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Non-technical Summary

This paper investigates the performance of technical trading rules applied to asset play

in the international bulk shipping industry.  The rules are tested on monthly returns in

the Products Carrier segment for the period 1981 to 1998.  The paper evaluates 1053

different parameterizations of three of the simplest and most popular trading rules in

the financial markets: filter rules, moving averages, and support and resistance levels.

Overall, the results provide strong support for the technical strategies.  None of the

trading rules generate negative cumulative wealth, and only one parameterization

results in a mean return that is lower than the return from the benchmark buy-and-

hold strategy.  The results for the best-performing trading rule show that the mean

return following buy signals is positive and the mean return following sell signals is

negative, both significantly different from the buy-and-hold mean return according to

standard statistical tests.  Moreover, the returns following buy signals are less volatile

than those following sell signals, as well as the returns of the buy-and-hold strategy.

The best-performing trading rule obtains a mean return of 35.4% p.a. above the buy-

and-hold annual return of 4.0%.  Due to a low number of trades, the introduction of

trading costs has little impact on the results.  Adjusting for data-snooping biases

according to White's Reality Check bootstrap methodology confirms the conclusion

that the best-performing trading rule provides superior investing performance.

However, the practical implementation in an illiquid market may reduce the
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theoretical excess return of the best-performing trading rule to a level where it is no

longer significant.  Moreover, the probability that an investor could have picked ex

ante a trading rule with statistically significant excess return is small.
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1 Introduction

Technical analysis is a generic term that includes many different techniques with the

goal of predicting the future evolution of asset prices from the observation of past

prices.  These techniques are considered by many to be the original form of

investment analysis dating back to the writings of Wall Street Journal editor Charles

Dow in the 1800s, long before modern financial theory was born.  Most of the time,

technical analysis has been looked at with contempt by academics.  The main reason

is that technical analysis violates the efficient market hypothesis which holds that it is

impossible to predict future prices from the observation of past prices.  Furthermore,

early tests of the profitability of technical trading rules produced very poor results,

which reinforced the negative attitude in academia towards such analysis.  However,

practitioners are still using these techniques to make investment decisions.  Over the

last decade, a number of empirical studies have produced results on the predictability

of asset prices that seemingly contradict the efficient market hypothesis, and, over the

same time period, there has been a renewed interest in technical analysis also from an

academic point of view.  By and large, recent academic literature suggests that

technical trading rules are capable of producing valuable economic signals.  The

results are in sharp contrast with most of the earlier studies that supported the random

walk hypothesis and concluded that the predictable variation in returns was

economically and statistically very small.  Two competing explanations for the

presence of predictable variation in asset prices have been suggested: (1) the markets

are not efficient even in the weak form, or (2) markets are efficient and the predictable

variation can be explained by time-varying risk premia.

This paper is in line with recent literature on technical trading rules which tests

whether such rules are profitable when the results are adjusted for transaction costs

and the potential effect of data snooping.  However, the analysis concerns an area that

is rarely investigated in academia, namely asset values in the international bulk

shipping markets.  Despite the intriguing qualities of these markets, such as large

long-run price swings exhibiting a clear mean reverting pattern, there have been no

recent attempts to investigate the merits of "value play" models in this context.  The

reason, aside from being a less-known market, may be that financial markets dealing

in stocks and foreign exchange provide easily accessible and long time series of
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standardized high-frequency data, while the shipping markets do not.  Also, most

practitioners regard technical analysis as a short-horizon trading method, with

positions in the stock, commodity or foreign exchange markets lasting a few hours or

days.  When an investor buys a ship, the transaction itself may take several weeks.

However, there are indications that, in a cyclical market such as bulk shipping,

technical analysis may be a tool to uncover market turns.  Vessel values may not

always be determined by economic fundamentals like freight rates, but rather driven

away from fundamental values by shipowners' irrational expectations of future freight

rates.  Returns in the second-hand market for ships typically exhibit the characteristics

that Cutler, Poterba and Summers (1990) suggest are typical to speculative dynamics:

(1) returns display positive autocorrelations at relative short horizons, (2) returns are

negatively autocorrelated at durations of several years, and (3) returns over periods of

several years can be predicted on the basis of crude proxies for the deviation of asset

prices from fundamental value.  A proxy for the fundamental value in this case could

be a constant multiple of earnings.  Stopford (1997) estimates that when freight rates

are high, the S & P market values a five-year old ship at about ten times its current

annual earnings.  In recessions, the value may fall as low as three times annual

earnings.  This paper investigates the merits of technical analysis in bulk shipping

asset play.

The plan of the paper is as follows.  Section 1 reviews the existing evidence on

technical trading rules, section 2 describes the problem of data snooping and its

remedies, and section 3 describes the data used in this paper.  Section 4 describes the

technical trading rules and the theoretical methodology behind the results.  Section 5

presents the empirical results, and, finally, section 6 contains the conclusion and

discusses the economic interpretation of the findings.
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2 Previous research

Technical trading rules investigated in academic literature can be divided in two

major areas: filter rules and moving average rules.  Early research, such as Alexander

(1961 and 1964) focused on filter rules to assess the efficiency of stock price

movements.  In his first article Alexander found the filter rules to be profitable.

However, after he included transaction costs in his second article, the profits

generated by these strategies vanished.  Fama and Blume (1966) confirmed this

conclusion and this led the academic community to be skeptical about technical

analysis not only because it lacked theoretical foundation but also because it yielded

poor results.  Sweeney (1988) re-examined the results of Fama and Blume for a

subsequent time period and found that, depending on the level of transaction costs,

filter rules still yielded profitable results.

In the early nineties, the research focused on moving average crossover rules, which

are some of the most popular and common trading rules discussed in the technical

analysis literature.  Brock, Lakonishok and LeBaron (BLL 1992) investigated moving

average rules on daily data of the Dow Jones Industrial Index from 1897 to 1986 and

concluded that the buy and sell signals generated by these rules were able to detect

"abnormal" returns.  By using bootstrap tests, BLL showed that the results were

robust to other specifications of the return generating process.  However, BLL ignored

trading costs.  Furthermore, Sullivan, Timmerman and White (STW 1998) show that

BLLs "best" trading rule did not outperform the buy-and-hold benchmark at

conventional levels of significance in the ten-year period that followed.  Hudson,

Dempsey and Keasey (1996), who replicate the Brock et al's tests on the UK stock

market for the period 1935 to 1994, found that any profitable results vanished when

trading costs were considered.  Isakov and Hollistein (1997) confirm the same result

in Swiss stock prices for the period 1969 to 1997.  Levich and Thomas (1993) and

Kho (1996) found some profitable results with the moving average strategies in the

foreign exchange futures markets, even after accounting for transaction costs.  Kho

showed that these results were partly due to a time-varying risk premia.  Evidence in

favor of technical analysis is also reported in Osler and Chang (1995) who use

bootstrap procedures to examine charting pattern in foreign exchange markets.
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The only previous research paper I have come across that attempts to use technical

trading rules on second-hand vessel values is Norman (1981).  Based on a simple

AR(1) model of the asset price and the empirical frequency distribution of prices,

Norman derives a trading rule that generates a buy signal whenever the vessel value

falls below a certain threshold and a sell signal when the value rises above the same

threshold.  Norman reports a return on capital of 15.6% for the optimal threshold,

corresponding to being in the market 84% of the time.  However, he does not report

the return on capital from a benchmark buy-and-hold strategy.  Marcus et al (1991)

develops an investment strategy based on the deviation in vessel value from the

fundamental value (nominal production cost).  Although their approach is based on

the observed cyclical nature of the bulk shipping markets, the authors introduce

exogenous variables, and, accordingly, their work can not be considered as strictly

technical analysis.



7

3 Data snooping

An important issue generally encountered, but rarely directly addressed when

evaluating technical trading rules, is data snooping.  Data snooping occurs when a

given set of data is used more than once for purposes of inference or model selection.

The potential impact of data snooping on the performance of technical trading rules

was recognized early on by Jensen and Bennington (1970) who refer to it as a

"selection bias".  Data snooping can be a result of a particular researcher's efforts, or it

can result from a subtle survivorship bias operating on the entire universe of technical

trading rules.  Rules that happen to perform well historically receive more attention,

and if enough parameterizations are considered over time, some rules are bound by

pure luck to produce superior performance even if they do not genuinely have

predictive power.  Negative results are ignored, while positive results are published

and taken to indicate that trading rules can yield profits.  For example, there is a vast

literature on pricing anomalies in the equity markets, summarized by Ball (1995) and

Fortune (1991).  Roll (1994) finds that these aberrations are difficult to exploit in

practice, and suggests that they may be partially the result of data mining.  Lo and

MacKinlay (1990) try to quantify the effects of data snooping in financial asset

pricing models.  Although technical analysis has not been used extensively by

researchers or investors in the bulk shipping markets, the adoption of well-known

trading rules from the stock and foreign exchange markets may introduce exactly the

same selection bias in this case.  In addition, the selection of the "best" trading rule

from a large universe of rules and parameterizations is a data mining exercise in itself.

Previous research (e.g. BLL 1992) has evaluated the statistical significance of the

findings by fitting several models to the raw data and re-sampling the residuals to

create numerous bootstrap samples.  The bootstrap approach introduced by Efron

(1979) is not new to the evaluation of technical analysis.  The idea is to check if the

technical trading rules are robust to other specification of the return generating

process by calculating p-values from a simulated empirical distribution.  Isakov and

Hollistein (1998) acknowledge that the predictability of asset returns could be due to

some well-known features of the data such as non-normality, serial correlation and

time-varying moments, and perform bootstrap tests to check if these features bias the
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test statistics.  Assuming that the returns follow an AR(1) and a GARCH(1,1) process,

their results indicate that, although the features are present in the data, they are not the

cause of profitability (in the absence of trading costs) of the technical trading rules.

As acknowledged by BLL (1992), such bootstrap tests are not able to compute a

comprehensive test across all rules, as such a test would have to account for

dependencies between results for different trading rules.  They try to mitigate this

problem: (1) by reporting results from all their trading strategies, (2) by using a very

long data series, and (3) emphasizing the robustness of results across non-overlapping

sub-periods for statistical inference.  As an alternative, Lo and MacKinlay (1990)

recommend a ten-year out-of-sample performance experiment as a way of purging the

effects of data-snooping biases from the analysis.  Similarly, as a solution to the data-

mining problem, Neely, Weller and Dittmar (1997) apply genetic programming

techniques to the foreign exchange market.  Genetic programming is a method by

which a computer searches through the space of technical trading rules to find a group

of rules that generate positive excess returns.  These good rules are then tested on out-

of-sample data to see if they continue to generate positive returns.  STW (1998) adopt

a modified "Reality Check Bootstrap" introduced by White (1997) that provides a

procedure to test whether a given model has predictive superiority over a benchmark

model after accounting for the effects of data-snooping.  The approach of STW is

adopted in this paper and described in section 4.
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4 Data description

There is an evident lack of standardization in the shipping industry.  Almost every

vessel is unique, with its own cargo size, cargo type, speed, age, quality and fuel

consumption.  All these factors affect the price a vessel would obtain in the second-

hand market.  Moreover, the second hand markets for ships generally have a low

turnover.  In the large tanker category (200,000DWT+1), a total of 187 vessels were

reported sold in the second-hand market from January 1990 to March 19992

corresponding to an average annual turnover of 5% of the fleet.  For smaller vessel

sizes the world fleet is larger, and, accordingly, the liquidity is better.  The lack of

standardization and a liquid asset market entail the use of shipbrokers' estimates for a

standardized vessel in place of actual transaction data.  Such historical valuation

estimates are typically published on a monthly basis and consist of vessel values for,

say, a five-year-old vessel.  That is, the depreciation in asset value due to aging needs

to be taken into account.  Brokers who value ships generally take the same view as

accountants, writing down the vessel value to scrap value linearly over 15 or 20 years.

The same "rule of thumb" is used in this paper due to the lack of a better estimate.

The freight markets in the various bulk shipping sectors are very liquid compared to

the S & P markets, with several fixtures of vessels taking place every day, on average.

However, the short-term (daily) freight rate variations resulting from the clearing of

cargoes and vessels available in a certain loading area are not necessarily indicative of

the longer-term swings in the freight rate.  As the technical trading rules in this

context concern the investment/divestment of a physical asset with holding periods of

months or years, the use of less frequent observations (weekly or monthly averages) is

more appropriate.  Moreover, a roundtrip for an oceangoing vessel will typically take

a month or more, and, thus, any short-term freight rate variations has little impact on

the voyage profit of a certain vessel.  Also, in practice, other factors such as the

                                               
1 DWT - deadweight [tons] measures the cargo capacity of a ship.
2 Source: MaritimeData.com
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relatively large trading cost3 and the required time to complete a transaction prohibit

trading on short-term signals.

The data in this paper concern a small Products Carrier, which is a tanker that

typically transports clean oil products such as gasoline from the Caribbean to the U.S.

and in Asian trades.  Monthly shipbroker estimates of freight rates and vessel values

between January 1981 and December 1998 are illustrated below.  The data set

consists of only n = 216 observations, which admittedly is a small sample size in this

context.  However, given the practical concerns above, it will have to do as a first cut.

Figure 1: Timecharter freight rates, products carrier 38,000 DWT

Source: Fearnleys AS, Oslo, Norway

The daily operating profit is calculated by subtracting the daily operating costs from

the timecharter freight rate.  Although the operating cost will escalate due to inflation

and physical wear and tear, it has been fixed at $4,000/day in this paper due to the

lack of a satisfactory time series.  Furthermore, the effect of lay-up as a measure to

limit losses at low freight rates is ignored.  For the buy-and-hold strategy, it is

assumed that the vessel is bought five years old in the beginning of 1981 for $19

million and that its book value is linearly depreciated to scrap value (approx. $1

                                               
3 The trading cost consists of a commission to the shipbroker, typically 1% of the vessel value and paid

by the seller, as well as any costs of transferring the ownership.
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million) over the last 18 years, corresponding to $1 million annually.  The resulting

price development for a 1976-built product carrier is illustrated in the figure below.

Figure 2: Vessel value 1976-built product carrier

Source: derived from Fearnleys AS, Oslo, Norway

Note that the vessel would have been scrapped at the end of 1998 when the value as a

going concern falls below the scrap value.  In the subsequent sections, the trading

signals are generated on the basis of vessel values alone, although it can be argued

that the technical trading rules should be assessed on the basis of a price series that

incorporates the information inherent in the freight rate series.  However, operating

profits ("dividends") is included when calculating the returns from the technical

trading rules.  The monthly returns for the buy-and-hold strategy are illustrated below.
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Figure 3: Period returns (monthly)

Table 1 : Summary statistics for monthly returns of the buy-and-hold strategy

Mean 0.003244

Standard Error 0.007006

Standard Deviation 0.102963

Kurtosis 29.90262

Skewness 2.535463

Minimum -0.54724

Maximum 0.900613

ρ(1) 0.225*

ρ(2) 0.213*

ρ(3) 0.185*

ρ(4) 0.163*

ρ(5) 0.154*

*Significant at the 5% level for a two tailed test

The average monthly return for the buy-and-hold strategy corresponds to 4.0%

annually, which is less than the risk-free interest rate during the time period.  This is a

typical phenomenon in the shipping industry as investors seem to be attracted by the

potential for large short-term profits rather than a decent long-term return.  The

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
Ja

n-
81

Ja
n-

83

Ja
n-

85

Ja
n-

87

Ja
n-

89

Ja
n-

91

Ja
n-

93

Ja
n-

95

Ja
n-

97



13

figures in table 1 show that the return series is asymmetric as indicated by the positive

skewness coefficient and that it is leptokurtic, i.e. it has fatter tails than the normal

distribution.  There is also a significant positive short-term autocorrelation in the

monthly returns up to the fifth order.
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5 Methodology

5.1 The universe of trading rules

As technical analysis is not widely used in the shipping industry, it is necessary to

specify an appropriate universe of trading rules based on previous academic studies of

financial markets and the technical analysis literature.  The magnitude of data-

snooping effects on the assessment of the performance of the best trading rule is

determined by the dependence between all the trading rules' payoffs, so the design of

the universe is important.  However, as the application of technical analysis to this

market is a new approach, the parameterizations (ref. appendix A) of the large number

(1053) of technical trading rules are chosen more or less arbitrarily.  The focus in this

paper is on filter rules, support and resistance levels, and moving averages, the

principles of which are described below.

5.1.1 Filter rules

Fama and Blume (1966) explain the standard filter rule as follows:

"An x per cent filter is defined as follows: If the daily closing price of a particular

security moves up at least x per cent, buy and hold the security until its price moves

down at least x per cent from a subsequent high, at which time simultaneously sell

and go short.  The short position is maintained until the daily closing price rises at

least x per cent above a subsequent low at which one covers and buys.  Moves less

than x per cent in either direction are ignored."

A subsequent high is interpreted as the highest closing price achieved while holding a

particular long position.  Likewise, a subsequent low is the lowest closing price

achieved while being out of the market (no short sales are possible).

5.1.2 Moving averages

The standard moving average (MA) cross-over rule generates a buy (sell) signal when

the asset price penetrates the MA from below (above).  Hence, a long position is

retained as long as the price trend remains above the MA, alternatively, as long as a
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fast MA remains above a slow MA, where the slow MA is calculated over a greater

number of months.  Two types of filters may be imposed to filter out false (loss-

making) trading signals.  The fixed percentage band filter requires that the difference

between the slow MA and the fast MA exceeds b% of the slow MA in order to

execute a buy or sell signal.  The introduction of a band reduces the number of

"whiplash" buy and sell signals when the short and long-term moving averages are

close.  The time delay filter requires that the signal remain valid for a certain number

of months, c, before action is taken.

5.1.3 Support and resistance levels

A simple trading rule based on the notion of support and resistance levels is to buy

when the closing price exceeds the maximum price over the previous n months, and

sell when the closing price is less than the minimum price over the previous n months.

As with the moving average rules, a fixed percentage band filter, b, and a time delay

filter, c, is included.

5.2 Performance measure

The test procedure is based on the l x 1 performance statistic:

Where l is the number of technical trading rules, n is the number of prediction periods

indexed from R through T so that T = R + n - 1, and ft+1 = f(βt) is the observed

performance measure for period t + 1.  In this application n = 198 and R = 18,

accommodating technical trading rules that need 18 months of data in order to

produce a trading signal.  The various parameterizations of the trading rules (βk,k =

1,…,l) generates the returns that are used to calculate the performance measure.  The

form for fk, t+1 is adjusted slightly compared to previous literature (e.g. STW 1998) to

account for the period vessel operating profits (Zt) during a long position:
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Where

Xt is the price series of vessel values, yt+1 = (Xt+1+ Zt - Xt)/Xt, and Sk( ⋅ ) and S0( ⋅ )

are signal functions that convert the sequence of price index information χt into

market positions.  Sk = 1 represents a long position and Sk = 0 represents a neutral

position (out of the market).  In other words, we assume that short selling has not been

possible in this market during the time period under investigation.  This is consistent

with the opinions of industry practitioners.  The lack of a maritime derivatives market

would have prevented a synthetic replication of short sales.  However, another way to

achieve similar results is to use the following strategy: when an investor observes a

buy signal he borrows half of the vessel value.  This yields twice the market return

less the borrowing rate.  When the investor observes a sell signal, he sells the vessel

and invests all his money in a risk-free asset.  If the frequency and duration of long

and neutral (sell) positions is similar and the borrowing rate is close to the lending rate

such a strategy would yield similar results to a long-short strategy.  This is also a

strategy that is used by most shipowners, as very few use only owners' equity for

vessel purchases.  However, this approach is not implemented here, which means the

calculated mean returns from the use of the trading rules are conservative.

The natural null hypothesis is that the performance of the best technical trading rule is

no better than the performance of the benchmark position.  Thus, if fk is the excess

return over the benchmark strategy corresponding to trading rule k:

Rejection of this null hypothesis indicates that the best trading rule achieves

performance superior to the benchmark.  Following the discussion above, a suitable

interpretation in this market is to regard the benchmark as the return from a buy-and-

hold strategy where S0 = 1 ∀ t.  It is assumed throughout the study that an investor in

a neutral position obtains a risk-free interest rate equal to zero on his wealth.
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In order to replicate real-life trading conditions, a transaction cost of 1% of the vessel

value is subtracted at the time of a sale.  Moreover, in a low-volume market such as

the second-hand sale & purchase market for ships one may experience problems

similar to non-synchronous trading effects in the financial markets, as a shipowner is

not likely to be able to purchase or sell a vessel on short notice.  There simply may not

be a suitable vessel for sale at the time of a "buy" signal, or an interested buyer at the

time of a "sell" signal.  Alternatively, the pre-purchase activities such as the

inspection of a potential vessel and the price negotiation may take several weeks.  To

address this issue, a trading signal observed in month t can be implemented in month

t+1.  This issue is not explicitly treated here.  However, the empirical results indicate

that the introduction of a time delay in the execution of a buy or sell signal generally

has a negative effect on the returns of a technical trading rule.

White (1997) shows that H0 can be evaluated using the stationary bootstrap of Politis

and Romano (1994) to the observed value of fk,t.  Following the notation of STW

(1998), resampling the returns from the trading rules yields B bootstrapped values of

fk, denoted as f*
k,j, where i indexes the B bootstrap samples.  Consider the statistics

By comparing Vl to the quantiles of Vl,i one obtains White's Reality Check p value for

the null hypothesis.  By employing the maximum value over all the l trading rules, the

p value incorporates the effects of data-snooping from the search over the l rules.
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6 Empirical results

Unfortunately, the data set is not large enough to permit a meaningful out-of-sample

experiment or a meaningful investigation of the robustness of results across non-

overlapping sub-periods.  This complicates a statistically precise evaluation of the

trading rule performance.  At first sight, the performance of the technical trading rules

seems very convincing.   Out of all the 1053 parameterizations, only ONE trading rule

results in a negative mean return fk compared to the benchmark buy-and-hold strategy.

Moreover, none of the trading rules results in a negative net cumulative wealth, even

when accounting for trading costs.  The net cumulative wealth is calculated as the sum

of all trading profits/losses, both from vessel operation and asset play.  The figure

below presents the histogram of mean returns:

Figure 4: Overall trading rule performance (monthly mean returns)

Due to the apparent superior performance of many of the 1053 trading rules

considered, the consideration of dependencies between trading rules (data snooping

effects) is unlikely to overturn a conclusion that the best-performing trading rule

outperforms the buy-and-hold strategy.  In the 18-year period from 1981 to 1998 the

best-performing trading rule according to the mean return criterion is a filter rule with

an average annualized excess return compared to the return from the buy-and-hold
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strategy of 34.9%.  The corresponding net profit over the full time period is $23.84

million, or $23.35 million after trading costs.

Note that the best-performing trading rule according to the mean return criterion is not

necessarily the parameterization that results in the highest cumulative net wealth.

When the investor is long the excess return is zero, as the benchmark is the buy-and-

hold strategy.  Consequently, this criterion favors trading rules that are better at

predicting downturns in the market (when the excess return in positive) and not up-

turns which is when the investor will actually make money given that short sales are

not possible.  Due to the small number of trades, the trading costs have little impact in

this market.

The table below reports the statistics for the best-performing trading rule according to

the mean return criterion.  Note that the mean returns for the long and neutral

positions in table 2 are absolute returns rather than excess returns compared to the

buy-and-hold strategy.

Table 2: Best-performing trading rule according to mean return criterion

Description N(long) N(neutral) #tradesµ(long)

[σ]

µ(neutral)

[σ]

Filter rule

x = y = 0.03

121 77 7 0.028993

[0.06171]

-0.03175

[0.144272]

N(long) and N(neutral) is the number of months an investor is long or neutral respectively.  µ(long) and

µ(neutral) reports the mean monthly return obtained in long or neutral positions, with the sample

standard deviation in brackets.

According to the best trading rule, the investor would have been in the market 61% of

the time and made seven trades (buy + sell).  The table indicates that the trading rule

is capable of identifying market trends, as the mean return in long positions is positive

(40.9% p.a.) while the mean return in neutral positions is negative (-45.5% p.a.).  In

terms of volatility, returns associated with long positions have a lower standard

deviation than returns associated with neutral (sell) positions.  This is consistent with

a well-known feature of asset returns called the leverage effect and initially

documented by Black (1976).  Moreover, an investor who used the best trading rule
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for asset play would have obtained returns (in long positions) that are higher than the

returns of the buy-and-hold strategy and yet have lower standard deviation (ref. table

1).  From a risk-reward point of view, this observation supports the notion that the

best technical trading rule outperforms the benchmark buy-and-hold strategy.

Assume for a moment that the distribution of returns in this market is normal,

stationary and time-independent so that the standard t-ratio tests are applicable.  The

corresponding t-statistic to test the null hypothesis that the buy/sell mean return

according to the best trading rule is equal to the buy-and-hold strategy is given by

(BLL 1992):

where µr and nr are the mean return and total duration of the long/neutral positions,

and µ and n are the unconditional return from the buy-and-hold strategy and the total

number of observations.  σ2 is the estimated variance for the entire sample.  The

resulting t-statistics are 2.17 and -2.53 for the long and neutral positions respectively.

Hence, the mean returns obtained by using the trading rule are significantly different

from the return of the buy-and-hold strategy at standard levels of significance.  Of

course, the returns do not satisfy the assumptions behind these calculations.

Nevertheless, these results support the notion that the best-performing technical

trading rule outperforms the benchmark.

The results so far are intriguing but it remains to be seen whether the results stand up

to an adjustment for data-snooping/data-mining effects.  After all, the best trading rule

is drawn from a large universe of parameterizations.  Following STW (1998), two

possible outcomes can occur when an additional trading rule is inspected.  If the

marginal trading rule does not lead to improvement over the previously best-

performing trading rule, the p-value for the null hypothesis that the best model does

not outperform will increase, effectively accounting for the fact that the best trading

rule has been selected from a larger set of rules.  On the other hand, if the marginal

trading rule improves on the maximum performance statistics, then this can reduce the

p-value since better performance increases the probability that the optimal model
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genuinely contains valuable economic information.  The principle is similar to the

reasoning behind the Akaike and Schwarz information criteria, which penalize the R2

value if the introduction of an additional variable in a regression fails to improve the

R2 value sufficiently.

The figure below provides an illustration of these effects operating sequentially across

the full universe of trading rules.  The figure illustrates the development in maximum

mean return performance and p-value for the null-hypothesis as more trading rules are

considered.  The data-snooping adjusted p-value is calculated according to White's

Reality Check as explained in section 5 with B = 500 bootstrap samples.

Figure 5: Economic and statistical performance of the best rule

The figure plots each trading rule against its mean return (measured on the left y-

axis).  The upper line tracks the highest mean return up to an including a given

number of trading rules (indicated on the x-axis).  The lower line indicates the

bootstrapped p-value (right y-axis).  The maximum mean return starts out around

0.014 (16% p.a.) and quickly increases to 0.023 (32% p.a.), yielding a p-value of 0.02

after the first 120 trading rules have been considered.  After approximately 900

trading rules have been considered, the best performance is improved to the final

0.025 (35% p.a.) and the p-value is kept to a level of less than 0.02.  Ultimately, the

only numbers that matter are those at the extreme right of the graph, as the order of
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experiments is arbitrary.  Note that what appears to be vertical clusters of mean return

points simply reflect the performance of neighbor trading rules in a similar class as

the parameters of the trading rules are varied.
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7 Conclusions and discussion

All the findings in this paper support a conclusion that the best-performing technical

trading rule is capable of outperforming the benchmark and that the model has

superior predictive power.  Of course, there is no guarantee that this apparent superior

performance will continue in the future, and the ultimate test of the best-performing

trading rule would be an out-of-sample test after another ten years of data.  A further

issue at stake is how an investor could have possibly determined the best trading rule

prior to committing money to a given rule.  Admittedly, there is no indication that it

would be possible to find ex ante the trading rule that will perform the best in the

future, and the probability that an investor would pick a trading rule with an excess

mean return that is statistically significant is rather small.

Consequently, whether the results in this paper have implications for weak form

market efficiency is a very subjective topic.  In general, two competing explanations

for the presence of predictable variations in asset returns have been suggested: (1)

market efficiency in which prices take swings from their fundamental values, and (2)

markets are efficient and the predictable variation can be explained by time-varying

equilibrium returns.  There is little evidence so far that unambiguously distinguishes

these two competing hypotheses.  STW(1998) argues that the existence of

outperforming trading rules would only seem to have implications for weak form

market efficiency or variations in ex ante risk premia if the rules under consideration

are known during the sample period.  The application of technical trading rules to

maritime financial data series has hardly received any attention from researchers, and

it is questionable whether the market players in the industry are sophisticated enough

to utilize such investing tools.  On the other hand, the types of trading rules

considered would have been well known from other financial applications throughout

the time period.

Given that investors have had the opportunity to utilize such trading rules, there may

be market-specific reasons why predictable and abnormal returns seem to exist in this

market and why these abnormalities haven't been "traded away".  Firstly, a potential

reason may be barriers of entry in terms of knowledge.  However, an investor can
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outsource every aspect of the daily operation of the ship, turning the deal into a pure

value play.  Secondly, perhaps there is an attitude in the global financial community

that shipping is a niche industry for people who take a special interest, and that what

is considered minor investment opportunities aren't worth pursuing.  The main

problem is most likely the small size of the market in terms of number of vessels in

any given category, and the resulting low liquidity.  In other words, there may not be a

vessel for sale when the technical trading rule generates a buy signal or a buyer when

the trading rule generates a sell signal.  Such practical issues may make

implementation difficult and reduce the effective returns generated by any trading

rule.  Although trading costs have been treated in this paper, the effects of an illiquid

market have not been fully considered.  The introduction of a time delay in some of

the trading rule parameterizations indicates that a delay in the execution of a buy or

sell signal has a negative effect on returns.  A thorough treatment of this issue in a

future edition may overturn the conclusion in this paper.
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Appendix: Trading rule parameters

This appendix describes the 1053 parameterizations used to generate the universe of

trading rules.

A.1 Filter rules

x = change in security price (X × price) required to initiate a position

y = change in security price required to liquidate a position

x, y = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15. 0.20, 0.25

Allowing all combinations of x and y there are x × y = 169 filter rules

A.2 Moving average rules

n = number of months in a slow moving average = 2,…., 18

m = number of months in a fast moving average = 1,…., 6

b = fixed band multiplicative value = 0.01, 0.02, 0.03, 0.04, 0.05

c = number of months for the time delay filter = 2, 3, 4

Noting that m must be less than n, there are 87 combinations of m and n.

Total number of MA rules:

87 + b × 87 + c × 87 = 783

A.3 Support and resistance rules

n = number of months in the support and resistance range = 6,…,18

b = fixed band multiplicative value = 0.01, 0.02, 0.03, 0.04, 0.05

c = number of months for the time delay filter = 2, 3

Total number of S & R rules:

13 + 13 × b + 13 × c = 104
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