t is the state of the stock at the beginning of season k in year t.

Figure A-3 (a) shows the Norwegian variable operation costs in the NEA cod fishery

(Fiskeridirektoratet 1998-2007)A-2, plotted against the corresponding fishing effortsA-3.

A-2The crew on fishing vessels are paid a share of the gross catch value, so wages, and in particular the
remuneration, are correlated with the catch size. Therefore, wages and crew remuneration, and some
unspecified costs known to include the write-off costs of fishing licenses, are not included in the costs
estimations.
A-3The fishing effort estimates is based on a time series of fishing mortalities from ICES (2008) that
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There is an indication of a positive linear relationship between the operating costs and

fishing effort. We can test this by fitting Equation A-6 to the data. Hence,

Costit = γ + κ× f i
t , (A-6)

where γ is the fixed costs, and κ a variable costs parameter.A-4 The estimation results

from fitting the cost function to the data are presented in Table A-3. The model explained

71% of the variation in the cost-effort data.

Figure A-3 (b) shows the Norwegian prices plotted against total yield in the NEA cod

fishery, 1998–2007A-5. By using the total yield instead for the Norwegian catches only,

we assume that all the NEA cod catches are sold in the same market. There seems to

be a negative relationship between the prices obtained and the quantity caught, i.e., the

prices decline if the total yield increases. Since Figure A-3 (b) indicates a direct linear

relationship between prices and total yield we will estimate a linear price function.

Pricet = p− ω × Y I
t , (A-7)

where p is the price of fish when total landings approaches zero, ω is the factor for how

munch the price declines as the total landings increases. The results of this estimation

are also presented in Table A-3. The model was able to explain 26% of the variation in

the price-yield data.

reports the results of a catch-at-age analysis (VPA, Virtual population Analysis) on all reported catches
(Ekerhovd in preparation). The Norwegian shares of the total effort in the fishery are proportional to
Norway’s shares of the total landings (Fiskeridirektoratet 1998-2007).
A-4It is only the pure variable costs that are relevant for the strategic choices made. The players would

choose a positive effort level as long as the contribution margin is positive
A-5The information on the Norwegian prices comes from the Norwegian Directorate of Fisheries annual

profitability survey on the Norwegian fishing fleet – whole year operating vessels 8 meters over all length
and above (Fiskeridirektoratet 1998-2007).
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Table A-3: Norwegian variable harvest costs and effort, and prices and total yield, 1998-
2007: Estimation results

Cost-effort relationship
Constant: γ = 258.89[SE = 25.05] million NOK
Variable costs: κ = 18327.32[SE = 3823.4] million NOK

R2
adjusted = 0.71

Price-yield relationship
Maximum price: p = 21.036[SE = 3.40] NOK × kg−1

Yield factor: ω = 0.013[SE = 0.006] NOK × kg−1

R2
adjusted = 0.26
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