NHH

AN ARTIFICIAL WALK DOWN WALL STREET:

Can Intraday Stock Returns Be Predicted Using

Artificial Neural Networks?

Jens Olve Bgvre Peder Kristian Viervoll

Norwegian School of Economics and Business Administration (NHH)

June 2009, Bergen

Advisor: Associate Professor Jonas Andersson

This thesis was written as a part of the master’s degree program at NHH. Neither the institution, the
advisor, nor the sensors are - through the approval of this thesis - responsible for neither the theories

and methods used, nor results and conclusions drawn in this work.



“If a man will begin with certainties, he shall end in

doubts, but if he will be content to begin with doubts, he

shall end in certainties.”

Sir Francis Bacon



TABLE OF CONTENTS

LIST OF FIGURES AND TABLES iv
ABSTRACT v
ACKNOWLEDGEMENTS vi
INTRODUCTION 1
2 METHODOLOGY 3
21 THE ARIMA FRAMEWORK ..ottt e e b et ens 3

211 THE AUTOREGRESSIVE PROCESS .....ccviitiiiiiiiiiicie ettt r e 3

212 THE MOVING AVERAGE PROCESS.......cooiiiiiiiiiiite sttt st 4

213 THE AUTOREGRESSIVE MOVING AVERAGE PROCESS .......cocoiiiiitieiieiiciccte et 4

214 THE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PROCESS........ccoieiiiieicicicicie e 4

2.15 RANDOM WALK.....ooiiitiiiitiiiiitcsc sttt sttt s a e 5

2.2 SELECTING ARIMA MODELS ......ouiiiiiiiiitietecce sttt a s st 5

221 AUTOCORRELATION FUNCTION ...ttt sttt sre s 5

222 PARTIAL AUTOCORRELATION FUNCTION ....oooviiiiiiiitiiiiiicicsicicic st 6

223 IDENTIFYING THE ORDER OF AR AND MA MODELS .....covioiiiiiiiiiiicicicicie v 6

224 THE AKAIKE AND BAYESIAN INFORMATION CRITERION .....coouiiiiiiiiiiciiicie i 8

2.3 ARTIFICIAL NEURAL NETWORKS ....ooiiitiitiiticticicictcst ettt 9

231 NETWORK PROPERTIES ....cviiiiiiiiiiitiiiticiicet bbb 9

232 LEARNING ALGORITHM ..ottt s s 15

233 BLACK BOX...iitiiiiiitiiiti ettt bbb s ea 18

2.4 MEASURING FORECAST ACCURALY ....uiiitiiitiiitiiiit ittt eae et ba e san et 19

3 DATA 21
3.1 HIGH FREQUENCY DATA AND MARKET MICROSTRUCTURE ........cccovviiiiiiiiiiictictccte e 21

3.2 DATA SET bbb e s e bbb e nae e 23

3.21 STOCKS . b e ea e s e st s eae e 24

3.2.2 TRADE PRICE AND QUOTED PRICES......ccotiiiiiiiiiiiiii it 24

4 MODELS 25
4.1 CALIBRATION OF ARIMA ...ttt ettt s ae e b bbb eba e eba s ean s eansenns 25

4.2 CALIBRATION OF NEURAL NETWORKS.....ccuiiiiiiiiiiiiiiiiiiicniiccic it 27

4.2.1 INPUT VARIABLES ...ttt eae s s s s 27

4.2.2 HIDDEN NODES........ooiiiiiiiiiiiiitcct bbb a et st sae s b an e ae e 28

423 ACTIVATION FUNCTIONS AND SCALING OF DATA ...cooiiiiiiitietecteecetere et 29

424 OUTPUT NODES ..ottt b bbb na b sre b e 30

4.2.5 CALIBRATION OF THE LEARNING ALGORITHM ....ccviiiiiiiiictiniectcctcecsce et 32

4.2.6 NUMERICAL REVIEW ...ttt ettt et 33

5 EMPIRICAL ANALYSIS 36
5.1 NEURAL NETWORKS ...ttt st s b et sae s neeaee 36

5.1.1 NEURAL NETWORK A — ONE STANDARD OUTPUT NODE........cccovivimiiiitiieciintecieeeeeeeie e 36

5.1.2 NEURAL NETWORK B — FOUR BINARY OUTPUT NODES........c.coveiiiiieiiienicceeee s 37

5.2 COMPARATIVE ANALYSIS ...ttt et b st sae e 38

6 CONCLUSION 39
A TABLES AND FIGURES 40
B DERIVATION OF THE BACK-PROPAGATION ALGORITHM 54
C NOTE ON PROGRAMMING CODE 57
REFERENCES 58




LIST OF FIGURES AND TABLES

FIGURES

FIGURE 1 — NEURAL NETWORK STRUCTURE L....coiiiiiiiiiiiiiiiiiticiti ettt st b et b et ene e 10
FIGURE 2— SIGMOID ACTIVATION FUNCTIONS ...ttt s sttt e b e bbb eae e 12
FIGURE 3 — THRESHOLD ACTIVATION FUNCTION ..ottt sttt b b sae b b saeens 13
FIGURE 4 — NEURAL NETWORK STRUCTURE H6....coiuiiiiiitiiti ettt sttt r bbb sae e e 14
FIGURE 5 = ERROR FUNCTION EXAMPLE .....ooouiitiitiiiiieiictcic ettt sttt st a et sn e b s ae b st saneneane 15
FIGURE 6 — FLOWCHART OF LEARNING ALGORITHM .....ciitiiiiitieiiiiicsic sttt sttt ae s 17
FIGURE 7 — DATA FREQUENCY CHARTS ...ttt sttt et ettt s a b a e s h e b e st e e b sae b e beeneena s saneneenteas 22
FIGURE 8 — STOCK RETURN DISTRIBUTIONS ......uiitiiiiiitiiie ettt st st a e b sae bt sne b s e 30
FIGURE 9 — FEED FORWARDING INPUT VALUES ......oooiiiiiititieietct ettt ettt a et e sne et na s 35
FIGURE 10 — BACK-PROPAGATION ...ooiuiiiiitiiti ittt st h s st d b s a e b ha et sa b s as b e s shesaesbesanennenes 35
TABLES

TABLE 1 — PROPERTIES OF ACF AND PACF ....c.vitiitiiticiiictcstn sttt st b e s h s a s e b bbbt senaeaae s 7
TABLE 2 — RESULTS FROM ARMA ESTIMATION ..ottt et b et a s 26
TABLE 3 — FINAL ARMA MODELS FROM CROSS VALIDATION ......ooiiiiiiiiiitiiiiiiiniicicicie sttt saesae s 26
TABLE 4 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS .......coiiiiiiiiiiiitinticccict s 36
TABLE 5 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS .....cciiiiiiiiiiiiiiciicit ettt 37
TABLE 6 — ARIMA AND NETWORK A & B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS .....cccccoiviiiiiiiiiciiiiccscce e 38

TABLES IN APPENDIX A

TABLE A.1 — ESTIMATED ARMA MODEL FOR EXXON MOBILE.........cociiiiitiiiiiiitiiniiccice bbb 40
TABLE A.2 — ESTIMATED ARMA MODEL FOR FRONTLINE ......coitiiiiiiiiiiniiiiicitic ittt ne e 40
TABLE A.3 — ESTIMATED ARMA MODEL FOR GOLDMAN SACHS......ccooiiiiiiiiiiiiicte et 41
TABLE A.4 — ARMA RESULTS FROM CROSS VALIDATION ....cuiiiiiiiiiiiiiiitiiiiiciti ittt s st s sttt et a s sn e ne e 41
TABLE A.5 — AUTOCORRELATION COEFFICIENTS AND PARIAL AUTOCORRELATION COEFFICIENTS......cccoviiiiiiniiiniiinieinieciicieeies 42
TABLE A.6 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM).....couiuiriiiiiiiiiienieienieiieiinieieie st 43
TABLE A.7 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG) ...cuceviiiiiiiiiieiiienieeniecieisteeeie st 43
TABLE A.8 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO) ...ccveiiuiiiiiiieiiiieieieniecieisieiete st 43
TABLE A.9 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS) ...uveueiiiiiiiriiiiienieiesiecsret et 44
TABLE A.10 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM)...c.ocuiiiiiiriiiiiiniiiiieinieisiiiee e 44
TABLE A.11 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG) ....ccuviiiiiiiiiiiiieciiiiccceecesesecs s 44
TABLE A.12 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO) .....cviiiiiiiiiiiiiciciiiiiicccecese s 45
TABLE A.13 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS) ...oouiiiiriiiiiiiiieiciiiniicsciene s 45
TABLE A.14 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM) ....c.ccoviiiiiiiiiiiiniiiiiiccceneceaes 46
TABLE A.15 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)....ccvcuruiiiiiiiiiiiiiiciccineicnceneeceans 47
TABLE A.16 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO).....coooiviiiiiiiiiiniiricciicccenneccns 48
TABLE A.17 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS)....ccvcuriiiiiiiiiiniiiieccnieicssceneneiceens 49
TABLE A.18 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM) .....ocvviiiiriiiiiiiiniiiciiiciccceeneices 50
TABLE A.19 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)....cccuvriiuiiiiiiiiiiiiniiinieiceneceines 51
TABLE A.20 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO)....c.couciiiiiiiiiiiiiiinicicccecciies 52
TABLE A.21 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS) ...cveuiriiiiiiiiiiiiiiiniiiniciiecccsicines 53



ABSTRACT

Financial markets are complex evolved dynamic systems. Due to its irregularity,
financial time series forecasting is regarded as a rather challenging task. In recent
years, artificial neural network applications in finance, for such tasks as pattern
recognition, classification, and time series forecasting have dramatically increased.
The objective of this paper is to present this powerful framework and attempt to use
it to predict the stock return series of four publicly listed companies on the New York
Stock Exchange. Our findings coincide with those of Burton Malkiel in his book, A
Random Walk down Wall Street; no conclusive evidence is found that our proposed

models can predict the stock return series better than a random walk.



ACKNOWLEDGEMENTS

First of all, we would like to thank our advisor, Associate Professor Jonas Andersson
at NHH, for his guidance on theoretical reasoning, instructive comments, support and
patience. Special gratitude is extended to Professor Terje Kristensen at the Bergen
College University for his invaluable insight in the field of neural networks and
artificial intelligence. Your comments and suggestions were highly appreciated. We
would also like to thank Professor Jostein Lillestgl for his help and discussion on
miscellaneous topics. Finally we would like to thank PhD candidate at NHH, Knut

Nygaard, for helpful comments on market microstructure.

Vi



1 INTRODUCTION

Forecasting and detecting trends and patterns in financial data are of great interest
to the business world because the more precise the forecasts are the more utility is
likely to be gained from acting on them. Stock market prediction is an area which
attracts a great deal of attention since once the prediction of returns is successful,

monetary rewards will be substantial.

To achieve this, a powerful framework that can generalize the underlying process of
stock returns must be defined, applied and evaluated. In financial forecasting of
returns, a classic workhorse framework is the autoregressive integrated moving
average (ARIMA) process and variations of it. An ARIMA process is linear in its
nature, yet there is practically no evidence that the underlying process of stock

returns is completely linear (Mills, 1990).

This leads us to believe that nonlinear frameworks may provide more reliable
predictions. The first objective of this paper is to present a nonlinear model
framework popularly called the artificial neural network (ANN). The novelty of ANNs
lies in their ability to model both linear and nonlinear processes without a priori
assumptions about the nature of the generating process. Examples of such

assumptions are normality of residuals and collinearity among explanatory variables.

ANNs are mathematical models inspired by the human nervous system. They have
been successfully applied to a broad spectrum of low-level cognitive tasks such as
pattern recognition of cancer cells (Moallemi, 1991), voice recognition (Kuah et al.,
1994), inspection for defects in a production process (Seiji et al., 2004) and the use of
hyphenation in written language (Kristensen et al., 1997). When it comes to
economics and finance, ANNs have been used in areas like portfolio management
(Fernandez and Gomez, 2007) and credit rating (Atiya, 2001) in addition to regular

financial time series forecasting.

One of the first researchers to actually use an ANN on financial time series was
White (1988). White applied a simple ANN on a time series of the IBM stock price

with the aim to prove the efficient market hypothesis. He did not find evidence



against it and concluded that a random walk was still the best model for stock price
movements’. On the other hand, studies like Bosarge (1993) and Refenes et al. (1995)
introduced more advanced ANNs that challenged the efficient market hypothesis.

(See Hill et al., 1996 for a comprehensive survey on this topic).

ANN's are often classified as black boxes. A Black box is defined as a device or
theoretical construct with known or specified performance characteristics but
unknown or unspecified constituents and means of operation. This leads us to the
second objective of this paper, which is to show the reader that ANNs share
similarities to multiple regression models and, in some cases, are a continuation of
the ARIMA framework. The last objective of this paper is to use our proposed
models in an attempt to forecast the stock return time series on an intraday basis on

four companies listed on the New York Stock Exchange (NYSE).

The structure of this paper is as follows. We start by presenting theory on some
classic time series forecast methods which will be used as a comparison to our ANN
models. We will then show and explain the typical structure of an ANN and how to
build a simple neural network. Subsequently we discuss the data foundation plus the
filtering and sorting process of the raw data obtained for the analysis. Next, we
discuss the modeling method together with calibration of the various models
including our own enhanced version of the initial ANN. The penultimate chapter
deals with the actual empirical analysis on four selected stock return time series and
the results. Finally, we summarize our findings and make some recommendations for

future research.

! The random walk hypothesis is a financial theory stating that stock market prices evolve according to a
random walk and thus the prices of the stock market cannot be predicted. The term was popularized by the
1973 book, A Random Walk Down Wall Street, by Burton Malkiel, currently a Professor of Economics and
Finance at Princeton University.



2 METHODOLOGY

In this section we present an overview of relevant theory which will form the base of
our proposed models in Section 4. This includes an introduction to ANNs and a
parametric framework used as comparison to our proposed models; the ARIMA
framework. We aim to provide the reader with an intuitive explanation of the

concepts behind the models?.
2.1 THE ARIMA FRAMEWORK

The autoregressive integrated moving average (ARIMA) model which is a parametric
model most commonly used to predict future points in a time series was first
introduced by Box and Jenkins (1970). The model combines the generalized AR
model and the generalized MA model with a differencing factor. Consider the time

series:

(1) Yu Yo Ye-1, Yt
Consider also the occurrence of random shocks ¢ at each time step:
(2) €1, €y venr Er—1, &t

{e,} is Gaussian white noise and is by definition independent and identically
distributed (i.i.d.). For supplementary explanations and proof on the subjects in the
remaining part of section 2.1, any book on financial time series analysis, like Tsay

(2002), will do.
2.1.1 THE AUTOREGRESSIVE PROCESS

If {y.}is generated by

(3) Ve =¢o+ P1YVe—1 + &

2 . . . . .
References to appendices or external sources for elaborate derivations and proof not essential to our analysis
are given where necessary.



we call it an AR(1) process. This is simply a linear regression with explanatory
variable y,_; and coefficients ¢, and ¢, as parameters. The generalized AR model

for p lags is given by:

p
(4) Ve =¢o+ G1Ye1+ ot dpYip T &= Pp + Z biyi-i + &
i=1

where the parameter p is a non-negative integer and indicates that the preceding p
values in the time series serve as explanatory variables for y; and ¢;(i = 1,2, ...,p)

as parameters.

2.1.2 THE MOVING AVERAGE PROCESS

A moving average process of order 1 is defined by:
(5) Ve =00+ & — 0164

This is abbreviated MA(1) and can be generalized for order g:

q
(6) Ve =00+ & — 0161 — = 046q =0 — Z Ojec—j + &
j=1
The variable y, is according to the MA(q) model a weighted average of &, to &_g,
with Hj(j = 1,2, ...,q) as parameters to estimate.
2.1.3 THE AUTOREGRESSIVE MOVING AVERAGE PROCESS

The autoregressive moving average process combines the two processes above and is

abbreviated ARMA(p, q):

p q
(7) Ve = Z biye-i + Z gjgt—j + &
i=1 =1

2.1.4 THE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PROCESS

The time series y, is said to be an ARIMA(p, d, q) process if the difference series y,

follows a stationary and invertible ARMA(p, q) process:



q
dn —
0;e-j +& where A%y, =y, — Y4
=1

p
(8) Ay, = Z bi A%y +
im1 '

]

The autoregressive part of the process, ARIMA(p, 0,0), refers to the importance of
previous values in the time series. The value at time y;_;, may have an effect on the
value at time y;_ry1 and Y;_p4o. As time passes, the effect will decrease
exponentially towards zero. The differentiation part of the process, ARIMA(0, d, 0),
removes trend and drift in the time series and makes non-stationary data stationary.
The final part of the process, ARIMA(0,0, q), relates the previous q shocks with the
present shock &;. The estimation of coefficients and the forecast method are

discussed in Section 4.
2.1.5 RANDOM WALK

A random walk is a mathematical formulation of a trajectory of successive random
steps. A generalized ARIMA(p,d, q) process with no autoregressive part (p = 0),
difference factor of one (d = 1) and no moving average part (g = 0) is the definition

of a random walk:

9) Ye =Ye-1t &

The model states that the next value in the time series is only dependent on the

previous observation plus a shock variable which is i.i.d.

2.2 SELECTING ARIMA MODELS

2.2.1 AUTOCORRELATION FUNCTION

The autocorrelation function (ACF) describes the general linear dependence
between y, and its past values y,_j. The correlation coefficient between y; and y;_j
is called the lag h autocorrelation and will be denoted p;. If we have a weakly
stationary time series, i.e. a series that is constant for characteristics such as

expectation and variance, p;, is defined by:



_ Cov(ye, Ye—n) _ Cov(ye, Ye—n)
JVar(y)Var (ve_p) Var(y;)

(10) Pn

because of the property Var(y;) = Var(y;_n) of the weakly stationary time series.
We therefore obtain that p, = 1, p, = p_p and —1 < p, < 1. Also, a weakly
stationary series y;, is not serially correlated if and only if p;, = 0 forall h > 0. For
a given sample of a weakly stationary series {y,}/_;, let ¥ be the sample mean

y=Xr_1 v /T. The lag-h sample autocorrelation of y, is defined as

iD= D Yeon =)

ST ¢ ) where 0<h<T-1
t=1We Y

(11) Pr =

If y, is an i.i.d. sequence satisfying E(y?) < oo, then p,, is asymptotically normal with
zero mean and variance 1/T for any fixed positive integer h. In finite samples pj, is a
biased estimator of p,, but in most financial applications the bias is not so serious

because of the relatively large size of T.

2.2.2 PARTIAL AUTOCORRELATION FUNCTION

The partial autocorrelation function (PACF) adjusts for the impact the intervening
lags Y¢—1,Vi—2, -, Ve—nt1 have on the correlation between y, and y;_,. The hth

partial autocorrelation is the coefficient ¢, in the linear model

(12) Ve = On1YVi-1+ GPna2Ye—2 + -+ GunYVe-n t &

and determine the additional correlation between y; and y,_;, after adjustments

have been made for the intervening lags.
2.2.3 IDENTIFYING THE ORDER OF AR AND MA MODELS

When identifying p and q of an ARMA(p, q) the autocorrelation plot and the partial
autocorrelation plot are usually the primary tools. The sample autocorrelation plot
and the sample partial autocorrelation plot are assessed to their respectively
theoretical behavior. For a stationary AR(1) process, the sample autocorrelation

function is exponentially decreasing or a damped sinusoidal. For AR(p) processes



with p > 1 the sample ACF is usually a mixture of exponentially decreasing and
damped sinusoidal components. For higher-order autoregressive processes, the
sample autocorrelation needs to be supplemented with a partial autocorrelation plot.
The partial autocorrelation of an AR(p) process becomes zero at lag = p + 1, we
therefore check the sample partial autocorrelation function to search for evidence

that it is significantly different from zero.

The autocorrelation function of a MA(q) process becomes zero at lag > q + 1, it is
thus necessary to check the sample autocorrelation function to see where it in effect
becomes zero. Table 1 provides a summary for some of the properties of the ACF

and the PACF for different ARMA processes.

TABLE 1 — PROPERTIES OF ACF AND PACF

PROCESS ACF PCF

White noise Allp, =0 (h #0) All ¢pp, =0

AR(1):a; > 0 Direct exponential decay: py, = a* G11=p1; Gpn=0forh =2

AR(1):a; < 0 Oscillating decay: p,, = ;! ¢11=p1; G =0forh=>2

AR(p) Decays toward zero, coefficients may oscillate Spikes through lag p. All ¢, =0 for h > p
MA(1): >0 Positive spike atlag 1. p, =0 for h = 2 Osc. decay: ¢4 >0

MA(1):p <0 Negative spike atlag 1. p, = 0 for h > 2 Geom. decay: ¢p;; < 0

ARMA(1,1):a4, > 0 Exp. decay beginning at lag 1. Sign p; = sign( a, + ) Osc. decay beginning at lag 1. ¢p1; = p;

ARMA(1,1):a, < O Osc. decay beginning at lag 1. Sign p; =sign( a, + ) Exp. decay beginning atlag 1. ¢, = p;

ARMA(p,q) Decay (direct or osc.) beginning at lag q Decay (direct or osc.) beginning at lag p

COMMENT: ARMA model selection table found in Enders (2005). Specific patterns in ACF and PACF can be used for classification

of the underlying process in a time series.



2.2.4 THE AKAIKE AND BAYESIAN INFORMATION CRITERION

Identifying p and g can be difficult in practice. It is not given that ACF and PACF will
give reasonable results. However, there have been developed different criteria that
try to meet the shortcomings of the abovementioned theoretical functions. Two of
these are the Akaike and the Bayesian Information Criteria commonly abbreviated
AIC and BIC. They are both based on the maximum likelihood estimation approach.
The AIC can be said to describe the tradeoff between bias and variance (i.e. precision

and complexity) of the model (Akaike, 1974). The AIC is defined as:
(13) AIC = 2In(L) — 2n

Where L is the maximized likelihood function of the fitted model and n is the number
of parameters in the model. When estimating model parameters using maximum
likelihood estimation, it is possible to increase the likelihood by adding additional
parameters, which may result in overfittings. The BIC tries to resolve the same
problem by introducing a different penalty term for the number of parameters in the

model (Schwarz, 1978). BIC is defined as:
(14) BIC =2In(L) —In(n)n

Also here L is the maximized likelihood function of the fitted model and n is the
number of parameters in the model. The AIC and BIC are not used for hypothesis
testing, rather it is a tool for model selection. Given a data set, several competing
models may be ranked according to these criteria. The model receiving the lowest
value is considered to be better. From the values yielded by (13) and (14) one may
infer that the top three models are better than the rest of the models. One should
not assign a numerical value above which a given model is rejected. We will use both

criteria when we select our models derived from the ARIM A framework in Section 4.

*In statistics, overfitting refers to a statistical model that has too many parameters. An absurd and false model
may fit perfectly if the model has enough complexity by comparison to the amount of data available. When the
degrees of freedom in parameter selection exceed the information content of the data, this leads to
arbitrariness in the final (fitted) model parameters which reduces or destroys the ability of the model to
generalize beyond the fitting data.



2.3 ARTIFICIAL NEURAL NETWORKS

An artificial neural network, simply neural network or ANN is a model inspired by the
human nervous system. McCulloch and Pitts (1943) and Rosenblatt (1958) are
examples of some of the earliest research on neural networks and focuses on the
simulation of the human brain. The human nervous system is a network of billions of
neurons (nerve cells) in the human body. Each neuron is connected to a number of
other neurons forming a very complex parallel system which interconnect and
communicate by sending chemical signals between each other. Depending on the
strength of each signal, a neuron relays a signal if the aggregated signal from other
neurons is strong enough. An ANN can be considered to emulate a learning entity
that acquire dependencies from its environment and act accordingly. In this setting,
however, we abstract from the biological sphere and will define ANNs as pure

mathematical models.

The literature on ANNs is vast and there exists a wide range of different network
structures each with their own advantages and disadvantages. For a good overview
and expansion on the theory presented this section, see for example Rumelhart and
McClelland (1986).The most common network structure is the multilayer perceptron
(MLP). Although a MLP network has a specific functional form it is more flexible than
traditional linear models. The main advantage is that MLP networks can approximate
any nonlinear continuous function using one input layer, one hidden layer and one
output layer with a sufficient number of nodes (Hornik et al. 1989). In the following
sections we will review architectures and the learning process for a generic MLP
network and finish with a paragraph concerning the black box criticism directed

against neural networks in general.

2.3.1 NETWORK PROPERTIES

A typical structure of a MLP network is presented in Figure 1 below. The network
consists of an input layer, a hidden layer and an output layer. The input layer consists
of input nodes (similar to neurons in the human nervous system) which feed the
network with relevant data. This data form a linear combination (weighted sum) and

is sent to the hidden layer for activation. The weighted sum in each hidden node is

9



activated using an activation function that transforms the linear combination to fit
into a pre-determined interval. The transformed sum is then weighted and sent to

output nodes in the output layer.

Input layer ———> Hidden layer ~e————»  Output layer

K

AL

Input Output

Input

FIGURE 1 - NEURAL NETWORK STRUCTURE I: Graphical interpretation of a general three layered perceptron. The arrows show
the way information flows through the network. The input values are transferred (weighted) through a function, £, in the hidden
layer and subsequently transferred (weighted) to the output layer as the model output.

Input nodes

The input nodes are naturally the part where values are admitted into the model. For
a time series this would typically be lagged values of y, or other characteristic
measures. Input nodes are equivalent to independent variables using statistical

terminology. The input layer can then be handled as a vector of input variables:
(15) A=[a; a; - a
Connection weights

Connections between nodes are actually weights that determine the relevance of the
transfer signal from a node to another. These weights can be compared to the
statistical term parameters in frameworks like ARIMA and regression models. ANNs

are therefore sometimes referred to as both non-parametric and semi-parametric

10



models. Weights are typically randomized at the beginning of the training period and
then adjusted using appropriate methods during training. The weights between an
input layer and a hidden layer can be presented using matrix terminology. Consider

an I X | matrix:

[ph o1 - ¢f]]
(16) WA: ¢§11 ¢£12 ¢£1]

of ¢ - @f
where [ is the number of input nodes and J is the number of hidden nodes. In
addition to the input nodes, there is a bias node which serves as a constant in the
model and its value is equal to 1 at the beginning of the training period. The bias
changes along with the weights throughout the training and corresponds to the
constant coefficient in a standard regression. The bias weights are denoted q.'>64j.

Weights between the hidden layer and the output layer can be presented as a matrix

using the same terminology as above. Consider a /] X K matrix:

|—¢)191 ‘ibfz ‘ibfk]
(17) WB:|¢£1 22 ¢?K|

Li)ﬁ ¢p qb,BKJ
where J is the number of hidden nodes and K is the number of output nodes. Like

the input layer, the hidden layer also has bias weights, ¢, .
Activation function

The activation function is located in each hidden node (and output node if necessary)
and is normally of sigmoid type. A sigmoid function produces an s-shaped curve and
is real-valued and differentiable, having either a non-negative or non-positive first
derivative and exactly one inflection point®. The function has two asymptotes when
x — too. The logistic function produces a value inside the interval [0,1]. If the values
used as input or desired output is in another region it would be more reasonable to

use another activation function. An example of this is the hyperbolic tangent, which

4 . . . . .
Point on the curve where the second derivative changes sign and goes from concave to convex (or vice versa).

11



produces values inside the interval [—1,1]. The network’s training algorithm makes
use of the first derivative of the activation function. Because of the trivial deduction
of their first derivative, the two functions mentioned above are the most commonly

used activation functions in neural network literature (McNelis, 2005).

The logistic function and its first derivative:

(18)  f(x) = 1) = f(1-f(x)

(1+e™™)
The hyperbolic tangent and its first derivative:

2x

(19)  f) = 0 =1-(fx)°

e +1

The two functions are graphed below with x-values ranging from —5 to +5. The s-
shaped curves reflects their appeal where small changes in an already low or high

variable have very little effect.

Logistic Hyperbolic tangent
1,0 1,0
0,8 A 0,5
0,5 0,0
0,3 - 0,5 |
00 +—fr—rV—r—"F—F——7—7 10 ——r——————T—T——
5 4 3 2 -1 0 1 2 3 4 5 5 4 3 2 -1 0 1 2 3 4 5

FIGURE 2 — SIGMOID ACTIVATION FUNCTIONS: Logistic sigmoid function (left) and the hyperbolic tangent (right) for xe[—5,5].
This feature is often preferred in economic theory. Using a simple example: a small change in an already very low or very high
NOK/USD FX rate will not have a significant effect on the decision to import or export goods. However, the same change when
the exchange rate lay somewhere between the more extreme values would create a more pronounced impact on import and

export demand.

Many neural network models use hard limit threshold functions that produce two or
more values, depending on the node sum. An example of this is the binary function

with a limit threshold 7. The function f(x) would yield 1 for x > T and 0 for x < t:

12



Binary
2,00

1,00 4

0,00

-1,00

FIGURE 3 — THRESHOLD ACTIVATION FUNCTION: Graph showing the mapping of a threshold function that produces either zero

or unity depending on the threshold limit 7.

Hidden nodes

The hidden nodes receive a weighted sum from the different input nodes plus the
input bias which is put through the activation function. The hidden layer as a vector

of hidden nodes is defined as:

1
(20) B=[by b, - bj] where b; =f<¢>5‘j +Z¢§-ai> and j =1,2,..,]
i=1

Output nodes

The output node is the final destination for the transferred data. The output may be
linear in the sense that the weighted sum from all the hidden nodes plus the bias
term is considered as the final output. Alternatively one can use an activation
function in the output node to produce a value inside a desired interval. Output
nodes are analogous to dependent variables using statistical terminology. The output

value for output node k is:

]
1) o =f| d5 + Z ¢hcb; | where k=12,.,K
=1

Substituting for b; forms the following model framework with a activation function in

the output node:

13



J I
22) =1 PE, + z dhSf | Db + z bfia; where k=12,..,K
=1 i=1

For time series prediction, using one output node, lagged values of y; and, assuming

residuals are additive white noise, the functional form would be:

] I
(23) ye=f| o6 + Z ¢}31f ¢64j + Z ¢{4}'3’t—i + &
j=1 i=1

Figure 4 is a continuation of Figure 1 using the general notation introduced above. As
we can see, the network inhabits strong parallel mapping skills. Acknowledging that,
we also see ANNs biggest disadvantage; complexity increases exponentially with
network size. One of the most important issues when building an ANN is to find a

balance between precision and complexity (cf. Section 2.2.4).

Input layer @&—>p Hidden layer ®—— &  Output layer

S \ .
N \ .
S e
o R
1S \
/ ANV \
. ’ <l
/ - .
L, . \
ST \
S, \
P \
@

FIGURE 4 — NEURAL NETWORK STRUCTURE II: The general architecture for a three layered multilayer perceptron showing the
weights between specific nodes and layers. The reason for dashed grey lines is to make it easier to see some of the specific
weights between nodes and layers. This is a fully connected MLP with one hidden layer. For more complex structures, some of

the weights between nodes can be deleted and there can be several hidden layers for added complexity.

14



2.3.2 LEARNING ALGORITHM

When the architecture is set, the MLP network weights must be estimated. This
process is called training in the neural network literature. There are several methods
available for training, some more complex than others. The most popular learning
paradigm is the gradient descent algorithm, also called back-propagation. This
concept was popularized by Rumelhart and McClelland (1986). The mathematical
structure of the back-propagation algorithm is quite trivial compared to more
advanced learning algorithms. The objective of the training algorithm is to minimize

the mean square error (MSE) of the entire training set of data which is defined as:

N K
1 1
(24) E= NZ Z ep where er = > (ci — c)?

where E is the total error of all patterns presented to the model and k refers to the
output node. ¢y is the actual output from the model and c;, is the desired output
(what the model should have forecasted). e;} is the instantaneous error resulting
from the difference between ¢, and ¢ in output node k in training pattern n. This
error is propagated backwards through the network to allocate it to the right weights

and adjust them accordingly.

Error function

0,8

0,7 -

0,6 -

Error

04 -

0,3

0,1 A
C

0 T T T T T T T T
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Weight

FIGURE 5 — ERROR FUNCTION EXAMPLE: Simplified graphical representation of a neural network error surface. Point A and B

are local minimums of the error function E. Point C is the desirable result in this conventional example.

15



The weight changes are made by implementing the following equations where i, j

and k refers to the input, hidden and output layer:

(25) Ap Pfe = iSi + ¥ Aeq df  where 8 = (g — ci)f ' (si)

K
(26) Ar dfi =n8;s; +y Ay Pfj where 6 = (Z 6k¢]Bk) f'(s5)
=1

Where s; and sy are the values before they are put through the activation function.
The derivations of equations (25) and (26) are presented in Appendix B. The §;; and
8; terms are the local gradients for the hidden layer and input layer. Gradients
represent a sensitivity factor, determining the direction of the search in weight space
for the optimal weight. 1 is called the learning rate and y is called momentum, both
with values between zero and unity. The smaller we set 7, the smaller the weight
change is from one iteration to the next. The momentum term y is added to increase

the learning rate without destabilizing the network.

This procedure is used on every weight in the network and iterated through the
entire training set of data. A full iteration of the N training patterns is called an
epoch. After an epoch, the average squared error and weights are saved if the error is
the lowest yet or if any stopping criteria have been met. Such criteria could be an
upper limit of epochs or total time elapsed. Training the network usually requires
many epochs so that we avoid ending up with weights that place us in the vicinity of a
local minimum of the error function. The weight adjustment equation for weights
between the hidden and the output layer (25) is slightly different than the weight
change for weighs between the input layer and the hidden layer (26), because the

error is dependent on subsequent weights in the network.

To follow the different steps, it may be easier to follow the learning algorithm looking
at a schematic presentation. It is also more convenient for programming purposes

because the flow chart below can easily be adapted to any programming language:

16



STEP 1

e T
INITIALIZATION yers.
v STEP 2
Feed network with the first input
» GET INPUT vecto:ofVIVV \r/e::;rs in th(le tra:in?:
> DATA &
set.
v STEP 3
| DATA TO Let the network calculate the
» output values for each output
INPUT NODES .
node. The corresponding error
measure is consequently
propagated backwards in the
A 4 network.
CALCULATE OUTOUT
AND ERROR VALUES Using equation (24) and (25), the
algorithm adjusts weights so that
the error in the output nodes is
v reduced.
ADJUST The error from each output node
WEIGHTS is aggregated and saved. When
this is done, the next input vector
in the training data set is fed to
v the network. This procedure is
NEXT ) repeated until all the training
vectors are run through and a
INPUT VECTOR
total aggregated error saved.
A 4 STEP 4
CALCULATE SAVE BEST i1 When the algorithm has run
AVERAGE ERROR WEIGHTS trough the entire training set, it
calculates the average error and
save the network weights if the
average error is the lowest yet.
A 4
NEXT O This run is called an epoch and
EPOCH the algorithm run through a given
set of epochs before it stops.
A 4 STEP 5
END X The procedure stops when it
PROCEDURE reaches the maximum number of
epochs or any other early-
stopping measure.
LEGEND:
X End of the algorithm. This is achieved either with a successful run or by an error
J A loop. This would correspond to a do procedure while a condition is met routine

I~

Writing a result either in an array or any other format chosen by the programmer

FIGURE 6 — FLOWCHART OF LEARNING ALGORITHM: Diagram of the back-propagation algorithm. This process is easily

programmable in any desired language using loops and logical parameters. Comments on the code are presented in Appendix C.

17



The rationale behind back-propagation could also be easier to comprehend using an
analogy: suppose you throw a bouncing ball from a mountain top and down into a
valley. The ball will bounce down the mountainside (error surface) eventually
stopping on a plateau. This plateau can either be the bottom of the valley or some
flat rock face somewhere on the way down. Let n be the measure of how bouncy the
ball is and y the weight of the ball. If the ball is too bouncy (high 1) it may reach the
bottom very quickly, but in an unstable manner bounce away and disappear. If the
weight of the ball is too high (high y), the ball may settle on a plateau in the
mountainside. The outcome of optimal bounce and weight would be that the ball

settles at the bottom of the valley.

If the model could see the error function like the conventional example in Figure 5,
then it would have chosen point C. This would be the global minimum of the error
function E. Because the error function is a hyper plane in a multi-dimensional space,
the model cannot see the entire function but only the gradient in a specific point. As
a consequence it can end up in point A or B. If the algorithm reaches such a saddle
point (i.e. a plateau on the mountainside) it may converge to this solution. With the
momentum term, the training algorithm is capable of jumping out of local minima
points. The precision of these jumps depends on tuning the momentum term. A low

momentum term can lead to oscillation and unstable behavior.
2.3.3 BLACK BOX

Neural networks have been considered by many to be black boxes. It is hardly the
mathematics behind the learning algorithm which is the problem. The weights,
however, are not easily interpreted. If we decide to have zero hidden layers and

linear activation functions, (22) will be simplified to:

1
(27) Yt = ¢641 + Z ¢54)’t—i + &
i=1

This is a normal multiple regression, and more specifically, equivalent to the
autoregressive process defined by (4). Here, every ¢ has an interpretable meaning.

Adding layers simply introduce a dynamic property to the regression. Appending one

18



hidden layer and keeping the activation functions linear we derive the following

dynamic multiple regression:

J 1
28)  ye=ob+ ) ¢ <¢>a“,- +) ¢>f,~yt_i> +e
j:l i=1

This MLP network is more powerful than the AR process due to the nonlinear
functional mapping from past observations to the future value and can be thought of

as a semi-parametric regression model (Chan et al., 2007).

This shows us that a neural network is not a magicians hat, but merely an advanced
regression model which given the right input and structure may be able to give a
reasonable result. This requires an understanding of network structure, how the

network performs calculations and how the output data should be analyzed.
2.4 MEASURING FORECAST ACCURACY

Clearly, one cannot determine whether a forecasting model is good or not based
upon a single forecast and one realization. Many econometric forecasting studies
evaluate the models success using statistical loss functions, like the previously

mentioned MSE':

T
1 2
(29 MSE =7 (Veon = Fen)
t=1

where ., is the h-step-ahead forecast and y, is the actual value. This provides a
quadratic loss function rendering all values positive. It makes sense when dealing

with stock returns which could cancel each other out if we where to use real values.

Another criterion which can be used is the U-statistic (Theil, 1966):

T <yt+h — 37t,h)2
t=1 YVe+h

(30) U

A2
T <Yt+h_zt,h)
=1
t YVe+h

19



where Z; j, is the forecast from a simple model such as a random walk. A U-statistic of
one implies that the model under consideration and the benchmark model are
equally accurate (or inaccurate). For U < 1 implies that the model in question is
superior to the benchmark and vice versa for U > 1. Albeit useful, the U-statistic is
not without problems. If the simple model equals the actual value at time t, the

statistic will be infinite (because of a zero denominator).

It is not necessarily the case that models are useful in practical situations even if they
are classified as accurate. For example, Gerlow et al. (1993) show that the accuracy of
forecasts according to traditional statistical criteria may give little guide to the

potential profitability of employing those forecasts in a market trading strategy.

On the other hand, models that can accurately forecast the sign of future returns
have been found to be more profitable (Leitch and Tanner, 1991). They suggest the
following indicator to show if a model inhabits the ability to predict direction changes

regardless of their magnitude:

1 d 1if (Yt+h37t,h) >0
(31) S = ?Z St+n ~ Where  Sp, =

t=1 0 else
Consider the following case: a simple model (e.g. RW) predicts the next point in a
stock return time series to be —1 percent. A developed model predicts 3 percent. The
actual value is 1 percent. MSE would equally rank the two models. Conversely, the S-
statistic would rank the developed model better than the RW because it predicts in
the right direction. We will utilize all three measures when we assess the prediction

abilities of the models.

20



3 DATA

The data we have used in our empirical analysis are obtained from the Trade and
Quote (TAQ) database. The TAQ database is a collection of intraday trades and
quotes for all securities listed on the New York Stock Exchange (NYSE), the American
Stock Exchange (AMEX) and the Nasdag National Market System (NASDAQ). TAQ
provides historical tick by tick data reported on consolidated tapes of operations.
Aside from programming and modeling, the most time consuming aspect of this
analysis were preprocessing of data. Even though TAQ provides excellent background
material for empirical analysis, the data is far from usable, at least from a statistical
perspective, without proper filtering and sorting. The last part of this chapter is
dedicated to explain what we have done with the data used as input in our models.
This is done because of the lack of data presentation in empirical papers on similar
subjects. We found that most research on financial time series forecasting using
neural network methodology does not mention how the data was processed before it
was used in the proposed model. Preprocessing is time consuming and tedious and
were automated using sorting algorithms. Information about this algorithm is
presented in Appendix C. Before we discuss the actual data set, we make use of the
following section for a brief introduction to high frequency data and market

microstructure, two topics which are important to our analysis.
3.1 HIGH FREQUENCY DATA AND MARKET MICROSTRUCTURE

Market microstructure is the functional setup of a market. This specific field in
economics deals with the process of how exchanges occur in the market, like the
process by which the price for an asset is determined. In some markets, like the stock
market, prices are a result of a negotiation®. The seller asks for a certain price while
the buyer presents his bid. The actual trade of an asset at any point in time will be

the result of equilibrium between selling and buying agents. Because of the spread

> Combined ticker tapes of the NYSE and AMEX used for listed equity securities. Tape A covers the NYSE-listed
securities and is used to identify the originating market. Tape B does the same for AMEX-listed securities and
also reports on securities listed on regional stock exchanges.

® Other markets may have different price processes, like auctioning (e.g. Sotheby’s) or they may simply be
posted by the seller (e.g. the local supermarket).

21



between these bid and ask quotes, the actual trade price will bounce between these
prices. This phenomenon is called the bid-ask bounce. When the frequency of
recorded transactions increases, this bounce will feed noise to the time series, and
must be handled accordingly. A more thorough introduction to market
microstructure is not necessary for the sake of this analysis but can be found in for

example O’Hara (1995).

When performing an econometric analysis, the choice of data frequency is important.
Some frequencies are better suited for various analyses than others. In theory,
increasing the data frequency on stock data will in the limit produce a perfect
estimate of the variance, o2. In practice, higher frequency data may contain
unwanted noise. This is the case with high frequency stock data. Even if stock data is
sampled in the highest possible frequency, an estimate of o2 would not be entirely
accurate due to microstructure noise (Ait-Sahalia, 1996). Figure 7 below show the
stock price movement for Exxon Mobile Corporation (XOM) in monthly, weekly, daily

and intraday (five minute intervals) over a four month period.

Monthly Weekly

70 70

65 - 65 -
60 - 60 -
55 A 55
50 50 -
45 - 45
40 T T T 40

01.2005 02.2005 03.2005 04.2005 05.2005 01.2005 02.2005 03.2005 04.2005 05.2005

Daily Intraday

70 70

65 - 65 -
60 - 60 -
55 4 55 4
50 -+ 50 -+
45 a5 -
40 r T T 40

01.2005 02.2005 03.2005 04.2005 05.2005 01.2005 02.2005 03.2005 04.2005 05.2005

FIGURE 7 — DATA FREQUENCY CHARTS: Different intervals on the same data set. Clockwise from upper left; monthly, weekly,

daily and five minute intervals of the XOM stock price series. All data are from the TAQ database.



For a portfolio analyst at a passively managed mutual fund the monthly data would
most likely be a good choice for analyses. Weekly or daily data would probably be
interesting for an actively managed mutual fund (or hedge fund) and intraday data
for a day trader. We face the same problem; chose an optimal frequency with the

goal to minimize noise, which will corrupt empirical studies if present.

The data collected from the TAQ database is the highest possible frequency
obtainable, where every trade is recorded. The duration between trades fluctuates
and as a consequence, the data is irregularly spaced. This imposes problems because
most econometric models are specified for fixed intervals’. We need to aggregate
trades and quotes so that econometric modeling can be performed. Aggregating may
remove some of the noise in the time series, but doing so may also cause more
damage. Jorda and Marcellino (2002) suggest that temporal aggregation of high-
frequency, irregularly spaced data ‘can generate non-normality, conditional
heteroskedasticity, and leptokurtosis’. Ait-Sahalia and Mykland (2003) propose a
statistical approach to estimate an optimal interval for intraday data. We have not
pursued this approach. Instead we chose an interval of five minutes which gives us 78
fixed intervals per day. This is a sensible starting point based on articles by Omrane
and Oppens (2005) and Bollerslev et al. (2006). Furthermore, we deliberately choose
stocks which are highly liquid in the sense that they are traded regularly. This assures

that relevant data is present in every five minute interval.
3.2 DATASET

We tried to select a period from the last decade where the equity market and the
economy in general would be considered to be in a normal state. This excludes the
period leading up to and following the 1997 Asian financial crisis, the period leading
up to and following the Dot-Com bubble that climaxed in the early 2000s and the
post-2007 global financial crisis. Our data cover the period from January 3, 2005 to
January 10, 2005. This equals 612 observations, which will be split in three parts; an

estimation set containing the first 372 observations, a validation set with the

7 . . . . .
However, some econometric models for data observed at irregular time intervals exists. See for example
Engle and Russell (1998) or Broersen and Bos (2006) for estimating time series with irregularly spaced data.

23



following 180 observations and finally a prediction set made up of the last 60
observations. Looking at the time frame of our predictions we feel that this amount
of data is sufficient. We presume that information older than the horizon we have
selected have little or no impact on the stock price because it should, in theory, be

reflected in today’s price.
3.2.1 STOCKS

We perform the analysis on four NYSE stocks from four different industries: Exxon
Mobil (XOM), Proctor & Gamble (PG), Goldman Sachs (GS) and Frontline (FRO). These

are highly liquid stocks with little duration between trades.
3.2.2 TRADE PRICE AND QUOTED PRICES

The reported market price at any given moment is known as the trade price. With a
highly traded stock there are often several trades per second. The TAQs smallest time
increment is one second. We follow Tay and Ting (2006) and discard trades outside
the time interval 09:30 to 16:00 and aggregate and average trades that occur within

the same second.

Quotes are also filtered the same way. For each interval, all bid and ask quotes are
averaged. There is a potential problem by using quoted prices at time t together with
the actual trade price at time t. A quoted price does not necessarily affect the trade
price at the same instance in time. There is probably a time lag between a quoted
price and the affected trade price. This is a major part of market microstructure
research. Nevertheless, we do not pursue a method to match trade quotes and trade
prices. Again, we let the neural network handle this data with the nonlinear

relationship characteristics in mind.

24



4 MODELS

The following section is dedicated to model choice and the calibration of these. Both
the ARIMA framework and the MLP framework have several model factors that
need customization, calibration and estimation before they can be utilized for time

series forecasting.
4.1 CALIBRATION OF ARIMA

We will use 372 observations in our selected period for each stock to estimate a
model which best describes the underlying data generating process for each stock.
This will be done by cross validation. Two ARIMA models for each stock will be
chosen; the best model according to AIC and the best model according to BIC. Once
these models have been chosen we use them on the next 180 observations. We will
then choose the single best model, based on MSE, to pursue the prediction of the 60
out-of-sample observations. This will be done by a rolling one step ahead forecast.
We will take the first difference of the logarithm of our four stock prices, rather than

the first difference of the series, since this is more likely to be covariance stationery:
(32) v =Inx, —Inx,_,

Since our predictions will be based on y; rather than Inx;, an ARIMA(p, 1, q) for
In x; will be the same as an ARMA(p, q) for y;.

As we can see from Table A.7 in Appendix A, there are generally low values for both
prand ¢;,. For all four stocks there are few lags which bear statistical significance
according to ACF and PACF (There are some significant observations at higher lags,
but these are discarded because of their position so far behind in time and their
random occurrence). This makes is difficult to identify models using ACF and PACF

(cf. Table 1).

As a consequence, we will use the AIC and the BIC to help us with the identification
process. We calculate the AIC and BIC for each stock for ARMA(p,q), using
pr=0,1,..,12and g = 0,1, ...,12. We have chosen these ranges of p and g, to best

25



match the procedure used for in the calibration of the MLP models. Table 2 shows

the summarized results from the estimation from the first 372 observations:

TABLE 2 — RESULTS FROM ARMA ESTIMATION

STOCK D q AlC BIC
XOM BEST AIC 3 2 -4151.37 -4123.94
BEST BIC 1 0 -4144.76 -4133.00
PG BEST AIC 0 0 -3954.22 -3946.38
BEST BIC 0 0 -3954.22 -3946.38
FRO BEST AIC 2 3 -2968.94 -2941.51
BEST BIC 0 0 -2968.79 -2960.95
GS BEST AIC 4 3 -4246.93 -4211.66
BEST BIC 1 0 -4246.75 -4234.99

COMMENT: Table showing the results from the initial 360 observations in the data set. AIC and BIC values and

parameters for the autoregressive and the moving average part are presented by p and g, respectively.

These seven models® are then used on the validation set consisting of 180
observations. Table A.1 to A.3 in Appendix A shows elaborate results’. The favored
ARMA model for each stock, based on least MSE from the validation set, is presented

in Table 3. These are thus the models we will use on the prediction set.

TABLE 3 — FINAL ARMA MODELS FROM CROSS VALIDATION

STOCK XOM PG FRO GS

MODEL AR(1) RW ARMA(2,3) ARMA(4,3)

COMMENT: Table showing the final ARMA models which will be used in the empirical analysis on the 60 out-of-sample

observations.

® Both AIC and BIC suggests the same model for PG, an ARMA(0,0) i.e. a RW.

° We observe that not all coefficients are significantly different from zero. It would thus be desirable to remove
the insignificant coefficients in the following selection and for the prediction set. We have, however, not
pursued this approach because our main focus in this paper is on MLP models.

26



4.2 CALIBRATION OF NEURAL NETWORK

Building a neural network involves several steps. We assume a three layered MLP
structure where all nodes are fully connected to each other because most neural
networks applied in investment decisions adopt this architecture (Trippi and Lee,
1996). With the layer topology of the model set, we must select appropriate input
and output values. In addition, we must find a suitable number of nodes in the
hidden layer and set appropriate values for the learning rate and momentum term in

the networks learning algorithm.
4.2.1 INPUT VARIABLES

In order to obtain a neural network model that predicts well, we must decide which

input variables to use. We will use logarithmic stock returns as the main input:
(33) v =Inx;, —Inx,_4

In addition we introduce a ratio that use the bid and ask quotes mentioned in Section

3. We define this ratio as:

Ar — x¢
A — B

(34)  BAR, =

Where A4, is the ask quote, B, is the bid quote and x; is the trade price at time t. The
ratio returns a value in the range [0,1], and gives us an indication of how biased the
spread between the bid and ask quote is. A ratio close to one indicates that the
actual trade is close to the bid and vice versa. The reason for using this ratio is to feed
the network with a variable that may indicate pressure to sell the stock (close to one)
or buy the stock (close to zero). Now that we have the input variables, we need to

settle on how many lags to use for each input variable.

Selecting too few lags could result in the loss of valuable information. Then again, too
many lags could provide the neural network with noise. ACF and PACF would
indicate dependence between lags the same way they where used for the ARIMA
model. We saw, however, that both the ACF and the PACF did not provide

conclusive evidence of autocorrelation between different lags, possibly because of

27



the nonlinear properties of the time series. Sheng et al. (2003) propose that the
number of input nodes of a neural network for nonlinear time series prediction can
be taken as an integer just greater than or equal to the correlation dimension.
Samarasinghe (2007) suggests a partial mutual information quantity as an indicator
for input lags. Both methods are theoretically beyond the scope of this paper. We will
use a fixed set of 12 lags for the input variables, the reason being that neural
networks have a powerful ability to detect complex nonlinear relationships among a
number of different variables (Kaastra and Boyd, 1996). We assume the model will
manage to segregate significant lags and less significant lags by distributing weights

accordingly (i.e. small weight values for less significant lags and vice versa)™.
4.2.2 HIDDEN NODES

The greater the number of weights relative to the size of the training set, the greater
the ability to memorize idiosyncrasies of individual observations. In other words, the
generalization capability diminishes with increasing number of layers and weights.
Neural networks with continuous nonlinear activation functions (like the logistic or
hyperbolic tangent) need only one hidden layer with an arbitrarily large number of
units to fit any nonlinear real function (Hornik et al., 1989). A popular method for
finding the optimal number of nodes so that the model possess generalization
capabilities is called pruning (Thimm and Fiesler, 1997); select a model with a large
number of hidden units and train the model on a test set of data. Then subsequently
reduce the model by iterating through the same set of data. All the models are pitted
against each other with a validation data set. The model with the least error prevails
and is used for prediction. This method bears similarity to the statistical method of
cross validation which we utilize for our ARMA calibrations. Some articles suggest
other heuristic methods. Blum (1992) recommends the hidden layer size should be
somewhere between the size of the input and output layer. Swingler (1996) says that
one would ‘never require more than twice the number of hidden nodes as you have

inputs’. Boger and Guterman (1997) specify an approach using principal component

'% An optimal selection method for the choice of lags would be to try every conceivable permutation of all lags
and test an immense number of models. This is not only extremely time consuming but also unfeasible. Let us
consider a maximum of 12 lags of y, and BAR;. If we could construct a model for every combination, this
would correspond to (212)? — 1 combinations, or approximately 17 million different models!

28



analysis where the number of hidden nodes equals the number of principal
components needed to capture around 80 percent of the variance in the input data
set. The main problem with these approaches is that they do not take training
iterations, error in output or the complexity of the target value (actual time series)
into consideration. These are, in our view, important factors that play a pivotal role in

deciding the number of hidden nodes.

We will use inverse pruning. Starting with one node, we increase the number of
nodes, one at a time, until we reach the number of input nodes. We validate these
models using the validation set and pick the model structure with the lowest mean
square error (MSE). This model is then used to predict the time series in the same
manner as our proposed ARMA models. To avoid random weights that lay near a

local minimum point on the error plane, we train the networks 20 times.
4.2.3 ACTIVATION FUNCTIONS AND SCALING OF DATA

Raw input data is usually scaled between the maximum and minimum values of the
activation functions used in the nodes. This is to make sure that the incoming
weighted sum is a reasonable size. This is also the case with values that are very
small. Stock returns measured per five minutes are relatively small, and scaling these
between zero and one makes a MLP model handle the input values better. A

standard method of scaling is to use a linear transformation from y; to y;:

(Yt = Ymin)
(Ymax - ymin)

(35) yé = fmin t+ (fmax - fmin) X

Where fin and fpa, are the minimum and maximum values of the activation
function whereas Y,4x and y,in, are the corresponding extreme values in the input
set. Below are frequency histograms of historical stock returns from all four stocks.
We see that the empirical distributions have relatively high kurtosis (i.e.
leptokurtic). Klimasauskas (1993) states that if a neural network is to learn average

behavior the logistic activation function should be used. On the other hand, if

"' Many asset pricing models, like the Black and Scholes framework for option pricing and the capital asset
pricing model, assume that returns are normally distributed. Some empirical research have found evidence
suggesting that the return distribution have fatter tails (higher kurtosis) than the standard normal distribution
and follow a type of hyperbolic distribution (see Reimann 2005).

29



Frequency

Frequency

learning involves deviations from the average, the hyperbolic tangent function works
best. The fact that the returns in our case seem to be mirrored about an axis makes
the hyperbolic tangent best suited for our neural networks. The values for f,,;, and
fmax take the value —1 and 1 in the limit. Because it is improbable to find returns in
the limit of the tails of the distribution we to use —0.9 and 0.9 to scale input values

and desired output.

XOoM GS
1600 1800
1400 - 1600 -
1200 | 1400 -
1200 -
1000 - ‘Z
1000 -
800 - g
g 800 -
600 - r
“ 600 -
400 200 |
0 i -I,I i ‘II., i 0 i -.III i .Il.

<} <) <) 3 o o o S S o o o o o
P o o o o P (=] o [=] (=3
g g S 8 S = g 8 8 E g S S g
logarithmic return logarithmic return
FRO PG
1200 2000
1800 -
1000 1 1600 -
800 . 1400 -
o 1200
600 S 1000 |
T
E 800 -
400 600
200 I ‘ ‘ 400 1
200 I I
0 -I-IIII IIIII- 0 II Il-
) o S e o o o S ) <} e o o o
3 3 g 8 8 5] 8 g 3 3 8 8 8 8
& = Y o N B o > = I~y o N S a
logarithmic return logarithmic return

FIGURE 8 — STOCK RETURN DISTRIBUTIONS: Return distribution charts for the four stocks. The charts show that the empirical

distribution has fatter tails than the standard Gaussian distribution.

4.2.4 OUTPUT NODES

The number of output nodes for time series prediction is just one for a simple MLP.
This MLP structure is equivalent to (19). Lagged values of y; and BAR,; would be

transferred through the model and the outcome would be a decimal number

30



between —1 and 1 using the hyperbolic tangent function. This output would then be

transformed back to the original time series’ scale for calculation of MSE. Let us

denote this model MLP(i, ], k){#;ft where i, j and k reflect the number of input,
hidden and output nodes. The superscript refers to the activation function in the
output node. The subscript refers to the input data which is either P = y;, B = BAR;
or P,B = y{ and BAR,. Thus, a model with 24 input nodes, 12 hidden nodes, single
output node and both price series and the BAR; ratio as input is denoted

MLP(24,12,1)53".

The general MLP structure has, however, k output nodes. A tempting model
structure could be a range of output nodes that correspond to an interval or a
specific constant multiplied with the standard deviation of the historical return. This
form of data categorization could improve the learning process, providing a range of
return intervals instead of a decimal value between zero and unity. Making the
output nodes binary with the choice of one or zero using a threshold function would
make sense from a computer science perspective; computers work best with binary
values. Consider the vector of K output nodes where the kth node contains the sum

Sy before any activation function is used:
(36) S=[s1 S2 - Sk

With a binary threshold function the kth node would have the following output and
corresponding vector:
1 if s = max(S)

(B7) "=
0 else

This would give us an output vector
(38) Cbin — [C{)in Cé}in C}éin]
and a corresponding desired output vector given by:

(39) Cbin*=[cfin* Cgin* Cllgin*]

31



Using the binary vector C?™, four intervals and the standard derivation of the sample
set of logarithmic returns & and the sample mean return fi, we can categorize and
calculate the predicted return. Let a be a positive real number. The following four
binary sequences correspond to four chosen intervals for the stock return where the

subscript of CP" refers to the specific interval relative to the mean:
(40)  C''=[1 0 0 0] = y.<ig—aé

(41) Cctr=[0 1 0 0] = y,<fi=fi-aéd

(42) chkr=[0 0 1 0] = y,=ji<p+ad

(43) cPr=[0 0 0 1] = y,=ji+aé

We set a = 0.75 which approximately puts 40 percent of the observations in each of
the intervals [—1] and [+1] and 10 percent in each of the intervals [+2] and [—2].

The MSE in each output node for training pattern n is calculated using:
n 1 bin* bin2
44 ef =5 (™ —ck™)

However, the intervals raise problems for the calculation of MSE when we are
comparing results with the other models. To deal with this, we take the arithmetic
mean for (41) and (42). For the outer intervals we use a = 1.0 to arrive at a fixed
point not too far into the tails of the distribution of returns. Let us denote this model

MLP(,j, 4)?,‘;’;” with the same characteristics as the single-output model. The

activation functions in the hidden nodes remain the same as in MLP(i, j, 1)5,‘1;3,: (i.e.

the hyperbolic tangent).
4.2.5 CALIBRATION OF THE LEARNING ALGORITHM

There are, unfortunately, few systematic ways of selecting optimal values for the
learning rate and momentum parameter. As a consequence, these values are usually
chosen through experimentation (Zhang et al., 1998). Sharda and Patil (1992) suggest
combining three different learning rates with three different momentum values; 0.1,
0.5 and 0.9. Tang et al. (1991) argue that high learning rates combined with low

momentum should be used with less complex data, and vice versa.

32



Using a mixture of the heuristics mentioned above, we find by trial and error a
learning rate of 0.085 combined with a momentum value of 0.8. Other combinations
we have tried lead to oscillation and unstable learning algorithms. We therefore

choose to use 0.085 for 7 and 0.8 for y.
4.2.6 NUMERICAL REVIEW

We will use this section to present an example from the data set to show how the
feed forward procedure and the learning algorithm works when put into practice.
Consider an arbitrarily chosen model MLP(2,2,1)5™". Consider also the following

input vector with two lags of the stock return y,:
(45) A=10.77 0.81]

Randomly selected starting weights:

A A
(46) WA = d);l fl-')ilz _[019 -0.18

b5 D5y 0.13 0.16
(47)  WP=[¢7, ¢f]=1[014 -0.02]
with corresponding bias weights:

(48) o8, =1[0.28] , ¢&, =[0.14] and ¢& =1[0.08]

Sending the weighted lagged values of y; to each of the two hidden nodes will give us

the following hidden node sums before the activation function is used:

(49) Sj=1 = Po1 + ¢tias + psha, and  sjo, = Pf, + Pira; + Prra,

These expressions can be thought of as linear regressions of y;. Sending s; and s,
through the nonlinear transfer function f transforms the signal to a value between
—1 and 1. These results are then weighted and sent to the output node. This gives us

the following expression before any activation function is used on the node sum:

(50) Sk=1 = P01 + ¢f1f( 5j=1) + ¢)291f( Sj=2)

This is a linear regression using the nonlinear functions as explanatory variables. The

result is put through an activation function and compared to the actual value of y;.

33



Looking at a small network like this, we can see how feed forward networks bear
resemblance to autoregressive models and linear regressions. The transfer functions

introduce a nonlinear element which makes ANN's more versatile.

Parameters in linear regressions are usually estimated by ordinary least square (OLS)
problems that admit a closed-form solution. In contrast, nonlinear least squares
problems like estimating the parameters of an ANN have to be solved by an iterative
procedure. ANN weights are usually initiated as random values between —0.3 and
0.3 and subsequently adjusted by an algorithm. Using the data above we will now
present a numerical example of how our weights are adjusted using the back-

propagation algorithm.

Consider the output after sending the values from vector 4 through the network:

G o= (08 + B f(52) + PESf(572))

Substituting for the weights and hidden node sums with values from above:

2x0.1112 __ 1

(52) ¢ =f(0.1112) = g = 0.1107

2x0.1112 +1

The actual value of y; is —0.0023. This yields an error of:
1
(53) e; = E(—O.OOZB —0.1107)% = 0.0064

Using (24) and (25) together with our chosen values for n and y we get the following

gradient for the output layer:
(54) 8r=1 = (—0.0023 — 0.1107) x (1 — f(0.1112)?) = —0.112
(55) Ay p5 =0.085%x —0.112 X 0.1112 + 0.8 x 0 = —0.001

The change in weight ¢, depends on the gradient calculated above. Using (25) we

calculate the change:
(56) 81 = (—0.112 x 0.14) x (1 — £(0.2805)?) = —0.015

]

(57) Ay P =0.085 x —0.015 x 0.2805 + 0.8 X 0 = —0.0004

34



The weight changes for ¢, and ¢4, are shown in Figure 10 below.

Input layer @&—p Hidden layer ~@®—— >  Output layer

0.28

0.08

0.1107

FIGURE 9 — FEED FORWARDING INPUT VALUES: Shows how the data flows in the network. Some weights are in dotted lines to

make it easier to see the flow. The node values are after activation of nonlinear function.

The weight changes for ¢2, and ¢4, are shown in Figure 10:

Input layer @&——>p Hidden layer ~@®&—— &  Output layer

0.77

FIGURE 10 — BACK-PROPAGATION: A representation of the weight changes using the back-propagation algorithm.

This example shows how input data flows through the system and how the
estimation procedure of the models parameters works. In the next section we will
use this model on the whole data set and try to predict stock returns in five minute

intervals.

35



5 EMPIRICAL ANALYSIS

In this chapter we will discuss the results, and discuss our ANNs as suitable models
for prediction of our four selected time series. To determine this in a satisfyingly
manner we cannot just look at the results from our ANNs. We will therefore

compare the selected ANNs to the RW and the ARM A models.

5.1 NEURAL NETWORKS

We will first summarize the results from the empirical analysis based on our feed
forward neural networks, and compare them to a RW. We only present the best
ANN s in this section with reference to more detailed tables in Appendix A. There are
three different versions of the model depending on input variables; only price series,

only the BAR series and both series.
5.1.1 NEURAL NETWORK A — ONE STANDARD OUTPUT NODE

The results from the MLP(i, j, 1)t model used on the four stocks are summarized
in Table 4. For XOM and PG, the best ANN used both the price series and our BAR
ratio. For these two stocks, the ANNs did not beat the RW based on the MSE

measure, the U-statistic or the S-statistic.

TABLE 4 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS

STOCK XOM PG FRO GS
MODEL MLP(24,18,1) 5" MLP(24,8,1)t%h MLP(12,8,1)§nh MLP(12,4,1)nh
MSE 1.56E-06 6.41E-07 2.22E-06 4.76E-07
MSE RW 8.03E-07 4.38E-07 6.94E-06 7.64E-07
U-STAT 1.62 4.70 3.53 1.66
S-STAT STOCK 0.40 0.30 0.63 0.53
S-STAT RW 0.60 0.60 0.60 0.60

COMMENT: Detailed tables for all four stocks are found in Appendix A from Table A.1 to A.4.

36



For FRO and GS, the ANN used solely the BAR ratio and the price series,
respectively. As we can see, the ANNs beat the RW based on MSE. However,
looking at the U-statistic, we can not infer that these ANNs satisfyingly predict the
stock returns from a statistically perspective. In addition, the S-statistics are worse or
marginally better than that of RW. We can therefore not conclude that these ANNs

are better than a RW.
5.1.2 NEURAL NETWORK B — FOUR BINARY OUTPUT NODES

As for the single output node model, there are three main models depending on the
time series input variables. Again, we show the results in Table 5 using the model
structure MLP(i, j, 4)?™. For XOM, PG and GS the ANNs do not beat RW. The U-
statistics are larger than one and the S-statistics are lower or the same as that of RW.
We also notice that the binary ANNs use the price series as their only input,

discarding our BAR ratio.

TABLE 5 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS

STOCK XOM PG FRO GS
MODEL MLP(12,4,4)5in MLP(12,3,4)5in MLP(12,10,4)bm MLP(12,6,4)5™
MSE 1.10E-06 1.02E-06 6.85E-06 5.22E-06
MSE RW 8.03E-07 4.38E-07 6.94E-06 7.64E-07
U-STAT 1.32 1.28 1.17 2.78
S-STAT STOCK 0.60 0.60 0.52 0.62
S-STAT RW 0.60 0.60 0.60 0.60

COMMENT: Detailed tables for all four stocks are found in Appendix A from Table A.5 to A.8.

FRO is the only stock where our binary ANN beat the RW. The U-statistic is close to
unity, but the S-statistic is close to 50 percent (lower than RW). This means that one
might as well toss a coin to predict the direction. Like above, we cannot infer that our
ANN's perform better than a RW.

37



5.2 COMPARATIVE ANALYSIS

Since we could not make a certain conclusion about how the ANNs preformed in

comparison to a RW, we will in this section compare the results from using the

ARMA models selected in Section 4.1 against the ANNs. We use the best ARMA

models on the last 60 observations in our data sample. The results are summarized in

Table 6 below.

TABLE 6 — ARIMA AND NETWORK A & B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS

STOCK XOM PG FRO GS
MODEL MLP(24,18,1)i8" MLP(24,8,1)i%" MLP(12,8,1)enh MLP(12,4,1)tanh

MSE 1,56E-06 6,41E-07 2,22E-06 4,76E-07
S-STAT 0,40 0,30 0,63 0,53
MODEL MLP(12,4,4)b MLP(12,3,4)bin MLP(12,10,4)5™ MLP(12,6,4)5"

MSE 1.10E-06 1.02E-06 6.85E-06 5.22E-06
S-STAT 0.60 0.60 0.52 0.62
MODEL AR(1) RW ARMA(2,3) AR(1)

MSE 7,97€-07 4,38E-07 6,64E-07 7,15E-07
S-STAT 0,60 0,60 0,330 0,62

COMMENT: Results are based on the last 60 observations from the data set.

For our single output models we observe, with the exception of FROs S-statistic and

GSs MSE, that the ARMA models are better than our ANNs. Comparing the binary

models to the ARMA models we can see, with the exception of FROs S-statistics, that

The ARMA models are equal or better than our ANN’s.

38



6 CONCLUSION

We started this paper with a proposal that nonlinear frameworks might provide
better predictions than linear frameworks because of the nonlinear properties of
stock price time series. We conclude, however, that the models proposed by us
cannot predict the stock price return in a satisfyingly matter compared to a RW and
selected ARMA models. On the other hand, we see strong potential in these models.
They are very flexible and we have only touched their most basic structure and

learning algorithm.

Several papers on neural networks have concluded that their models predict better
than standard linear models (see Adya and Collopy (1998) for a comprehensive
study). It would be both unfair and wrong to try to compare our results with theirs.
Our models are trivial compared to some of the models applied in those papers. We
have, however, tried to introduce the building blocks of a framework that we see as a
big part in the future of time series analysis in an easier and detailed fashion. We
have tried to carefully explain the steps in making a simple feed forward neural
network and in the same process, gotten rid of some of the mysteries surrounding

these types of models.

For future research we would recommend researchers to expand on our simple
models using different input data and more complex network structures. Using
traded volume or the time series of a stock index used as a market proxy could
improve these models. Changing the architecture of the network might yield a better
network. A recurrent neural network is an example a more exotic architecture where
one or more of the output values are sent back into hidden layers. Another
interesting approach is a hybrid model of ARIMA and ANNs proposed by Zhang
(2003). The time series is first used in the ARIMA framework and the residual

(assumed to be nonlinear) is used in the ANN framework.

39



A TABLES AND FIGURES

TABLE A.1 — ESTIMATED ARMA MODEL FOR EXXON MOBILE

XOM

ARMA(3,2) AR1 AR2 AR3 MA1 MA2 CONST.
Coefficients 1.7973 -1.2473 0.2189 -1.6241 0.9612 -1.00E-04
S.e. 0.0709 0.0896 0.0569 0.0561 0.0395 1.00E-04
Coef/S.e. 25.3 -13.9 3.8 -29.0 24.3 -1.0
Sigma® 8.01E-07
Log likelihood 2082.68
AR(1) AR1 CONST.
Coefficients 0.2121 -1.00E-04
s.e. 0.0508 1.00E-04
Coef/s.e. 4.2 -1.0
Sigma® 8.35E-07
Log likelihood 2075.38
COMMENT: Result summary from R.
TABLE A.2 — ESTIMATED ARMA MODEL FOR FRONTLINE

FRO

ARMA(3,2) AR1 AR2 MA1 MA2 MA3 CONST.
Coefficients 1.0613 -0.7041 -1.0209 0.5900 0.1465 0.00E+00
S.e. 0.1934 0.1613 0.1961 0.1890 0.0585 3.00E-04
Coef/S.e. 5.4876 -4.3652 -5.2060 3.1217 2.5043 0
Sigma’ 1.93€-05
Log likelihood 1491.47

COMMENT: Result summary from R.

40



TABLE A.3 — ESTIMATED ARMA MODEL FOR GOLDMAN SACHS

XOM
ARMA(3,2) AR1 AR2 AR3 AR4 MA1 MA2 MA3 CONST.
Coefficients 0.1015 -0.0419 0.9262 -0.1856 0.0447 0.0314 -0.9621 0.00E+00
S.e. 0.0606 0.0393 0.0379 0.0522 0.0356 0.0332 0.0320 1.00E-04
Coef/S.e. 1.6749 -1.0662 24.4380 -3.5556 1.2556 0.9458 -30.0656 0
Sigma® 6.07E-07
Log likelihood 2132.47
AR(1) AR1 CONST.
Coefficients 0.1371 0.00E+00
S.e. 0.0516 1.00E-04
Coef/S.e. 2.6570 0
Sigma® 6.35E-07
Log likelihood 2126.37
COMMENT: Result summary from R.
TABLE A.4 — ARMA RESULTS FROM CROSS VALIDATION
STOCK
XOM ARMA(3,2) AR(1) RW
MSE 4.56E-07 4.09E-07 6.32E-07
PG RW
MSE 6.64E-06
FRO ARMA(2,3) RW
MSE 6.94E-06 9.69E-07
GS ARMA(4,3) AR(1) RW
MSE 9.50E-07 1.11E-06 1.01E-06

COMMENT: Results from cross validation using selected models on the basis of AIC and BIC.

41



TABLE A.5 - AUTOCORRELATION COEFFICIENTS AND PARIAL AUTOCORRELATION COEFFICIENTS

XOM PG FRO GS

h Pn $1n Pn $1n Pn $1n Pn $1n
1 0,170 0,170 0,017 0,017 0,001 0,001 0,094 0,094
(4,21) (4,21) (0,43) (0,43) (0,03) (0,03) (2,32) (2,32)
2 0,076 0,048 0,024 0,024 -0,053 -0,053 0,076 0,068
(1,82) (1,19) (0,59) (0,59) -(1,32) -(1,32) (1,87) (1,69)
3 0,091 0,072 -0,027 -0,028 0,047 0,047 0,041 0,028
(2,17) (1,79) -(0,67) -(0,69) (1,15) (1,16) (0,99) (0,69)
4 0,061 0,032 -0,040 -0,040 0,050 0,047 -0,025 -0,036
(1,44) (0,80) -(0,99) -(0,98) (1,23) (1,17) -(0,60) -(0,90)
5 0,022 -0,001 0,010 0,013 0,042 0,048 0,001 0,002
(0,52) -(0,04) (0,25) (0,32) (1,04) (1,18) (0,03) (0,04)
6 0,071 0,059 -0,104 -0,104 0,056 0,060 0,045 0,049
(1,68) (1,46) -(2,57) -(2,57) (1,38) (1,47) (1,10) (1,21)
7 0,054 0,027 -0,054 -0,054 -0,038 -0,039 -0,014 -0,020
(1,26) (0,67) -(1,31) -(1,33) -(0,94) -(0,95) -(0,34) -(0,50)
8 -0,014 -0,037 0,008 0,014 -0,076 -0,078 0,012 0,007
-(0,32) -(0,90) (0,21) (0,35) -(1,85) -(1,92) (0,30) (0,19)
9 -0,041 -0,048 -0,025 -0,028 0,001 -0,013 0,035 0,033
-(0,95) -(1,20) -(0,60) -(0,70) (0,04) -(0,33) (0,86) (0,83)
10 -0,131 -0,132 -0,043 -0,056 -0,010 -0,023 -0,113 -0,119
-(3,07) -(3,26) -(1,05) -(1,38) -(0,24) -(0,56) -(2,74) -(2,93)
11 -0,017 0,027 -0,002 0,000 0,007 0,013 -0,029 -0,016
-(0,40) (0,68) -(0,04) (0,00) (0,18) (0,33) -(0,69) -(0,39)
12 -0,011 0,004 0,036 0,029 -0,005 0,003 0,018 0,037
-(0,27) (0,10) (0,88) (0,71) -(0,12) (0,06) (0,44) (0,91)
13 0,011 0,031 0,063 0,047 -0,018 -0,004 -0,026 -0,017
(0,25) (0,77) (1,54) (1,15) -(0,44) -(0,09) -(0,63) -(0,43)
14 -0,024 -0,019 0,056 0,050 -0,071 -0,064 -0,040 -0,049
-(0,56) -(0,47) (1,35) (1,25) -(1,71) -(1,58) -(0,95) -(1,20)
15 -0,044 -0,034 0,027 0,023 0,033 0,027 0,007 0,013
-(1,02) -(0,85) (0,64) (0,57) (0,80) (0,68) (0,18) (0,32)
16 -0,068 -0,040 0,017 0,008 -0,014 -0,025 -0,015 0,005
-(1,56) -(0,99) (0,41) (0,20) -(0,34) -(0,63) -(0,35) (0,12)
17 -0,042 -0,012 -0,024 -0,023 -0,028 -0,021 0,031 0,029
-(0,96) -(0,30) -(0,57) -(0,57) -(0,68) -(0,51) (0,74) (0,73)
18 0,021 0,038 0,019 0,031 -0,009 -0,008 0,002 -0,007
(0,49) (0,93) (0,46) (0,78) -(0,23) -(0,19) (0,05) -(0,18)
19 -0,020 -0,028 -0,015 -0,001 -0,006 -0,001 0,018 0,028
-(0,46) -(0,70) -(0,35) -(0,01) -(0,14) -(0,03) (0,43) (0,70)
20 -0,051 -0,060 -0,009 0,002 0,019 0,026 -0,024 -0,041
-(1,17) -(1,48) -(0,21) (0,05) (0,45) (0,65) -(0,58) -(1,02)

COMMENT: Different lags of the autocorrelation coefficients and partial autocorrelation coefficients for the first 372 observations.
Values in parentheses are t-values with a 95 % confidence interval.

42



TABLE A.6 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM)

MLP(12,9,1)tnh MLP(12,9,1)4mh MLP(24,18,1)500 RW
MSE 2.56E-06 2.45E-06 1.56E-06 8.03E-07
U-STATISTIC 1.43 1.38 1.62 -
S-STATISTIC 0.40 0.40 0.40 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

TABLE A.7 - NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)

MLP(12,10,1)4*h MLP(12,5,1)§mh MLP(24,16,1)55" RW
MSE 6.77E-07 6.55E-07 6.41E-07 4.38E-07
U-STATISTIC 4.41 434 4.70 -
S-STATISTIC 0.43 0.40 0.30 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

TABLE A.8 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO)

MLP(12,10,1)tnh MLP(12,8,1)mh MLP(24,10,1)53" RW
MSE 2.30E-06 2.22E-06 3.75E-06 6.94E-06
U-STATISTIC 2.19 3.53 5.95 -
S-STATISTIC 0.53 0.63 0.50 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

43



TABLE A.9 — NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS)

MLP(12,4,1)tnh MLP(12,5,1)4mh MLP(24,8,1)5%h RW
MSE 4.76E-07 4.78E-07 8.6E-07 7.64E-07
U-STATISTIC 1.66 1.02 1.90 -
S-STATISTIC 0.53 0.57 0.47 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

TABLE A.10 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM)

MLP(12,3,4)bin MLP(12,4,4)bin MLP(24,11,4)5% RW
MSE 1.02E-06 1.10E-06 2.57E-06 4.38E-07
U-STATISTIC 1.28 1.28 1.80 -
S-STATISTIC 0.60 0.60 0.53 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

TABLE A.11 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)

MLP(12,3,4)bi MLP(12,4,4)bin MLP(24,11,4)5% RW
MSE 1.02E-06 1.10E-06 2.57E-06 4.38E-07
U-STATISTIC 1.28 1.28 1.80 -
S-STATISTIC 0.60 0.60 0.53 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

44



TABLE A.12 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO)

MLP(12,10,4)5m MLP(12,10,4)5m MLP(24,20,4)%7 RW
MSE 6.85E-06 6.92E-06 6.97E-06 3.25E-06
U-STATISTIC 1.17 1.17 1.75 -
S-STATISTIC 0.52 0.52 0.52 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

TABLE A.13 — NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS)

MLP(12,6,4)5m MLP(12,7,4)5m MLP(24,10,4)27 RW
MSE 5.22E-06 5.48E-06 5.78E-06 7.64E-07
U-STATISTIC 2.78 2.88 2.88 -
S-STATISTIC 0.62 0.55 0.57 0.60

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations

45



TABLE A.14 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM)

j MLP(12,j, 1) MLP(12,j,1)§mh MLP(24,j,1)4h RW
1 2,66E-06 2,48E-06 0.00E-00** 8.03E-07
2 2,62E-06 2,46E-06 0.00E-00** -
3 2,62E-06 2,47E-06 0.00E-00** -
4 2,58E-06 2,47E-06 0.00E-00** -
5 2,56E-06 2,46E-06 0.00E-00** -
6 2,57E-06 2,46E-06 0.00E-00** -
7 2,55E-06 2,48E-06 0.00E-00** -
8 2,55E-06 2,46E-06 2,28E-06 -
9 2,56E-06* 2,45E-06* 1,91E-06 -
10 2,59E-06 2,47E-06 1,70E-06 -
11 2,57E-06 2,47E-06 1,78E-06 -
12 2,60E-06 2,46E-06 1,82E-06 -
13 - - 3,09E-06 -
14 - - 2,32E-06 -
15 - - 3,10E-06 -
16 - - 2,52E-06 -
17 - - 2,70E-06 -
18 - - 1,56E-06* -
19 - - 2,01E-06 -
20 - - 2,68E-06 -
21 - - 2,66E-06 -
22 - - 2,64E-06 -
23 - - 1,79E-06 -
24 - - 2,72E-06 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

46



TABLE A.15 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)

j MLP(12,j, 1) MLP(12,j,1)§mh MLP(24,j,1)4h RW
1 7,00E-07 7,18E-07 0.00E-00** 4.38E-07
2 6,71E-07 7,15E-07 0.00E-00** -
3 6,82E-07 6,72E-07 0.00E-00** -
4 6,84E-07 6,56E-07 0.00E-00** -
5 6,83E-07 6,55E-07* 8,35E-07 -
6 6,92E-07 6,70E-07 7,61E-07 -
7 6,91E-07 6,69E-07 7,64E-07 -
8 6,85E-07 6,63E-07 6,41E-07 -
9 6,77E-07 6,70E-07 7,52E-07 -
10 6,77E-07* 6,74E-07 7,55E-07 -
11 6,84E-07 6,66E-07 8,30E-07 -
12 6,83E-07 6,69E-07 7,53E-07 -
13 - - 8,49E-07 -
14 - - 8,39E-07 -
15 - - 8,21E-07 -
16 - - 6,87E-07* -
17 - - 9,13E-07 -
18 - - 7,55E-07 -
19 - - 9,68E-07 -
20 - - 7,29E-07 -
21 - - 7,83E-07 -
22 - - 9,11E-07 -
23 - - 8,69E-07 -
24 - - 9,12E-07 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

47



TABLE A.16 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO)

j MLP(12,j, 1)tnh MLP(12,j, 1)inh MLP(24,), 1)2‘,‘;" RW
1 0.00E-00** 0.00E-00** 0.00E-00** 3.25E-06
2 2,41E-06 0.00E-00** 0.00E-00** -
3 2,47E-06 3,09E-06 0.00E-00** -
4 2,33E-06 3,12E-06 0.00E-00** -
5 3,25E-06 2,54E-06 3,17E-06 -
6 2,83E-06 2,45E-06 4,13E-06 -
7 2,38E-06 2,45E-06 7,11E-06 -
8 2,76E-06 2,22E-06* 1,06E-05 -
9 2,38E-06 2,26E-06 9,27E-06 -
10 2,30E-06* 2,32E-06 3,75E-06* -
11 2,35E-06 2,32E-06 9,95E-06 -
12 2,35E-06 2,36E-06 7,05E-06 -
13 - - 8,75E-06 -
14 - - 9,39E-06 -
15 - - 7,22E-06 -
16 - - 8,67E-06 -
17 - - 8,73E-06 -
18 - - 6,80E-06 -
19 - - 7,50E-06 -
20 - - 7,35E-06 -
21 - - 7,18E-06 -
22 - - 7,65E-06 -
23 - - 8,52E-06 -
24 - - 7,06E-06 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

48



TABLE A.17 — DETAILED NETWORK A RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS)

j MLP(12,j, 1)§n" MLP(12,j, DF™" MLP(24,j, D5E" RW
1 8,00E-07 6,15E-07 0.00E-00** 7.64E-07
2 4,94E-07 1,28E-06 0.00E-00** -
3 1,02E-06 6,13E-07 0.00E-00** -
4 4,76E-07* 5,44E-07 0.00E-00** -
5 5,46E-07 4,78E-07* 0.00E-00** -
6 5,03E-07 1,01E-06 0.00E-00** -
7 1,13E-06 9,11E-07 7,17E-07 -
8 1,01E-06 8,50E-07 6,18E-07* -
9 9,75E-07 8,89E-07 9,34E-07 -
10 9,51E-07 8,35E-07 8,60E-07 -
11 1,03E-06 8,84E-07 9,01E-07 -
12 9,62E-07 8,83E-07 1,10E-06 -
13 - - 9,05E-07 -
14 - - 8,85E-07 -
15 - - 9,89E-07 -
16 - - 1,03E-06 -
17 - - 1,04E-06 -
18 - - 1,00E-06 -
19 - - 9,43E-07 -
20 - - 8,95E-07 -
21 - - 9,03E-07 -
22 - - 8,83E-07 -
23 - - 8,99E-07 -
24 - - 8,98E-07 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

49



TABLE A.18 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (XOM)

j MLP(12,j,1)5" MLP(12,j,1)5" MLP(24,j,1)%% RW
1 2,87E-06 2,87E-06 0.00E-00** 8.03E-07
2 3,36E-06 5,08E-06 0.00E-00** -
3 2,91E-06 2,83E-06 0.00E-00** -
4 1,10E-06* 2,97E-06 0.00E-00** -
5 2,93E-06 1,18E-06* 4,07E-06 -
6 4,21E-06 3,31E-06 4,34E-06 -
7 4,26E-06 4,19E-06 4,33E-06 -
8 4,26E-06 4,36E-06 4,09E-06 -
9 4,41E-06 4,69E-06 4,52E-06 -
10 4,30E-06 4,43E-06 4,42E-06 -
11 4,31E-06 4,22E-06 4,03E-06* -
12 4,38E-06 4,57E-06 4,46E-06 -
13 - - 5,52E-06 -
14 - - 4,64E-06 -
15 - - 4,31E-06 -
16 - - 4,45E-06 -
17 - - 4,40E-06 -
18 - - 4,42E-06 -
19 - - 4,33E-06 -
20 - - 4,57E-06 -
21 - - 4,08E-06 -
22 - - 4,64E-06 -
23 - - 4,49E-06 -
24 - - 4,63E-06 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

50



TABLE A.19 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (PG)

j MLP(12,j,1)5" MLP(12,j,1)5" MLP(24,j,1)%% RW
1 2,87E-06 2,87E-06 0.00E-00** 4.38E-07
2 2,87E-06 2,87E-06 0.00E-00** -
3 1,02E-06* 1,22E-06 0.00E-00** -
4 2,89E-06 1,10E-06* 0.00E-00** -
5 4,09E-06 1,11E-06 0.00E-00** -
6 4,32E-06 4,45E-06 0.00E-00** -
7 4,67E-06 4,30E-06 0.00E-00** -
8 4,70E-06 4,29E-06 2,69E-06 -
9 4,25E-06 4,42E-06 2,65E-06 -
10 4,31E-06 4,30E-06 5,53E-06 -
11 4,26E-06 4,44E-06 2,57E-06* -
12 4,67E-06 4,43E-06 6,87E-06 -
13 - - 5,77E-06 -
14 . - 6,20E-06 -
15 - - 5,73E-06 -
16 - - 6,08E-06 -
17 - - 6,83E-06 -
18 - - 4,59E-06 -
19 - - 6,67E-06 -
20 - - 7,08E-06 -
21 - - 5,58E-06 -
22 - - 6,73E-06 -
23 - - 6,41E-06 -
24 - - 7,73E-06 -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

51



TABLE A.20 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (FRO)

j MLP(12,j,1)5" MLP(12,j,1)5" MLP(24,j,1)%% RW
1 6.96E-06 6.93E-06 0.00E-00** 3.25E-06
2 6.93E-06 7.02E-06 0.00E-00** -
3 6.99E-06 7.01E-06 0.00E-00** -
4 6.92E-06 7.02E-06 0.00E-00** -
5 6.88E-06 7.01E-06 0.00E-00** -
6 6.86E-06 6.94E-06 0.00E-00** -
7 6.88E-06 6.93E-06 0.00E-00** -
8 6.88E-06 6.93E-06 0.00E-00** -
9 6.88E-06 6.95E-06 7.23E-06 -
10 6.85E-06* 6.92E-06* 7.12E-06 -
11 6.88E-06 6.95E-06 7.41E-06 -
12 7.10E-06 6.94E-06 7.35E-06 -
13 - - 7.28E-06 -
14 B - 7.31E-06 -
15 - - 7.35E-06 -
16 - - 7.46E-06 -
17 - - 7.41E-06 -
18 - - 7.23E-06 -
19 - - 7.35E-06 -
20 - - 6.97E-06* -
21 - - 7.44E-06 -
22 - - 7.22E-06 -
23 - - 0.00E-00%** -
24 - - 0.00E-00** -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

52



TABLE A.21 — DETAILED NETWORK B RESULTS ON OUT-OF-SAMPLE OBSERVATIONS (GS)

j MLP(12,j,1)5" MLP(12,j,1)5" MLP(24,j,1)%% RW
1 6.31E-06 6.31E-06 0.00E-00** 7.64E-07
2 5.62E-06 5.87E-06 0.00E-00** -
3 6.31E-06 5.85E-06 0.00E-00** -
4 5.91E-06 5.85E-06 0.00E-00** -
5 5.79E-06 6.10E-06 0.00E-00** -
6 5.22E-06* 5.73E-06 0.00E-00** -
7 5.65E-06 5.48E-06* 0.00E-00** -
8 5.82E-06 5.82E-06 5.82E-06 -
9 5.88E-06 6.10E-06 6.10E-06 -
10 5.82E-06 6.10E-06 5.78E-06* -
1 5.82E-06 5.82E-06 5.82E-06 -
12 5.82E-06 5.83E-06 6.10E-06 -
13 - - 0.00E-00** -
14 - - 0.00E-00** -
15 - - 0.00E-00** -
16 - - 0.00E-00** -
17 - - 0.00E-00** -
18 - - 0.00E-00** -
19 - - 0.00E-00%** -
20 - - 0.00E-00** -
21 - - 0.00E-00** -
22 - - 0.00E-00** -
23 - - 0.00E-00%** -
24 - - 0.00E-00** -

COMMENT: Results are based on 60 observations (10 %) from the data set. The analysis was conducted using 20 initializations of

random weights. The total number of epochs was 2000.

* Best network in training batch

** Weights did not converge and network is unstable — no final solution

53



B DERIVATION OF BACK-PROPAGATION ALGORITHM

For a complete theoretical review and numerical examples, see Rumelhart and
McClelland (1986) or Samarasinghe (2007). For the theoretical derivation of the
momentum term y, see for example Hagiwara (1992). Let ¢, be the output from
output node k and c; be the desired output. The output node error in training
pattern n is half of the squares of the difference between ¢, and ¢:

1
B.1) e =5~ )’

With K output nodes and N training patterns, the sum of squared errors is:

K

(B.2) E™ = Z ey ~where n=12,..,N
k=1

This gives us an average squared error:

1 N K
(B.3) Ezﬁzz:e,?

For the sake of simplicity, let us for the rest of the proof relax the notation and drop
the superscript n which indicate training pattern. The change in the weight from
node j to node k should be proportional to the negative of the slope of the error with

respect to the weight where 7 is the learning rate:

0ek

(B.4) ¢fk=¢fk_77m
j

Applying the chain rule, we can express the partial derivative in (B.4) as a product of
partial derivatives:

aek _ aek ask
aGE. 05y 0P,

(B.5)

Where sy, is the input sum from node k before activation. Rearranging simplifies the

second derivative term in (B.5) to the activated sum b; for node j:

54



K

( ) ok - E 3 -
B.6 = (],') C, =S
anBk 9ijkk=1 jk “k k

We define §, as:

aek

(B7) (Sk:—a—s](

Now we have an expression for the weight change in terms of the delta for the

destination unit. Substituting (B.6) and (B.7) into (B.4) yields:
(B.8) Df = Dfic + N8isk
Using the chain rule again we can express delta as a product of partial derivatives:

de,  Odey Ob;
dsy  0b; sy

The second of the derivatives in (B.9) is just the derivative of the activation function:

b.
(B.10) ﬁ = f'(sx)

For the first derivative term in (B.9) there are two cases; k is an output node or k is

a hidden node. If the first case is true, the derivative is just the difference of the

output and desired output.

By Lo (-

aaj

It follows by substitution:
(B.12) 6k = (e — ) f'(sp)

The general weight change for a weight between the output layer and a hidden layer

is then:

(B.13)  ¢ji = ¢ji +n(ck — c)f' (si)sk

If the weight is between the output layer and the hidden layer we must account for

the error from the layer above. We simply use the chain rule once more to express

55



the first derivative in (B.9) as a sum of products of partial derivatives. Using (B.7),
the expression simplifies to the negative of the sum of the products of the deltas of

the units in the layer above and the weights connecting to those units:

K K
aek ask _ aek

K
B.14 SR =N G == 5
k=1 k=1 k=1

Substituting yields:

K
(B.15) 6 = (Z 5k¢}3k>f'(5j)
k=1

The weight change for weights between the input layer and the hidden layer is

consequently:

K
(B.16) qbiA}- = ¢iA} +7 (Z 5k¢j3k) f'(sj)sj
k=1

The momentum term is added to equation (B.8) and (B.16) and is defined as a
factor y times the weight change in the last training iteration. Thus, the final

expression for the weight change between the hidden layer and the output layer is:
(B.17) Ar §f = nbis + ¥ Mg df  where & = (g — ci)f' (si)

Equally, the weight change between the hidden layer and the input layer is given by:

K
(B.18) Ar i =n8;s;+v -1 ¢f;  where & = (Z 5k¢fk> f'(sj)
k=1

56



C NOTE ON PROGRAMMING CODE

The computational analysis conducted in this paper was three-fold. First, the raw
data had to be filtered. Secondly, our ANNs had to be constructed and lastly the
ARIMA models had to be estimated. The first two assignments were done by using
Visual Basic for Applications (VBA). The last one was done using the statistical

package R.

The data sorting algorithm was constructed using VBA forming a bridge between the
database containing the raw unfiltered data and a spreadsheet with the filtered
result. Our ANNs were made by using VBA in spreadsheets. This allowed us to tailor
the network structure, learning algorithm and input details. This is not always
possible with standard neural network software packages. R provides a wide variety
of statistical (linear and nonlinear modeling, classical statistical tests, time series
analysis, classification etc.) and graphical techniques. For computationally-intensive
tasks, C and C + + code can be linked and called at run time. Advanced users can

write C code to manipulate R objects directly.

R is a more diverse programming language and tailored for statistical analysis. We
would therefore wish we had the time and resources to learn more of this language
or some of the compatible ones mentioned above to be able to make a neural
network model using R!2. We would recommend future endeavors in neural
networks to exploit the powerful R package with tailored programming. We highly
recommend using more powerful language like C + + or JAV A to build models from

scratch instead of using VBA.

Computer codes in VBA for our data filtering algorithm and ANN algorithms can be
obtained by mail, s041732@stud.nhh.no.

For more information on R, please see http.//www.r-project.org.

2 There are several user made packages on neural networks available for download, although none of these
were suited for our analysis. With added customization, the network algorithms would have been faster and
the model could have been more advanced with the time we had to our disposal.

57



REFERENCES

ADYA M. and COLLOPY F. 1998, How Effective are Neural Networks at Forecasting
and Prediction? A Review and Evaluation, Journal of Forecasting, Vol. 17, pp. 481-495

AIT-SAHALIA Y. 1996, Testing Continuous-Time Models Of The Spot Interest Rate,
Review Of Financial Studies, Oxford University Press For Society For Financial Studies,
Volume 9, Number 2, pp. 385-426

AIT-SAHALIA Y. and MYKLAND P. 2003, How Often to Sample a Continuous-Time
Process in the Presence of Market Microstructure Noise, Review of Financial Studies,
Oxford University Press for Society for Financial Studies, Volume 18, Number 2, pp.
351-416

AKAIKE H. 1974, A New Look At The Statistical Model Identification, IEEE Transactions
on Automatic Control, Volume 19, Number 6, pp. 716—-723

ATIYA A. F. 2001, Bankruptcy Prediction For Credit Risk Using Neural Networks: A
Survey And New Results, |IEEE Transactions on Volume 12, Issue 4, pp. 929 — 935

BLUM A. 1992, Neural Networks in C++, New York, John Wiley & Sons

BOGER Z. and GUTERMAN H. 1997, Knowledge extraction from artificial neural
network models, |IEEE Systems, Man, and Cybernetics Conference, Orlando, FL, USA

BOLLERSLEV T., LITVINOVA J. and TAUCHEN G. 2006, Leverage and volatility feedback
effects in high-frequency data, Journal of Financial Econometrics, Volume 4, pp. 353—
384.

BOSARGE W. E. (1993), Adaptive Processes To Exploit The Nonlinear Structure Of
Financial Markets, in TRIPPI R. R. and TURBAN E. (Eds.) Neural Networks In Finance
And Investing: Using Artificial Intelligence To Improve Real-World Performance,
Chicago, Probus, pp. 371- 402

BOX G. and JENKINS G. 1970, Time Series Analysis: Forecasting And Control, San
Francisco, Holden-Day

CHAN M. C., WONG C. C. and LAM C. C. 2007, Financial Time Series Forecasting By
Neural Network Using Conjugate Gradient Learning Algorithm And Multiple Linear
Regression Weight Initialization, Computing in Economics and Finance 61

ENDERS E. 2005, Applied Econometric Time Series, 2nd edition, New York, John Wiley
& Sons

FERNANDEZ A. and GOMEZ A. 2007, Portfolio Selection Using Neural Networks,
Computers & Operations Research, Volume 34, pp. 1177-1191

58



GERLOW M.E., IRWIN S.H. and LIU T.R. 1993, Economic Evaluation Of Commodity
Price Forecasting Models, International Journal Of Forecasting, Volume 9, pp. 387-
397

HAGIWARA M. 1992, Theoretical Derivation Of Momentum Term In Back-
Propagation, International Joint Conference on Neural Networks, Volume 1, pp. 682 —
686

HILL T., O'CONNOR M. and REMUS W. 1996, Neural Network Models For Time Series
Forecasts, Management Science, Volume 42, Number 7, pp. 1082-1092

HORNIK K., STINCHCOMBE M. and WHITE H. 1989, Multilayer Feedforward Networks
Are Universal Approximators, Neural Networks, Volume 2, Number 5, pp. 359-366

JORDA 0. and MARCELLINO M. 2002, Modeling High-Frequency Foreign Exchange
Data Dynamics, Macroeconomic Dynamics, Volume 7, pp.618-635

KAASTRA I. and BOYD M. 1996, Designing A Neural Network For Forecasting Financial
And Economic Time Series, Neurocomputing, Volume 10, pp. 169-181

KLIMASAUSKAS C. 1993, Making a Difference with Data Transformation, Advanced
Technology for Developers, High-Tech Communications, Sewickley, PA

KRISTENSEN T., TRECK B. and FALCK-OLSEN R. 1997, Hypehenation By An Artificial
Neural Network, Norsk Informatikkonferanse NIK'97 Voss. Tapir forlag

KUAH K., BODRUZZAMAN M. and ZEIN-SABATTO S. 1994, A Neural Network-Based
Text Independent Voice Recognition System, Southeastcon '94 'Creative Technology
Transfer - A Global Affair’, pp. 131-135

LEITCH G. and TANNER E. J. 1991, Economic Forecast Evaluation: Profit Versus The
Conventional Error Measures, American Economic Review, Volume 81, pp. 580-590

MCADAM P. and MCNELIS P. 2005, Forecasting Inflation With Thick Models And
Neural Networks, Economic Modeling, Elsevier, Volume 22, Number 5, pp. 848-867

MCCULLOCH W. S. and PITTS W. H. 1943, A Logical Calculus Of The Ideas Immanent In
Nervous Activity, Bulletin of Mathematical Biophysics, pp. 115-133

MEESE R. and ROGOFF K. 1983, The Out-Of-Sample Failure Of Empirical Exchange
Rates: Sampling Error Or Misspecification?, International Finance Discussion Papers
204, Board of Governors of the Federal Reserve System

MILLS T. C. 1990, Nonlinear Time Series Models In Economics, Journal Of Economic
Surveys, Volume 5, pp. 215-241

59



MILLS T. C. and MARKELLOS R. N. 2008, The Econometric Modeling Of Financial Time
Series, 3rd Edition, Cambridge University Press

MOALLEMI C. 1991, Classifying Cells For Cancer Diagnosis Using Neural Networks,
IEEE Expert: Intelligent Systems And Their Applications, Volume 6, Issue 6, pp. 8-12

O'HARA M. 1995, Market Microstructure Theory, Oxford, Blackwell

OMRANE W. B. and OPPENS H. V. 2005, The performance analysis of chart patterns:
Monte Carlo simulation and evidence from the euro/dollar foreign exchange market,
Empirical Economics, Volume 30, Number 4, pp. 947-971

REFENES A. N., ZAPRANIS A. D., CONNOR J. T. and BUNN D. W. 1995, Neural Networks
In Investment Management, TRELEAVEN P. and GOONATILAKE S. (Eds.) In Intelligent
Systems For Finance And Business, John Wiley & Sons

ROSENBLATT F. 1958, The Perceptron: A Probabilistic Model For Information Storage
And Organization In The Brain, Psychological Review 65, pp. 386-408

RUMELHART D. E. and MCCLELLAND J. L. 1986, Parallel Distributed Processing:
Explorations In The Microstructure Of Cognition, Cambridge MA, MIT Press

SAMARASINGHE S. 2007, Neural Networks for Applied Sciences and Engineering:
From Fundamentals to Complex Pattern Recognition, Auerbach Publications

SCHWARZ G. E. 1978, Estimating The Dimension Of A Model, Annals of Statistics,
Volume 6, Number 2, pp. 461-464

SElJI H., TAKAHIRO M., YOSHIHIDE S. and TSUYOSHI N. 2004, Neural Network Visual
Inspection System With Human Collaborated Learning System, |EEE ICIT '04, pp. 214-
218

SHARDA R. and PATIL R. B. 1992, Connectionist Approach To Time Series Prediction:
An Empirical Test, Journal of Intelligent Manufacturing 3, pp. 317-323

SHENG G., REIS M., CHURCHILL S. 2003, A Zinc Finger Transcriptional Activator,
Regulates The Transition Between Gastrulation And Neurulation, Cell, Volume 115,
pp. 603-613

SWINGLER K. 1996, Applying Neural Networks: A Practical Guide, London, Academic
Press

TANG Z., ALMEIDA C. and FISHWICK P. A. 1991, Time Series Forecasting Using Neural
Networks Vs. Box-Jenkins Methodology, Simulation 57, pp. 303-310

60



TAY A. and TING C. 2006, Intraday Stock Prices, Volume, And Duration: A
Nonparametric Conditional Density Analysis, Empirical Economics, Volume 30,
Number 4, pp. 827-842

THEIL H. 1966, Applied Economic Forecasting, Chicago, Rand McNally and Company

THIMM G. and FIESLER E. 1997, High-Order and Multilayer Perceptron Initialization,
IEEE Transactions on Neural Networks, Volume 8, Number 2, pp. 249-259

TRIPPI R. R. and LEE J. K. 1996, Artificial Intelligence in Finance and Investing, McGraw-
Hill

TSAY R. S. 2002, Analysis Of Financial Time Series, John Wiley & Sons

WHITE H. 1988, Economic Prediction Using Neural Networks: The Case Of IBM Daily
Stock Returns, IEEE International Conference on Volume 2, pp. 451 - 458

ZHANG G., PATUWO B. E. and HU M. 1998, Forecasting With Artificial Neural
Networks: The State Of The Art, International Journal of Forecasting 14, pp. 35-62

ZHANG G. 2003, Time series forecasting using a hybrid ARIMA and neural network
model, Neurocomputing, Volume 50, pp. 159-175

61



