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Abstract 
In his article “The Allocation of Resources in the Presence of Indivisibilities,” Scarf points 
out that the major problem presented to economic theory by the presence of indivisibilities is 
the impossibility of detecting optimality at the level of the firm, or the economy as a whole, 
using the creation of profitability based on competitive linear prices. In the absence of such 
competitive prices, Scarf instead introduces a quantity test. Further development of the 
quantity test idea has lead to algorithms that are used to solve parametric integer 
programming problems. However, the quantity test is not a fully acceptable replacement of 
prices to analyse markets with indivisibilities. Recently, O’Neill et al. have suggested a new 
scheme that generates discriminatory equilibrium prices in markets with non-convexities. In 
this paper we elaborate this idea even further and use it to generate non-linear price functions 
that can be interpreted as a non-linear pricing scheme for markets with non-convexities. 
 
Keywords 
Pricing, Economics, Integer Programming Duality 
 
 
1. Introduction 

As pointed out by Scarf (1994), “The major problem presented to economic theory by the 

presence of indivisibilities in production is the impossibility of detecting optimality at the 

level of the firm, or for the economy as a whole, using the criterion of profitability based on 

competitive prices” (p. 111). Scarf illustrates the importance of the existence of competitive 

prices and their use in the economic evaluation of alternatives by considering a hypothetical 

economic situation, which is in equilibrium in the purest Walrasian sense. It is assumed that 

the production possibility set exhibits constant returns to scale, implying that there is a profit 

of zero at the equilibrium prices. Consumers evaluate personal income at these prices and the 
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market demand functions are obtained by aggregating individual utility maximising demands. 

Since the system is assumed to be in equilibrium, the market is clearing, and thus, supply 

equals demand for each of the goods and services in the economy. 

 

Due to technological advance, a new manufacturing technology has been presented. This 

activity also possesses constant returns to scale. The question is whether this new activity is to 

be used at a positive level or not. In this setting, the answer to this question is simple and 

straightforward: “If the activity is profitable at the old equilibrium prices, then there is a way 

to use the activity at a positive level so that with suitable income redistributions, the welfare 

of every member of society will increase.” Moreover, “if the new activity makes a negative 

profit at the old equilibrium prices, then there is no way in which it can be used to improve 

the utility of all consumers, even allowing the most extraordinary scheme for income 

redistribution” (p. 113). 

 

This shows the strength of the pricing test in evaluating alternatives. However, the existence 

of the pricing test relies on the assumptions made, i.e. that the production possibility set 

displays constant or decreasing returns to scale. When we have increasing returns to scale, the 

pricing test for optimality might fail. It is easy to construct an example showing this, for 

instance by introducing activities with start up costs. In the failure of a pricing test, Scarf 

introduces as an alternative, a quantity test for optimality. Although elegant, and based on a 

theory that has lead to the development of algorithms for parametric integer programming 

problems, we find it hard to believe that the quantity test suggested by Scarf will have the 

same impact in economic theory as the pricing test has had in the case where non-convexities 

do not exist. 

 

Over the time, a number of suggestions have been made to address the problem of finding 

prices for problems with non-convexities, especially for the case where the non-convexities 

are modelled using discrete variables. The aim has been to find dual prices and interpretations 

of dual prices in integer programming problems and mixed integer programming problems. 

The seminal work of Gomory and Baumol (1960) is addressing this issue. The ideas in the 

Gomory and Baumol paper was later used to create a duality theory for integer programming 

problems, and Wolsey’s article from 1981 gives a good description of this theory, that shows 

that in the integer programming case, we need to expand our view of prices to price functions 

in order to achieve interpretable and computable duals. However, these dual price functions 
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are rather complex and other researchers have suggested approximate alternatives. None of 

these suggestions have so far, to our knowledge, been used successfully to analyze 

equilibrium prices in markets with non-convexities.  

 

Recently, O’Neill et al. (2001) presented a method for calculating discriminatory prices, IP-

prices, based on a reformulation of the non-convex optimization problem. The method is 

aimed at generating market clearing prices and assumes that the optimal production plan is 

known. One of the reasons for the renewed interest in obtaining market clearing prices in 

markets with non-convexities is the deregulation of the electricity markets that has taken place 

recently. In such markets, the non-convexities arise from start-up and shut-down costs of 

power plants, as well as minimum output requirements that must be fulfilled in order to run 

certain plants. In this paper we point out that the IP-prices generated by O’Neill et al. are in 

fact related to the market clearing non-linear dual price functions that are the basis in integer 

programming duality. 

 

The paper will be organized as follows. In the next section we present the reformulation 

rendering IP-prices derived by O’Neill et al. We also state the set of market clearing contracts 

given by the same authors which together with the IP-prices can be shown to support the 

equilibrium. We then proceed with a discussion on the relation between O’Neill et al.’s 

reformulation and the Benders decomposition method. This section also includes some 

comments on apparent problems that the IP-prices possess and how they can be resolved. We 

then illustrate our findings using Scarf’s Smokestack, High Tech example, followed by a 

concluding section. 

 

2. IP-prices and market clearing contracts 

In this section, we will present the basic idea of the method suggested by O’Neill et al. (2001) 

in almost the same setting as is used in their paper. That is, throughout, we will follow the 

notation used by O’Neill et al., as closely as possible, and then comment on the differences 

between our approach and theirs. 

 

Assuming that an auctioneer is buying and/or selling a set of goods, with the objective of 

maximizing the value to the bidders, the auction market can be represented by the mixed 

integer programming problem (PIP): 
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  Maximize ∑∑ +=
k kkk kkPIP zdxcv  

(PIP)  Subject to: 021 bzAxA kk kkk k ≤+∑∑  

     kkkkk bzBxB ≤+ 21   k∀  

      0≥kx    k∀  

      0≥kz  and integer k∀  

 

where ,kx kz  are activities, or column vectors of activities, for participant k in the market, 

Kk ∈ , kk dc ,  are the benefits associated with activities of participant k, 2121 ,,, kkkk BBAA  are 

matrices of constraint coefficients, 0b  represents the commodities to be auctioned by the 

auctioneer, and kb  represents the right hand sides of internal constraints of market participant 

k. The first inequality then represents the market clearing constraint, while the second set of 

inequalities reflects the restrictions on the operations of each bidder k.  

 

The reformulation that is used by O’Neill et al. is as follows: 

 

  Maximize ∑∑ +=
k kkk kkPIP zdxcv  

(PLIPz*) Subject to: 021 bzAxA kk kkk k ≤+∑∑  

     kkkkk bzBxB ≤+ 21   k∀  

      0≥kx    k∀  

      *
kk zz =    k∀  

  

where the *
kz  corresponds to the values of the kz  variables in an optimal solution to (PIP). 

Note that since the discrete variables in (PIP) have been fixed to their optimal values, the 

problem stated above is a pure linear programming problem, for which the strong duality 

theorem holds, and hence, interpretable dual prices exist. The dual to this linear programming 

problem is: 

 

  Minimize *
00 kk kk kkDLIP zwbybyv ∑∑ ++=  

(DLIPz*) Subject to: kkkk cByAy ≥+ 110    k∀  
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    kkkkk dwByAy ≥++ 220   k∀  

      00 ≥y   

      0≥ky    k∀  

      kw  unrestricted k∀  

 

where, kk wyy ,,0  are the dual variables for the corresponding primal restrictions in PLIPz*. It 

is obvious that the optimal objective function values of the three optimization problems stated 

above are equal, due to the construct and the strong duality theorem. 

 

O’Neill et al. use this to construct a market clearing set of contracts, which according to their 

definition, is a set of contracts with the following characteristics: 

I. Each bidder is in equilibrium, in the sense that given 

− the prices ***
0 ,, kk wyy , i.e. the optimal dual variables to (DLIPz*),  

− a payment function defined by the contract, and  

− no restrictions on kx  and kz  other than the bidders’ internal constraints,        

kkkkk bzBxB ≤+ 21 , and 0≥kz  and integer,  

no bidder would be able to increase its net benefit, kkkk zdxc +  minus its payment, 

over that received if *
kk xx =  and *

kk zz = . Thus, the IP-prices support the equilibrium 

solution { }** , kk zx . 

II. The contract kT  then specifies the payment between the contracting parties as follows: 

Bidder k 

− buys (or sells) *
kk xx =  and *

kk zz =   

− pays (or receives) an amount to (from) the auctioneer equal to the following 

payment function: kkkkkk zwzAxAy *
21

*
0 )( ++  

By using linear programming duality theory, O’Neill et al. show that the IP-prices and the 

contracts kT  is a market clearing set of contracts. 

 

3. Relations with Benders decomposition 

One of the methods that can be used to solve mixed integer programming problems is the 

Benders decomposition procedure (Benders (1962)). In this procedure, which, as opposed to 
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the reformulation used by O’Neill et al., was constructed in order to generate the optimal 

solution to the mixed integer programming problem in an iterative way, a number of trial 

solutions kz)  for the integer variables are tested. By solving the remaining linear programming 

problems with the integer variables fixed to the suggested values, kz) , a new master problem 

is derived, which is solved in order to find out if the currently best solution is the optimal 

solution, or if there might exist a better solution in which the integer variables are fixed to 

other values than the ones investigated so far.  

 

The Benders sub-problem for the integer values fixed at  kz)  is 

 

Maximize kk kk kkPIP zdxcv )∑∑ +=  

(BS)  Subject to: kk kkk k zAbxA )∑∑ −≤ 201  

     kkkkk zBbxB )
21 −≤   k∀  

      0≥kx    k∀  

 

with corresponding dual (DBS kz) ): 

 

  Minimize ∑∑∑ +−+−=
k kkkkk kkk kkDLIP zdzBbyzAbyv ))) )()( 2200  

(DBS kz) ) Subject to: kkkk cByAy ≥+ 110  

     
0
00

≥
≥

ky
y

 

 

Depending on the feasibility of the Benders sub-problem, either an objective function cut or a 

feasibility cut is generated, using the optimal dual variable values of (DBS kz) ). Here however, 

we will only be interested in objective function cuts. 

 

If **
0 , i

k
i yy  are the optimal dual variables at iteration i in (DBS i

kz) ), the expression 

∑∑∑ +−+−
k kkkkk k

i
kk kk

i zdzBbyzAby )()( 2
*

20
*

0  yields the coefficients in a Benders cut. 

The Benders master problem is then  
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Maximize [ ]∑ ∑+−+−
k k kkkkk

i
kkk

i
oi zdzBbyzAby )()(min 2

*
20

*  

  Subject to: 0≥kz  and integer, and feasible in PIP 

 

It is easy to see the resemblance between the dual of the Benders sub-problem (DBS) and the 

dual of the reformulated problem (DLIPz*). In fact, the IP-prices are nothing but the prices 

generated in the dual of the Benders sub-problem (DBS), for the trial solution fixed to the 

optimal solution, i.e. *
kk zz = . 

 

The IP-prices generated in (DLIPz*) however, have some unwanted properties. For some 

demand realizations the mixed integer program in itself can have the integrality property, 

hence the problem (PIP) could have been solved as a linear program and the linear 

programming dual prices will support the equilibrium. In the dual (DLIPz*) this means that 

we have a set of alternative dual solutions, all of which support the equilibrium. This is fine 

and is as expected and as wanted. However, for some other demand realizations in which the 

units are used at full capacity, the dual (DLIPz*) also have alternative dual solutions, but the 

corresponding mixed integer program (PIP) is not solvable as a linear program and can in fact 

have a substantial duality gap. In these cases the linear price system is not a true supporting 

price system for (PIP) and should not be used. These effects are illustrated using Scarf’s 

example in the next section. 

 

Another, and as we see it, even more problematic property is the fact that the IP-prices can 

show a rather erratic behaviour for marginal changes in demand. Hogan and Ring (2003) 

observed this phenomenon and suggested the use of minimum uplift charges as an alternative. 

A more thorough analysis of the minimum uplift charges, versus the modified IP-prices, can 

be found in Bjørndal and Jörnsten (2004). 

 

The reason for the erratic behaviour is that for some demand realizations some of the 

coefficients in the Benders cuts are negative, whereas for others they are positive. The effect 

of this is that the total start up charges or uplifts change from being a positive charge to a 

negative charge with the effect that the product prices *
0y  varies dramatically and shows an 

erratic behaviour. The effect of this erratic behaviour is two-folded. First, it creates situations 

in which a redistribution of costs and benefits are made due to a small change in demand 
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realization, and second, due to the erratic behaviour of product prices, the market participants 

can start questioning the market’s efficiency and require changes in the market design. 

 

So, is there a way to generate equilibrium IP-prices that does not possess the unwanted 

properties mentioned above? Returning to the relation between the dual prices generated by 

the Benders sub-problem for the complicating variables fixed to their optimal values, and the 

IP-prices generated by the reformulation (PLIPz*), the question stated above can be rephrased 

as the following: Does the coefficient in the Benders cut generated when the complicating 

variables are fixed to their optimal values z* yield a valid inequality for the original problem 

(PIP)? If this is the case, the generated IP-prices support the equilibrium by a valid inequality 

that supports the optimal solution. Hence, these IP-prices are in fact prices that are associated 

with a non-linear non-discriminatory price function. Hence, they will not show the same 

erratic behaviour as the IP-prices used by O’Neill et al. 

 

Unfortunately, this is not always the case, though for the Scarf example, which is explained in 

detail in the next section, it is true for the demand levels used in the illustration. However, the 

following single commodity example, which is a minor extension to the Scarf example, 

adding a third production technology, with a capacity of 6, fixed cost of 2 and a marginal cost 

of 7 per unit produced, illustrates this. 

 

Minimize 321321 72323053 qqqzzz +++++  

Subject to: Dqqq ≥++ 321  

    016 11 ≥− qz  

    07 22 ≥− qz  

    06 33 ≥− qz  

    0,, 321 ≥qqq  

    0,, 321 ≥zzz  and integer 

 

For demand, D, equal to 55 the optimal solution is 1z =3, 2z =1 and 3z =0. For this demand 

level, the reformulation gives IP-prices of 53 and 23 for 1z  and 2z  respectively, and the 

commodity price is 3. However, for demand equal to 56, the optimal solution is 1z =3, 2z =1 
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and 3z =1, with 3q =1. Here, the reformulation (PIPz*) gives a commodity price of 7, and IP 

prices -11, -5 and 2 respectively, for 1z , 2z , and 3z . This illustrates that a marginal change in 

demand realization and optimal solution can yield dramatic changes in commodity prices and 

IP-prices. The example above also illustrates what may happen if you have a so called 

“hockey-stick” bidder in an electricity market, and where the market design is such that the 

market price is set by the active producer having the highest marginal cost (Oren (2003)). 

 

How can we avoid this? The difference between the two demand levels in the example is that 

for demand D = 55 the IP-prices yield coefficients for the integer variables that are part of a 

valid inequality for (PIP) whereas for D = 56 this is not the case. This is obvious for D = 56 

since adding an extra production facility of type 1 or type 2 gives another feasible solution but 

the constraint 362511 321 −≥+−− zzz  is not satisfied for 41 =z , 12 =z  and 03 =z , which 

of course is a feasible solution to the problem, with a lot of excess capacity. So is there some 

way to generate IP-prices that are supported by a valid inequality? 

 

Returning to the Benders decomposition analogy, the Benders decomposition procedure was 

developed in order to create a solution method for mixed integer programming problems. If 

this is the purpose, it is clear that only the integer variables create complications, since if the 

optimal values of these variables were known, an easy linear programming problem is all that 

remains to be solved. However, when the purpose is to generate equilibrium supporting 

market clearing prices, some of the continuous variables may create complications due to the 

structure of the problem. In the example above, it is the production variable 3q  that should be 

regarded as complicating. If we in the reformulation for the demands D = 55 and D = 56, fix 

the four variables 321 ,, zzz  and 3q  to their optimal values and solve the reformulated 

problem, the IP prices generated will be 53, 23, 2, and 4 respectively, and the commodity 

price will be equal to 3 for both demand realizations. 

 

Also, the inequality 182422353 3321 ≥+++ qzzz  is a valid inequality for the problem with 

D = 55, and the inequality 188422353 3321 ≥+++ qzzz  is a valid inequality for D = 56. 

 

The upfront payment of 4 3q  that producer 3 gets for producing 3q  can be viewed as a mean 

that the auctioneer or market maker takes in order to avoid that the customers are questioning 
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the market design or market efficiency caused by the non-convexities. It may be used to avoid 

that a “hockey-stick” bidder can create a total redistribution among the participants in the 

market. Alternatively, we can regard this upfront payment as a subsidy that is used to make up 

for the erratic effect caused by the non-convexities upon the commodity prices. We will not 

expand on this here, but the topic is developed further in a companion paper (Bjørndal and 

Jørnsten (2004)). 

 

To conclude, when using the reformulation idea for pricing in general mixed integer 

programming problems, it might be necessary to classify not only the integer variables as 

complicating, but in addition, some of the continuous variables can create pricing 

complications. It can also be true that only a part of the integer variables are pricing 

complicating variables, together with some of the continuous variables. Note that, as in 

standard linear programming, where complete decentralization cannot be achieved with prices 

only due to constant marginal costs, the same result is valid for linear mixed integer programs 

with modified IP-prices or non-linear price functions. 

 

4. Scarf’s example 

To illustrate the generation of the nonlinear price functions, we use Scarf’s original example 

(Scarf (1994)). The example consists of two technologies, Smokestack and High Tech, with 

the following production characteristics: 
 

    Smokestack   High Tech 
Capacity    16    7 
Construction Cost   53    30 
Marginal Cost    3    2 
Average Cost    6.3125    6.2857 
 

We can formulate Scarf’s allocation problem as a mixed integer programming problem (P) as 

follows: 

Minimize 2121 233053 qqzz +++  

(P)  Subject to: Dqq ≥+ 21  

    016 11 ≥− qz  

    07 22 ≥− qz  

    0, 21 ≥qq  

    0, 21 ≥zz  and integer 
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Parameter D is the demand, while the construction variables for Smokestack and High Tech 

are 1z  and 2z  respectively. Variables 1q  and 2q  denote the level of production. Note, that for 

fixed integer values of 1z  and 2z , the remaining problem in the continuous variables have the 

integrality property. Hence, Scarf’s allocation problem is in fact a pure integer programming 

problem. The reason for this is the special form of the constraint matrix for this example. 

 

Using O’Neill et al.’s reformulation of the problem, we get (P1): 

 

Minimize 2121 233053 qqzz +++  

(P1)  Subject to: Dqq ≥+ 21  

    016 11 ≥− qz  

    07 22 ≥− qz  

    *
11 zz =  

    *
22 zz =   

    0, 21 ≥qq  

    0, 21 ≥zz  and integer 

 

where *
1z  and *

2z  are the optimal integer solutions for the specified demand D. In the range 55 

to 70, the following discriminatory prices are generated: 

 

    Smokestack    High Tech 
Commodity Price Start up price Capacity price  Start up price Capacity price 
 3   53  0   23  -1 
 

The start up prices of 53 and 23 are the dual variables associated with the two constraints 
*
11 zz =  and *

22 zz = , respectively. Likewise, the commodity price is the dual variable of the 

market clearing requirement, while the capacity prices are the duals of the capacity 

constraints. 

 

The constraint iLzz ≥+ 21 2353  is a valid inequality for the integer programming problem (P), 

where iL  denotes the right hand side constant for demand i; i = 55,…,70. The iL s for 

problem (P) with i = 55,…,70 are 182, 184, 191, 191, 198, 198, 205, 205, 207, 212, 214, 221, 
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221, 228, 228 and 230. To prove this, we just have to solve the mixed integer programming 

problem 

 

Minimize 21 2353 zz +  

Subject to:  Dqq ≥+ 21  

    016 11 ≥− qz  

    07 22 ≥− qz  

    0, 21 ≥qq  

    0, 21 ≥zz  and integer 

 

which for D = 55,….,70 has the optimal objective function values listed above. 

 

Note that O’Neill et al. present alternative dual solutions for the demand values 55, 56, 58, 60, 

62, 63, 64, 65, 67, 69 and 70, which are caused by the fact that the revised problem (P1) has 

alternative optimal dual solutions for these values of demand. The reason for this is that for 

these demand values, the capacities for the used technologies are fully utilized. These 

alternative dual solutions are however not compatible with prices for the integer programming 

problem (P) except for demands 56, 63 and 70, for which the linear programming relaxation is 

integer valued. For these three demand values a linear price of 6.2857 and capacity prices of 

3.2857 and 4.2857 supports the equilibrium. For all other demand values, the existence of 

alternative dual solutions is just a mirage created by the way problem (P1) is constructed. This 

can be easily seen by solving the linear programming relaxation of (P) for these demand 

values, which show that there is a substantial duality gap, hence the alternative dual solutions 

does not yield competitive prices for the integer programming allocation problem. 

 

Knowing that the inequalities are valid inequalities for problem (P), that when added to the 

problem (P), generates the optimal objective function value and the correct commodity price 

of 3, points out a way to generate a non-linear price function that supports the optimal 

resource allocation and hence, provides a set of competitive non-linear prices. A non-linear 

price-function can be derived using cutting planes. As opposed to when cutting plane 

approaches are used to generate the integer valued optimal solution, we only need to find out 

how the supporting inequality, iLzz ≥+ 21 2353 , can be generated from the problem’s original 

inequalities, hence, we know exactly what we are looking for. Also, the resulting linear 
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program with these inequalities appended, does not need to be integer valued, since we are 

only interested in generating the commodity price and the non-linear price function that 

supports the start up charges. 

 

In order to derive the price functions for Scarf’s example, we first add the three original 

constraints. This gives us a capacity constraint (CAP) that says that in order to be able to fulfil 

the demand we need to have enough production capacity installed. The constraint (CAP) is 

thus 

 

(CAP)  Dzz ≥+ 21 716  

 

Multiplying the constraint (CAP) with 1/7 and rounding the fractional values up to the nearest 

integer, yields the valid inequality: 

 

(VI1)  ⎡ ⎤7213 Dzz ≥+  

 

Multiplying (CAP) with 32, adding 6 times (VI1), dividing the result by 10, and performing 

the rounding up operation, yields the inequality 

 

(VI2)  ≥+ 21 2353 zz ⎡ ⎤
⎥⎥
⎤

⎢⎢
⎡ +

10
632 7

DD  

 

This gives us a non-discriminatory non-linear price-function 

 

(I)  
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ⎥⎥

⎤
⎢⎢
⎡+

10

632 7)(
jCAP

jCAP

jCAPF  

 

where CAP j denotes the coefficient of jz  in the constraint (CAP). This non-linear function is 

optimal for the demand values 56, 58, 60, 63, 65, 67 and 70, since for these instances, the 

original problem (P) with the inequality (VI2) appended, gives the optimal objective function 

value and a dual variable value of 1 for the constraint, together with the correct commodity 

price 3, and capacity charges 0 and -1, respectively. 
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For the remaining demand values, a non-linear function that is a little bit more complicated is 

needed. This function is generated by noting that if we add the two last generated constraints 

(VI1) and (VI2), and divide the result by 8, we get the valid inequality: 

 

(VI3)  ≥+ 21 37 zz

⎡ ⎤

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡
⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡ +

8
710

632 7
DDD

 

 

Moreover, the constraint  

 

(VI4)  ≥+ 21 12 zz ⎥⎥
⎤

⎢⎢
⎡

8
D  

 

can be derived from the capacity constraint by dividing by 8 and rounding up to the nearest 

integer. These two constraints are enough to support the equilibrium prices for the remaining 

demand levels. In this case the non-discriminatory non-linear price-function gets the form 

 

(II)  2
8

7
7)(

10

632 7

+

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
⎥
⎥

⎤
⎢
⎢

⎡
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

=

⎥⎥
⎤

⎢⎢
⎡+ jCAP

j

CAP

CAPF

jCAP
j

⎥
⎥

⎤
⎢
⎢

⎡
8

jCAP
 

 

Hence, for the Scarf example with demand levels ranging from 55 to 70, the supporting 

market equilibrium prices are given by the linear commodity price of 3, independent of the 

demand level in this interval, and the start up charge is given by one of the two non-linear 

price-functions, giving us a non-linear pricing mechanism that supports the equilibrium. 
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The tables below present the results for Scarf’s example: 

 
Demand  Number of Number of Production Production Total Cost 
  Smokestack High Tech in Smokestack in High Tech    
55  3  1  48  7  347 
56  0  8  0  56  352 
57  1  6  15  42  362 
58  1  6  16  42  365 
59  2  4  31  28  375 
60  3  4  32  28  378 
61  3  2  47  14  388 
62  3  2  48  14  391 
63  0  9  0  63  396 
64  4  0  64  0  404 
65  1  7  16  49  409 
66  2  5  31  35  419 
67  2  5  32  35  422 
68  3  3  47  21  432 
69  3  3  48  21  435 
70  0  10  0  70  440 
 

 

 

Demand  Commodity Total Uplift Total    Supporting Nonlinear  
  Price  Cost  Commodity Cost  Price Function 
 
55  3  182  165   II 
56  3  184  168   I 
57  3  191  171   II 
58  3  191  174   I and II 
59  3  198  177   II 
60  3  198  180   I and II 
61  3  205  183   II 
62  3  205  186   II 
63  3  207  189   I 
64  3  212  192   II 
65  3  214  195   I and II 
66  3  221  198   II 
67  3  221  201   I and II 
68  3  228  204   II 
69  3  228  207   II 
70  3  230  210   I  
 

 

5. Conclusions and issues for future research 

In this paper, we have shown that the IP-prices, generated by the use of the reformulation of 

O’Neill et al. (2001), can give information that can be used to generate a supporting valid 

inequality to the resource allocation optimization problem. In general, this is not true, but an 

alternative reformulation can then be used to achieving this. Knowing the coefficients of a 

supporting valid inequality means that we know that there exists a non-discriminatory non-

linear price-function that, together with the affine capacity and product prices, yields 
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equilibrium prices in markets with non-convexities. Also, knowing the coefficients of the 

supporting valid inequality makes it easier to construct the non-linear price-function as 

compared with the case where these coefficients are unknown. The results can be used to 

motivate the use of the IP-prices suggested by O’Neill et al., or a modified version of IP-

prices, knowing that although they seem to be discriminatory they can also be viewed as a 

compact representation of the supporting non-linear price-function and hence, are in fact non-

discriminatory. If this knowledge should be used to redesign the contract suggested by 

O’Neill et al., or just to motivate it, remains to be investigated. 

 

Other research questions that should be addressed are how elastic demand can be incorporated 

in markets with non-convexities. If and how the uplift charges should be collected among the 

customers, and how this cost allocation should influence the design of market clearing 

contracts, are other issues. Another question is whether it is satisfactory just to have a 

theoretical foundation for the use of modified IP-prices, or if procedures that actually generate 

a corresponding non-discriminatory price-function need to be further investigated. Finally, the 

incentives for the market participants in markets with both linear commodity charges and 

uplift payments have to be studied. 
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